
Tempered Distributions

The theory of tempered distributions allows us to give a rigorous meaning to the Dirac

delta function. It is “defined”, on a hand waving level, by the properties that

(i) δ(x) = 0 except when x = 0

(ii) δ(0) is “so infinite” that

(iii) the area under its graph is one.

Still on a handwaving level, if f is any continuous function, then the functions f(x)δ(x)

and f(0)δ(x) are the same since they are both zero for every x 6= 0. Consequently

∫ ∞

−∞
f(x)δ(x) dx =

∫ ∞

−∞
f(0)δ(x) dx = f(0)

∫ ∞

−∞
δ(x) dx = f(0) (1)

That
∫∞
−∞ f(x)δ(x) dx = f(0) is by far the most important property of the Dirac delta

function. But we already have seen in a problem set that there is no Riemann integrable

function δ(x) that satisfies (1).

The basic idea which allows us to make make rigorous sense of (1) is to generalize the

meaning of “a function on IR”. We shall call the generalization a “tempered distribution

on IR”. Of course a function on IR, in the conventional sense, is a rule which assigns a

number to each x ∈ IR. A tempered distribution will be a rule which assigns a number to

each nice (to be made precise shortly) function on IR. We will associate to the conventional

function f : IR → C the tempered distribution which assigns to the nice function ϕ(x) the

number
∫∞
−∞ f(x)ϕ(x) dx. The tempered distribution which corresponds to the Dirac delta

function will assign to ϕ(x) the number ϕ(0).

Our first order of business is to make precise “nice function”.

Definition 1 Schwartz space is the vector space

S(IR) =
{

ϕ : IR → C
∣

∣ ϕ is C∞, sup
x∈IR

∣

∣xnϕ(m)(x)
∣

∣ <∞ for all integers n,m ≥ 0
}

Observe that

(1) S(IR) is indeed a vector space. That is,

ϕ, ψ ∈ S(IR), a, b ∈ C =⇒ aϕ+ bψ ∈ S(IR)

(2) If f(x) is any continuous function on IR which is bounded by a constant times 1+ |x|p
for some p ∈ IN and ϕ ∈ S(IR), then f(x)ϕ(x) is a continuous function that is bounded
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by some constant times 1
1+x2 (take n = p+ 2 and m = 0 in Definition 1) so that the

integral
∫∞
−∞ f(x)ϕ(x) dx converges.

(3) Define, for each n,m ∈ ZZ with n,m ≥ 0 and each ϕ ∈ S(IR)

‖ϕ‖n,m = sup
x∈IR

∣

∣xnϕ(m)(x)
∣

∣

Then

(a) ‖ϕ‖n,m ≥ 0

(b) ‖aϕ‖n,m = |a| ‖ϕ‖n,m
(c) ‖ϕ+ ψ‖n,m ≤ ‖ϕ‖n,m + ‖ψ‖n,m
for all ϕ, ψ ∈ S(IR) and a ∈ C. These are precisely the defining conditions for ‖ · ‖n,m
to be a semi–norm.

(4) In order for ‖ · ‖n,m to be a norm it must also obey ‖ϕ‖n,m = 0 ⇐⇒ ϕ = 0.

This is the case if and only if m = 0. If m 6= 0 the constant function ϕ(x) = 1 has

‖ϕ‖n,m = 0.

Example 2

(a) For any polynomial P (x), the function ϕ(x) = P (x)e−x
2

is in Schwartz space. This

is because, firstly, for any n,m ≥ 0, xnϕ(m)(x) is again a polynomial times e−x
2

and,

secondly,

e−x
2

=
1

ex
2 ≤ 1

1 + x2 + 1
2!x

2 + · · ·+ 1
p!x

2p
(2)

for every p ∈ IN. (The terms that we have dropped from the Taylor expansion of ex
2

are

all positive.) Consequently, xnϕ(m)(x) is bounded.

(b) If ϕ is C∞ and of compact support (which means that there is some M > 0 such that

ϕ(x) = 0 for all |x| > M) then ϕ ∈ S(IR). One such function is

ϕ(x) =

{

0 if |x| ≥ 1

e
− 1

(x−1)2 e
− 1

(x+1)2 if −1 < x < 1

The heart of the proof that this function really is C∞ at x = ±1 is the observation that,

for any p ≥ 0, lim
y→0

1
|y|p e

− 1
y2 = 0, which follows immediately from (2) with x = 1

y
.

Next, we introduce a metric on S(IR) which is chosen so that ϕ and ψ are close

together if and only if ‖ϕ − ψ‖n,m is small for every n,m. The details are given in the

following

c© Joel Feldman. 2008. All rights reserved. March 22, 2008 Tempered Distributions 2



Theorem 3 Define d : S(IR)× S(IR) → IR by

d(ϕ, ψ) =
∞
∑

n,m=0

2−n−m
‖ϕ− ψ‖n,m

1 + ‖ϕ− ψ‖n,m

Then

(a) d(ϕ, ψ) is well–defined for all ϕ, ψ ∈ S(IR) and is a metric.

