A Lie Group

These notes introduce $S U(2)$ as an example of a compact Lie group.

The Definition

The definition of $S U(2)$ is

$$
S U(2)=\left\{A \mid A \text { a } 2 \times 2 \text { complex matrix, } \operatorname{det} A=1, A A^{*}=A^{*} A=\mathbb{1}\right\}
$$

In the name $S U(2)$, the " S " stands for "special" and refers to the condition $\operatorname{det} A=1$ and the "U" stands for "unitary" and refers to the conditions $A A^{*}=A^{*} A=\mathbb{1}$. The adjoint matrix A^{*} is the complex conjugate of the transpose matrix. That is,

$$
\left[\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right]^{*}=\left[\begin{array}{ll}
\bar{\alpha} & \bar{\gamma} \\
\bar{\beta} & \bar{\delta}
\end{array}\right]
$$

Define the inner product on \mathbb{C}^{2} by

$$
\left\langle\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right],\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]\right\rangle=a_{1} \bar{b}_{1}+a_{2} \bar{b}_{2}
$$

The adjoint matrix was defined so that

$$
\sum_{i, j=1}^{2} A_{i, j} a_{j} \bar{b}_{i}=\left\langle A\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right],\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]\right\rangle=\left\langle\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right], A^{*}\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]\right\rangle=\sum_{i, j=1}^{2} a_{j} \overline{A_{j, i}^{*} b_{i}}
$$

Thus the condition $A^{*} A=\mathbb{1}$ is equivalent to

$$
\begin{aligned}
\left\langle A^{*} A\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right],\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]\right\rangle=\left\langle\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right],\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]\right\rangle \quad \text { for all }\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right],\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right] \in \mathbb{C}^{2} \\
\Longleftrightarrow\left\langle A\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right], A\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]\right\rangle=\left\langle\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right],\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]\right\rangle \quad \text { for all }\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right],\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right] \in \mathbb{C}^{2}
\end{aligned}
$$

Hence $S U(2)$ is the set of 2×2 complex matrices that have determinant one and preserve the inner product on \mathbb{C}^{2}. (Recall that, for square matrices, $A^{*} A=\mathbb{1}$ is equivalent to $A^{-1}=A^{*}$, which in turn is equivalent to $A A^{*}=11$.) By the polarization identity (Problem Set V, \#3), preservation of the inner product is equivalent to preservation of the norm

$$
\left\|A\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]\right\|=\left\|\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]\right\| \text { for all }\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right] \in \mathbb{C}^{2}
$$

Clearly $\mathbb{1 l} \in S U(2)$. If $A, B \in S U(2)$, then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)=1$ and $(A B)(A B)^{*}=A B B^{*} A^{*}=$ $A 11 A^{*}=\mathbb{1}$ so that $A B \in S U(2)$. Also, if $A \in S U(2)$, then $A^{-1}=A^{*} \in S U(2)$. So $S U(2)$ is a group. We may also view $S U(2)$ as a subset of \mathbb{C}^{4}. Then $S U(2)$ inherits a topology from \mathbb{C}^{4}, so that $S U(2)$ is a topological group.

The Pauli Matrices

The matrices

$$
\sigma_{1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad \sigma_{2}=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right] \quad \sigma_{3}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

are called the Pauli matrices. They obey $\sigma_{\ell}=\sigma_{\ell}^{*}$ for all $\ell=1,2,3$ and also obey

$$
\begin{equation*}
\sigma_{1}^{2}=\sigma_{2}^{2}=\sigma_{3}^{2}=\mathbb{1} \quad \sigma_{1} \sigma_{2}=-\sigma_{2} \sigma_{1}=i \sigma_{3} \quad \sigma_{2} \sigma_{3}=-\sigma_{3} \sigma_{2}=i \sigma_{1} \quad \sigma_{3} \sigma_{1}=-\sigma_{1} \sigma_{3}=i \sigma_{2} \tag{1}
\end{equation*}
$$

