
Discrete–time Fourier Series and Fourier Transforms

We now start considering discrete–time signals. A discrete–time signal is a function (real or complex

valued) whose argument runs over the integers, rather than over the real line. We shall use square brackets,

as in x[n], for discrete–time signals and round parentheses, as in x(t), for continuous–time signals. This is

the notation used in EECE 359 and EECE 369. Discrete–time signals arise in two ways. Firstly, the signal

could really be representing a discrete sequence of values. For example, x[n] could be the nth digit in a

string of binary digits being transmitted along some data bus in a computer. Or it could be the maximum

temperature for day number n. Secondly, a discrete–time signal could arise from sampling a continuous–time

signal at a discrete sequence of times.

Periodic Signals

Just as in the continuous–time case, discrete–time signals may or may not be periodic. We start by

considering the periodic case. Imagine an application in which we have to measure some function x(t), that

is periodic of period 2ℓ, and compute its Fourier coefficients from the measurements. We can think of x(t)

as the amplitude of some periodic signal at time t. Because we can only make finitely many measurements,

we cannot determine x(t) for all values of t. Suppose that we measure x(t) at N equally spaced values of t

“covering” the full period 0 ≤ t < 2ℓ. Say at t = 0, 2ℓN , 2 2ℓ
N , · · · , (N − 1)2ℓN . Because we do not know x(t)

for all t we cannot compute the complex(1) Fourier coefficient

ck = 1
2ℓ

∫ 2ℓ

0

x(t)e−ik π
ℓ
t dt (1)

exactly. But we can get a Riemann sum approximation to it using only t’s for which x(t) is known. All

we need to do is divide the domain of integration up into N intervals each of length 2ℓ
N . For t in the

t

y

y = x(t)e−ik π
ℓ
t

0 2ℓ2ℓ
N 2 2ℓ

N 3 2ℓ
N

interval n 2ℓ
N ≤ t < (n + 1)2ℓN , we approximate the integrand x(t)e−ik π

ℓ
t by its value at t = n 2ℓ

N , which is

x
(
n 2ℓ

N

)
e−ik π

ℓ
n 2ℓ

N = x
(
n 2ℓ

N

)
e−2πi kn

N . So we approximate the integral over n 2ℓ
N ≤ t < (n+ 1)2ℓN by the area of

a rectangle of height x
(
n 2ℓ

N

)
e−2πi kn

N and width 2ℓ
N . This gives

ck ≈ c
(N)
k = 1

2ℓ

N−1∑

n=0

x
(
n 2ℓ

N

)
e−2πi kn

N
2ℓ
N = 1

N

N−1∑

n=0

x
(
n 2ℓ

N

)
e−2πi kn

N

(1) We are using complex Fourier series rather than sin / cos Fourier series only because the computations are cleaner. It is
perfectly possible to use sin / cos Fourier series instead. Alternatively, the sin / cos Fourier series coefficients can be easily
computed from the complex ones as we did in the notes “Fourier Series”.
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To save writing for what follows set x[n] = x
(
n 2ℓ

N

)
and x̂[k] = c

(N)
k . Then

x̂[k] = 1
N

N−1∑

n=0

x[n]e−2πi kn
N

Note that x[n] and x̂[k] are both periodic of period N . That is

x̂[k +N ] = 1
N

N−1∑

n=0

x[n]e−2πi
(k+N)n

N = 1
N

N−1∑

n=0

x[n]e−2πi kn
N e−2πiNn

N = 1
N

N−1∑

n=0

x[n]e−2πi kn
N because e−2πni = 1

= x̂[k]

x[n+N ] = x
(
(n+N)2ℓN

)
= x

(
n 2ℓ

N + 2ℓ
)
= x

(
n 2ℓ

N

)
= x[n]

The vector
(
x̂[k]

)
k=0,1,2,···,N−1

, defined by,

x̂[k] = 1
N

N−1∑

n=0

x[n]e−2πi kn
N (2)

is called the discrete Fourier series (or by some people the discrete Fourier transform) of the vector(
x[j]

