Various Inequalities

Theorem. Let $\langle X, \Sigma, \mu>$ be a measure space. Then
a) (Minkowski) If $1 \leq p \leq \infty$, then

$$
\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p}
$$

If $1<p<\infty$, there is equality if and only $\|g\|_{p} f(x)=\|f\|_{q} g(x)$ for almost all $x \in X$.
b) If $0<p<1$ and $f(x), g(x) \geq 0$ a.e. then

$$
\|f+g\|_{p} \geq\|f\|_{p}+\|g\|_{p}
$$

c) (Hölder) Let $1 \leq p, q \leq \infty$ with $\frac{1}{p}+\frac{1}{q}=1$. If $f \in \mathcal{L}^{p}$ and $g \in \mathcal{L}^{q}$ then $f g \in \mathcal{L}^{1}$ and

$$
\int|f g| d \mu \leq\|f\|_{p}\|g\|_{q}
$$

with equality if and only if there exist constants $\alpha, \beta \geq 0$, not both zero, such that $\alpha|f(x)|^{p}=\beta|g(x)|^{q}$ for almost all $x \in X$.
d) (Generalized Hölder) Let $1 \leq r \leq \infty$ and $1 \leq p_{j} \leq \infty$ with $\sum_{j=1}^{n} \frac{1}{p_{j}}=\frac{1}{r}$. If $f_{j} \in \mathcal{L}^{p_{j}}$ for $1 \leq j \leq n$, then $\prod_{j=1}^{n} f_{j} \in \mathcal{L}^{r}$ and

$$
\left\|\prod_{j=1}^{n} f_{j}\right\|_{r} \leq \prod_{j=1}^{n}\left\|f_{j}\right\|_{p_{j}}
$$

Proof of a) and b):

Reductions: Since $|f(x)| \leq\|f\|_{\infty}$ and $|g(x)| \leq\|g\|_{\infty}$ for almost all x, it is obvious that $\|f+g\|_{\infty} \leq$ $\|f\|_{\infty}+\|g\|_{\infty}$. So we may assume that $p<\infty$. Also if $\|f\|_{p}=0$ or $\|g\|_{p}=0$, then $f=0$ a.e. or $g=0$ a.e. and $\|f+g\|_{p}=\|f\|_{p}+\|g\|_{p}$. So we may assume that $\|f\|_{p},\|g\|_{p}>0$. By replacing f by $\frac{f}{\|f\|_{p}+\|g\|_{p}}$ and g by $\frac{g}{\|f\|_{p}+\|g\|_{p}}$, we may assume that $\|f\|_{p}+\|g\|_{p}=1$.
Concavity: Define $h(y)=y^{p}$. Observe that for $y>0$

$$
h^{\prime \prime}(y)=p(p-1) y^{p-2} \begin{cases}>0 & \text { if } p>1 \\ =0 & \text { if } p=1 \\ <0 & \text { if } 0<p<1\end{cases}
$$

That is, h is concave up for $p>1$, linear for $p=1$ and concave down for $0<p<1$. Thus for all $u, v \geq 0$ and $0 \leq \lambda \leq 1$

$$
h(\lambda u+(1-\lambda) v)\left\{\begin{array}{ll}
> & \text { if } p>1 \tag{1}\\
= & \text { if } p=1 \\
< & \text { if } p<1
\end{array}\right\}[\lambda h(u)+(1-\lambda) h(v)]
$$

For $p>1$, there is equality if and only if $w=\lambda u+(1-\lambda) v$ equals u or v. For $0<\lambda<1$, this is the case if and only if $u=v$.

Proof of a): Recall that we have reduced consideration to $\|f\|_{p},\|g\|_{p} \neq 0,\|f\|_{p}+\|g\|_{p}=1$ and $1<p<\infty$. Setting $\lambda=\|f\|_{p}$,

$$
\begin{aligned}
\|f+g\|_{p}^{p} & =\int|f(x)+g(x)|^{p} d \mu(x) \\
& =\int\left|\lambda \frac{f(x)}{\|f\|_{p}}+(1-\lambda) \frac{g(x)}{\|g\|_{p}}\right|^{p} d \mu(x) \\
& \leq \int\left[\lambda \frac{|f(x)|}{\|f\|_{p}}+(1-\lambda) \frac{|g(x)|}{\|g\|_{p}}\right]^{p} d \mu(x) \\
& \leq \int\left[\lambda \frac{|f(x)|^{p}}{\|f\|_{p}^{p}}+(1-\lambda) \frac{|g(x)|^{p}}{\|g\|_{p}^{p}}\right] d \mu(x) \\
& =\lambda+(1-\lambda)=1
\end{aligned}
$$

by (1) with $u=\frac{|f(x)|}{\|f\|_{p}}$ and $v=\frac{|g(x)|}{\|g\|_{p}}$. For the second inequality to be an equality, we need $u=\frac{|f(x)|}{\|f\|_{p}}=$ $v=\frac{|g(x)|}{\|g\|_{p}}$ for almost all x. For complex numbers a and $b,|a+b|=|a|+|b|$ if and only if there is an angle ϕ such that $a=e^{i \phi}|a|$ and $b=e^{i \phi}|b|$. In the real case, $|a+b|=|a|+|b|$ if and only if a and b have the same sign. Thus for the first inequality to be an equality, there must be a real valued function $\phi(x)$ such that $|f(x)|=e^{-i \phi(x)} f(x)$ and $|g(x)|=e^{-i \phi(x)} g(x)$ for almost all x. All together, if $\|f+g\|_{p}=\|f\|_{p}+\|g\|_{p}$, then $\frac{f(x)}{\|f\|_{p}}=\frac{g(x)}{\|g\|_{p}}$ for almost all x.