Set, for each $\vec{a}=\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}$, the matrix

$$
\vec{a} \cdot \vec{\sigma}=a_{1} \sigma_{1}+a_{2} \sigma_{2}+a_{3} \sigma_{3}
$$

Then the product rules (1) can be written

$$
\begin{equation*}
(\vec{a} \cdot \vec{\sigma})(\vec{b} \cdot \vec{\sigma})=\vec{a} \cdot \vec{b} \mathbb{1}+i \vec{a} \times \vec{b} \cdot \vec{\sigma} \tag{2}
\end{equation*}
$$

I claim that any 2×2 complex matrix has a unique representation of the form $a_{0} \mathbb{1}+i a_{1} \sigma_{1}+i a_{2} \sigma_{2}+i a_{3} \sigma_{3}$ for some $a_{0}, a_{1}, a_{2}, a_{3} \in \mathbb{C}$. This is easy to see. Since

$$
a_{0} \mathbb{1}+i a_{1} \sigma_{1}+i a_{2} \sigma_{2}+i a_{3} \sigma_{3}=\left[\begin{array}{ll}
a_{0}+i a_{3} & i a_{1}+a_{2} \\
i a_{1}-a_{2} & a_{0}-i a_{3}
\end{array}\right]
$$

we have that

$$
a_{0} \mathbb{1}+i a_{1} \sigma_{1}+i a_{2} \sigma_{2}+i a_{3} \sigma_{3}=\left[\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right] \Longleftrightarrow a_{0}=\frac{\alpha+\delta}{2}, a_{1}=\frac{\beta+\gamma}{2 i}, a_{2}=\frac{\beta-\gamma}{2}, a_{3}=\frac{\alpha-\delta}{2 i}
$$

Lemma.

$$
S U(2)=\left\{x_{0} \mathbb{1}+i \vec{x} \cdot \vec{\sigma} \mid\left(x_{0}, \vec{x}\right) \in \mathbb{R}^{4}, x_{0}^{2}+\|\vec{x}\|^{2}=1\right\}
$$

Proof: Let A be any 2×2 complex matrix and write $A=a_{0} \mathbb{1}+i \vec{a} \cdot \vec{\sigma}$ with $\vec{a}=\left(a_{1}, a_{2}, a_{3}\right)$. Then by (2)

$$
\begin{aligned}
A A^{*} & =\left(a_{0} \mathbb{1}+i \vec{a} \cdot \vec{\sigma}\right)\left(\overline{a_{0}} \mathbb{1}-i \overline{\vec{a}} \cdot \vec{\sigma}\right) \\
& =\left|a_{0}\right|^{2} \mathbb{1}+i \overline{a_{0}} \vec{a} \cdot \vec{\sigma}-i a_{0} \overline{\vec{a}} \cdot \vec{\sigma}+\vec{a} \cdot \overline{\vec{a}} \mathbb{1}+i \vec{a} \times \overline{\vec{a}} \cdot \vec{\sigma} \\
& =\left(\left|a_{0}\right|^{2}+\|\vec{a}\|^{2}\right) \mathbb{1}+i\left(\overline{a_{0}} \vec{a}-a_{0} \overline{\vec{a}}+\vec{a} \times \overline{\vec{a}}\right) \cdot \vec{\sigma}
\end{aligned}
$$

Hence

$$
A A^{*}=\mathbb{1} \Longleftrightarrow\left|a_{0}\right|^{2}+\|\vec{a}\|^{2}=1, \overline{a_{0}} \vec{a}-a_{0} \overline{\vec{a}}+\vec{a} \times \overline{\vec{a}}=0
$$

