The Classical Weierstrass Theorem

Theorem (Weierstrass) If f is a continuous complex valued function on $[a, b]$, then there exists a sequence of polynomials $P_{n}(x)$ such that

$$
\lim _{n \rightarrow \infty} P_{n}(x)=f(x)
$$

uniformly on $[a, b]$. If f is real valued, the P_{n} 's may be taken real.

Proof:

Reductions. By scaling and translating the x-axis, we may assume that $[a, b]=[0,1]$. We may also assume, wolog, that $f(0)=f(1)=0$. Once the theorem is proven in this case, apply it to $g(x)=f(x)-f(0)-$ $x[f(1)-f(0)]$. This gives polynomials \tilde{P}_{n} that converge uniformly to g. Then the polynomials $P_{n}(x)=$ $\tilde{P}_{n}(x)+x[f(1)-f(0)]+f(0)$ converge uniformly to f.

Construction of an approximate delta function. Let, for each $n \in \mathbb{N}, Q_{n}(x)=c_{n}\left(1-x^{2}\right)^{n}$ where $c_{n}=$ $\left[\int_{-1}^{1}\left(1-x^{2}\right)^{n} d x\right]^{-1}$. So Q_{n} is a polynomial that obeys $\int_{-1}^{1} Q_{n}(x) d x=1$ and $0 \leq Q_{n}(x) \leq c_{n}$ for all $x \in[-1,1]$. Note that if $n \geq m \geq 1, \frac{3}{4} \leq c_{m} \leq c_{n}<\frac{n+1}{2}$ since

$$
\int_{-1}^{1}\left(1-x^{2}\right)^{n} d x \leq \int_{-1}^{1}\left(1-x^{2}\right)^{m} d x \leq \int_{-1}^{1}\left(1-x^{2}\right) d x=\frac{4}{3}
$$

and

$$
\int_{-1}^{1}\left(1-x^{2}\right)^{n} d x=2 \int_{0}^{1}\left(1-x^{2}\right)^{n} d x>2 \int_{0}^{1}(1-x)^{n} d x=\frac{2}{n+1}
$$

So $Q_{n}(0)$ increases with n and is always at least $\frac{3}{4}$. On the other hand, given any δ and any $\varepsilon>0$, there is an N such that for all $n \geq N$ and all $\delta \leq|x| \leq 1$,

$$
0 \leq Q_{n}(x)=c_{n}\left(1-x^{2}\right)^{n} \leq \frac{n+1}{2}\left(1-\delta^{2}\right)^{n}<\varepsilon
$$

Construction of the polynomials. Extend f to the whole real line by defining $f(x)=0$ for all $x \notin[0,1]$. Set

$$
P_{n}(x)=\int_{-1}^{1} f(x+t) Q_{n}(t) d t
$$

Since, for $0 \leq x \leq 1$,

$$
P_{n}(x)=\int_{x-1}^{1+x} f(t) Q_{n}(t-x) d t=\int_{0}^{1} f(t) Q_{n}(t-x) d t
$$

is a polynomial. Let $\varepsilon^{\prime}>0$. Since f is uniformly continuous on the whole real line, there is a $\delta>0$ such that $|f(x+t)-f(x)|<\frac{\varepsilon^{\prime}}{2}$ for all $|t| \leq \delta$. Also $M=\sup _{x \in \mathbb{R}}|f(x)|$ is finite. We have also seen that there is an $N \in \mathbb{N}$ such that $0 \leq Q_{n}(t)<\frac{\varepsilon^{\prime}}{8 M}$ for all $\delta \leq|t| \leq 1$ and $n \geq N$. Thus, for all $n \geq N$,

$$
\begin{aligned}
\left|P_{n}(x)-f(x)\right| & =\left|\int_{-1}^{1}[f(x+t)-f(x)] Q_{n}(t) d t\right| \leq 2 M \int_{-1}^{-\delta} Q_{n}(t) d t+\frac{\varepsilon^{\prime}}{2} \int_{-\delta}^{\delta} Q_{n}(t) d t+2 M \int_{\delta}^{1} Q_{n}(t) d t \\
& \leq 2 M \frac{\varepsilon^{\prime}}{8 M}+\frac{\varepsilon^{\prime}}{2}+2 M \frac{\varepsilon^{\prime}}{8 M}=\varepsilon^{\prime}
\end{aligned}
$$

