Examples of Manifolds

Example 1 (Open Subset of \mathbb{R}^n) Any open subset, \mathcal{O} , of \mathbb{R}^n is a manifold of dimension n. One possible atlas is $\mathcal{A} = \{(\mathcal{O}, \varphi_{\mathrm{id}})\}$, where φ_{id} is the identity map. That is, $\varphi_{\mathrm{id}}(\mathbf{x}) = \mathbf{x}$. Of course one possible choice of \mathcal{O} is \mathbb{R}^n itself.

Example 2 (The Circle) The circle $S^1 = \{ (x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1 \}$ is a manifold of dimension one. One possible atlas is $\mathfrak{A} = \{ (U_1, \varphi_1), (U_1, \varphi_2) \}$ where

$$U_1 = S^1 \setminus \{(-1,0)\} \quad \varphi_1(x,y) = \arctan \frac{y}{x} \text{ with } -\pi < \varphi_1(x,y) < \pi$$

$$U_2 = S^1 \setminus \{(1,0)\} \quad \varphi_2(x,y) = \arctan \frac{y}{x} \text{ with } 0 < \varphi_2(x,y) < 2\pi$$

Example 3 (Sⁿ) The n-sphere $S^n = \{ \mathbf{x} = (x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1} \mid x_1^2 + \dots + x_{n+1}^2 = 1 \}$ is a manifold of dimension n. One possible atlas is $\mathfrak{A}_1 = \{ (U_i, \varphi_i), (V_i, \psi_i) \mid 1 \leq i \leq n+1 \}$ where, for each $1 \leq i \leq n+1$,

$$U_{i} = \{ (x_{1}, \dots, x_{n+1}) \in S^{n} \mid x_{i} > 0 \} \quad \varphi_{i}(x_{1}, \dots, x_{n+1}) = (x_{1}, \dots, x_{i-1}, x_{i+1}, \dots, x_{n+1})$$

$$V_{i} = \{ (x_{1}, \dots, x_{n+1}) \in S^{n} \mid x_{i} < 0 \} \quad \psi_{i}(x_{1}, \dots, x_{n+1}) = (x_{1}, \dots, x_{i-1}, x_{i+1}, \dots, x_{n+1})$$

So both φ_i and ψ_i project onto \mathbb{R}^n , viewed as the hyperplane $x_i = 0$. Another possible atlas is

$$\mathfrak{A}_2 = \left\{ \left. \left(S^n \setminus \{(0, \dots, 0, 1)\}, \varphi \right), \left. \left(S^n \setminus \{(0, \dots, 0, -1)\}, \psi \right) \right. \right\}$$

where

$$\varphi(x_1, \dots, x_{n+1}) = \left(\frac{2x_1}{1 - x_{n+1}}, \dots, \frac{2x_n}{1 - x_{n+1}}\right)$$
$$\psi(x_1, \dots, x_{n+1}) = \left(\frac{2x_1}{1 + x_{n+1}}, \dots, \frac{2x_n}{1 + x_{n+1}}\right)$$

are the stereographic projections from the north and south poles, respectively.

Both φ and ψ have range \mathbb{R}^n . So we can think of S^n as \mathbb{R}^n plus an additional single "point at infinity".

Example 4 (Surfaces) Any smooth n-dimensional surface in \mathbb{R}^{n+m} is an n-dimensional manifold. When we say that M is an n-dimensional surface in \mathbb{R}^{n+m} , we mean that M is a subset of \mathbb{R}^{n+m} with the property that for each $\mathbf{z} \in M$, there are

- \circ a neighbourhood $U_{\mathbf{z}}$ of \mathbf{z} in \mathbb{R}^{n+m}
- \circ n integers $1 \le j_1 < j_2 < \cdots < j_n \le n+m$
- o and m C^{∞} functions $f_k(\mathbf{x}_{j_1}, \dots, \mathbf{x}_{j_n})$, $k \in \{1, \dots, n+m\} \setminus \{j_1, \dots, j_n\}$ such that the point $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_{n+m}) \in U_{\mathbf{z}}$ is in M if and only if $\mathbf{x}_k = f_k(\mathbf{x}_{j_1}, \dots, \mathbf{x}_{j_n})$ for all $k \in \{1, \dots, n+m\} \setminus \{j_1, \dots, j_n\}$. That is, we may express the part of M that is near \mathbf{z} as