)
j=0,1,2,···,N−1

. One of the main facts about discrete Fourier series is that we can recover all of the

(N different) x[n]’s exactly from x̂[0], x̂[1], · · ·, x̂[N − 1] (or any other N consecutive x̂[k]’s) using the inverse

formula

x[n] =

N−1∑

k=0

x̂[k] e2πi
nk
N (3)

Proof: We need to show that if x̂[k] is defined by (2), then (3) is true. To verify this we just substitute

the definition of x̂[k] into the right hand side of (3), taking care to rename the summation variable to ensure

that we don’t use n to stand for two different quantities in the same formula.

N−1∑

k=0

e2πi
nk
N x̂[k] =

N−1∑

k=0

e2πi
nk
N 1

N

N−1∑

n′=0

e−2πin
′k
N x[n′] = 1

N

N−1∑

n′=0

N−1∑

k=0

e2πi
k(n−n′)

N x[n′]

= 1
N

N−1∑

n′=0

x[n′]

N−1∑

k=0

e2πi
k(n−n′)

N = 1
N

N−1∑

n′=0

x[n′]

N−1∑

k=0

(
e2πi

n−n′

N

)k

= 1
N

N−1∑

n′=0

x[n′]

N−1∑

k=0

rk with r = e2πi
n−n′

N

For one value of n′, namely n′ = n, r = 1 and

N−1∑

k=0

e2πi
k(n−n′)

N =

N−1∑

k=0

1 = N

For all other values of n′, we can use the standard formula

1 + r + r2 + · · · rp =
1− rp+1

1− r
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(which you can check by multiplying out (1− r)(1 + r + · · ·+ rp) and getting 1− rp+1) with p = N − 1 and

r = e2πi
(n−n′)

N to get

N−1∑

k=0

e2πi
k(n−n′)

N =

N−1∑

k=0

(
e2πi

(n−n′)
N

)k

=
1−

(
e2πi

(n−n′)
N

)N

1− e2πi(n−n′)/N
=

1− e2πi(n−n′)

1− e2πi(n−n′)/N
= 0

because n− n′ is an integer. Substituting the values we have just found for the k sums gives

N−1∑

k=0

e2πi
nk
N x̂[k] = 1

N

N−1∑

n′=0

x[n′]

N−1∑

k=0

e2πi
k(n−n′)

N = 1
N

N−1∑

n′=0

x[n′]

{
N if n′ = n
0 if n′ 6= n

= x[n]

as desired.

Example 1 In this example, we find the Fourier series for the discrete–time periodic square wave shown

in the figure

1

0 2−2 11−11 n

This signal has period N = 11. In computing its Fourier coefficients, we may sum n over any 11 consecutive

values. We choose

x̂[k] = 1
N

8∑

n=−2

x[n]e−2πi kn
N = 1

11

2∑

n=−2

e−2πi kn
11

The sum
2∑

n=−2
e−2πi kn

11 is a finite geometric series

a+ ar + ar2 + · · ·+ arp =

{
a 1−rp+1

1−r if r 6= 1

a(p+ 1) if r = 1

}
=

{
a−arp+1

1−r if r 6= 1

a(p+ 1) if r = 1

with

◦ the first term being a = e−2πi kn
11

∣∣
n=−2

= e4πi
k
11 ,

◦ the first “omitted term” being arp+1 = e−2πi kn
11

∣∣
n=3

= e−6πi k
11 , and

◦ the ratio between successive terms being r = e−2πi k
11 .

