Various Inequalities

Theorem. Let $\langle X, \Sigma, \mu \rangle$ be a measure space. Then

a) (Minkowski) If $1 \leq p \leq \infty$, then

$$||f + g||_p \le ||f||_p + ||g||_p$$

If $1 , there is equality if and only <math>||g||_p f(x) = ||f||_q g(x)$ for almost all $x \in X$.

b) If $0 and <math>f(x), g(x) \ge 0$ a.e. then

$$||f + g||_p \ge ||f||_p + ||g||_p$$

c) (Hölder) Let $1 \leq p, q \leq \infty$ with $\frac{1}{p} + \frac{1}{q} = 1$. If $f \in \mathcal{L}^p$ and $g \in \mathcal{L}^q$ then $fg \in \mathcal{L}^1$ and

$$\int |fg| \ d\mu \le \|f\|_p \, \|g\|_q$$

with equality if and only if there exist constants $\alpha, \beta \ge 0$, not both zero, such that $\alpha |f(x)|^p = \beta |g(x)|^q$ for almost all $x \in X$.

d) (Generalized Hölder) Let $1 \leq r \leq \infty$ and $1 \leq p_j \leq \infty$ with $\sum_{j=1}^{n} \frac{1}{p_j} = \frac{1}{r}$. If $f_j \in \mathcal{L}^{p_j}$ for $1 \leq j \leq n$, then $\prod_{j=1}^{n} f_j \in \mathcal{L}^r$ and

$$\left\|\prod_{j=1}^{n} f_{j}\right\|_{r} \leq \prod_{j=1}^{n} \|f_{j}\|_{p_{j}}$$

Proof of a) and b):

Reductions: Since $|f(x)| \leq ||f||_{\infty}$ and $|g(x)| \leq ||g||_{\infty}$ for almost all x, it is obvious that $||f + g||_{\infty} \leq ||f||_{\infty} + ||g||_{\infty}$. So we may assume that $p < \infty$. Also if $||f||_p = 0$ or $||g||_p = 0$, then f = 0 a.e. or g = 0 a.e. and $||f + g||_p = ||f||_p + ||g||_p$. So we may assume that $||f||_p, ||g||_p > 0$. By replacing f by $\frac{f}{||f||_p + ||g||_p}$ and g by $\frac{g}{||f||_p + ||g||_p}$, we may assume that $||f||_p + ||g||_p = 1$.

Concavity: Define $h(y) = y^p$. Observe that for y > 0

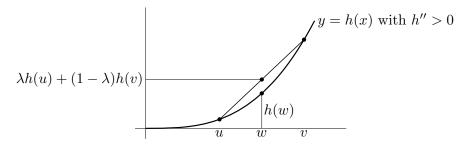
$$h''(y) = p(p-1)y^{p-2} \begin{cases} > 0 & \text{if } p > 1 \\ = 0 & \text{if } p = 1 \\ < 0 & \text{if } 0 < p < 1 \end{cases}$$

That is, h is concave up for p > 1, linear for p = 1 and concave down for $0 . Thus for all <math>u, v \ge 0$ and $0 \le \lambda \le 1$

$$h(\lambda u + (1-\lambda)v) \begin{cases} > & \text{if } p > 1 \\ = & \text{if } p = 1 \\ < & \text{if } p < 1 \end{cases} [\lambda h(u) + (1-\lambda)h(v)]$$
(1)

(c) Joel Feldman. 2002. All rights reserved.

For p > 1, there is equality if and only if $w = \lambda u + (1 - \lambda)v$ equals u or v. For $0 < \lambda < 1$, this is the case if and only if u = v.



Proof of a): Recall that we have reduced consideration to $||f||_p, ||g||_p \neq 0$, $||f||_p + ||g||_p = 1$ and $1 . Setting <math>\lambda = ||f||_p$,

$$\begin{split} \|f+g\|_{p}^{p} &= \int |f(x)+g(x)|^{p} \ d\mu(x) \\ &= \int \left|\lambda \frac{f(x)}{\|f\|_{p}} + (1-\lambda) \frac{g(x)}{\|g\|_{p}}\right|^{p} \ d\mu(x) \\ &\leq \int \left[\lambda \frac{|f(x)|}{\|f\|_{p}} + (1-\lambda) \frac{|g(x)|}{\|g\|_{p}}\right]^{p} \ d\mu(x) \\ &\leq \int \left[\lambda \frac{|f(x)|^{p}}{\|f\|_{p}^{p}} + (1-\lambda) \frac{|g(x)|^{p}}{\|g\|_{p}^{p}}\right] \ d\mu(x) \\ &= \lambda + (1-\lambda) = 1 \end{split}$$

by (1) with $u = \frac{|f(x)|}{\|f\|_p}$ and $v = \frac{|g(x)|}{\|g\|_p}$. For the second inequality to be an equality, we need $u = \frac{|f(x)|}{\|f\|_p} = v = \frac{|g(x)|}{\|g\|_p}$ for almost all x. For complex numbers a and b, |a + b| = |a| + |b| if and only if there is an angle ϕ such that $a = e^{i\phi}|a|$ and $b = e^{i\phi}|b|$. In the real case, |a + b| = |a| + |b| if and only if a and b have the same sign. Thus for the first inequality to be an equality, there must be a real valued function $\phi(x)$ such that $|f(x)| = e^{-i\phi(x)}f(x)$ and $|g(x)| = e^{-i\phi(x)}g(x)$ for almost all x. All together, if $\|f + g\|_p = \|f\|_p + \|g\|_p$, then $\frac{f(x)}{\|f\|_p} = \frac{g(x)}{\|g\|_p}$ for almost all x.