First, suppose that $\vec{a} \neq \overrightarrow{0}$. Since $\vec{a} \times \overline{\vec{a}}$ is orthogonal to both \vec{a} and $\overline{\vec{a}}$, the equation $\overline{a_{0}} \vec{a}-a_{0} \overline{\vec{a}}+\vec{a} \times \overline{\vec{a}}=0$ can be satisfied only if $\vec{a} \times \overline{\vec{a}}=0$. That is, only if \vec{a} and $\overline{\vec{a}}$ are parallel. Since \vec{a} and $\overline{\vec{a}}$ have the same length, this is the case only if $\overline{\vec{a}}=e^{-2 i \theta} \vec{a}$ for some real number θ. This is equivalent to $\overline{e^{-i \theta} \vec{a}}=e^{-i \theta} \vec{a}$ which says that $\vec{x}=e^{-i \theta} \vec{a}$ is real. Subbing $\vec{a}=e^{i \theta} \vec{x}$ back into $\overline{a_{0}} \vec{a}-a_{0} \overline{\vec{a}}+\vec{a} \times \overline{\vec{a}}=0$ gives

$$
e^{i \theta} \overline{a_{0}} \vec{x}-e^{-i \theta} a_{0} \vec{x}=0
$$

This forces $a_{0}=e^{i \theta} x_{0}$ for some real x_{0}. If $\vec{a}=\overrightarrow{0}$, we may still choose θ so that $a_{0}=e^{i \theta} x_{0}$. We have now shown that

$$
A A^{*}=\mathbb{1} \Longleftrightarrow A=e^{i \theta}\left(x_{0} \mathbb{1}+i \vec{x} \cdot \vec{\sigma}\right) \text { for some }\left(x_{0}, \vec{x}\right) \in \mathbb{R}^{4} \text { with }\left|x_{0}\right|^{2}+\|\vec{x}\|^{2}=1 \text { and some } \theta \in \mathbb{R}
$$

Since

$$
\operatorname{det} A=\operatorname{det} e^{i \theta}\left(x_{0} \mathbb{1}+i \vec{x} \cdot \vec{\sigma}\right)=\operatorname{det} e^{i \theta}\left[\begin{array}{cc}
x_{0}+i x_{3} & i x_{1}+x_{2} \\
i x_{1}-x_{2} & x_{0}-i x_{3}
\end{array}\right]=e^{2 i \theta}\left(x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)=e^{2 i \theta}
$$

we have that $\operatorname{det} A=1$ if and only if $e^{i \theta}= \pm 1$. If $e^{i \theta}=-1$, we can absorb the -1 into $\left(x_{0}, \vec{x}\right)$.

As consequences of this Lemma we have that $S U(2)$ is

- homeomorphic to S^{3}, the unit sphere in \mathbb{R}^{4}
- connected
- simply connected (meaning that every continuous closed curve in $S U(2)$ can be continuously deformed to a point)
- is a C^{∞} manifold (meaning, roughly speaking, that in a neighbourhood of each point, we may choose three of $x_{0}, x_{1}, x_{2}, x_{3}$ as coordinates, with the fourth then determined as a C^{∞} function of the chosen three)
A topological group that is also a C^{∞} manifold (with the maps $(a, b) \mapsto a b$ and $a \mapsto a^{-1} C^{\infty}$ when expressed in local coordinates) is called a Lie Group.

The Connection between $S U(2)$ and $S O(3)$
Define

$$
\begin{aligned}
M: \mathbb{R}^{3} & \rightarrow V=\left\{\vec{a} \cdot \vec{\sigma} \mid \vec{a} \in \mathbb{R}^{3}\right\} \subset\{2 \times 2 \text { complex matrices }\} \\
& \vec{a} \mapsto M(\vec{a})=\vec{a} \cdot \vec{\sigma}
\end{aligned}
$$

This is a linear bijection between \mathbb{R}^{3} and V. (In fact V is the space of all 2×2 traceless, self-adjoint matrices.)
Each $U \in S U(2)$ determines a linear map $S(U)$ on \mathbb{R}^{3} by

$$
\begin{equation*}
M(S(U) \vec{a})=U M(\vec{a}) U^{-1} \tag{3}
\end{equation*}
$$

