Example of the Use of Stokes' Theorem

In these notes we compute, in three different ways, $\oint_{C} \vec{F} \cdot d \vec{r}$ where $\vec{F}=(z-y) \hat{\boldsymbol{\imath}}-(x+z) \hat{\boldsymbol{\jmath}}-(x+y) \hat{\mathbf{k}}$ and C is the curve $x^{2}+y^{2}+z^{2}=4, z=y$ oriented counterclockwise when viewed from above.

Direct Computation

In this first computation, we parametrize the curve C and compute $\oint_{C} \vec{F} \cdot d \vec{r}$ directly. The plane $z=y$ passes through the origin, which is the centre of the sphere $x^{2}+y^{2}+z^{2}=4$. So C is a circle which, like the sphere, has radius 2 and centre $(0,0,0)$. We use a parametrization of the form

$$
\vec{r}(t)=\vec{c}+\rho \cos t \hat{\boldsymbol{\imath}}^{\prime}+\rho \sin t \hat{\boldsymbol{\jmath}}^{\prime} \quad 0 \leq t \leq 2 \pi
$$

where $\vec{c}=(0,0,0)$ is the centre of $C, \rho=2$ is the radius of C and $\hat{\boldsymbol{\imath}}^{\prime}$ and $\boldsymbol{\jmath}^{\prime}$ are two vectors that (a) are unit vectors, (b) are parallel to the plane $z=y$ and (c) are mutually perpendicular. The point $(2,0,0)$ satisfies both $x^{2}+y^{2}+z^{2}=4$ and $z=y$ and so is on C. We may choose $\hat{\boldsymbol{\imath}}^{\prime}$ to be the unit vector in the direction from the centre $(0,0,0)$ of the circle towards $(2,0,0)$. Namely $\hat{\boldsymbol{\imath}}^{\prime}=(1,0,0)$. Since the plane of the circle is $z-y=0$, the vector $\vec{\nabla}(z-y)=(0,-1,1)$ is perpendicular to the plane of C. So $\hat{\mathbf{k}}^{\prime}=\frac{1}{\sqrt{2}}(0,-1,1)$ is a unit vector normal to $z=y$. Then $\hat{\boldsymbol{\jmath}}^{\prime}=\hat{\mathbf{k}}^{\prime} \times \hat{\boldsymbol{\imath}}^{\prime}=\frac{1}{\sqrt{2}}(0,-1,1) \times(1,0,0)=\frac{1}{\sqrt{2}}(0,1,1)$ is a unit vector that is perpendicular to $\hat{\boldsymbol{\imath}}^{\prime}$. Since $\hat{\boldsymbol{\jmath}}^{\prime}$ is also perpendicular to $\hat{\mathbf{k}}^{\prime}$, it is parallel to $z=y$. Subbing in $\vec{c}=(0,0,0)$, $\rho=2, \hat{\imath}^{\prime}=(1,0,0)$ and $\hat{\jmath}^{\prime}=\frac{1}{\sqrt{2}}(0,1,1)$ gives

$$
\vec{r}(t)=2 \cos t(1,0,0)+2 \sin t \frac{1}{\sqrt{2}}(0,1,1)=2\left(\cos t, \frac{\sin t}{\sqrt{2}}, \frac{\sin t}{\sqrt{2}}\right) \quad 0 \leq t \leq 2 \pi
$$

To check that this parametrization is correct, note that $x=2 \cos t, y=\sqrt{2} \sin t, z=\sqrt{2} \sin t$ satisfies both $x^{2}+y^{2}+z^{2}=4$ and $z=y$. At $t=0, \vec{r}(0)=(2,0,0)$. As t increases, $z(t)=\sqrt{2}$ increases and $\vec{r}(t)$ moves upwards towards $\vec{r}\left(\frac{\pi}{2}\right)=(0, \sqrt{2}, \sqrt{2})$. This is the desired counterclockwise direction. Now that we have a parametrization, we can set up the integral.

$$
\begin{aligned}
\vec{r}(t) & =(2 \cos t, \sqrt{2} \sin t, \sqrt{2} \sin t) \\
\vec{r}^{\prime}(t) & =(-2 \sin t, \sqrt{2} \cos t, \sqrt{2} \cos t) \\
\vec{F}(\vec{r}(t)) & =(z(t)-y(t),-x(t)-z(t),-x(t)-y(t)) \\
& =(\sqrt{2} \sin t-\sqrt{2} \sin t,-2 \cos t-\sqrt{2} \sin t,-2 \cos t-\sqrt{2} \sin t) \\
& =-(0,2 \cos t+\sqrt{2} \sin t, 2 \cos t+\sqrt{2} \sin t) \\
\vec{F}(\vec{r}(t)) \cdot \vec{r}^{\prime}(t) & =-\left[4 \sqrt{2} \cos ^{2} t+4 \cos t \sin t\right]=-[2 \sqrt{2} \cos (2 t)+2 \sqrt{2}+2 \sin (2 t)] \\
\oint_{C} \vec{F} \cdot d \vec{r} & =\int_{0}^{2 \pi} \vec{F}(\vec{r}(t)) \cdot \vec{r}^{\prime}(t) d t \\
& =\int_{0}^{2 \pi}-[2 \sqrt{2} \cos (2 t)+2 \sqrt{2}+2 \sin (2 t)] d t=-[\sqrt{2} \sin (2 t)+2 \sqrt{2} t-\cos (2 t)]_{0}^{2 \pi}=-4 \sqrt{2} \pi
\end{aligned}
$$

[^0]
Stokes' Theorem

To apply Stokes' theorem we need to express C as the boundary ∂S of a surface S. As

$$
C=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}=4, z=y\right\}
$$

is a closed curve, this is possible. In fact there are many possible choices of S with $\partial S=C$. Three possible S 's are

$$
\begin{aligned}
S & =\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2} \leq 4, z=y\right\} \\
S^{\prime} & =\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}=4, z \geq y\right\} \\
S^{\prime \prime} & =\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}=4, z \leq y\right\}
\end{aligned}
$$

The first of these, which is part of a plane, is likely to lead to simpler computations than the last two, which are parts of a sphere. So we choose to use it.

