Tychonoff's Theorem

Theorem (Tychonoff) If $\{\Omega_{\alpha}\}_{\alpha \in \mathcal{I}}$ is any family of compact sets, then $\Omega = \underset{\alpha \in \mathcal{I}}{\mathsf{X}} \Omega_{\alpha}$, with the product topology, is compact.

Outline of Proof: We use A, B (possibly with subscripts) to denote subsets of Ω and \mathcal{A}, \mathcal{B} (possibly with subscripts) to denote collections of subsets of Ω . Let \mathcal{A} be any collection of closed subsets of Ω which has the finite intersection property (i.e. every finite subcollection has nonempty intersection). We have to show that $\bigcap_{A \in \mathcal{A}} A \neq \emptyset$.

Step 1. There is a collection \mathcal{B} of (not necessarily closed) subsets of Ω that contains \mathcal{A} and is maximal with respect to the finite intersection property (i.e. it is impossible to add another subset of Ω to \mathcal{B} while retaining the finite intersection property).

Step 2. We guess an x that we hope is in $\bigcap_{A \in \mathcal{A}} A$. To do so, let $\pi_{\beta} : \Omega \to \Omega_{\beta}$ be the natural projection on the Ω_{β} axis. If $x \in \Omega$, then x is a function defined on the index set \mathcal{I} and $\pi_{\beta}(x) = x(\beta)$. For each $\beta \in \mathcal{I}$,

 $\left\{ \begin{array}{l} B \subset \Omega \mid B \in \mathcal{B} \end{array} \right\} \text{ has the finite intersection property} \\ \Longrightarrow \left\{ \begin{array}{l} \pi_{\beta}(B) \subset \Omega_{\beta} \mid B \in \mathcal{B} \end{array} \right\} \text{ has the finite intersection property} \\ \Longrightarrow \left\{ \begin{array}{l} \overline{\pi_{\beta}(B)} \mid B \in \mathcal{B} \end{array} \right\} \text{ has the finite intersection property} \\ \Longrightarrow \bigcap_{B \in \mathcal{B}} \overline{\pi_{\beta}(B)} \neq \emptyset \text{ since } \Omega_{\beta} \text{ is compact} \end{array} \right.$

Select, for each $\beta \in \mathcal{I}$, $x_{\beta} \in \bigcap_{B \in \mathcal{B}} \overline{\pi_{\beta}(B)}$ and define $x \in \Omega$ by $x(\beta) = x_{\beta}$.

Step 3. We prove that $x \in \bigcap_{A \in \mathcal{A}} A$. The proof is by contradiction. Suppose that $x \notin A$ for some $A \in \mathcal{A}$. Then, $x \in \Omega \setminus A$, which is an open subset of Ω . Consequently, there is a finite index set $\mathcal{J} \subset \mathcal{I}$ and for each $\alpha \in \mathcal{J}$ there is an open set $U_{\alpha} \in \Omega_{\alpha}$ such that

$$x \in \underset{\alpha \in \mathcal{I}}{\mathsf{X}} \left\{ \begin{matrix} U_{\alpha} & \text{if } \alpha \in \mathcal{J} \\ \Omega_{\alpha} & \text{if } \alpha \notin \mathcal{J} \end{matrix} \right\} = \bigcap_{\beta \in \mathcal{J}} R_{\beta} \subset \Omega \setminus A \tag{(*)}$$

where

Step 3a. Show that, for all $B \in \mathcal{B}$ and $\beta \in \mathcal{J}$, $R_{\beta} \cap B \neq \emptyset$. **Step 3b.** Show that $\bigcap_{\beta \in \mathcal{J}} R_{\beta} \in \mathcal{B}$.

Step 3c. Since \mathcal{B} has the finite intersection property and $A \in \mathcal{A} \subset \mathcal{B}$, $\left(\bigcap_{\beta \in \mathcal{J}} R_{\beta}\right) \cap A \neq \emptyset$. This contradicts (*).