The right hand side is clearly linear in \vec{a}. But it is not so clear that $U M(\vec{a}) U^{-1}$ is in V, that is, of the form $M(\vec{b})$. To check this, we let $U=x_{0} \mathbb{1}+i \vec{x} \cdot \vec{\sigma}$ with $\left(x_{0}, \vec{x}\right) \in \mathbb{R}^{4}$ obeying $\left\|x_{0}\right\|^{2}+\|\vec{x}\|^{2}=1$ and compute $U M(\vec{a}) U^{-1}=U M(\vec{a}) U^{*}$ explicitly. Applying (2) twice

$$
\begin{aligned}
U M(\vec{a}) U^{-1}= & \left(x_{0} \mathbb{1}+i \vec{x} \cdot \vec{\sigma}\right)(\vec{a} \cdot \vec{\sigma})\left(x_{0} \mathbb{1}-i \vec{x} \cdot \vec{\sigma}\right) \\
= & \left(x_{0} \mathbb{1}+i \vec{x} \cdot \vec{\sigma}\right)\left(x_{0} \vec{a} \cdot \vec{\sigma}-i \vec{a} \cdot \vec{x} \mathbb{1}+\vec{a} \times \vec{x} \cdot \vec{\sigma}\right) \\
= & x_{0}^{2} \vec{a} \cdot \vec{\sigma}-i x_{0} \vec{a} \cdot \vec{x} \mathbb{1}+x_{0} \vec{a} \times \vec{x} \cdot \vec{\sigma} \\
& \quad+i x_{0} \vec{x} \cdot \vec{a} \mathbb{1}-x_{0} \vec{x} \times \vec{a} \cdot \vec{\sigma}+\vec{a} \cdot \vec{x} \vec{x} \cdot \vec{\sigma}+i \vec{x} \cdot(\vec{a} \times \vec{x}) \mathbb{1}-\vec{x} \times(\vec{a} \times \vec{x}) \cdot \vec{\sigma} \\
= & x_{0}^{2} \vec{a} \cdot \vec{\sigma}+2 x_{0} \vec{a} \times \vec{x} \cdot \vec{\sigma}+\vec{a} \cdot \vec{x} \vec{x} \cdot \vec{\sigma}-\vec{x} \times(\vec{a} \times \vec{x}) \cdot \vec{\sigma}
\end{aligned}
$$

since \vec{x} is perpendicular to $(\vec{a} \times \vec{x})$. Using $\vec{c} \times(\vec{a} \times \vec{b})=(\vec{b} \cdot \vec{c}) \vec{a}-(\vec{a} \cdot \vec{c}) \vec{b}$,

$$
\begin{aligned}
U M(\vec{a}) U^{-1} & =x_{0}^{2} \vec{a} \cdot \vec{\sigma}+2 x_{0} \vec{a} \times \vec{x} \cdot \vec{\sigma}+\vec{a} \cdot \vec{x} \vec{x} \cdot \vec{\sigma}-\|\vec{x}\|^{2} \vec{a} \cdot \vec{\sigma}+\vec{a} \cdot \vec{x} \vec{x} \cdot \vec{\sigma} \\
& =\left(x_{0}^{2}-\|\vec{x}\|^{2}\right) \vec{a} \cdot \vec{\sigma}+2 x_{0} \vec{a} \times \vec{x} \cdot \vec{\sigma}+2 \vec{a} \cdot \vec{x} \vec{x} \cdot \vec{\sigma}
\end{aligned}
$$

This shows, not only that $U M(\vec{a}) U^{-1} \in V$, but also that, for $U=x_{0} 11+i \vec{x} \cdot \vec{\sigma}$,

$$
S(U) \vec{a}=\left(x_{0}^{2}-\|\vec{x}\|^{2}\right) \vec{a}-2 x_{0} \vec{x} \times \vec{a}+2 \vec{a} \cdot \vec{x} \vec{x}
$$

