Duhamel's Formula

Theorem (Duhamel) Let $[A_{i,j}(t)]_{1 \le i,j \le n}$ be a matrix-valued function of $t \in \mathbb{R}$ that is C^{∞} in the sense that each matrix element $A_{i,j}(t)$ is C^{∞} . Then

$$\frac{d}{dt}e^{A(t)} = \int_0^1 e^{sA(t)} A'(t)e^{(1-s)A(t)} ds$$

Proof: We first use Taylor's formula with remainder, applied separately to each matrix element, to give

$$A(t+h) = A(t) + A'(t)h + \int_{t}^{t+h} (t+h-\tau)A''(\tau) d\tau$$

= $A(t) + A'(t)h + h^{2} \int_{0}^{1} (1-x)A''(t+hx) dx$ where $\tau = t + hx$
= $A(t) + A'(t)h + B(t,h)h^{2}$ where $B(t,h) = \int_{0}^{1} (1-x)A''(t+hx) dx$

Observe that B(t, h) is C^{∞} in t and h. Define

$$E(s) = e^{sA(t+h)}e^{(1-s)A(t)}$$

Then

$$e^{A(t+h)} - e^{A(t)} = E(1) - E(0) = \int_0^1 E'(s) \, ds$$
$$= \int_0^1 \left\{ e^{sA(t+h)} A(t+h) e^{(1-s)A(t)} - e^{sA(t+h)} A(t) e^{(1-s)A(t)} \right\} \, ds$$

In computing E'(s) we used the product rule and the fact that, for any constant square matrix C, $\frac{d}{ds}e^{sC} = Ce^{sC} = e^{sC}C$. (This is easily proven by expanding the exponentials in power series.) Continuing the computation,

$$\frac{1}{h} \left[e^{A(t+h)} - e^{A(t)} \right] = \int_0^1 e^{sA(t+h)} \frac{1}{h} \left[A(t+h) - A(t) \right] e^{(1-s)A(t)} ds$$
$$= \int_0^1 e^{sA(t+h)} \left[A'(t) + B(t,h)h \right] e^{(1-s)A(t)} ds$$

It now suffices to take the limit $h \to 0$.