
Examples of Manifolds

Example 1 (Open Subset of IRn) Any open subset, O, of IRn is a manifold of dimension

n. One possible atlas isA =
{

(O, ϕid)
}

, where ϕid is the identity map. That is, ϕid(x) = x.

Of course one possible choice of O is IRn itself.

Example 2 (The Circle) The circle S1 =
{

(x, y) ∈ IR2
∣

∣ x2 + y2 = 1
}

is a manifold

of dimension one. One possible atlas is A = {(U1, ϕ1), (U1, ϕ2)} where

U1 = S1 \ {(−1, 0)} ϕ1(x, y) = arctan y
x
with − π < ϕ1(x, y) < π

ϕ1

U1

U2 = S1 \ {(1, 0)} ϕ2(x, y) = arctan y
x
with 0 < ϕ2(x, y) < 2π

Example 3 (Sn) The n–sphere Sn =
{

x = (x1, · · · , xn+1) ∈ IRn+1
∣

∣ x21+· · ·+x2n+1 = 1
}

is a manifold of dimension n. One possible atlas is A1 =
{

(Ui, ϕi), (Vi, ψi)
∣

∣ 1 ≤ i ≤ n+1
}

where, for each 1 ≤ i ≤ n+ 1,

Ui =
{

(x1, · · · , xn+1) ∈ Sn
∣

∣ xi > 0
}

ϕi(x1, · · · , xn+1) = (x1, · · · , xi−1, xi+1, · · · , xn+1)

Vi =
{

(x1, · · · , xn+1) ∈ Sn
∣

∣ xi < 0
}

ψi(x1, · · · , xn+1) = (x1, · · · , xi−1, xi+1, · · · , xn+1)

So both ϕi and ψi project onto IRn, viewed as the hyperplane xi = 0. Another possible

atlas is

A2 =
{ (

Sn \ {(0, · · · , 0, 1)}, ϕ
)

,
(

Sn \ {(0, · · · , 0,−1)}, ψ
) }

where
ϕ(x1, · · · , xn+1) =

(

2x1

1−xn+1
, · · · , 2xn

1−xn+1

)

ψ(x1, · · · , xn+1) =
(

2x1

1+xn+1
, · · · , 2xn

1+xn+1

)

are the stereographic projections from the north and south poles, respectively.

(0,···,0,1)

(0,···,0)

x

ϕ(x)

Both ϕ and ψ have range IRn. So we can think of Sn as IRn plus an additional single

“point at infinity”.
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Example 4 (Surfaces) Any smooth n–dimensional surface in IRn+m is an n–dimensional

manifold. When we say that M is an n–dimensional surface in IRn+m, we mean that M is

a subset of IRn+m with the property that for each z ∈M , there are

◦ a neighbourhood Uz of z in IRn+m

◦ n integers 1 ≤ j1 < j2 < · · · < jn ≤ n+m

◦ and m C∞ functions fk(xj1 , · · · ,xjn), k ∈ {1, · · · , n+m} \ {j1, · · · , jn}

such that the point x = (x1, · · · ,xn+m) ∈ Uz is in M if and only if xk = fk(xj1 , · · · ,xjn)

for all k ∈ {1, · · · , n + m} \ {j1, · · · , jn}. That is, we may express the part of M that is

near z as
xi1 = f1

(

xj1 , xj2 , · · · , xjn

)

xi2 = f2
(

xj1 , xj2 , · · · , xjn

)

...

xim = fm
(

xj1 , xj2 , · · · , xjn

)

where
{

i1, · · · , im} = {1, · · · , n+m} \ {j1, · · · , jn}

for some C∞ functions f1, · · · , fm. We may use xj1 , xj2 , · · · , xjn as coordinates forM in

M ∩Uz. Of course, an atlas is A =
{

(Uz, ϕz)
∣

∣ z ∈M
}

, with each ϕz(x) = (xj1 , · · · ,xjn).

x

z

(xj1 , · · · ,xjn)

Uz

M

Equivalently, M is an n–dimensional surface in IRn+m, if, for each z ∈M , there are

