
Various Inequalities

Theorem. Let < X,Σ, µ > be a measure space. Then

a) (Minkowski) If 1 ≤ p ≤ ∞, then

‖f + g‖p ≤ ‖f‖p + ‖g‖p

If 1 < p < ∞, there is equality if and only ‖g‖p f(x) = ‖f‖q g(x) for almost all x ∈ X.

b) If 0 < p < 1 and f(x), g(x) ≥ 0 a.e. then

‖f + g‖p ≥ ‖f‖p + ‖g‖p

c) (Hölder) Let 1 ≤ p, q ≤ ∞ with 1
p
+ 1

q
= 1. If f ∈ Lp and g ∈ Lq then fg ∈ L1 and

∫

|fg| dµ ≤ ‖f‖p ‖g‖q

with equality if and only if there exist constants α, β ≥ 0, not both zero, such that α|f(x)|p = β|g(x)|q

for almost all x ∈ X.

d) (Generalized Hölder) Let 1 ≤ r ≤ ∞ and 1 ≤ pj ≤ ∞ with
∑n

j=1
1
pj

= 1
r . If fj ∈ Lpj for 1 ≤ j ≤ n,

then
∏n

j=1 fj ∈ Lr and
∥

∥

n
∏

j=1

fj
∥

∥

r
≤

n
∏

j=1

‖fj‖pj

Proof of a) and b):

Reductions: Since |f(x)| ≤ ‖f‖∞ and |g(x)| ≤ ‖g‖∞ for almost all x, it is obvious that ‖f + g‖∞ ≤

‖f‖∞ + ‖g‖∞. So we may assume that p < ∞. Also if ‖f‖p = 0 or ‖g‖p = 0, then f = 0 a.e. or

g = 0 a.e. and ‖f + g‖p = ‖f‖p + ‖g‖p. So we may assume that ‖f‖p, ‖g‖p > 0. By replacing f by
f

‖f‖p+‖g‖p
and g by g

‖f‖p+‖g‖p
, we may assume that ‖f‖p + ‖g‖p = 1.

Concavity: Define h(y) = yp. Observe that for y > 0

h′′(y) = p(p− 1)yp−2

{

> 0 if p > 1
= 0 if p = 1
< 0 if 0 < p < 1

That is, h is concave up for p > 1, linear for p = 1 and concave down for 0 < p < 1. Thus for all

u, v ≥ 0 and 0 ≤ λ ≤ 1

h
(

λu+ (1− λ)v
)

{

> if p > 1
= if p = 1
< if p < 1

}

[

λh(u) + (1− λ)h(v)
]

(1)
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For p > 1, there is equality if and only if w = λu+ (1− λ)v equals u or v. For 0 < λ < 1, this is the

case if and only if u = v.

u vw

y = h(x) with h′′ > 0

h(w)

λh(u) + (1− λ)h(v)

Proof of a): Recall that we have reduced consideration to ‖f‖p, ‖g‖p 6= 0, ‖f‖p + ‖g‖p = 1 and

1 < p < ∞. Setting λ = ‖f‖p,

‖f + g‖pp =

∫

|f(x) + g(x)|p dµ(x)

=

∫

∣

∣λ
f(x)
‖f‖p

+ (1− λ) g(x)
‖g‖p

∣

∣

p
dµ(x)

≤

∫

[

λ
|f(x)|
‖f‖p

+ (1− λ) |g(x)|
‖g‖p

]p
dµ(x)

≤

∫

[

λ
|f(x)|p

‖f‖p
p

+ (1− λ) |g(x)|
p

‖g‖p
p

]

dµ(x)

= λ+ (1− λ) = 1

by (1) with u = |f(x)|
‖f‖p

and v = |g(x)|
‖g‖p

. For the second inequality to be an equality, we need u = |f(x)|
‖f‖p

=

v = |g(x)|
‖g‖p

for almost all x. For complex numbers a and b, |a + b| = |a| + |b| if and only if there is

an angle φ such that a = eiφ|a| and b = eiφ|b|. In the real case, |a + b| = |a| + |b| if and only if a

and b have the same sign. Thus for the first inequality to be an equality, there must be a real valued

function φ(x) such that |f(x)| = e−iφ(x)f(x) and |g(x)| = e−iφ(x)g(x) for almost all x. All together,

if ‖f + g‖p = ‖f‖p + ‖g‖p, then
f(x)
‖f‖p

= g(x)
‖g‖p

for almost all x.

