A Lie Group

These notes introduce SU(2) as an example of a compact Lie group.

The Definition

The definition of SU(2) is
SU(2) = { A | A a2 x 2 complex matrix,det A =1, AA* = A*A=1 }

In the name SU(2), the “S” stands for “special” and refers to the condition det A = 1 and the “U” stands for
“unitary” and refers to the conditions AA* = A*A = 1. The adjoint matrix A* is the complex conjugate of the

transpose matrix. That is,

Define the inner product on €* by

The adjoint matrix was defined so that

2 - 2
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Thus the condition A*A = 1 is equivalent to
arA | NS e N pran |9 0] e @2
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Hence SU(2) is the set of 2 x 2 complex matrices that have determinant one and preserve the inner product
on €% (Recall that, for square matrices, A*A = 1 is equivalent to A=™' = A*, which in turn is equivalent to
AA* = 1.) By the polarization identity (Problem Set V, #3), preservation of the inner product is equivalent to

e ll= 0 e 2] <

ag ag ag
Clearly 1 € SU(2). If A,B € SU(2), then det(AB) = det(A)det(B) = 1 and (AB)(AB)* = ABB*A* =
ATA* = 1 so that AB € SU(2). Also, if A € SU(2), then A~! = A* € SU(2). So SU(2) is a group. We may
also view SU(2) as a subset of €*. Then SU(2) inherits a topology from €*, so that SU(2) is a topological

group.

preservation of the norm

The Pauli Matrices
The matrices
10 1 |0 —i {1 0
7711 0 2= 10 0 =10 -1
are called the Pauli matrices. They obey o, = o} for all £ =1,2,3 and also obey
O'% = ag = ag =1 0102 = —0201 = 103 0203 = —0309 = 107 0301 = —0103 = 109 (1)
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Set, for each @ = (a1,a2,a3) € IR?, the matrix

0= a101 + ag0o92 + azos

ST

Then the product rules (1) can be written
(@-6)(b-3)=a-bl+iixb-& (2)

I claim that any 2 x 2 complex matrix has a unique representation of the form agl+iai01 +iaz02+iaz03

for some ag, a1, a2,as3 € C. This is easy to see. Since

ag +taz a1 + as

apll + ta101 + tagog + iazoz = | . )
0 101 202 303 iay —as ag — ias

we have that

. . . «
aoll 4+ ia101 + iag0o9 + itazoz = {”y 5

Lemma.
SU2) ={ zoll+iZ -G | (x0,%) € RY, af +||Z|* =1}

Proof: Let A be any 2 x 2 complex matrix and write A = agll + i@ - & with @ = (a1, az,as). Then by (2)

AA* = (apl +id - &) (apl — id - &)
= |ao|?1 + i@gd - & — iapd - & + @ - all +id x a - &
= (lao|* + ||@||*) L+ i(ao@ — aod + @ x @) - &

Hence
AA* =1 < |ag/* +|@|> =1, @od —apd +d@*xa=0

First, suppose that @ # 0. Since @ x @ is orthogonal to both @ and @, the equation @g@ — apd+ @ X @ = 0 can be
satisfied only if @ x @ = 0. That is, only if @ and @ are parallel. Since @ and @ have the same length, this is the
case only if @ = e~2d for some real number 6. This is equivalent to e~d = e~*’@ which says that ¥ = e~%a@
is real. Subbing @ = €"Z back into God — agd + d@ x d@ = 0 gives

ePaot — e PagZ =0
This forces ag = ez for some real zo. If @ = 6, we may still choose  so that ag = exy. We have now shown
that

AA* =1 < A=e"?(voll+i7 - &) for some (z0,7) € R* with |zo|> + ||#]|> = 1 and some 6 € R

Since
det A = det ew(xoll—l—if- 5) — det et | 1O +x3z 1Ty +.x2 _ ezie(xg +x% +x§ +x§) — 2i0
X1 — T2 Xo — 13
we have that det A = 1 if and only if e’ = 1. If € = —1, we can absorb the —1 into (z, 7). ]
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As consequences of this Lemma we have that SU(2) is
o homeomorphic to S°, the unit sphere in R*

o connected

o simply connected (meaning that every continuous closed curve in SU(2) can be continuously deformed
to a point)

o is a C'*° manifold (meaning, roughly speaking, that in a neighbourhood of each point, we may choose
three of xg, x1, x2, x3 as coordinates, with the fourth then determined as a C'* function of the chosen

three)
A topological group that is also a C>° manifold (with the maps (a,b) — ab and a — a~! C°° when expressed

in local coordinates) is called a Lie Group.