In fact, we can exactly identify the geometric operation that $S(U)$ implements. If $U= \pm \mathbb{1}$, that is $\vec{x}=\overrightarrow{0}$, then it is obvious from (3) that $S(U) \vec{a}=\vec{a}$ for all $\vec{a} \in \mathbb{R}^{3}$. That is, both $S(\mathbb{1})$ and $S(-\mathbb{1})$ are the identity map on \mathbb{R}^{3}. If $\vec{x} \neq \overrightarrow{0}$, there is a unique angle $0<\theta<2 \pi$ and a unique unit vector \hat{e} such that $x_{0}=\cos \left(\frac{\theta}{2}\right)$ and $\vec{x}=-\sin \left(\frac{\theta}{2}\right) \hat{e}$. If \vec{a} happens to be parallel to \vec{x}, that is, $\vec{a}=c \vec{x}$,

$$
S(U) \vec{a}=\left(x_{0}^{2}-\|\vec{x}\|^{2}\right) \vec{a}+2 \vec{a} \cdot \vec{x} \vec{x}=\left(x_{0}^{2}+\|\vec{x}\|^{2}\right) \vec{a}=\vec{a}
$$

So $S(U)$ leaves the axis \vec{x} invariant. If \vec{a} is not parallel to \vec{x}, set

$$
\hat{k}=\hat{e} \quad \hat{\imath}=\frac{\vec{a}-\vec{a} \cdot \hat{k} \hat{k}}{\|\vec{a}-\vec{a} \cdot \hat{k}\|} \quad \hat{\jmath}=\hat{k} \times \hat{\imath}
$$

This is an orthonormal basis for \mathbb{R}^{3}. Since \vec{a} is a linear combination of $\hat{\imath}$ and \hat{k},

$$
\vec{a}=\vec{a} \cdot \hat{k} \hat{k}+\vec{a} \cdot \hat{\imath} \hat{\imath}
$$

In terms of this notation

$$
\begin{aligned}
S(U) \vec{a} & =\cos (\theta) \vec{a}+\sin (\theta) \hat{e} \times \vec{a}+2 \sin ^{2}\left(\frac{\theta}{2}\right) \vec{a} \cdot \hat{e} \hat{e} \\
& =\vec{a} \cdot \hat{e} \hat{e}+\cos (\theta)(\vec{a}-\vec{a} \cdot \hat{e} \hat{e})+\sin (\theta) \hat{e} \times \vec{a}
\end{aligned}
$$

Since

$$
\begin{aligned}
\vec{a}-\vec{a} \cdot \hat{e} \hat{e} & =\vec{a}-\vec{a} \cdot \hat{k} \hat{k}=\vec{a} \cdot \hat{\imath} \hat{\imath} \\
\hat{e} \times \vec{a} & =\hat{k} \times \vec{a}=\hat{k} \times(\vec{a} \cdot \hat{k} \hat{k}+\vec{a} \cdot \hat{\imath} \hat{\imath})=\vec{a} \cdot \hat{\imath} \hat{\jmath}
\end{aligned}
$$

we have

$$
S(U) \vec{a}=\vec{a} \cdot \hat{k} \hat{k}+\cos (\theta) \vec{a} \cdot \hat{\imath} \hat{\imath}+\sin (\theta) \vec{a} \cdot \hat{\imath} \hat{\jmath}
$$

In particular

$$
S(U) \hat{k}=\hat{k} \quad S(U) \hat{\imath}=\cos (\theta) \hat{\imath}+\sin (\theta) \hat{\jmath}
$$

This is exactly the rotation of \vec{a} about the axis $\hat{k}=\hat{e}$ (the \hat{k} component of \vec{a} is unchanged) by an angle θ (the part of \vec{a} perpendicular to \hat{k} has changed by a rotation by θ as in \mathbb{R}^{2}). This shows that

$$
S: S U(2) \rightarrow S O(3)
$$

that S is surjective and that $S(U)=\mathbb{1}_{3}$, the identity map on \mathbb{R}^{3}, if and only if $U= \pm \mathbb{1}$. Also, by (3),

$$
M\left(S\left(U U^{\prime}\right) \vec{a}\right)=U U^{\prime} M(a) U^{\prime-1} U^{-1}=U M\left(S\left(U^{\prime}\right) \vec{a}\right) U^{-1}=M\left(S(U) S\left(U^{\prime}\right) \vec{a}\right)
$$

so that $S\left(U U^{\prime}\right)=S(U) S\left(U^{\prime}\right)$ and S is a homomorphism. It is not injective, since $S(-\mathbb{1})=S(\mathbb{1})$. Indeed S is a two to one map since

$$
S(U)=S(\tilde{U}) \Longleftrightarrow S(U) S(\tilde{U})^{-1}=\mathbb{1}_{3} \Longleftrightarrow S\left(U \tilde{U}^{-1}\right)=\mathbb{1}_{3} \Longleftrightarrow U \tilde{U}^{-1}= \pm \mathbb{1} \Longleftrightarrow U= \pm \tilde{U}
$$