(b) With this metric, S(IR) is a complete metric space.

(c) In this metric ϕ = lim
k→∞

ϕk if and only if lim
k→∞

‖ϕk − ϕ‖n,m = 0 for every n,m ≥ 0.

Proof: (a) To prove that
∞
∑

n,m=0
2−n−m ‖ϕ−ψ‖n,m

1+‖ϕ−ψ‖n,m
is well–defined it suffices to observe,

firstly, that A
1+A ≤ 1 for every A ≥ 0 and, secondly, that

∞
∑

n,m=0
2−n−m converges because

the geometric series
∞
∑

n=0
2−n = 2.

◦ The metric axiom d(ϕ, ψ) ≥ 0 is obvious.

◦ The metric axiom that d(ϕ, ψ) = 0 =⇒ ϕ = ψ is obvious because d(ϕ, ψ) = 0 forces

the n = m = 0 term in its definition, namely
‖ϕ−ψ‖0,0

1+‖ϕ−ψ‖0,0
, to vanish. And that first

term is zero if and only if ‖ϕ− ψ‖0,0 = supx∈IR |ϕ(x)− ψ(x)| is zero.
◦ The metric axiom d(ϕ, ψ) = d(ψ, ϕ) is obvious.

◦ The triangle inequality follows from

‖ϕ− ψ‖n,m
1 + ‖ϕ− ψ‖n,m

≤ ‖ϕ− ζ‖n,m
1 + ‖ϕ− ζ‖n,m

+
‖ζ − ψ‖n,m

1 + ‖ζ − ψ‖n,m

which is proven as follows. We supress the subscripts n,m. Because x
1+x

= 1 − 1
1+x

is an increasing function of x

‖ϕ−ψ‖
1+‖ϕ−ψ‖ ≤ ‖ϕ−ζ‖+‖ζ−ψ‖

1+‖ϕ−ζ‖+‖ζ−ψ‖ = ‖ϕ−ζ‖
1+‖ϕ−ζ‖+‖ζ−ψ‖ + ‖ζ−ψ‖

1+‖ϕ−ζ‖+‖ζ−ψ‖

≤ ‖ϕ−ζ‖
1+‖ϕ−ζ‖ + ‖ζ−ψ‖

1+‖ζ−ψ‖

(c) For the “only if” part, assume that ϕ = lim
k→∞

ϕk and let n,m ≥ 0. Then

d(ϕ, ϕk) ≥ 2−n−m
‖ϕ− ϕk‖n,m

1 + ‖ϕ− ϕk‖n,m
=⇒ lim

k→0

‖ϕ− ϕk‖n,m
1 + ‖ϕ− ϕk‖n,m

= 0

For any 0 < ε < 1
2
and x > 0,

x
1+x

< ε =⇒ x < ε(1 + x) =⇒ x− εx < ε =⇒ x < ε
1−ε < 2ε
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Hence limk→0 ‖ϕ− ϕk‖n,m = 0 too.

For the “if” part assume that lim
k→∞

‖ϕk − ϕ‖n,m = 0 for every n,m ≥ 0. We must prove

that, as a consequence, ϕ = lim
k→∞

ϕk. The idea is that, in the definition of d(ϕ, ψ), the sum

of all terms with m or n large is small, regardless of what ϕ and ψ are. Precisely, write

ψk = ϕ− ϕk and note that, for every M ∈ IN

d(ϕk, ϕ) =

∞
∑

n,m=0

2−n−m
‖ψk‖n,m

1 + ‖ψk‖n,m

=
∑

0≤n,m≤M
2−n−m

‖ψk‖n,m
1 + ‖ψk‖n,m

+

∞
∑

n,m=0
n or m>M

2−n−m
‖ψk‖n,m

1 + ‖ψk‖n,m

≤
∑

0≤n,m≤M
2−n−m

‖ψk‖n,m
1 + ‖ψk‖n,m

+

∞
∑

n,m=0
n or m>M

2−n−m

≤
∑

0≤n,m≤M
2−n−m

‖ψk‖n,m
1 + ‖ψk‖n,m

+ 2

{ ∞
∑

m=M+1

2−m
}{ ∞

∑

n=0

2−n
}

=
∑

0≤n,m≤M
2−n−m

‖ψk‖n,m
1 + ‖ψk‖n,m

+ 2
{ 1

2M

}

{2}

Let ε > 0 and chooseM so that 1
2M ≤ ε

8
. For each n,m ≥ 0, lim

k→∞
‖ψ‖n,m = 0 so that there

is aKn,m for which k ≥ Kn,m implies ‖ψ‖n,m < ε
8 . SetK = max

{

Kn,m

∣

∣ 0 ≤ n,m ≤M
}

.

