
Solution of the Heat Equation by Separation of Variables

The Problem

Let u(x, t) denote the temperature at position x and time t in a long, thin rod of length ℓ that runs

from x = 0 to x = ℓ. Assume that the sides of the rod are insulated so that heat energy neither enters nor

leaves the rod through its sides. Also assume that heat energy is neither created nor destroyed (for example

by chemical reactions) in the interior of the rod. Then u(x, t) obeys the heat equation

∂u
∂ t (x, t) = α2 ∂2u

∂x2 (x, t) for all 0 < x < ℓ and t > 0 (1)

This equation was derived in the notes “The Heat Equation (One Space Dimension)”.

Suppose further that the temperature at the ends of the rod is held fixed at 0. This information is

encoded in the “boundary conditions”

u(0, t) = 0 for all t > 0 (2)

u(ℓ, t) = 0 for all t > 0 (3)

Finally, also assume that we know the temperature throughout the rod time 0. So there is some given

function f(x) such that the “initial condition”

u(x, 0) = f(x) for all 0 < x < ℓ (4)

is satisfied. The problem is to determine u(x, t) for all x and t.

Outline of the Method of Separation of Variables

We are going to solve this problem using the same three steps that we used in solving the wave equation.

Step 1 In the first step, we find all solutions of (1) that are of the special form u(x, t) = X(x)T (t) for

some function X(x) that depends on x but not t and some function T (t) that depends on t but

not x. Once again, if we find a bunch of solutions Xi(x)Ti(t) of this form, then since (1) is a

linear equation,
∑

i aiXi(x)Ti(t) is also a solution for any choice of the constants ai.

Step 2 We impose the boundary conditions (2) and (3).

Step 3 We impose the initial condition (4).

The First Step – Finding Factorized Solutions

The factorized function u(x, t) = X(x)T (t) is a solution to the heat equation (1) if and only if

X(x)T ′(t) = α2X ′′(x)T (t) ⇐⇒ X′′(x)
X(x) = 1

α2

T ′(t)
T (t)

The left hand side is independent of t. The right hand side is independent of x. The two sides are equal. So

both sides must be independent of both x and t and hence equal to some constant, say σ. So we have

X′′(x)
X(x) = σ 1

α2

T ′(t)
T (t) = σ

⇐⇒ X ′′(x)− σX(x) = 0 T ′(t)− α2σT (t) = 0
(5)

If σ 6= 0, the general solution to (5) is

X(x) = d1e
√
σx + d2e

−
√
σx T (t) = d3e

α2σt
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for arbitrary constants d1, d2 and d3. If σ = 0, the equations (5) simplify to

X ′′(x) = 0 T ′(t) = 0

and the general solution is

X(x) = d1 + d2x T (t) = d3

for arbitrary constants d1, d2 and d3. We have now found a huge number of solutions to the heat equation

(1). Namely

u(x, t) =
(

d1e
√
σx + d2e

−
√
σx
)(

d3e
α2σt

)

for arbitrary σ 6= 0 and arbitrary d1, d2, d3

u(x, t) =
(

d1 + d2x
)

d3 for arbitrary d1, d2, d3

The Second Step – Imposition of the Boundary Conditions

If Xi(x)Ti(t), i = 1, 2, 3, · · · all solve the heat equation (1), then
∑

i aiXi(x)Ti(t) is also a solution for

any choice of the constants ai. This solution satisfies the boundary condition (2) if and only if

∑

i

aiXi(0)Ti(t) = 0 for all t > 0

This will certainly be the case if Xi(0) = 0 for all i. Similarly, u(x, t) =
∑

i aiXi(x)Ti(t) satisfies the

boundary condition (3) if and only if

∑

i

aiXi(ℓ)Ti(t) = 0 for all t > 0

and this will certainly be the case if Xi(ℓ) = 0 for all i. We are now going to go through the solutions that

we found in Step 1 and discard all of those that fail to satisfy X(0) = X(ℓ) = 0.

First, consider σ = 0 so that X(x) = d1 + d2x. The condition X(0) = 0 is satisfied if and only if d1 = 0.

The condition X(ℓ) = 0 is satisfied if and only if d1 + ℓd2 = 0. So the conditions X(0) = X(ℓ) = 0 are both

satisfied only if d1 = d2 = 0, in which case X(x) is identically zero. There is nothing to be gained by keeping

an identically zero X(x), so we discard σ = 0 completely.

Next, consider σ 6= 0 so that d1e
√
σx + d2e

−
√
σx. The condition X(0) = 0 is satisfied if and only if

d1 + d2 = 0. So we require that d2 = −d1. The condition X(ℓ) = 0 is satisfied if and only if

0 = d1e
√
σℓ + d2e

−
√
σℓ = d1

(

e
√
σℓ − e−

√
σℓ
)

If d1 were zero, then X(x) would again be identically zero and hence useless. So instead, we discard any σ

that does not obey

e
√
σℓ − e−

√
σℓ = 0 ⇐⇒ e

√
σℓ = e−

√
σℓ ⇐⇒ e2

√
σℓ = 1 ⇐⇒ 2

√
σℓ = 2kπı ⇐⇒

√
σ = k π

ℓ ı

⇐⇒ σ = −k2 π2

ℓ2

for some integer k. With
√
σ = k π

ℓ ı and d2 = −d1,

X(x)T (t) = d1
(

eı
kπ

ℓ
x − e−ıkπ

ℓ
x
)(

d3e
−α2π2k2t/ℓ2

)