We have now shown that $S O(3)$ is isomorphic to $S U(2) /\{\mathbb{1},-\mathbb{1}\}$.

The Haar Measure

Recall that

$$
S U(2)=\left\{x_{0} \mathbb{1}+i \vec{x} \cdot \vec{\sigma} \mid\left(x_{0}, \vec{x}\right) \in \mathbb{R}^{4}, x_{0}^{2}+\|\vec{x}\|^{2}=1\right\}
$$

For all $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}<1, x_{0}>0$, we can use \vec{x} as coordinates with $x_{0}(\vec{x})=\sqrt{1-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}}$. For all $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}<1, x_{0}<0$, we can use \vec{x} as coordinates with $x_{0}(\vec{x})=-\sqrt{1-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}}$. This leaves only $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1, x_{0}=0$. We could cover this using other components as coordinates, but as this is a set of measure zero, we won't bother. Denote

$$
\begin{aligned}
& \gamma_{+}(\vec{x})=\sqrt{1-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}} \mathbb{1}+i \vec{x} \cdot \vec{\sigma} \\
& \gamma_{-}(\vec{x})=-\sqrt{1-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}} \mathbb{1}+i \vec{x} \cdot \vec{\sigma}
\end{aligned}
$$

We shall now find two functions $\Delta_{+}(\vec{x})$ and $\Delta_{-}(\vec{x})$ such that, for all continuous functions f on $S U(2)$

$$
\int_{S U(2)} f(\gamma) d \mu(\gamma)=\iiint_{\|\vec{x}\|<1} f\left(\gamma_{+}(\vec{x})\right) \Delta_{+}(\vec{x}) d^{3} \vec{x}+\iiint_{\|\vec{x}\|<1} f\left(\gamma_{-}(\vec{x})\right) \Delta_{-}(\vec{x}) d^{3} \vec{x}
$$

where μ is the Haar measure on $S U(2)$.

Define $\vec{z}_{+}(\vec{y}, \vec{x})$ and $\vec{z}_{-}(\vec{y}, \vec{x})$ by

$$
\gamma_{+}\left(\vec{z}_{+}(\vec{y}, \vec{x})\right)=\gamma_{+}(\vec{y}) \gamma_{+}(\vec{x}) \quad \gamma_{-}\left(\vec{z}_{-}(\vec{y}, \vec{x})\right)=\gamma_{-}(\vec{y}) \gamma_{+}(\vec{x})
$$

If you multiply an element of the interior of the upper hemisphere of $S U(2)$ (like $\gamma_{+}(\vec{y})$ with $\|\vec{y}\|<1$) by an element of $S U(2)$ that is sufficiently close to the identity (like $\gamma_{+}(\vec{x})$ with $\|\vec{x}\| \ll 1$) you end up with another element of the interior of the upper hemisphere. Similarly, if you multiply an element of the interior of the lower hemisphere of $S U(2)$ (like $\gamma_{-}(\vec{y})$ with $\|\vec{y}\|<1$) by an element of $S U(2)$ that is sufficiently close to the identity (like $\gamma_{+}(\vec{x})$ with $\|\vec{x}\| \ll 1$) you end up with another element of the interior of the lower hemisphere. Thus both $\vec{z}_{+}(\vec{y}, \vec{x})$ and $\vec{z}_{-}(\vec{y}, \vec{x})$ make sense for all \vec{y} with $\|\vec{y}\|<1$ provided $\|\vec{x}\|$ is sufficiently small (depending on \vec{y}). By the argument of Example 5.ii of the notes "Haar Measure"