◦ a neighbourhood Uz of z in IRn+m

◦ and m C∞ functions gk : Uz → IR, such that the vectors
{

∇∇∇gk(z)
∣

∣ 1 ≤ k ≤ m
}

are

linearly independent

such that the point x ∈ Uz is in M if and only if gk(x) = 0 for all 1 ≤ k ≤ m. To get from

the implicit equations for M given by the gk’s to the explicit equations for M given by the

fk’s one need only invoke (possible after renumbering the components of x) the

Implicit Function Theorem

Letm,n ∈ IN and let U ⊂ IRn+m be an open set. Let g : U → IRm be C∞ with g(z) = 0

for some z ∈ U . Assume that det
[

∂ gi

∂xn+j
(z)

]

1≤i,j≤m
6= 0. Write a = (z1, · · · , zn) and

b = (zn+1, · · · , zn+m). Then there exist open sets V ⊂ IRn+m and W ⊂ IRn with

a ∈W and z = (a,b) ∈ V such that

for each x ∈W , there is a unique (x,y) ∈ V such that g(x,y) = 0.
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If the y above is denoted f(x), then f : W → IRm is C∞, f(a) = b and g
(

x, f(x)
)

= 0

for all x ∈W .

The n–sphere Sn is the n–dimensional surface in IRn+1 given implicitly by the equa-

tion g(x1, · · · ,xn+1) = x2
1 + · · · + x2

n+1 − 1 = 0. In a neighbourhood of the north

pole (for example, the northern hemisphere), Sn is given explicitly by the equation

xn+1 =
√

x2
1 + · · ·+ x2

n.

If you think of the set, M3, of all 3× 3 real matrices as IR9 (because a 3× 3 matrix has 9

matrix elements) then

SO(3) =
{

A ∈M3

∣

∣ AtA = 1l, detA = 1
}

is a 3–dimensional surface(1) in IR9. SO(3) is the group of all rotations about the origin

in IR3 and is also the set of all orientations of a rigid body,

Example 5 (The Torus) The torus T 2 is the two dimensional surface

T 2 =
{

(x, y, z) ∈ IR3
∣

∣

(

√

x2 + y2 − 1
)2

+ z2 = 1
4

}

in IR3. In cylindrical coordinates x = r cos θ, y = r sin θ, z = z, the equation of the

torus is (r − 1)2 + z2 = 1
4 . Fix any θ, say θ0. Recall that the set of all points in IR3

that have θ = θ0 is like one page in an open book. It is a half–plane that starts at the

z axis. The intersection of the torus with that half plane is a circle of radius 1
2 centred

on r = 1, z = 0. As ϕ runs from 0 to 2π, the point r = 1 + 1
2 cosϕ, z = 1

2 sinϕ,

y

z

x

θ0

θ = θ0 runs over that circle. If we now run θ from 0 to 2π, the circle on the page sweeps

out the whole torus. So, as ϕ runs from 0 to 2π and θ runs from 0 to 2π, the point

(x, y, z) =
(

(1 + 1
2 cosϕ) cos θ, (1 +

1
2 cosϕ) sin θ,

1
2 sinϕ

)

runs over the whole torus. So we

may build coordinate patches for T 2 using θ and ϕ (with ranges (0, 2π) or (−π, π)) as

coordinates.

(1) Note that AtA = 1l forces detA ∈ {−1, 1}. If you fix any B ∈ SO(3), then, just by continuity, all
matrices A that obey AtA = 1l and are sufficiently close to B automatically obey detA = 1. So the
equation detA = 1 is redundant. Since AtA is automatically symmetric, the requirement AtA = 1l
gives at most 6 independent equations. In fact they are independent.
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Example 6 (The Cartesian Product) If M is a manifold of dimension m with atlas

A and N is a manifold of dimension n with atlas B then

M ×N =
{

(x, y)
∣

∣ x ∈M, y ∈ N
}

is an (m+ n)–dimensional manifold with atlas

{ (

U × V, ϕ⊕ ψ
)
∣

∣ (U, ϕ) ∈ A, (V, ψ) ∈ B
}

where ϕ⊕ ψ
(

(x, y)
)

=
(

ϕ(x), ψ(y)
)

For example, IRm × IRn = IRm+n, S1 × IR is a cylinder, S1 × S1 is a torus and the config-

uration space of a rigid body is IR3 × SO(3) (with the IR3 components giving the location

of the centre of mass of the body and the SO(3) components giving the orientation).