If k ≥ K, then

d(ϕk, ϕ) ≤
∑

0≤n,m≤M
2−n−m

‖ψk‖n,m
1 + ‖ψk‖n,m

+ 2
{ 1

2M

}

{2} < ε
2 +

∞
∑

n,m=0

2−n−m ε
8 = ε

(b) Let
{

ϕk
}

be a Cauchy sequence with respect to the metric d. Then, as in part (c),

for each n,m ≥ 0, lim
k,k′→∞

∥

∥ϕk − ϕk′
∥

∥

n,m
= 0. In particular, lim

k,k′→∞

∥

∥ϕk − ϕk′
∥

∥

0,0
= 0, so

that the sequence
{

ϕk
}

is Cauchy in the set, C(IR), of all bounded, continuous functions

on IR equipped with the uniform metric. We already know that C(IR) is complete, so

there exists a continuous function ϕ such that
{

ϕk
}

converges uniformly to ϕ. As well,

lim
k,k′→∞

∥

∥ϕk − ϕk′
∥

∥

0,1
= 0 so that the sequence

{

ϕ′
k

}

of first derivatives is Cauchy in

C(IR) and there exists a continuous function ϕ1 such that
{

ϕ′
k

}

converges uniformly to ϕ1.

From our work on uniform limits and differentiability, we know that this ensures that ϕ

is differentiable with ϕ′ = ϕ1. Continuing in this way, we see that ϕ is C∞ and that, for

each m ≥ 0, the sequence
{

ϕ
(m)
k

}

of mth derivatives converges uniformly to ϕ(m). Finally,
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we have that, for each n,m ≥ 0, there is a Kn,m such that |x|n
∣

∣ϕ
(m)
k (x)−ϕ

(m)
k′ (x)

∣

∣ < ε for

all k, k′ ≥ Kn,m and all x ∈ IR. Consequently, if k ≥ Kn,m,

∥

∥ϕk − ϕ
∥

∥

n,m
= sup
x∈IR

|x|n
∣

∣ϕ
(m)
k (x)− ϕ(m)(x)

∣

∣ = sup
x∈IR

lim
k′→∞

|x|n
∣

∣ϕ
(m)
k (x)− ϕ

(m)
k′ (x)

∣

∣

≤ sup
x∈IR

ε = ε

So, by part (c),
{

ϕk
}

converges to ϕ with respect to the metric d.

Remark. In practice, it is rarely necessary to directly use the definition of the metric d

of Theorem 3. One usually just uses part (c) of Theorem 3 instead.

We are now ready to give

Definition 4 (Tempered Distributions) The space of all tempered distributions on

IR, denoted S′(IR), is the dual space of S(IR). That is, it is the set of all functions

f : S(IR) → C

that are linear and continuous. One usually denotes by 〈f, ϕ〉 the value in C that the

distribution f ∈ S′(IR) assigns to ϕ ∈ S(IR). In this notation,

⊲ that f is linear means that 〈f, aϕ+ bψ〉 = a 〈f, ϕ〉 + b 〈f, ψ〉 for all ϕ, ψ ∈ S(IR) and
all a, b ∈ C.

⊲ that f is continuous means that if ϕ = lim
n→∞

ϕn in S(IR), then 〈f, ϕ〉 = lim
n→∞

〈f, ϕn〉.

Example 5

(a) Here is the motivating example for the whole subject. Let f : IR → C be any function

that is polynomially bounded (that is, there is a polynomial P (x) such that |f(x)| ≤ P (x)

for all x ∈ IR) and that is Riemann integrable on [−M,M ] for each M > 0. Then

f : ϕ ∈ S(IR) 7→ 〈f, ϕ〉 =
∫ ∞

−∞
f(x)ϕ(x) dx

is a tempered distribution. The integral converges because every ϕ ∈ S(IR) decays faster

at infinity than one over any polynomial. See Problem 1, below. The linearity in ϕ of

〈f, ϕ〉 is obvious. The continuity in ϕ of 〈f, ϕ〉 follows easily from Problem 1 and Theorem

6, below.
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(b) The Dirac delta function, and more generally the Dirac delta function translated to

b ∈ IR, are defined as tempered distributions by

〈δ, ϕ〉 = ϕ(0) 〈δb, ϕ〉 = ϕ(b)

Once again, the linearity in ϕ is obvious and the continuity in ϕ is easily verified if one

applies Theorem 6.

(c) The derivative of the Dirac delta function δb is defined by

〈δ′b, ϕ〉 = −ϕ′(b)

The reason for the name “derivative of the Dirac delta function” will be given in the section

on differentiation, later.