Proof of b): We are assuming that $f(x), g(x) \ge 0$ and we have again reduced consideration to $||f||_p, ||g||_p \ne 0, ||f||_p + ||g||_p = 1$. With $\lambda = ||f||_p$,

$$\begin{split} \|f + g\|_{p}^{p} &= \int [f(x) + g(x)]^{p} \ d\mu(x) \\ &= \int \left[\lambda \frac{f(x)}{\|f\|_{p}} + (1 - \lambda) \frac{g(x)}{\|g\|_{p}}\right]^{p} \ d\mu(x) \\ &\geq \int \left[\lambda \frac{f(x)^{p}}{\|f\|_{p}^{p}} + (1 - \lambda) \frac{g(x)^{p}}{\|g\|_{p}^{p}}\right] \ d\mu(x) \\ &= \lambda + (1 - \lambda) = 1 \end{split}$$

by (1) with $u = \frac{f(x)}{\|f\|_p}$ and $v = \frac{g(x)}{\|g\|_p}$.

Proof of c):

Reductions: Since $|f(x)g(x)| \le |g(x)| ||f||_{\infty}$ and $|f(x)g(x)| \le |f(x)| ||g||_{\infty}$ for almost all x, the cases $p = 1, q = \infty$ and $p = \infty, q = 1$ are obvious. So we may assume that $1 < p, q < \infty$. Also if $||f||_p = 0$

or $||g||_q = 0$, then f = 0 a.e. or g = 0 a.e. and $||fg||_1 = 0$. So we may assume that $||f||_p, ||g||_q > 0$. By replacing f by $\frac{f}{||f||_p}$ and g by $\frac{g}{||g||_q}$, we may assume that $||f||_p = ||g||_q = 1$. Preliminaries: Define $f(c) = \frac{c^p}{p} + \frac{1}{q} - c$, for $c \ge 0$. Observe that $f'(c) = c^{p-1} - 1$ is negative for c < 1,

Preliminaries: Define $f(c) = \frac{c^p}{p} + \frac{1}{q} - c$, for $c \ge 0$. Observe that $f'(c) = c^{p-1} - 1$ is negative for c < 1, zero for c = 1 and positive for c > 1. Thus f is decreasing for $0 \le c < 1$ and increasing for c > 1, so that the minimum value of f is 0 and is achieved only at c = 1. Set, for a, b > 0, $c = ab^{-q/p}$. Then

$$0 \le f(c) = \frac{a^p}{pb^q} + \frac{1}{q} - ab^{-q/p} \implies \frac{a^p}{p} + \frac{b^q}{q} \ge ab^{q-q/p} = ab$$
(2)

since $q(1-\frac{1}{p}) = q\frac{1}{q} = 1$. Furthermore, there is equality if and only if $1 = c = ab^{-q/p}$ i.e. $b^q = a^p$. *Proof of c:* Using (2) with a = |f(x)| and b = |g(x)|

$$\int |f(x)| \ |g(x)| \ d\mu(x) \le \int \left[\frac{|f(x)|^p}{p} + \frac{|g(x)|^q}{q}\right] \ d\mu(x) = \frac{1}{p} \|f\|_p + \frac{1}{q} \|g\|_q = \frac{1}{p} + \frac{1}{q} = 1$$

Proof of d):

First we deal with n = 2. By Hölder, with $f = |f_1|^r$, $g = |f_2|^r$, $p = \frac{p_1}{r}$ and $q = \frac{p_2}{r}$,

$$\begin{split} \|f_1 f_2\|_r^r &= \int |f_1(x) f_2(x)|^r \ d\mu(x) \le \||f_1|^r\|_{p_1/r} \||f_2|^r\|_{p_2/r} \\ &= \left[\int |f_1(x)|^{r(p_1/r)} \ d\mu(x)\right]^{r/p_1} \left[\int |f_2(x)|^{r(p_2/r)} \ d\mu(x)\right]^{r/p_2} \\ &= \|f_1\|_{p_1}^r \|f_2\|_{p_2}^r \end{split}$$

Now we proceed by induction. Once the inequality has been established for n-1, we apply the n=2 inequality, with f_2 replaced by $\prod_{j=1}^n f_j$ and p_2 replaced by $r' = \left[\sum_{j=2}^n \frac{1}{p_j}\right]^{-1}$.

$$\left\|\prod_{j=1}^{n} f_{j}\right\|_{r} \leq \|f_{1}\|_{p_{1}}\left\|\prod_{j=2}^{n} f_{j}\right\|_{r'}$$

Now just apply the n-1 inequality.