Proof of b): We are assuming that f(x), g(x) ≥ 0 and we have again reduced consideration to

‖f‖p, ‖g‖p 6= 0, ‖f‖p + ‖g‖p = 1. With λ = ‖f‖p,

‖f + g‖pp =

∫

[f(x) + g(x)]p dµ(x)

=

∫

[

λ
f(x)
‖f‖p

+ (1− λ) g(x)
‖g‖p

]p
dµ(x)

≥

∫

[

λ
f(x)p

‖f‖p
p
+ (1− λ) g(x)

p

‖g‖p
p

]

dµ(x)

= λ+ (1− λ) = 1

by (1) with u = f(x)
‖f‖p

and v = g(x)
‖g‖p

.

Proof of c):

Reductions: Since |f(x)g(x)| ≤ |g(x)| ‖f‖∞ and |f(x)g(x)| ≤ |f(x)| ‖g‖∞ for almost all x, the cases

p = 1, q = ∞ and p = ∞, q = 1 are obvious. So we may assume that 1 < p, q < ∞. Also if ‖f‖p = 0
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or ‖g‖q = 0, then f = 0 a.e. or g = 0 a.e. and ‖fg‖1 = 0. So we may assume that ‖f‖p, ‖g‖q > 0.

By replacing f by f
‖f‖p

and g by g
‖g‖q

, we may assume that ‖f‖p = ‖g‖q = 1.

Preliminaries: Define f(c) = cp

p
+ 1

q
− c, for c ≥ 0. Observe that f ′(c) = cp−1−1 is negative for c < 1,

zero for c = 1 and positive for c > 1. Thus f is decreasing for 0 ≤ c < 1 and increasing for c > 1, so

that the minimum value of f is 0 and is achieved only at c = 1. Set, for a, b > 0, c = ab−q/p. Then

0 ≤ f(c) = ap

pbq + 1
q − ab−q/p =⇒ ap

p + bq

q ≥ abq−q/p = ab (2)

since q
(

1− 1
p

)

= q 1
q
= 1. Furthermore, there is equality if and only if 1 = c = ab−q/p i.e. bq = ap.

Proof of c: Using (2) with a = |f(x)| and b = |g(x)|

∫

|f(x)| |g(x)| dµ(x) ≤

∫

[

|f(x)|p

p
+ |g(x)|q

q

]

dµ(x) = 1
p
‖f‖p +

1
q
‖g‖q =

1
p
+ 1

q
= 1

Proof of d):

First we deal with n = 2. By Hölder, with f = |f1|
r, g = |f2|

r, p = p1

r and q = p2

r ,

‖f1f2‖
r
r =

∫

|f1(x)f2(x)|
r dµ(x) ≤ ‖|f1|

r‖p1/r‖|f2|
r‖p2/r

=
[

∫

|f1(x)|
r(p1/r) dµ(x)

]r/p1
[

∫

|f2(x)|
r(p2/r) dµ(x)

]r/p2

= ‖f1‖
r
p1
‖f2‖

r
p2

Now we proceed by induction. Once the inequality has been established for n−1, we apply the n = 2

inequality, with f2 replaced by
∏n

j=1 fj and p2 replaced by r′ =
[
∑n

j=2
1
pj

]−1
.

∥

∥

n
∏

j=1

fj
∥

∥

r
≤ ‖f1‖p1

∥

∥

n
∏

j=2

fj
∥

∥

r′

Now just apply the n− 1 inequality.
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