(d) The principal value of 1
x is defined by

〈

P 1
x
, ϕ

〉

= lim
ε→0+

∫

|x|>ε

ϕ(x)
x

dx

The first thing that we have to do is verify that the limit above actually exists. This

is not a trivial statement, because not only is ϕ(x)
x not integrable on [−1, 1] if ϕ(0) 6= 0

(because then ϕ(x)
x

is not bounded), but
∫ 1

0
1
x
dx and

∫ 0

−1
1
x
dx do not even exist as improper

integrals:
∫ 1

0

1
x dx = lim

ε→0+

∫ 1

ε

1
x dx = lim

ε→0+
ln 1

ε = ∞
∫ 0

−1

1
x
dx = lim

ε→0+

∫ −ε

−1

1
x
dx = lim

ε→0+
ln ε = −∞

Here is the verification that the limit defining
〈

P 1
x , ϕ

〉

exists

lim
ε→0+

∫

|x|>ε

ϕ(x)
x

dx = lim
ε→0+

M,M′
→∞

{
∫ M

ε

ϕ(x)
x
dx+

∫ −ε

−M ′

ϕ(x)
x

dx

}

= lim
ε→0+

M,M′
→∞

{
∫ 1

ε

ϕ(x)
x dx+

∫ M

1

ϕ(x)
x dx+

∫ −1

−M ′

ϕ(x)
x dx+

∫ −ε

−1

ϕ(x)
x dx

}

= lim
ε→0+

M,M′
→∞

{
∫ 1

ε

ϕ(x)−ϕ(−x)
x

dx+

∫ M

1

ϕ(x)
x

dx+

∫ −1

−M ′

ϕ(x)
x

dx

}

The first integral converges because, by the mean value theorem, we have, for some ξ

between x and −x,
∣

∣

∣

ϕ(x)−ϕ(−x)
x

∣

∣

∣
=

∣

∣

∣

ϕ′(ξ) 2x
x

∣

∣

∣
≤ 2‖ϕ‖0,1
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The second and third integrals converge because, for |x| ≥ 1

∣

∣

∣

ϕ(x)
x

∣

∣

∣
≤ 1

x2 |xϕ(x)| ≤ 1
x2 ‖ϕ‖1,0

These bounds give both that
〈

P 1
x , ϕ

〉

is well–defined and

∣

∣

〈

P 1
x , ϕ

〉
∣

∣ ≤ 2‖ϕ‖0,1
∫ 1

0

dx+ ‖ϕ‖1,0
∫ ∞

1

1
x2 dx+ ‖ϕ‖1,0

∫ −1

−∞
1
x2 dx

= 2‖ϕ‖0,1 + 2‖ϕ‖1,0

Linearity is again obvious. Continuity again follows by Theorem 6, below.

Problem 1 Let f : IR → C be Riemann integrable on [−M,M ] for all M > 0 and obey

the bound |f(x)| ≤ P (x) for all x ∈ IR, where P (x) is the polynomial P (x) =
∑N+

n=N−

anx
n

and N± are nonnegative integers.

(a) Prove that there is a constant C > 0 such that |f(x)|(1 + x2) ≤ C
(

|x|N− + |x|N++2
)

for all x ∈ IR.

(b) Prove that
∫ ∞

−∞
|f(x)ϕ(x)| dx ≤ πC

(

‖ϕ‖N−,0 + ‖ϕ‖N++2,0

)

for all ϕ ∈ S(IR).

Theorem 6 (Continuity Test) A linear map f : ϕ ∈ S(IR) 7→ 〈f, ϕ〉 ∈ C is continuous

if and only if there are constants C > 0 and N ∈ IN such that

∣

∣ 〈f, ϕ〉
∣

∣ ≤ C
∑

0≤n,m≤N
‖ϕ‖n,m

Proof: ⇐ : Assume that
∣

∣ 〈f, ϕ〉
∣

∣ ≤ C
∑

0≤n,m≤N ‖ϕ‖n,m and that the sequence
{

ϕk
}

k∈IN

converges to ϕ in S(IR). Then
∣

∣ 〈f, ϕ〉 − 〈f, ϕk〉
∣

∣ =
∣

∣ 〈f, ϕ− ϕk〉
∣

∣ ≤ C
∑

0≤n,m≤N
‖ϕ− ϕk‖n,m

converges to zero as k → ∞. So f is continuous.