In preparation for application of Stokes' theorem, we compute $\vec{\nabla} \times \vec{F}$ and $\hat{\mathbf{n}} d S$. For the latter, we apply the formula $\hat{\mathbf{n}} d S= \pm\left(-f_{x},-f_{y}, 1\right) d x d y$ to the surface $z=f(x, y)=y$. We use the + sign to give the normal a positive $\hat{\mathbf{k}}$ component.

$$
\begin{aligned}
\vec{\nabla} \times \vec{F} & =\operatorname{det}\left[\begin{array}{ccc}
\hat{\boldsymbol{\imath}} & \hat{\boldsymbol{\jmath}} & \hat{\mathbf{k}} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
z-y & -x-z & -x-y
\end{array}\right]=\hat{\boldsymbol{\imath}}(-1-(-1))-\hat{\boldsymbol{\jmath}}(-1-1)+\hat{\mathbf{k}}(-1-(-1))=2 \hat{\boldsymbol{\jmath}} \\
\hat{\mathbf{n}} d S & =(0,-1,1) d x d y \\
\vec{\nabla} \times \vec{F} \cdot \hat{\mathbf{n}} d S & =(0,2,0) \cdot(0,-1,1) d x d y=-2 d x d y
\end{aligned}
$$

The integration variables are x and y and, by definition, the domain of integration is

$$
R=\{(x, y) \mid(x, y, z) \text { is in } S \text { for some } z\}
$$

To determine precisely what this domain of integration is, we observe that since $z=y$ on S

$$
S=\left\{(x, y, z) \mid x^{2}+2 y^{2} \leq 4, z=y\right\} \Longrightarrow R=\left\{(x, y) \mid x^{2}+2 y^{2} \leq 4\right\}
$$

So the domain of integration is an ellipse with semimajor axis $a=2$, semiminor axis $b=\sqrt{2}$ and area $\pi a b=2 \sqrt{2} \pi$ and

$$
\oint_{C} \vec{F} \cdot d \vec{r}=\iint_{S} \vec{\nabla} \times \vec{F} \cdot \hat{\mathbf{n}} d S=\iint_{R}(-2) d x d y=-2 \text { Area }(R)=-4 \sqrt{2} \pi
$$

Remark (Limits of integration) If the integrand were more complicated, we would have to evaluate the integral over R by expressing it as an iterated integrals with the correct limits of integration. First suppose that we slice up R using thin vertical slices. On each such slice, x is essentially constant and y runs from $-\sqrt{\left(4-x^{2}\right) / 2}$ to $\sqrt{\left(4-x^{2}\right) / 2}$. The leftmost such slice would have $x=-2$ and the rightmost such slice would have $x=2$. So the correct limits with this slicing are

$$
\iint_{R} f(x, y) d x d y=\int_{-2}^{2} d x \int_{-\sqrt{\left(4-x^{2}\right) / 2}}^{\sqrt{\left(4-x^{2}\right) / 2}} d y f(x, y)
$$

If, instead, we slice up R using thin horizontal slices, then, on each such slice, y is essentially constant and x runs from $-\sqrt{4-2 y^{2}}$ to $\sqrt{4-2 y^{2}}$. The bottom such slice would have $y=-\sqrt{2}$ and the top such slice would have $y=\sqrt{2}$. So the correct limits with this slicing are

$$
\iint_{R} f(x, y) d x d y=\int_{-\sqrt{2}}^{\sqrt{2}} d y \int_{-\sqrt{4-2 y^{2}}}^{\sqrt{4-2 y^{2}}} d x f(x, y)
$$

Note that the integral with limits

$$
\int_{-\sqrt{2}}^{\sqrt{2}} d y \int_{-2}^{2} d x f(x, y)
$$

corresponds to a slicing with x running from -2 to 2 on every slice. This corresponds to a rectangular domain of integration.

Stokes' Theorem, Again

Since the integrand is just a constant and S is so simple, we can evaluate the integral $\iint_{S} \vec{\nabla} \times \vec{F} \cdot \hat{\mathbf{n}} d S$ without ever determining $d S$ explicitly and without ever setting up any limits of integration. We already know that $\vec{\nabla} \times \vec{F}=2 \hat{\jmath}$. Since S is the level surface $z-y=0$, the gradient $\vec{\nabla}(z-y)=-\hat{\jmath}+\hat{\mathbf{k}}$ is normal to S. So $\hat{\mathbf{n}}=\frac{1}{\sqrt{2}}(-\hat{\boldsymbol{\jmath}}+\hat{\mathbf{k}})$ and

$$
\oint_{C} \vec{F} \cdot d \vec{r}=\iint_{S} \vec{\nabla} \times \vec{F} \cdot \hat{\mathbf{n}} d S=\iint_{S}(2 \hat{\boldsymbol{\jmath}}) \cdot \frac{1}{\sqrt{2}}(-\hat{\boldsymbol{\jmath}}+\hat{\mathbf{k}}) d S=\iint_{S}-\sqrt{2} d S=-\sqrt{2} \operatorname{Area}(S)
$$

As S is a circle of radius $2, \oint_{C} \vec{F} \cdot d \vec{r}=-4 \sqrt{2} \pi$, yet again.

[^0]: (c) Joel Feldman. 2004. All rights reserved.