$$\mathbf{x}_{i_1} = f_1(\mathbf{x}_{j_1}, \ \mathbf{x}_{j_2}, \ \cdots, \ \mathbf{x}_{j_n})$$

$$\mathbf{x}_{i_2} = f_2(\mathbf{x}_{j_1}, \ \mathbf{x}_{j_2}, \ \cdots, \ \mathbf{x}_{j_n})$$

$$\vdots$$

$$\mathbf{x}_{i_m} = f_m(\mathbf{x}_{j_1}, \ \mathbf{x}_{j_2}, \ \cdots, \ \mathbf{x}_{j_n})$$
where $\{i_1, \cdots, i_m\} = \{1, \cdots, n+m\} \setminus \{j_1, \cdots, j_n\}$

for some C^{∞} functions f_1, \dots, f_m . We may use $\mathbf{x}_{j_1}, \mathbf{x}_{j_2}, \dots, \mathbf{x}_{j_n}$ as coordinates for M in $M \cap U_{\mathbf{z}}$. Of course, an atlas is $\mathcal{A} = \{ (U_{\mathbf{z}}, \varphi_{\mathbf{z}}) \mid \mathbf{z} \in M \}$, with each $\varphi_{\mathbf{z}}(\mathbf{x}) = (\mathbf{x}_{j_1}, \dots, \mathbf{x}_{j_n})$.

Equivalently, M is an n-dimensional surface in \mathbb{R}^{n+m} , if, for each $\mathbf{z} \in M$, there are

- $\circ\,$ a neighbourhood $U_{\mathbf{z}}$ of \mathbf{z} in ${\rm I\!R}^{n+m}$
- \circ and $m \ C^{\infty}$ functions $g_k : U_{\mathbf{z}} \to \mathbb{R}$, such that the vectors $\{ \nabla g_k(\mathbf{z}) \mid 1 \leq k \leq m \}$ are linearly independent

such that the point $\mathbf{x} \in U_{\mathbf{z}}$ is in M if and only if $g_k(\mathbf{x}) = 0$ for all $1 \le k \le m$. To get from the implicit equations for M given by the g_k 's to the explicit equations for M given by the f_k 's one need only invoke (possible after renumbering the components of \mathbf{x}) the

Implicit Function Theorem

Let $m, n \in \mathbb{N}$ and let $U \subset \mathbb{R}^{n+m}$ be an open set. Let $\mathbf{g} : U \to \mathbb{R}^m$ be C^{∞} with $\mathbf{g}(\mathbf{z}) = 0$ for some $\mathbf{z} \in U$. Assume that det $\left[\frac{\partial \mathbf{g}_i}{\partial \mathbf{x}_{n+j}}(\mathbf{z})\right]_{1 \leq i,j \leq m} \neq 0$. Write $\mathbf{a} = (\mathbf{z}_1, \dots, \mathbf{z}_n)$ and $\mathbf{b} = (\mathbf{z}_{n+1}, \dots, \mathbf{z}_{n+m})$. Then there exist open sets $V \subset \mathbb{R}^{n+m}$ and $W \subset \mathbb{R}^n$ with $\mathbf{a} \in W$ and $\mathbf{z} = (\mathbf{a}, \mathbf{b}) \in V$ such that

for each $\mathbf{x} \in W$, there is a unique $(\mathbf{x}, \mathbf{y}) \in V$ such that $\mathbf{g}(\mathbf{x}, \mathbf{y}) = 0$.

If the **y** above is denoted $\mathbf{f}(\mathbf{x})$, then $\mathbf{f}: W \to \mathbb{R}^m$ is C^{∞} , $\mathbf{f}(\mathbf{a}) = \mathbf{b}$ and $\mathbf{g}(\mathbf{x}, \mathbf{f}(\mathbf{x})) = 0$ for all $\mathbf{x} \in W$.

The *n*-sphere S^n is the *n*-dimensional surface in \mathbb{R}^{n+1} given implicitly by the equation $g(\mathbf{x}_1, \dots, \mathbf{x}_{n+1}) = \mathbf{x}_1^2 + \dots + \mathbf{x}_{n+1}^2 - 1 = 0$. In a neighbourhood of the north pole (for example, the northern hemisphere), S^n is given explicitly by the equation $\mathbf{x}_{n+1} = \sqrt{\mathbf{x}_1^2 + \dots + \mathbf{x}_n^2}$.