$$
\Delta_{+}(\overrightarrow{0})=\Delta_{+}(\vec{y})\left|\operatorname{det}\left[\frac{\partial z_{+i}}{\partial x_{j}}(\vec{y}, \overrightarrow{0})\right]_{1 \leq i, j \leq 3}\right| \quad \Delta_{+}(\overrightarrow{0})=\Delta_{-}(\vec{y})\left|\operatorname{det}\left[\frac{\partial z_{-i}}{\partial x_{j}}(\vec{y}, \overrightarrow{0})\right]_{1 \leq i, j \leq 3}\right|
$$

This will determine both $\Delta_{+}(\vec{y})$ and $\Delta_{-}(\vec{y})$ up to the constant $\Delta_{+}(\overrightarrow{0})$. The latter will be determined by the requirement that the measure have total mass one.

We first find \vec{z}_{+}and \vec{z}_{-}. By (2),

$$
\left(y_{0} \mathbb{1}+i \vec{y} \cdot \vec{\sigma}\right)\left(x_{0} \mathbb{1}+i \vec{x} \cdot \vec{\sigma}\right)=y_{0} x_{0} \mathbb{1}+i y_{0} \vec{x} \cdot \vec{\sigma}+i x_{0} \vec{y} \cdot \vec{\sigma}-\vec{x} \cdot \vec{y} \mathbb{1}-i(\vec{y} \times \vec{x}) \cdot \vec{\sigma}
$$

Thus

$$
\begin{array}{lllll}
\vec{z}_{+}(\vec{y}, \vec{x})=y_{0} \vec{x}+x_{0} \vec{y}-\vec{y} \times \vec{x} & \text { with } & y_{0}=\sqrt{1-\|\vec{y}\|^{2}} & \text { and } & x_{0}=\sqrt{1-\|\vec{x}\|^{2}} \\
\vec{z}_{-}(\vec{y}, \vec{x})=y_{0} \vec{x}+x_{0} \vec{y}-\vec{y} \times \vec{x} & \text { with } & y_{0}=-\sqrt{1-\|\vec{y}\|^{2}} & \text { and } & x_{0}=\sqrt{1-\|\vec{x}\|^{2}}
\end{array}
$$

Next we compute the matrices of partial derivatives. Observe that

$$
\begin{aligned}
& \frac{\partial}{\partial x_{j}} y_{0} x_{i}=y_{0} \delta_{i, j} \\
& \left.\frac{\partial}{\partial x_{j}} \sqrt{1-\|\vec{x}\|^{2}} \vec{y}\right|_{\vec{x}=0}=\left.\frac{-x_{j}}{\sqrt{1-\|\vec{x}\|^{2}}} \vec{y}\right|_{\vec{x}=0}=\overrightarrow{0} \\
& -\frac{\partial}{\partial x_{j}} \vec{y} \times \vec{x}=\frac{\partial}{\partial x_{j}}\left(x_{2} y_{3}-x_{3} y_{2}, x_{3} y_{1}-x_{1} y_{3}, x_{1} y_{2}-x_{2} y_{1}\right)=\left\{\begin{array}{cc}
\left(\begin{array}{cc}
0,-y_{3}, & \left.y_{2}\right)
\end{array}\right. & \text { if } j=1 \\
\left(y_{3},\right. & \left.0,-y_{1}\right) \\
\text { if } j=2 \\
\left(-y_{2},\right. & y_{1},
\end{array} 0\right) \text { if } j=3
\end{aligned}
$$