The Connection between SU(2) and SO(3)

Define
M:R>—=V= {a-¢ icR? } € {2 x 2 complex matrices}

This is a linear bijection between IR® and V. (In fact V' is the space of all 2 x 2 traceless, self-adjoint matrices.)
Each U € SU(2) determines a linear map S(U) on IR? by

M(S(U)a) =UM(a)U ™" (3)

The right hand side is clearly linear in @. But it is not so clear that UM (@)U ! is in V, that is, of the form
M(b). To check this, we let U = zoll + if - & with (z0,Z) € R* obeying |lzo]|2 + ||Z]|2 = 1 and compute
UM (@)U~ = UM (a)U* explicitly. Applying (2) twice
UM(@U " = (woll +iZ- &) (@ - &) (w0l — iZ - G)
= (2ol +iZ- &) (xod@ -G —id- TN+ a x I &)

:x%d’-ﬁ—ixoﬁ-f]l—i—:vod’x

since 7 is perpendicular to (@ x 7). Using @x (@ x b) = (b- &)d — (@ - &)b,
UM@U ™' =23d-6+200dx &-6+a-i7 -6 — |&||*a-d+a-i7- &

= (2§ — |Z1°)@ - & + 220d@ x ¥ G + 23 - TT - G

This shows, not only that UM (@)U ' € V, but also that, for U = 2ol +i% - 7,

S(U)d = (22 — |&]2)d — 2w0@ x @+ 2d - T 7

In fact, we can exactly identify the geometric operation that S(U) implements. If U = +11, that is & = 6, then

it is obvious from (3) that S(U)@ = @ for all @ € IR®. That is, both S(1) and S(—1) are the identity map

on IR3. If & # 0, there is a unique angle 0 < 6 < 27 and a unique unit vector é such that zy = cos(%) and
0

7 = —sin(g5) é. If @ happens to be parallel to 7, that is, @ = ¢,

SW)a = (a3 — |7*)d+2a-ii= (v3+ ||7)*)a=a
So S(U) leaves the axis Z invariant. If @ is not parallel to &, set

k=e¢ 3= d=Tkk
lla—a-
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This is an orthonormal basis for IR®. Since @ is a linear combination of 7 and k,

In terms of this notation

Since

we have

In particular
Sk =k S(U)i = cos(8) i+ sin(f) j

This is exactly the rotation of @ about the axis k=eé (the k component of @ is unchanged) by an angle 6 (the

part of d perpendicular to k has changed by a rotation by 6 as in ]R2). This shows that
S:SU(2) = SO(3)
that S is surjective and that S(U) = 13, the identity map on IR?, if and only if U = 1. Also, by (3),
M(S(UU")@) = UU'M(a)U'"'U~t =U M(S(U)a@) U™ = M(S(U)S(U")a)

so that S(UU’) = S(U)S(U’) and S is a homomorphism. It is not injective, since S(—1) = S(1). Indeed S is a
two to one map since

SU)=8(U) = SOSU) =13 < S(UU ) =13 < UU '==%1 + U==+U
We have now shown that SO(3) is isomorphic to SU(2)/{1, —1}.

The Haar Measure

Recall that
SU@2) ={ zoll +ii - G | (v0,%) € R*, 23 + |Z|[* =1}

For all 22 + 22 + 22 < 1, 29 > 0, we can use ¥ as coordinates with xo(¥) = /1 — 27 — 23 — x3. For all
22+ 22 + 23 < 1, 29 < 0, we can use & as coordinates with z¢(%) = —/1 — 27 — 22 — 22. This leaves only

22 + 25 + 2% =1, o = 0. We could cover this using other components as coordinates, but as this is a set of

measure zero, we won’t bother. Denote

Ql

v (%) = \/l—x%—xQ—xgll—Fm:

\/l—xl—IQ—xgll—Fm:

Ql

We shall now find two functions A, (#) and A_(Z) such that, for all continuous functions f on SU(2)

Lo fae=[f[seama@ess [[[soo@a@es

where p is the Haar measure on SU(2).