= 2ıd1d3 sin
(

kπ
ℓ x

)

e−α2π2k2t/ℓ2

= βk sin
(

kπ
ℓ x

)

e−α2π2k2t/ℓ2

where βk = −2id1d3.
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The Third Step – Imposition of the Initial Condition

We now know that

u(x, t) =

∞
∑

k=1

βk sin
(

kπ
ℓ x

)

e−α2π2k2t/ℓ2

obeys the heat equation (1) and the boundary conditions (2) and (3), for any choice of the constants βk. It

remains only to see if we can choose the βk’s to satisfy

f(x) = u(x, 0) =

∞
∑

k=1

βk sin
(

kπ
ℓ x

)

(4′)

But any (reasonably smooth) function, f(x), defined on the interval 0 < x < ℓ, has a unique representation(1)

of the form (4′) and the coefficients in this representation are given by

βk = 2
ℓ

∫ ℓ

0

f(x) sin kπx
ℓ dx

So we have a solution:

u(x, t) =

∞
∑

k=1

βk sin
(

kπ
ℓ x

)

e−α2π2k2t/ℓ2 with βk = 2
ℓ

∫ ℓ

0

f(x) sin kπx
ℓ dx (6)

The behaviour of the solution (6) is very different from the corresponding solution of the wave equation.

Each exponential e−α2π2k2t/ℓ2 converges to zero as t → ∞. Hence u(x, t) tends, very reasonably, to the

equilibrium temperature zero.

Inhomogeneous Boundary Conditions

Consider the following problem. The temperature, u(x, t), in a metal rod of unit length satisfies

ut = 9uxx, 0 ≤ x ≤ 2, t ≥ 0.

The ends of the rod at x = 0 and x = 2, are maintained at a constant temperatures of 0 and 8 respectively,

so that the boundary conditions are

u(0, t) = 0, u(2, t) = 8, t ≥ 0

The initial temperature distribution is u(x, 0) = 2x2. Find the temperature for t ≥ 0.

Warning. With the exception of the boundary condition u(2, t) = 8, this problem is a special case of the

problem (1–4) with α = 3, ℓ = 2 and f(x) = 2t2. But the boundary condition u(2, t) = 8 cannot be

achieved by requiring X(2) = 8. The reason is that “Xi(2) = 8 for all i” does not imply that “u(2, t) =
∑

iXi(2)Ti(t) = 8 for all t. Fortunately, with a little physical intuition, we can reduce the current problem

to (1–4).

Motivation. We would expect that as t → ∞ the temperature approaches an equilibrium temperature that

increases from 0 at x = 0 to 8 at x = 2. The simplest possible equilibrium temperature is v(x) = 4x.

As supporting evidence for this guess, note that u(x, t) = 4x is a steady state (i.e. time independent)

(1) See, for example, the notes “Fourier Series”.
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solution of the heat equation ut = 9uxx which also satisfies the boundary conditions. So the transient(1)

w(x, t) = u(x, t)− v(x) obeys the boundary conditions

w(0, t) = u(0, t)− v(0) = 0− 0 = 0 w(2, t) = u(2, t)− v(2) = 8− 8 = 0

which we already know how to handle.

Solution. We have not yet verified that u(x, t) tends to 4x as t → ∞. We may non–the–less define

w(x, t) = u(x, t) − v(x) = u(x, t) − 4x. If our intuition is correct, this will be the transient part of the

solution, decaying to zero for large t. We first find w(x, t).

Subtracting 0 = vt = 9vxx from ut = 9uxx gives (u− v)t = 9(u− v)xx or wt = 9wxx.

Subtracting v(0) = 0 from u(0, t) = 0 gives w(0, t) = 0.

Subtracting v(2) = 8 from u(2, t) = 8 gives w(2, t) = 0.

Subtracting v(x) = 4x from u(x, 0) = 2x2 gives w(x, 0) = 2x2 − 4x.

Thus u(x, t) is a solution for the original problem if and only if w(x, t) obeys

wt = 9wxx, w(0, t) = 0, w(2, t) = 0, w(x, 0) = 2x2 − 4x, 0 ≤ x ≤ 2, t ≥ 0 (∗)

This is now exactly (1–4) with u replaced by w and ℓ = 2, α = 3 and f(x) = 2x2 − 4x. So, by (6),

w(x, t) =

∞
∑

k=1

βke
− 9

4
π2k2t sin kπx

2

with

βk = 2
ℓ

∫ ℓ

0

f(x) sin kπx
ℓ dx =

∫ 2

0

(2x2 − 4x) sin kπx
2 dx

=
[

32
k3π3 cos

kπx
2 + 16x

k2π2 sin
kπx
2 − 4x2

kπ cos kπx
2 − 16

k2π2 sin
kπx
2 + 8x

kπ cos kπx
2

]2

0

=
[

32
k3π3 cos

kπx
2 − 4x2

kπ cos kπx
2 + 8x

kπ cos kπx
2

]2

0

= (−1)k
[

32
k3π3 − 16

kπ + 16
kπ

]

− 32
k3π3

So the final answer is

u(x, t) = 4x+ w(x, t) = 4x−
∞
∑

k=1

k odd

64
k3π3 e

− 9

4
π2k2t sin kπx

2

(1) That is, the part of the solution u(x, t) which tends to zero as t → ∞.
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