The Bolzano–Weierstrass Theorem

Theorem (The Bolzano–Weierstrass Theorem) Every bounded sequence of real numbers has a convergent subsequence i.e. a subsequential limit.

Proof: Let $(s_n)_{n \in \mathbb{N}}$ be a sequence of real numbers with $|s_n| \leq L$ for all $N \in \mathbb{N}$.

Step 1 (The Search Procedure):

- Set $a_0 = -L$ and $b_0 = L$. Note that $|b_0 a_0| = 2L$.
- Divide the interval $[a_0, b_0]$ into two halves. At least one half must contain infinitely many s_n 's. Pick one such half and call it $[a_1, b_1]$. Note that $|b_1 a_1| = \frac{1}{2}|b_0 a_0| = L$, and that $a_1 \in \{a_0, a_0 + \frac{b_0 a_0}{2}\}$. So $a_1 \ge a_0$. There are infinitely many s_n 's in $[a_1, b_1]$. Select one, say s_{i_1} .

$$a_0 = a_1$$
 b_1 b_0 or a_0 a_1 $b_0 = b_1$

• Divide the interval $[a_1, b_1]$ into two halves. At least one half must contain infinitely many s_n 's. Pick one such half and call it $[a_2, b_2]$. Note that $|b_2 - a_2| = \frac{1}{2}|b_1 - a_1| = \frac{1}{2}L$, and that $a_2 \in \{a_1, a_1 + \frac{b_1 - a_1}{2}\}$. So $a_2 \ge a_1$. There are infinitely many s_n 's in $[a_2, b_2]$. Select one with $n > i_1$, say s_{i_2} .

 $\circ\,$ Continue.

In this way we generate

$$\underbrace{\begin{bmatrix}a_0, b_0\end{bmatrix}}_{\text{length } 2L} \supset \underbrace{\begin{bmatrix}s_{i_1} \in \\ a_1, b_1\end{bmatrix}}_{\text{length } L} \supset \underbrace{\begin{bmatrix}s_{i_2} \in \\ a_2, b_2\end{bmatrix}}_{\text{length } \frac{1}{2}L} \supset \cdots$$

Note that $|b_n - a_n| = \frac{1}{2}|b_{n-1} - a_{n-1}|$ for all $n \in \mathbb{N}$ so that $|b_n - a_n| = \frac{1}{2^n}|b_0 - a_0| = \frac{L}{2^{n-1}}$ for all $n \in \mathbb{N}$. Also $a_0 \le a_1 \le a_2 \le \cdots$.

Step 2 (Guess the Limit): The sequence a_1, a_2, a_3, \cdots is monotone increasing and bounded above by $b_0 = L$. So it converges. Call the limit s.

Step 3 (Prove that $\lim_{n \to \infty} s_n = s$): Let $\varepsilon > 0$. Since $(a_n)_{n \in \mathbb{N}}$ converges to s,

$$\exists N_1 \in \mathbb{N}$$
 such that $|a_n - s| < \frac{\varepsilon}{2}$ whenever $n \ge N_1$

Since s_{i_n} lies in the interval $[a_n, b_n]$, and the length of the interval $[a_n, b_n]$ is $\frac{L}{2^{n-1}}$, the distance from s_{i_n} to a_n is at most $\frac{L}{2^{n-1}}$, which converges to zero as $n \to \infty$,

$$\exists N_2 \in \mathbb{N}$$
 such that $|s_{i_n} - a_n| < \frac{\varepsilon}{2}$ whenever $n \ge N_2$

Choose $N = \max\{N_1, N_2\}$. Then

$$n \ge N \implies |s_{i_n} - s| \le |s_{i_n} - a_n| + |a_n - s| < \varepsilon$$