Hence

x̂[k] =
1

11

e4πi
k
11 − e−6πi k

11

1− e−2πi k
11

=
1

11

e4πi
k
11 − e−6πi k

11

e−πi k
11

(
eπi

k
11 − e−πi k

11

) =
1

11

e5πi
k
11 − e−5πi k

11

2i sin
(
π k

11

) =
1

11

sin
(
5π k

11

)

sin
(
π k

11

)

provided the ratio r 6= 1. That is, provided k 6= 0,±11,±22, · · ·. When k = 0,±11,±22, · · ·, we have that

a = 1
11 , r = 1 and five terms, so that x̂[k] = 5

11 . These Fourier coefficients are graphed in the figure

0 11−11 k

Both of the sums in (2) and (3) are finite. So there is no problem of truncation error or Gibb’s

phenomenon when computing discrete Fourier series, at least if N is not humongous.
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Discrete–time Fourier series have properties very similar to the linearity, time shifting, etc. properties

of the Fourier transform. A table of some of the most important properties is provided at the end of these

notes. Here are derivations of a few of them.

Time Shifting: Let n0 be any integer. If x[n] is a discrete–time signal of period N , then so is y[n] =

x[n− n0]. The kth Fourier coefficient of y[n] is

ŷ[k] = 1
N

N−1∑

n=0

y[n]e−2πi kn
N = 1

N

N−1∑

n=0

x[n− n0]e
−2πi kn

N

Now substitute m = n− n0 in the sum:

ŷ[k] = 1
N

N−1−n0∑

m=−n0

x[m]e−2πi
k(m+n0)

N = e−2πi
kn0
N

{
1
N

N−1−n0∑

m=−n0

x[m]e−2πi km
N

}

The summand is periodic of period N . That is, replacing m by m+N has no effect on the summand. So all

domains of summation consisting of a single full period give the same sum. Consequently we may replace

the sum
∑N−1−n0

m=−n0
by the sum

∑N−1
m=0 and the sum in parentheses is exactly x̂[k]. Thus ŷ[k] = e−2πi

kn0
N x̂[k].

Conjugation: Notice that if x[n] is a discrete–time signal of period N , then so is y[n] = x[n]. The kth

Fourier coefficient of y[n] is

ŷ[k] = 1
N

N−1∑

n=0

y[n] e−2πink
N = 1

N

N−1∑

n=0

x[n] e−2πink
N = 1

N

N−1∑

n=0

x[n] e−2πi
n(−k)

N = x̂[−k]

This tells us that the kth Fourier coefficient of the periodic discrete–time signal x[n] is x̂[−k]. In particular,

x[n] is real valued if and only if x[n] = x[n] for all n, which is true if and only the Fourier coefficients of x[n]

and y[n] = x[n] are the same. That is,

x[n] is real for all n ⇐⇒ x̂[−k] = x̂[k] for all k

Parseval’s relation: We can derive a version of Parseval’s relation for discrete–time Fourier series just as

we did for the Fourier transform. Subbing (2) into

N−1∑

k=0

|x̂[k]|2 =

N−1∑

k=0

{
x̂[k]

}
x̂[k] =

N−1∑

k=0

{
1
N

N−1∑

n=0

x[n]e2πi
kn
N

}
x̂[k]

= 1
N

N−1∑

n=0

N−1∑

k=0

x[n]e2πi
kn
N x̂[k] = 1

N

N−1∑

n=0

x[n]

{N−1∑

k=0

e2πi
kn
N x̂[k]

}

= 1
N

N−1∑

n=0

x[n]x[n] = 1
N

N−1∑

n=0

∣∣x[n]
∣∣2

The Fast Fourier Transform

The “Fast Fourier Transform” does not refer to a new or different type of Fourier transform. It refers

to a very efficient algorithm (made popular by a publication of J. W. Cooley and J. W. Tukey in 1965, but

actually known to Gauss in about 1805) for computing the discrete–time Fourier and inverse Fourier sums

(2) and (3). We will not be covering this algorithm in this course, though it is not particularly sophisticated.

The main idea behind it is explained in the supplementary notes “The Fast Fourier Transform”.
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You have access to the fast Fourier transform through the MATLAB commands fft and ifft. But a little

care must be exercised when using fft and ifft because they implement different conventions than ours.