⇒ : Assume that f ∈ S′(IR). In particular f is continuous at ϕ = 0. Then there is a δ > 0

such that

d(ψ, 0) < δ =⇒
∣

∣ 〈f, ψ〉
∣

∣ < 1
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Choose N so that
∑

n or m>N

2−n−m < δ
2 . Then

∑

0≤n,m≤N
‖ψ‖n,m ≤ δ

2
=⇒ d(ψ, 0) =

∑

n,m≥0

2−n−m ‖ψ‖n,m

1+‖ψ‖n,m
≤

∑

n,m≤N
‖ψ‖n,m +

∑

n or m>N

2−n−m

=⇒ d(ψ, 0) < δ

=⇒
∣

∣ 〈f, ψ〉
∣

∣ < 1

Consequently, for any 0 6= ϕ ∈ S(IR), setting

ψ = δ
2

[

∑

n,m≤N
‖ϕ‖n,m

]−1

ϕ

we have
∑

0≤n,m≤N
‖ψ‖n,m =

∑

0≤n,m≤N

δ
2

[

∑

n,m≤N
‖ϕ‖n,m

]−1

‖ϕ‖n,m = δ
2

and hence
∣

∣ 〈f, ϕ〉
∣

∣ = 2
δ

[

∑

n,m≤N
‖ϕ‖n,m

]

∣

∣ 〈f, ψ〉
∣

∣ < 2
δ

∑

n,m≤N
‖ϕ‖n,m

as desired.

Operations on Tempered Distributions

We now define a number of operations like, for example, addition and differentiation,

on tempered distributions. The motivation for all of these definitions come from Example

5.a with f ∈ S(IR). Then we can view f both as a conventional function and as a

tempered distribution. We will define each operation in such a way that when it is applied

to f ∈ S(IR), viewed as a distribution, it yields the same answer as when the operation

is applied to f viewed as an ordinary function, with the result viewed as a distribution.

As a trivial example, suppose that we wish to define multiplication by 7. If f ∈ S(IR)
is viewed as an ordinary function, applying the operation of multiplication by 7 to it

gives the ordinary function 7f . But 7f can again be viewed as the distribution 〈7f, ϕ〉 =
∫

7f(x)ϕ(x) dx = 7 〈f, ϕ〉. So we would define the operation of multiplication by 7 applied

to any distribution f as the distribution 7f defined by 〈7f, ϕ〉 = 7 〈f, ϕ〉.

Addition and Scalar Multiplication

Motivation. If f, g ∈ S(IR) and a, b ∈ C, then
∫ ∞

−∞

[

af(x)+bg(x)
]

ϕ(x) dx = a

∫ ∞

−∞
f(x)ϕ(x) dx+b

∫ ∞

−∞
g(x)ϕ(x) dx = a 〈f, ϕ〉+b 〈g, ϕ〉
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Definition. If f, g ∈ S′(IR) and a, b ∈ C, then we define af + bg ∈ S′(IR) by

〈af + bg, ϕ〉 = a 〈f, ϕ〉+ b 〈g, ϕ〉

Theorem. If f, g ∈ S′(IR) and a, b ∈ C, then af + bg, defined above, is a well–defined

element of S′(IR). The operations of addition and scalar multiplication so defined obey the

usual vector space axioms.

Proof: Trivial.

Differentiation

Motivation. If f ∈ S(IR), then, by integration by parts,
∫ ∞

−∞
f ′(x)ϕ(x) dx = −

∫ ∞

−∞
f(x)ϕ′(x) dx (the boundary terms vanish)

Definition. We define the first derivative of f ∈ S′(IR) by

〈f ′, ϕ〉 = −〈f, ϕ′〉

More generally, we define the pth derivative of f ∈ S′(IR) by

〈

f (p), ϕ
〉

= (−1)p
〈

f, ϕ(p)
〉

Since ‖ϕ(p)‖n,m = ‖ϕ‖n,m+p the right hand side gives a well–defined element of S′(IR).

Remark. Note that every derivative of every distribution always exists.

Example. The Heavyside unit function

H(x) =
{

1 if x ≥ 0
0 if x < 0

may also be viewed as the tempered distribution

〈H,ϕ〉 =
∫ ∞

0

ϕ(x) dx

via Example 5.a. The derivative of this distribution is

〈H ′, ϕ〉 = −〈H,ϕ′〉 = −
∫ ∞

0

ϕ′(x) dx = −
[

ϕ(x)
]∞
0

= ϕ(0) = 〈δ, ϕ〉

Thus H ′ is the Dirac delta function.
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The Fourier Transform

Definition 7 The Fourier transform f̂(k) of a function f ∈ S(IR) is defined by

f̂(k) =

∫ ∞

−∞
e−ikxf(x) dx

Since f(x), and hence e−ikxf(x), is a continuous function of x which is bounded by a

contant times 1
1+x2 , the integral exists and f̂(k) is a well–defined complex number for each

k ∈ IR. We shall show in Theorem 9, below that the map f 7→ f̂ is a continuous, linear

map from S(IR) to S(IR) and furthermore that this map is one–to–one and onto with the

inverse map being the inverse Fourier transform given by

ǧ(x) = 1
2π

∫ ∞

−∞
eikxg(k) dk

The computational properties of the Fourier transform are given in

Theorem 8 Let f, g ∈ S(IR) and α, β ∈ C. Then

(a) The Fourier transform of af(x)+bg(x) is af̂(k) + bĝ(k).