@ Joel Feldman. 2009. All rights reserved. 4



Define Z (¢, %) and Z_ (¥, &) by

T+ (5+(277 f)) =74 (¥)7+ () Y- (2’1 2 f)) =7 (V)74 ()

If you multiply an element of the interior of the upper hemisphere of SU(2) (like y4+(%) with ||7]| < 1) by an
element of SU(2) that is sufficiently close to the identity (like 4 (Z) with ||&]| < 1) you end up with another
element of the interior of the upper hemisphere. Similarly, if you multiply an element of the interior of the lower
hemisphere of SU(2) (like v_(¥) with ||7]| < 1) by an element of SU(2) that is sufficiently close to the identity
(like 4+ (%) with ||#]] < 1) you end up with another element of the interior of the lower hemisphere. Thus both
Z4 (7, %) and Z_ (¥, ¥) make sense for all § with ||7]| < 1 provided ||Z|| is sufficiently small (depending on 7). By
the argument of Example 5.ii of the notes “Haar Measure”

0 Ozyi (= —
AL(0) = A ()] det [520.0)] oy s A+(0) = A-(3)
This will determine both A () and A_(7) up to the constant A (0). The latter will be determined by the

requirement that the measure have total mass one.
We first find 2 and Z_. By (2),

2 @) =yod' +xof —J x & with  yo=+/1—[7*  and zo= /1|7
Z(J.7) =yoZ +mf —§x T with yo=—v1-|[I7]]> and x=/1-[&]

Next we compute the matrices of partial derivatives. Observe that
gijoxi = y05i,j

o VIR g

Thus

—Xj —

=0 1=l

I
(=7

=0

( Oa —Ys, y2) lf.] =1
—§Tj§x T = gTj(I2y3 — 3Y2, T3y1 — T1y3,T1Y2 — T2y1) = { (w3, 0,—y1) if j=2

(_yQa Y1, O) 1f] =3
Hence, with yo = ++/1 — ||7]|? for Z4,

16) il =
det [ azxir] (yu O)] 1<4,5<3 = det —Y3 Yo U1
Y2 —Y1 Yo
= y5 + ysy1y2 — v2ysy1 — (— yoyi — yoys — yov3)
=vo(vo + 97 + 95 +13)
= Yo

Thus

ALH) = A1) = to—

The constant A+ ) is determined by the requirement that

1_/// NaT+ /// §) g =28 )// N S—
o<t I7l<1 Il<1 V1—¥i-v3—v3

Switching to conventional spherical coordinates

1
1=2A,(0 / dp/ dcp p?sinp \/—p = 87TA+(6)/0 fip2 dp

Now making the change of variables p = sin«

. /2 ) . /2 .
1= 87TA+(O)/ sin o o0 da = 87TA+(O)/ sin? a da = 272 A, (0)
0 0

Ccos &

and AL (7) = A_(7) = L _.

2 —r2_ 2
2T l—z{—z5—z3
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This is in fact, aside from a constant factor used to normalize the mass of the measure to one, the

standard measure on the sphere x3 + 2% + x3 + 23 = 1 that is inherited from the standard Lebesgue measure

on R?. Recall that the standard surface measure on the surface z = f(z,y) is V14 folz,y)? + fy(z,y)? dedy.

This is derived in second year Calculus courses by cutting up the surface into tiny parallelograms and

computing the area of each parallelogram. This same derivation applied to z
V1+ fo (B2 4 for (B)2 + fop (D)2 3E. I f(F) = £/1 — 22 — 22 — 22 then

— N . 24,22
Lt far (8)° 4+ fo (1) + [y () = 1+ 2 = e
SO
VI+ for @2 + [oa ()% + [y ()2 8°F = === &’
1—1}1—132—133
as desired.
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= f(x1,22,23) gives