Example 7 (The Möbius Strip) Take a length of ribbon. Put a half twist in it and

glue the ends together. The result is a Möbius Strip. Mathematically, you can think of it

as the set [0, 1]× (−1, 1) but with the points (0, t) and (1,−t) identified (i.e. pretend that

they are the same point) for all −1 < t < 1. We can view the Möbius Strip as a manifold

with the set pointsM = [0, 1)× (−1,−1) and the two patch atlas A = {(U1, ϕ1), (U1, ϕ2)}

where
U1 =

(

1
8
, 7
8

)

ϕ1(x, y) = (x, y)

U2 =
[

0, 1
4

)

∪
(

3
4
, 1
)

ϕ2(x, y) =

{

(x, y) if 0 ≤ x < 1
4

(x− 1,−y) if 3
4 < x < 1

The range of ϕ2 is
(

− 1
4 ,

1
4

)

× (−1, 1).

Example 8 (Projective n–space, IPn) The projective n–space, IPn, is the set of all

lines through the origin in IRn+1. If ~x ∈ IRn+1 is nonzero, then there is a unique line L~x

through the origin in IRn+1 that contains ~x. Namely L~x =
{

λ~x
∣

∣ λ ∈ IR
}

. If ~x, ~y ∈ IRn+1

are both nonzero, then L~x = L~y if and only if there is a λ ∈ IR \ {0} such that ~y = λ~x.

One choice of atlas for IPn is A =
{

(Ui, ϕi)
∣

∣ 1 ≤ i ≤ n+ 1
}

with

Ui =
{

L~x

∣

∣ ~x ∈ IRn+1, xi 6= 0
}

ϕ(L~x) =
(

x1

xi
, · · · , xi−1

xi
,
xi+1

xi
, · · · , xn+1

xi

)

∈ IRn

Observe that if ϕi is well–defined, because if ~x, ~y ∈ IRn+1 are both nonzero and L~x = L~y,

then, for each 1 ≤ i ≤ n+ 1, either both xi and yi are zero or both xi and yi are nonzero

and in the latter case

(

x1

xi
, · · · , xi−1

xi
,
xi+1

xi
, · · · , xn+1

xi

)

=
(

y1

yi
, · · · , yi−1

yi
,
yi+1

yi
, · · · , yn+1

yi

)
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Each line through the origin in IRn+1 intersects the unit sphere Sn =
{

~x ∈ IRn+1
∣

∣ |~x| = 1
}

in exactly two points and the two points are antipodal (i.e. ~x and −~x). So you can think

of IPn as Sn but with antipodal points identified:

IPn+1 =
{

{~x,−~x}
∣

∣ ~x ∈ Sn
}

Each line L~x ∈ IPn that is not horizontal (i.e. with xn+1 6= 0) intersects the northern

hemisphere
{

~x ∈ IRn+1
∣

∣ |~x| = 1, xn+1 ≥ 0
}

in exactly one point. Each line L~x ∈ IPn

that is horizontal (i.e. with xn+1 = 0) intersects the northern hemisphere in exactly two

points and the two points are antipodal. By ignoring xn+1, you can think of the northern

hemisphere as the closed unit disk
{

x ∈ IRn
∣

∣ |x| ≤ 1
}

in IRn. So you can think of IPn as

the closed unit ball in IRn but with antipodal points on the boundary |x| = 1 identified.

In the case of three dimensions, you can also think of SO(3) as being the closed unit disk
{

x ∈ IR3
∣

∣ |x| ≤ 1
}

⊂ IR3 but with antipodal points on the boundary |x| = 1 identified.

This is because, geometrically, each element of SO(3) is a matrix which implements a

rotation by some angle about some axis through the origin in IR3. We can associate each

ωΩ̂ ∈ IR3, where Ω̂ is a unit vector and ω ∈ IR, with the rotation by an angle πω about

the axis Ω̂. But then any two ω’s that differ by an even integer give the same rotation. So

the set of all rotations is associated with
{

ωΩ̂
∣

∣ |ω| ≤ 1, Ω̂ ∈ IR3, |Ω̂| = 1
}

but with 1Ω̂

and −1Ω̂ identified. Thus SO(3) and IP3 are diffeomorphic.
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