(b) If n ∈ IN, then the Fourier transform of f (n)(x) is (ik)nf̂(k).

(c) The Fourier transform, f̂(k), of f(x) is infinitely differentiable and, for each n ∈ IN,
dn

dkn
f̂(k) is the Fourier transform of (−ix)nf(x).

(d) Let a ∈ IR. The Fourier transform of the translated function (Taf)(x) = f(x− a) is

e−iak f̂(k).

(e) The Fourier transform of f(x) = e−x
2/2 is f̂(k) =

√
2πe−k

2/2.

(f)
∫∞
−∞ f(x)g(x) dx = 1

2π

∫∞
−∞ f̂(k)ĝ(k) dk

Proof: (a) The Fourier transform of af + bg is

∫ ∞

−∞
e−ikx[af(x) + bg(x)] dx = a

∫ ∞

−∞
e−ikxf(x) dx+ b

∫ ∞

−∞
e−ikxg(x) dx = af̂(k) + bĝ(k)

(b) By induction, it suffices to prove the case n = 1. By integration by parts, the Fourier

transform of the first derivative f ′(x) is

∫ ∞

−∞
e−ikxf ′(x) dx = −

∫ ∞

−∞
f(x)

(

d
dxe

−ikx) dx = ik

∫ ∞

−∞
e−ikxf(x) dx = ikf̂(k)
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The boundary terms vanished because lim
x→∞

e−ikxf(x) = lim
x→−∞

e−ikxf(x) = 0.

(c) Again, by induction, it suffices to prove the case n = 1.

d
dk
f̂(k) = d

dk

∫ ∞

−∞
e−ikxf(x) dx =

∫ ∞

−∞
∂
∂k

(

e−ikxf(x)
)

dx =

∫ ∞

−∞
(−ix)e−ikxf(x) dx

is indeed −i times the Fourier transform of xf(x).

The second equality, which moved the derivative with respect to k past the integral

sign is justified by the following minor variant of problem #4b in Problem Set 5.

Lemma. Let f : (−∞,∞)× [c, d] → C be continuous. Assume that ∂f
∂y

exists and is

continuous and that there is a constant C such that

|f(x, y)|,
∣

∣

∂f
∂y

(x, y)
∣

∣ ≤ C
1+x2 and

∣

∣

∂f
∂y

(x, y)− ∂f
∂y

(x, y′)
∣

∣ ≤ C
|y−y′|
1+x2

for all −∞ < x < ∞ and c ≤ y, y′ ≤ d. Then g(y) =
∫∞
−∞ f(x, y) dx is differentiable

with g′(y) =
∫∞
−∞

∂f
∂y

(x, y) dx.

Proof: The assumptions that, for each c ≤ y ≤ d, f(x, y), ∂f
∂y (x, y) are continuous

and are bounded in absolute value by C
1+x2 ensure that the integrals

∫∞
−∞ f(x, y) dx

and
∫∞
−∞

∂f
∂y (x, y) dx exist. By the Mean Value Theorem (the usual MVT in one

dimension), there is for each x ∈ IR and each pair y, y′ ∈ [c, d] with y 6= y′, a number

y′′ between y and y′ such that

f(x,y′)−f(x,y)
y′−y = ∂f

∂y
(x, y′′)

so that

∣

∣

f(x,y′)−f(x,y)
y′−y − ∂f

∂y (x, y)
∣

∣ =
∣

∣

∂f
∂y (x, y

′′)− ∂f
∂y (x, y)

∣

∣ ≤ C
|y−y′′|
1+x2 ≤ C

|y−y′|
1+x2

Consequently, if y 6= y′,

∣

∣

∣

∣

g(y′)−g(y)
y′−y −

∫ ∞

−∞

∂f
∂y

(x, y) dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ ∞

−∞

{ f(x,y′)−f(x,y)
y′−y − ∂f

∂y
(x, y)

}

dx

∣

∣

∣

∣

≤
∫ ∞

−∞
C

|y−y′|
1+x2 dx = πC|y − y′|

This converges to zero as y′ → y and so verifies the definition that lim
y′→y

g(y′)−g(y)
y′−y

exists and equals
∫∞
−∞

∂f
∂y (x, y) dx.
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(d) The Fourier transform of Taf is
∫ ∞

−∞
e−ikxf(x− a) dx

x′=x−a
=

∫ ∞

−∞
e−ik(x

′+a)f(x′) dx′ = e−ikaf̂(k)

(e) Denote by f̂(k) the Fourier transform of the function f(x) = e−x
2/2. By part (c) of this

Theorem, ddk f̂(k) is the Fourier transform of −ixf(x) = −ixe−x2/2 = iddxe
−x2/2 = if ′(x).