Proof of b): We are assuming that $f(x), g(x) \geq 0$ and we have again reduced consideration to $\|f\|_{p},\|g\|_{p} \neq 0,\|f\|_{p}+\|g\|_{p}=1$. With $\lambda=\|f\|_{p}$,

$$
\begin{aligned}
\|f+g\|_{p}^{p} & =\int[f(x)+g(x)]^{p} d \mu(x) \\
& =\int\left[\lambda \frac{f(x)}{\|f\|_{p}}+(1-\lambda) \frac{g(x)}{\|g\|_{p}}\right]^{p} d \mu(x) \\
& \geq \int\left[\lambda \frac{f(x)^{p}}{\|f\|_{p}^{p}}+(1-\lambda) \frac{g(x)^{p}}{\|g\|_{p}^{p}}\right] d \mu(x) \\
& =\lambda+(1-\lambda)=1
\end{aligned}
$$

by (1) with $u=\frac{f(x)}{\|f\|_{p}}$ and $v=\frac{g(x)}{\|g\|_{p}}$.

Proof of c):

Reductions: Since $|f(x) g(x)| \leq|g(x)|\|f\|_{\infty}$ and $|f(x) g(x)| \leq|f(x)|\|g\|_{\infty}$ for almost all x, the cases $p=1, q=\infty$ and $p=\infty, q=1$ are obvious. So we may assume that $1<p, q<\infty$. Also if $\|f\|_{p}=0$
or $\|g\|_{q}=0$, then $f=0$ a.e. or $g=0$ a.e. and $\|f g\|_{1}=0$. So we may assume that $\|f\|_{p},\|g\|_{q}>0$. By replacing f by $\frac{f}{\|f\|_{p}}$ and g by $\frac{g}{\|g\|_{q}}$, we may assume that $\|f\|_{p}=\|g\|_{q}=1$.
Preliminaries: Define $f(c)=\frac{c^{p}}{p}+\frac{1}{q}-c$, for $c \geq 0$. Observe that $f^{\prime}(c)=c^{p-1}-1$ is negative for $c<1$, zero for $c=1$ and positive for $c>1$. Thus f is decreasing for $0 \leq c<1$ and increasing for $c>1$, so that the minimum value of f is 0 and is achieved only at $c=1$. Set, for $a, b>0, c=a b^{-q / p}$. Then

$$
\begin{equation*}
0 \leq f(c)=\frac{a^{p}}{p b^{q}}+\frac{1}{q}-a b^{-q / p} \Longrightarrow \frac{a^{p}}{p}+\frac{b^{q}}{q} \geq a b^{q-q / p}=a b \tag{2}
\end{equation*}
$$

since $q\left(1-\frac{1}{p}\right)=q \frac{1}{q}=1$. Furthermore, there is equality if and only if $1=c=a b^{-q / p}$ i.e. $b^{q}=a^{p}$. Proof of c : Using (2) with $a=|f(x)|$ and $b=|g(x)|$

$$
\int|f(x)||g(x)| d \mu(x) \leq \int\left[\frac{|f(x)|^{p}}{p}+\frac{|g(x)|^{q}}{q}\right] d \mu(x)=\frac{1}{p}\|f\|_{p}+\frac{1}{q}\|g\|_{q}=\frac{1}{p}+\frac{1}{q}=1
$$

Proof of d):

First we deal with $n=2$. By Hölder, with $f=\left|f_{1}\right|^{r}, g=\left|f_{2}\right|^{r}, p=\frac{p_{1}}{r}$ and $q=\frac{p_{2}}{r}$,

$$
\begin{aligned}
\left\|f_{1} f_{2}\right\|_{r}^{r} & =\int\left|f_{1}(x) f_{2}(x)\right|^{r} d \mu(x) \leq\left\|\left|f_{1}\right|^{r}\right\|_{p_{1} / r}\left\|\left|f_{2}\right|^{r}\right\|_{p_{2} / r} \\
& =\left[\int\left|f_{1}(x)\right|^{r\left(p_{1} / r\right)} d \mu(x)\right]^{r / p_{1}}\left[\int\left|f_{2}(x)\right|^{r\left(p_{2} / r\right)} d \mu(x)\right]^{r / p_{2}} \\
& =\left\|f_{1}\right\|_{p_{1}}^{r}\left\|f_{2}\right\|_{p_{2}}^{r}
\end{aligned}
$$

Now we proceed by induction. Once the inequality has been established for $n-1$, we apply the $n=2$ inequality, with f_{2} replaced by $\prod_{j=1}^{n} f_{j}$ and p_{2} replaced by $r^{\prime}=\left[\sum_{j=2}^{n} \frac{1}{p_{j}}\right]^{-1}$.

$$
\left\|\prod_{j=1}^{n} f_{j}\right\|_{r} \leq\left\|f_{1}\right\|_{p_{1}}\left\|\prod_{j=2}^{n} f_{j}\right\|_{r^{\prime}}
$$

Now just apply the $n-1$ inequality.

