
Uniqueness of Limits

Let X be a topological space. We shall say the X has the ULP (this stands for “unique limit

property”) if, for any sequence {xn}n∈IN ⊂ X,

lim
n→∞

xn = x, lim
n→∞

xn = y =⇒ x = y

I have just made up the notation ULP to save typing. It is not standard. We have proven in class

that if X is Hausdorff, then it automatically has the ULP. Here is a counterexample that proves that

X can have the ULP without being Hausdorff.

Example. Let X be an uncountable set. Define a subset Y ⊂ X to be open if either Y = ∅ or X \ Y

is countable. Since any finite union of countable sets is still countable, this is a legitimate topology

on X. I claim that

lim
n→∞

xn = x ⇐⇒ ∃N such that n > N =⇒ xn = x (1)

To prove the =⇒ part of this equivalence, set U = X \
{

xn

∣

∣ xn 6= x
}

. This is an open set which

contains x. So if lim
n→∞

xn = x, there exists an N such that xn ∈ U , and hence xn = x, for all n > N .

The equivalence (1) clearly implies that X has the ULP. On the other hand, let x and y be any

two distinct elements of X and let U and V be open sets containing x and y, respectively. Since

X \ (U ∩ V ) = (X \ U) ∪ (X \ V ) is countable, it cannot contain all of X. Hence U ∩ V cannot be

empty. Thus X is not Hausdorff.

On the other hand, there is a Theorem which says “A topological space X is Hausdorff if

and only if every net in X converges to at most one point”. A “net” is a generalization of “sequence”

in which the subscript may take more than countably many values. See Folland §4.3, Exercise 32.

Also

Theorem. If X has the ULP and is first countable, meaning that it has a countable base at each

point (see Problem Set I, #2c), then X is Hausdorff.

Proof: Suppose that X is not Hausdorff. Let x and y be two distinct points of X such that

If U and V are open subsets of X with x ∈ U and y ∈ V , then U ∩ V 6= ∅. (2)

Let {Un}n∈IN be a countable base at x and {Vn}n∈IN be a countable base at y. We may assume

without loss of generality that U1 ⊃ U2 ⊃ U3 · · · (otherwise, replace Un by U1 ∩ U2 ∩ · · · ∩ Un) and

V1 ⊃ V2 ⊃ V3 · · ·. By (2), there exists, for each n ∈ IN, a point xn ∈ Un ∩ Vn. Then xn ∈ UN for all

n ≥ N and xn ∈ VN for all n ≥ N . If U is any open set containing x, there is a UN with UN ⊂ U .

Thus xn ∈ U for all n ≥ N and lim
n→∞

xn = x. Similarly, lim
n→∞

xn = y, violating the ULP.
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