Thus by parts (a) and (b) of this Theorem, ddk f̂(k) = −kf̂(k) and
d
dk

(

f̂(k)ek
2/2

)

= ek
2/2

(

d
dk f̂(k) + kf̂(k)

)

= 0

for all k ∈ IR. Consequently f̂(k)ek
2/2 must be some constant, independent of k. Hence

to determine f̂(k) we need only to determine the value of that constant, which we may do

by computing f̂(k)ek
2/2

∣

∣

k=0
= f̂(0). Since f̂(0) =

∫∞
−∞ e−x

2/2 dx > 0, it is determined by

f̂(0)2 =

[
∫ ∞

−∞
e−x

2/2 dx

]2

=

[
∫ ∞

−∞
e−x

2/2 dx

][
∫ ∞

−∞
e−y

2/2 dx

]

=

∫∫

IR2

e−(x2+y2)/2dxdy

Changing to polar coordinates,

f̂(0)2 =

∫ ∞

0

dr r

∫ 2π

0

dθ e−r
2/2 = 2π

∫ ∞

0

dr re−r
2/2 = 2π

[

− e−r
2/2

]∞

0
= 2π

Thus f̂(0) =
√
2π which tells us that f̂(k)ek

2/2 =
√
2π and hence that f̂(k) =

√
2πe−k

2/2

for all k.

(f)

1
2π

∫ ∞

−∞
f̂(k)ĝ(k) dk = 1

2π

∫ ∞

−∞
dk

∫ ∞

−∞
dx e−ikxf(x)ĝ(k) = 1

2π

∫ ∞

−∞
dx

∫ ∞

−∞
dk e−ikxf(x)ĝ(k)

=

∫ ∞

−∞
dx f(x)

[

1
2π

∫ ∞

−∞
dk eikxĝ(k)

]

=

∫ ∞

−∞
dx f(x)g(x)

The exchange of order of integration executed in the second inequality is justified using

question #5 of Problem Set 5. The last equality uses Theorem 9, below.

Theorem 9 The maps

f(x) ∈ S(IR) 7→ f̂(k) =

∫ ∞

−∞
e−ikxf(x) dx

g(k) ∈ S(IR) 7→ ǧ(x) = 1
2π

∫ ∞

−∞
eikxg(k) dk

are one–to–one, continuous, linear maps from S(IR) onto S(IR) and are inverses of each

other.
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Proof: That f̂ is linear in f was Theorem 8.a.

We now assume that f ∈ S(IR) and prove that f̂(k) ∈ S(IR). Let m,n be nonnegative

integers. By parts (b) and (c) of Theorem 8 followed by the product rule, kn d
m

dkm f̂(k) is

the Fourier transform of

(−i)n dn
dxn

(

(−ix)mf(x)
)

= (−i)m+n

min{m,n}
∑

ℓ=0

(

n
ℓ

)(

dℓ

dxℓ x
m
)(

dn−ℓ

dxn−ℓ f(x)
)

= (−i)m+n

min{m,n}
∑

ℓ=0

(

n
ℓ

)

m!
(m−ℓ)!x

m−ℓf (n−ℓ)(x)

Hence

‖f̂(k)‖n,m = sup
k∈IR

∣

∣kn d
m

dkm f̂(k)
∣

∣

= sup
k∈IR

∣

∣

∣

∣

∫ ∞

−∞
e−ikx

[

min{m,n}
∑

ℓ=0

(

n
ℓ

)

m!
(m−ℓ)!x

m−ℓf (n−ℓ)(x)
]

dx

∣

∣

∣

∣

≤
min{m,n}

∑

ℓ=0

(

n
ℓ

)

m!
(m−ℓ)!

∫ ∞

−∞

∣

∣xm−ℓf (n−ℓ)(x)
∣

∣dx

=

min{m,n}
∑

ℓ=0

(

n
ℓ

)

m!
(m−ℓ)!

∫ ∞

−∞
1

1+x2

{

|x|m−ℓ + |x|m−ℓ+2
}
∣

∣f (n−ℓ)(x)
∣

∣dx

≤
min{m,n}

∑

ℓ=0

(

n
ℓ

)

m!
(m−ℓ)!

{

‖f‖m−ℓ,n−ℓ + ‖f‖m−ℓ+2,n−ℓ
}

∫ ∞

−∞
1

1+x2 dx

=

min{m,n}
∑

ℓ=0

π
(

n
ℓ

)

m!
(m−ℓ)!

