Dini's Theorem

Theorem (Dini's Theorem) Let K be a compact metric space. Let $f : K \to \mathbb{R}$ be a continuous function and $f_n : K \to \mathbb{R}$, $n \in \mathbb{N}$, be a sequence of continuous functions. If $\{f_n\}_{n \in \mathbb{N}}$ converges pointwise to f and if

$$f_n(x) \ge f_{n+1}(x)$$
 for all $x \in K$ and all $n \in \mathbb{N}$

then $\{f_n\}_{n \in \mathbb{N}}$ converges uniformly to f.

Proof: Set, for each $n \in \mathbb{N}$, $g_n(x) = f_n(x) - f(x)$. Then $\{g_n\}_{n \in \mathbb{N}}$ is a sequence of continuous functions on the compact metric space K that converges pointwise to 0. Furthermore $g_n(x) \ge g_{n+1}(x) \ge 0$ for all $x \in K$ and $n \in \mathbb{N}$. Set $M_n = \sup \{g_n(x) \mid x \in K\}$. We must prove that $\lim_{n \to \infty} M_n = 0$.

We use the finite open subcover property of K. Let $\varepsilon > 0$ and define $\mathcal{O}_n = g_n^{-1}((-\infty,\varepsilon))$. Since g_n is continuous, this is an open set. Since $g_n(x) \ge g_{n+1}(x)$, $\mathcal{O}_n \subset \mathcal{O}_{n+1}$. For each $x \in K$, $\lim_{n \to \infty} g_n(x) = 0$ so that there is an $n \in \mathbb{N}$ with $g_n(x) < \varepsilon$ so that $x \in \mathcal{O}_n$. Thus $\bigcup_{n=1}^{\infty} \mathcal{O}_n = K$. Since K is compact, there is a finite collection of \mathcal{O}_n 's that also covers K. Since $\mathcal{O}_n \subset \mathcal{O}_{n+1}$, the \mathcal{O}_n in that finite collection with the largest index covers K. Thus there is an $N \in \mathbb{N}$ with $\mathcal{O}_N = K$. That is $g_N(x) < \varepsilon$ for all $x \in K$. Thus $M_N \leq \varepsilon$. Since M_n decreases with n and every $M_n \ge 0$, this forces $\lim_{n \to \infty} M_n = 0$.

Here are examples that show that the hypotheses

(a) K is compact

- (b) f is continuous
- (c) $f_n(x)$ decreases as *n* increases

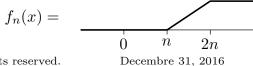
are each necessary.

Example (a) The set K = (0, 1) is not compact. As $n \to \infty$, the sequence $f_n(x) = x^n$ of continuous functions decreases pointwise to zero. But the convergence is not uniform because

$$\sup\{ x^n \mid 0 < x < 1 \} = 1$$

for all $n \in \mathbb{N}$.

Example (a') The set $K = \mathbb{R}$ is not compact. As $n \to \infty$, the sequence



(c) Joel Feldman. 2016. All rights reserved.

1

(the right hand plateau is at height 1) of continuous functions decreases pointwise to zero. But the convergence is not uniform because

$$\sup\left\{ f_n(x) \mid x \in \mathbb{R} \right\} = 1$$

for all $n \in \mathbb{N}$.

Example (b) The set K = [0, 1] is compact. As $n \to \infty$, the sequence

$$f_n(x) = \underbrace{\begin{array}{c} & \\ \hline 0 & \frac{1}{n} & 1 \end{array}}_{n}$$

of continuous functions (the dot is at height 1) decreases pointwise to the discontinuous function

$$f(x) = \begin{array}{c} \bullet \\ \hline 0 \\ 1 \end{array}$$

But the convergence is not uniform because

$$\sup \left\{ f_n(x) - f(x) \mid x \in [0,1] \right\} = \sup \left\{ \begin{array}{c} \\ 0 \\ \frac{1}{n} \end{array} \right\} = 1$$

for all $n \in \mathbb{N}$.

Example (c) The set K = [0, 1] is compact. As $n \to \infty$, the sequence

$$f_n(x) = \bigwedge_{\begin{array}{c} 0 \\ \frac{1}{n} \\ \frac{2}{n} \end{array}} 1$$

of continuous functions (the triangle has height 1) converges pointwise to zero. But the convergence is not uniform because

$$\sup\left\{ f_n(x) \mid x \in \mathbb{R} \right\} = 1$$

for all $n \in \mathbb{N}$.