If the input vector x is of length N , then xhat = fft(x) is a vector xhat with the N elements

xhat(k) =
N∑

n=1

x(n)e−2πi
(k−1)(n−1)

N , 1 ≤ k ≤ N

and if the input vector xhat is of length N , then x = ifft(xhat) is a vector x with the N elements

x(n) = 1
N

N∑

k=1

xhat(k)e2πi
(k−1)(n−1)

N , 1 ≤ n ≤ N.

In contrast to equations (2) and (3), the factor of 1
N appears in ifft. The reason for the funny looking

exponents is that, in MATLAB, vector indices start with 1 rather than 0.

So given any complex numbers x[0], . . . , x[N − 1], the vector x̂ given by equation (2) above can be

computed, in MATLAB, as follows:

x =
[
x[0], x[1], x[2], . . . , x[N− 1]

]
;

xhat = (1/N)*fft(x);

Notice the factor of 1/N in the second line. The resulting vector xhat will have N entries, corresponding to[
x̂[0], x̂[1], . . . , x̂[N − 1]

]
. But notice that MATLAB’s subscripting rules require

x̂[0] = xhat(1), x̂[1] = xhat(2), · · · , x̂[N − 1] = xhat(N).

Similarly, if complex numbers x̂[0], . . . , x̂[N − 1] are given, the vector x in equation (3) above can be found

using these MATLAB commands:

xhat =
[
x̂[0], x̂[1], . . . , x̂[N− 1]

]
;

x = N*ifft(xhat);

Here, again, the factor of N in the second line corrects for a different system of conventions between these

notes and the MATLAB software system.

Aperiodic Signals

We now develop a frequency expansion for non-periodic discrete–time functions using the same strategy

as we did in the continuous–time case.

Again, for simplicity we’ll only develop the expansions for functions x[n] that are zero for all sufficiently

large |n|. Again, our conclusions will actually apply to a much broader class of functions. Let N be an even

integer that is sufficiently large that x[n] = 0 for all |n| ≥ 1
2N . We can get a discrete–time Fourier series

expansion for the part of x[n] with |n| < 1
2N by using the periodic extension trick. Define x(N)[n] to be the

unique discrete–time function determined by the requirements that

i) x(N)[n] = x[n] for − N
2 < n ≤ N

2

ii) x(N)[n] is periodic of period N

Then, for −N
2 < n ≤ N

2 ,

x[n] = x(N)[n] =
∑

−N
2 <k≤N

2

x̂(N)[k] e2πi
nk
N where x̂(N)[k] = 1

N

∑

−N
2 <n≤N

2

x[n] e−2πink
N (4)
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Here we have exploited the fact that since both x(N)[n] and x̂(N)[k] are periodic of period N , we may choose

the range of summation in (2) and (3) to be any consecutive set of N integers. We have chosen −N
2 < k ≤ N

2

and −N
2 < n ≤ N

2 because they will lead to nice limits when we send N → ∞.

To get a representation of x[n] that is is valid for all n’s , not just those in a finite interval −N
2 < n ≤ N

2 ,

we take the limit N → ∞. To evaluate this limit we again interpret the sum over k in (4) as a Riemann

sum approximation to a certain integral. For each integer k, define the kth frequency to be ωk = 2π k
N .

Also use ∆ω = 2π
N to denote the spacing, ωk+1 − ωk, between any two successive frequencies and define

x̂(ω) =
∑∞

n=−∞ x[n]e−iωn. Since x[n] = 0 for all |n| ≥ N
2 ,

x̂(N)[k] = 1
N

∑

−N
2 <n≤N

2

x[n]e−2πink
N = 1

N

∞∑

n=−∞

x[n]e−i2π k
N

n = 1
N

∞∑

n=−∞

x[n]e−iωkn = 1
2π x̂(ωk)∆ω

In this notation,

x[n] = x(N)[n] =
∑

−N
2 <k≤N

2

1
2π x̂(ωk)∆ω e2πi

nk
N = 1

2π

∑

k with
−π<ωk≤π

x̂(ωk)e
iωkn ∆ω

for any −N
2 < n ≤ N

2 . Note that we have multiplied the summation restriction −N
2 < k ≤ N

2 by 2π
N to get

the equivalent restriction −π < ωk ≤ π. As we let N → ∞, the restriction −N
2 < n ≤ N