Hence, with $y_{0}= \pm \sqrt{1-\|\vec{y}\|^{2}}$ for $\vec{z}_{ \pm}$,

$$
\begin{aligned}
\operatorname{det}\left[\frac{\partial z_{ \pm i}}{\partial x_{j}}(\vec{y}, \overrightarrow{0})\right]_{1 \leq i, j \leq 3} & =\operatorname{det}\left[\begin{array}{ccc}
y_{0} & y_{3} & -y_{2} \\
-y_{3} & y_{0} & y_{1} \\
y_{2} & -y_{1} & y_{0}
\end{array}\right] \\
& =y_{0}^{3}+y_{3} y_{1} y_{2}-y_{2} y_{3} y_{1}-\left(-y_{0} y_{1}^{2}-y_{0} y_{3}^{2}-y_{0} y_{2}^{2}\right) \\
& =y_{0}\left(y_{0}^{2}+y_{1}^{2}+y_{2}^{2}+y_{3}^{2}\right) \\
& =y_{0}
\end{aligned}
$$

Thus

$$
\Delta_{+}(\vec{y})=\Delta_{-}(\vec{y})=\frac{\Delta_{+}(\overrightarrow{0})}{\sqrt{1-y_{1}^{2}-y_{2}^{2}-y_{3}^{2}}}
$$

The constant $\Delta_{+}(\overrightarrow{0})$ is determined by the requirement that

$$
1=\iiint_{\|\vec{y}\|<1} \Delta_{+}(\vec{y}) d^{3} \vec{y}+\iiint_{\|\vec{y}\|<1} \Delta_{-}(\vec{y}) d^{3} \vec{y}=2 \Delta_{+}(\overrightarrow{0}) \iiint_{\|\vec{y}\|<1} \frac{1}{\sqrt{1-y_{1}^{2}-y_{2}^{2}-y_{3}^{2}}} d^{3} \vec{y}
$$

Switching to conventional spherical coordinates

$$
1=2 \Delta_{+}(\overrightarrow{0}) \int_{0}^{1} d \rho \int_{0}^{2 \pi} d \theta \int_{0}^{\pi} d \varphi \rho^{2} \sin \varphi \frac{1}{\sqrt{1-\rho^{2}}}=8 \pi \Delta_{+}(\overrightarrow{0}) \int_{0}^{1} \frac{\rho^{2}}{\sqrt{1-\rho^{2}}} d \rho
$$

Now making the change of variables $\rho=\sin \alpha$

$$
1=8 \pi \Delta_{+}(\overrightarrow{0}) \int_{0}^{\pi / 2} \frac{\sin ^{2} \alpha}{\cos \alpha} \cos \alpha d \alpha=8 \pi \Delta_{+}(\overrightarrow{0}) \int_{0}^{\pi / 2} \sin ^{2} \alpha d \alpha=2 \pi^{2} \Delta_{+}(\overrightarrow{0})
$$

and $\Delta_{+}(\vec{x})=\Delta_{-}(\vec{x})=\frac{1}{2 \pi^{2} \sqrt{1-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}}}$.

This is in fact, aside from a constant factor used to normalize the mass of the measure to one, the standard measure on the sphere $x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1$ that is inherited from the standard Lebesgue measure on \mathbb{R}^{4}. Recall that the standard surface measure on the surface $z=f(x, y)$ is $\sqrt{1+f_{x}(x, y)^{2}+f_{y}(x, y)^{2}} d x d y$. This is derived in second year Calculus courses by cutting up the surface into tiny parallelograms and computing the area of each parallelogram. This same derivation applied to $z=f\left(x_{1}, x_{2}, x_{3}\right)$ gives $\sqrt{1+f_{x_{1}}(\vec{x})^{2}+f_{x_{2}}(\vec{x})^{2}+f_{x_{3}}(\vec{x})^{2}} d^{3} \vec{x}$. If $f(\vec{x})= \pm \sqrt{1-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}}$ then

$$
1+f_{x_{1}}(\vec{x})^{2}+f_{x_{2}}(\vec{x})^{2}+f_{x_{3}}(\vec{x})^{2}=1+\frac{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}{1-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}}=\frac{1}{1-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}}
$$

so

$$
\sqrt{1+f_{x_{1}}(\vec{x})^{2}+f_{x_{2}}(\vec{x})^{2}+f_{x_{3}}(\vec{x})^{2}} d^{3} \vec{x}=\frac{1}{\sqrt{1-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}}} d^{3} \vec{x}
$$

as desired.