{

‖f‖m−ℓ,n−ℓ + ‖f‖m−ℓ+2,n−ℓ
}

Since f ∈ S(IR), the right hand side is finite. This proves that ‖f̂‖m,n is finite for all

nonnegative integers m,n, so that f̂ ∈ S(IR).

It also proves that the map f 7→ f̂ is continuous, since if the sequence {fj}j∈IN converges

to f in S(IR), then

‖f̂ − f̂j‖m,n ≤
min{m,n}

∑

ℓ=0

π
(

n
ℓ

)

m!
(m−ℓ)!

{

‖f − fj‖m−ℓ,n−ℓ + ‖f − fj‖m−ℓ+2,n−ℓ
}

converges to zero as j → ∞, for all nonnegative integers m,n. So {f̂j}j∈IN converges to f̂

in S(IR) too.
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The proof that the map g(k) 7→ ǧ(x) is a continuous, linear map from S(IR) into S(IR) is
similar.

We now assume that f(x) ∈ S(IR) and prove that the inverse Fourier transform of f̂(k) is

f(x). In symbols, that

f(x) = 1
2π

∫ ∞

−∞
eikxf̂(k) dk (3)

We first prove the (x = 0) special case that

f(0) = 1
2π

∫ ∞

−∞
f̂(k) dk (4)

Write

f(x) = f(0)e−x
2/2 + xh(x) where h(x) =

{

1
x

(

f(x)− f(0)e−x
2/2

)

if x 6= 0

f ′(0) if x = 0

By Problem 2, below, the function h ∈ S(IR). So, by parts (e) and (c) of Theorem 8,

f̂(k) =
√
2πf(0)e−k

2/2 + iddk ĥ(k)

and
1
2π

∫ ∞

−∞
f̂(k) dk = f(0)√

2π

∫ ∞

−∞
e−k

2/2 dk + i
2π

∫ ∞

−∞
d
dk ĥ(k) dk

The first term
f(0)√
2π

∫ ∞

−∞
e−k

2/2 dk = f(0)

by the computation at the end of the proof of Theorem 8.e. The second term is i
2π

times

∫ ∞

−∞
d
dk ĥ(k) dk = lim

A,B→∞

∫ B

−A
d
dk ĥ(k) dk = lim

A,B→∞

[

ĥ(B)− ĥ(−A)
]

= 0

Here we have used the fundamental theorem of calculus and the decay at ±∞ which follows

from the fact that ĥ ∈ S(IR), which, in turn, follows from h ∈ S(IR). This completes the

proof of (4). Replacing f by T−xf and using f(x) =
(

T−xf
)

(0) and T̂−xf(k) = eikxf̂(k)

gives (3).

The proof that

g(k) =

∫ ∞

−∞
e−ikxǧ(x) dx (5)

is similar. The formulae (3) and (5) show that the maps f(x) 7→ f̂(k) and g(k) 7→ ǧ(x)

are onto S(IR) and are inverses of each other.
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Problem 2 Let f ∈ S(IR) and define

h(x) =

{

1
x

(

f(x)− f(0)e−x
2/2

)

if x 6= 0

f ′(0) if x = 0

Prove that h ∈ S(IR).

Definition 10 We define the Fourier transform of the tempered distribution f ∈ S′(IR)

to be the tempered distribution
〈

f̂ , ϕ
〉

=
〈

f, ϕ̂
〉

The motivation for this definition is the computation that, if f and ϕ are both in

S(IR), then, writing ϕ(k) = ψ(k)

〈

f̂ , ϕ
〉

=

∫ ∞

−∞
f̂(k)ϕ(k) dk =

∫ ∞

−∞
f̂(k)ψ(k) dk

= 2π

∫ ∞

−∞
f(x)ψ̌(x) dx (by Theorem 8.e and Theorem 9)

=

∫ ∞

−∞
f(x)ϕ̂(x) dx

since

ψ̌(x) = 1
2π

∫ ∞

−∞
eikxψ(k) dk = 1

2π

∫ ∞

−∞
e−ikxψ(k) dk = 1

2π

∫ ∞

−∞
e−ikxϕ(k) dk = 1

2π ϕ̂(x)

Example 11 The Fourier transform of the Dirac delta function is given by

〈

δ̂, ϕ
〉

= 〈δ, ϕ̂〉 = ϕ̂(0) =

∫ ∞

−∞
ϕ(x) dx = 〈1, ϕ〉

That is, δ̂ is the constant function 1.

Example 12 The Fourier transform of the constant function 1, viewed as a tempered

distribution, is
〈

1̂, ϕ
〉

= 〈1, ϕ̂〉 =
∫ ∞

−∞
ϕ̂(k) dk = 2πϕ(0)

by (4). That is, the Fourier transform of the constant function 1 is 2πδ(k).
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