2 disappears and

the right hand side, which is exactly a Riemann sum approximation sum to the integral 1
2π

∫ π

−π
x̂(ω)eiωn dω,

converges to that integral. We conclude that

x[n] = 1
2π

∫ π

−π

x̂(ω)eiωn dω where x̂(ω) =

∞∑

n=−∞

x[n]e−iωn (5)

The function x̂(ω) is called the discrete–time Fourier transform of x[n] or the spectrum of x[n]. For any

integer m,

x̂(ω + 2πm) =

∞∑

n=−∞

x[n]e−i(ω+2πm)n =

∞∑

n=−∞

x[n]e−iωne−i2πmn =

∞∑

n=−∞

x[n]e−iωn = x̂(ω)

So x̂(ω) is periodic of period 2π and we may choose as the domain of integration in (5) any interval of length

2π.

Formulae (5) should look familiar. They are exactly the first Fourier expansion that we saw, but with

the roles of the time and frequency domains exchanged. In Theorem 1 of the notes “Fourier Series”, we saw

that, if f(t) is continuous with continuous first derivative and is also periodic with period 2π, then

f(t) =
∞∑

k=−∞

cke
ikt where ck = 1

2π

∫ π

−π

f(t)e−ikt dt

If we make the substitutions t = ω and k = −n we get

f(ω) =

∞∑

n=−∞

c−ne
−inω where c−n = 1

2π

∫ π

−π

f(ω)einω dω

which is exactly (5) with x[n] = c−n and x̂(ω) = f(ω).
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Example 2 The discrete–time signal

x[n] = anu[n] where u[n] =
{
1 if n ≥ 0
0 if n < 0

is graphed in the figure

1

0 1 2 3 4−1−2−3−4

y = x[n]

n

It has the discrete Fourier transform

x̂(ω) =

∞∑

n=−∞

x[n]e−iωn =

∞∑

n=0

ane−iωn =

∞∑

n=0

(
ae−iω

)n
=

1

1− ae−iω

Example 3 The discrete–time signal shown in the figure

1

0 2−2 n

consists of a single pulse from the square wave signal of Example 1. The computation of its Fourier transform

is virtually identical to the computation of the Fourier coefficients in Example 1.

x̂(ω) =

∞∑

n=−∞

x[n]e−iωn =

2∑

n=−2

e−iωn

This is again a finite geometric series

a+ ar + ar2 + · · ·+ arp = a 1−rp+1

1−r if r 6= 1

this time with first term a = e2iω, ratio r = e−iω and p = 4. Hence

x̂(ω) = e2iω
1− e−5iω

1− e−iω
=

e
5
2 iω

e
1
2 iω

1− e−5iω

1− e−iω
=

e
5
2 iω − e−

5
2 iω

e
1
2 iω − e−

1
2 iω

=
sin

(
5
2ω

)

sin
(
1
2ω

)

when e−iω 6= 1, i.e. when ω 6= 2kπ, with k an integer. When ω = 2kπ, we have that a = 1 and r = 1 so that

x̂(ω) = 5. This Fourier transform is graphed in the figure

π−π
ω

As sample derivations of the properties of the transform (5), we now develop the two properties that

involve convolutions. First suppose that we take the product p[n] = x[n]y[n] of the two discrete–time signals
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x[n] and y[n]. Then, by (5),

p̂[ω] =

∞∑

n=−∞

x[n]y[n]e−iωn =

∞∑

n=−∞

{
1
2π

∫ π

−π

x̂(θ)eiθn dθ

}
y[n]e−iωn

= 1
2π

∫ π

−π

dθ x̂(θ)

∞∑

n=−∞

y[n]e−i(ω−θ)n

= 1
2π

∫ π

−π

dθ x̂(θ)ŷ(ω − θ)

(6)

which is, aside from the prefactor of 1
2π , the convolution of x̂ and ŷ. Note that the domain of integration is

over one period of x̂ and ŷ.

Second, if we take the convolution

c[n] = (x ∗ y)[n] =

∞∑

m=−∞

x[n−m]y[m]

then

ĉ(ω) =

∞∑

n=−∞

c[n]e−iωn =

∞∑

n=−∞

∞∑

m=−∞

x[n−m]y[m]e−iωn =

∞∑

m=−∞

∞∑

n=−∞

x[n−m]e−iω(n−m)y[m]e−iωm

For each fixed m
∞∑

n=−∞

x[n−m]e−iω(n−m) k=n−m
=

∞∑

k=−∞

x[k]e−iωk = x̂(ω)

so

ĉ(ω) =

∞∑

m=−∞

x̂(ω)y[m]e−iωm = x̂(ω)

∞∑

m=−∞

y[m]e−iωm = x̂(ω)ŷ(ω) (7)

Example 4 Suppose that we take the convolution of the impulse signal

δ[n] =

{
1 if n = 0
0 if n 6= 0

with some other signal x[n]. Then

(x ∗ δ)[n] =

∞∑

m=−∞

x[n−m]δ[m]

But, by the definition of δ, every single term in the sum, except that with m = 0 is zero. So

(x ∗ δ)[n] = x[n− 0]δ[0] = x[n]

By (7), the discrete Fourier transform of x[n] = (x∗δ)[n] is x̂(ω)δ̂(ω). So δ̂(ω) ought to be one. By definition,

δ̂(ω) =

∞∑

n=∞

δ[n]e−iωn

Again, by the definition of δ, every term in the sum, except that with n = 0, is zero. So δ̂(ω) = δ[0]e−iω0 = 1

as expected.
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Example 5 This time, let’s convolve an impulse

δn0 [n] =

{
1 if n = n0

0 if n 6= n0

at some time n0, possibly nonzero, with some other signal x[n]. Then

(x ∗ δn0)[n] =

∞∑

m=−∞

x[n−m]δn0 [m] = x[n− n0]δn0 [n0] = x[n− n0]

The DFT of δn0 is

δ̂n0(ω) =

∞∑

n=∞

δn0 [n]e
−iωn = δn0 [n0]e

−iωn0 = e−iωn0

So (7) tells us that the DFT of the time shifted signal x[n− n0] is

δ̂n0(ω)x̂(ω) = e−iωn0 x̂(ω)

Example 6 As a less trivial example of a direct evaluation of a convolution consider the boxcar

β[n] =

{
1 if |n| ≤ 2
0 if |n| > 2

of Example 3. The convolution

(β ∗ β)[n] =

∞∑

m=−∞

β[n−m]β[m]

The first factor, β[n − m] is zero unless |n − m| ≤ 2, i.e. unless m is within distance 2 of n, i.e. unless

n− 2 ≤ m ≤ n+ 2. The second factor, β[m] is zero unless −2 ≤ m ≤ 2. So the convolution (β ∗ β)[n] is the

number of integers m that obey both n− 2 ≤ m ≤ n+ 2 and −2 ≤ m ≤ 2.

◦ If n is so negative that n + 2 < −2 (i.e. n < −4) there are no m’s that obey both n− 2 ≤ m ≤ n+ 2

and −2 ≤ m ≤ 2. This is illustrated in the figure below. In his case, the convolution is zero.

2−2

n+ 2n− 2 m

◦ If we increase n so that −2 ≤ n+ 2 ≤ 2 (i.e. −4 ≤ n ≤ 0) then the inequalities n− 2 ≤ m ≤ n+ 2 and

−2 ≤ m ≤ 2 reduce to −2 ≤ m ≤ n + 2. This is illustrated in the figure below. In general, if k ≤ p

are two integers, the number of integers m that obey k ≤ m ≤ p is p− k + 1. (In particular, if p = k,

there is one allowed m and if p = k + 1, there are two allowed m’s.) Applying this with p = n+ 2 and

k = −2, we have that, in his case, the convolution is (n+ 2)− (−2) + 1 = n+ 5.

2−2

n+ 2n− 2 m

◦ If we increase n again so that −2 ≤ n− 2 ≤ 2 (i.e. 0 ≤ n ≤ 4) then the inequalities n− 2 ≤ m ≤ n+ 2

and −2 ≤ m ≤ 2 reduce to n − 2 ≤ m ≤ 2. This is illustrated in the figure below. In his case the

convolution is 2− (n− 2) + 1 = 5− n.

2−2

n+ 2n− 2 m
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◦ Finally, if n is so positive that n− 2 > 2 (i.e. n > 4) there are no m’s that obey both n− 2 ≤ m ≤ n+2

and −2 ≤ m ≤ 2. This is illustrated in the figure below. In his case the convolution is zero.

2−2

n− 2 n+ 2 m

We conclude that

(β ∗ β)[n] =





0 if n < −4

n+ 5 if −4 ≤ n ≤ 0

5− n if 0 ≤ n ≤ 4

0 if n > 4 40−4

5

1
n

We have now seen a number of different, but closely related, Fourier expansions. They are given in the

following table.

time domain frequency domain

continuous, period 2ℓ discrete x(t) =
∞∑

k=−∞

x̂[k] eik
π
ℓ
t x̂[k] = 1

2ℓ

∫ ℓ

−ℓ
x(t) e−ik π

ℓ
t dt

continuous continuous x(t) = 1
2π

∫∞

−∞
x̂(ω)eiωt dω x̂(ω) =

∫∞

−∞
x(t)e−iωt dt

discrete, period N discrete, period N x[n] =
N−1∑
k=0

x̂[k] e2πi
nk
N x̂[k] = 1

N

N−1∑
n=0

x[n]e−2πi kn
N

discrete continuous, period 2π x[n] = 1
2π

∫ π

−π
x̂(ω)eiωn dω x̂(ω) =

∞∑
n=−∞

x[n]e−iωn

Observe that

◦ If in either domain, time or frequency, the function is periodic (not periodic) then the argument in the

other domain is discrete (runs continuously).

◦ If in either domain, time or frequency, the function has a discrete argument (continuous argument),

then the transformed function in the other domain is periodic (not periodic).

Not surprisingly, all of four of these transforms have properties very similar to the linearity, time shifting,

etc. properties of the Fourier transform. The detailed versions of these properties are given in the following

tables.
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Continuous–time, period 2ℓ

Property Periodic Signal Fourier Coefficients

x(t) =
∑

k x̂[k]e
ik π

ℓ
t x̂[k] = 1

2ℓ

∫ ℓ

−ℓ x(t)e
−ik π

ℓ
t dt

y(t) =
∑

k ŷ[k]e
ik π

ℓ
t ŷ[k] = 1

2ℓ

∫ ℓ

−ℓ y(t)e
−ik π

ℓ
t dt

Linearity Ax(t) +By(t) Ax̂[k] +Bŷ[k]

Time Shifting x(t− t0) e−ik π
ℓ
t0 x̂[k]

Frequency Shifting ein
π
ℓ
tx(t) x̂[k − n]

Conjugation x(t) x̂[−k]

Time Reversal x(−t) x̂[−k]

Differentiation x′(t) ik π
ℓ x̂[k]

Convolution
∫ ℓ

−ℓ x(τ)y(t − τ) dτ 2ℓ x̂[k]ŷ[k]

Multiplication x(t)y(t)
∞∑

m=−∞

x̂[m]ŷ[k −m]

Parseval 1
2ℓ

∫ ℓ

−ℓ
|x(t)|2 dt =

∞∑
k=−∞

|x̂[k]|2

Continuous–time, aperiodic

Property Aperiodic Signal Fourier Transform

x(t) = 1
2π

∫∞

−∞
x̂(ω)eiωt dω x̂(ω) =

∫∞

−∞
x(t)e−iωt dt

y(t) = 1
2π

∫∞

−∞
ŷ(ω)eiωt dω ŷ(ω) =

∫∞

−∞
y(t)e−iωt dt

Linearity Ax(t) +By(t) Ax̂(ω) +Bŷ(ω)

Time Shifting x(t− t0) e−iωt0 x̂(ω)

Frequency Shifting eiω0tx(t) x̂(ω − ω0)

Scaling x
(
t
α

)
|α|x̂(αω)

Time Shift & Scaling x
(
t−t0
α ) |α|e−iωt0 x̂(αω)

Frequency shift & scaling |α|eiω0tx(αt) x̂
(
ω−ω0

α

)

Conjugation x(t) x̂(−ω)

Time Reversal x(−t) x̂(−ω)

t–Differentiation x′(t) iωx̂(ω)

ω–Differentiation tx(t) i ddω x̂(ω)

Convolution
∫∞

−∞
x(τ)y(t − τ) dτ x̂(ω)ŷ(ω)

Multiplication x(t)y(t) 1
2π

∫∞

−∞
x̂(θ)ŷ(ω − θ) dθ

Duality x̂(t) 2πx(−ω)

Parseval
∫∞

−∞
|x(t)|2 dt = 1

2π

∫∞

−∞
|x̂(ω)|2 dω
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Discrete–time, period N

Property Periodic Signal Fourier Coefficients

x[n] =
N−1∑
k=0

x̂[k]e2πi
kn
N x̂[k] = 1

N

N−1∑
n=0

x[n]e−2πi kn
N

y[n] =
N−1∑
k=0

ŷ[k]e2πi
kn
N ŷ[k] = 1

N

N−1∑
n=0

y[n]e−2πi kn
N

Linearity Ax[n] + By[n] Ax̂[k] +Bŷ[k]

Time Shifting x[n− n0] e−2πi
kn0
N x̂[k]

Frequency Shifting e2πi
nk0
N x[n] x̂[k − k0]

Conjugation x[n] x̂[−k]

Time Reversal x[−n] x̂[−k]

Difference x[n]− x[n− 1]
(
1− e−2πi k

N

)
x̂[k]

Convolution
N−1∑
m=0

x[m]y[n−m] N x̂[k]ŷ[k]

Multiplication x[n]y[n]
N−1∑
m=0

x̂[m]ŷ[k −m]

Duality x̂[n] 1
N x[−k]

Parseval 1
N

N−1∑
n=0

|x[n]|2 =
N−1∑
k=0

|x̂[k]|2

Discrete–time, aperiodic

Property Aperiodic Signal Fourier Transform

x[n] = 1
2π

∫ π

−π x̂(ω)e
iωn dω x̂(ω) =

∞∑
n=−∞

x[n]e−iωn

y[n] = 1
2π

∫ π

−π ŷ(ω)e
iωn dω ŷ(ω) =

∞∑
n=−∞

y[n]e−iωn

Linearity Ax[n] +By[n] Ax̂(ω) +Bŷ(ω)

Time Shifting x[n− n0] e−iωn0 x̂(ω)

Frequency Shifting eiω0nx[n] x̂(ω − ω0)

Conjugation x[n] x̂(−ω)

Time Reversal x[−n] x̂(−ω)

n–Difference x[n]− x[n− 1]
(
1− e−iω

)
x̂(ω)

ω–Differentiation nx[n] i ddω x̂(ω)

Convolution
∞∑

m=−∞

x[m]y[n−m] x̂(ω)ŷ(ω)

Multiplication x[n]y[n] 1
2π

∫ π

−π
x̂(θ)ŷ(ω − θ) dθ

Parseval
∞∑

n=−∞

|x[n]|2 = 1
2π

∫ π

−π
|x̂(ω)|2 dω
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