If you think of the set, M_3 , of all 3×3 real matrices as \mathbb{R}^9 (because a 3×3 matrix has 9 matrix elements) then

$$SO(3) = \{ A \in M_3 \mid A^t A = 1, \det A = 1 \}$$

is a 3-dimensional surface⁽¹⁾ in \mathbb{R}^9 . SO(3) is the group of all rotations about the origin in \mathbb{R}^3 and is also the set of all orientations of a rigid body,

Example 5 (The Torus) The torus T^2 is the two dimensional surface

$$T^2 = \{ (x, y, z) \in \mathbb{R}^3 \mid (\sqrt{x^2 + y^2} - 1)^2 + z^2 = \frac{1}{4} \}$$

in \mathbbm{R}^3 . In cylindrical coordinates $x=r\cos\theta,\ y=r\sin\theta,\ z=z,$ the equation of the torus is $(r-1)^2+z^2=\frac{1}{4}$. Fix any θ , say θ_0 . Recall that the set of all points in \mathbbm{R}^3 that have $\theta=\theta_0$ is like one page in an open book. It is a half-plane that starts at the z axis. The intersection of the torus with that half plane is a circle of radius $\frac{1}{2}$ centred on $r=1,\ z=0$. As φ runs from 0 to 2π , the point $r=1+\frac{1}{2}\cos\varphi,\ z=\frac{1}{2}\sin\varphi,$

 $\theta = \theta_0$ runs over that circle. If we now run θ from 0 to 2π , the circle on the page sweeps out the whole torus. So, as φ runs from 0 to 2π and θ runs from 0 to 2π , the point $(x, y, z) = \left((1 + \frac{1}{2}\cos\varphi)\cos\theta, (1 + \frac{1}{2}\cos\varphi)\sin\theta, \frac{1}{2}\sin\varphi\right)$ runs over the whole torus. So we may build coordinate patches for T^2 using θ and φ (with ranges $(0, 2\pi)$ or $(-\pi, \pi)$) as coordinates.

Note that $A^tA = 1$ forces det $A \in \{-1, 1\}$. If you fix any $B \in SO(3)$, then, just by continuity, all matrices A that obey $A^tA = 1$ and are sufficiently close to B automatically obey det A = 1. So the equation det A = 1 is redundant. Since A^tA is automatically symmetric, the requirement $A^tA = 1$ gives at most 6 independent equations. In fact they are independent.

Example 6 (The Cartesian Product) If M is a manifold of dimension m with atlas \mathfrak{A} and N is a manifold of dimension n with atlas \mathfrak{B} then

$$M \times N = \{ (x, y) \mid x \in M, y \in N \}$$

is an (m+n)-dimensional manifold with atlas

$$\{ (U \times V, \varphi \oplus \psi) \mid (U, \varphi) \in \mathfrak{A}, (V, \psi) \in \mathfrak{B} \}$$
 where $\varphi \oplus \psi((x, y)) = (\varphi(x), \psi(y))$

For example, $\mathbb{R}^m \times \mathbb{R}^n = \mathbb{R}^{m+n}$, $S^1 \times \mathbb{R}$ is a cylinder, $S^1 \times S^1$ is a torus and the configuration space of a rigid body is $\mathbb{R}^3 \times SO(3)$ (with the \mathbb{R}^3 components giving the location of the centre of mass of the body and the SO(3) components giving the orientation).

Example 7 (The Möbius Strip) Take a length of ribbon. Put a half twist in it and glue the ends together. The result is a Möbius Strip. Mathematically, you can think of it as the set $[0,1]\times(-1,1)$ but with the points (0,t) and (1,-t) identified (i.e. pretend that they are the same point) for all -1 < t < 1. We can view the Möbius Strip as a manifold with the set points $M = [0,1) \times (-1,-1)$ and the two patch atlas $\mathfrak{A} = \{(U_1,\varphi_1), (U_1,\varphi_2)\}$ where

$$U_1 = \left(\frac{1}{8}, \frac{7}{8}\right) \qquad \qquad \varphi_1(x, y) = (x, y)$$

$$U_2 = \left[0, \frac{1}{4}\right) \cup \left(\frac{3}{4}, 1\right) \quad \varphi_2(x, y) = \begin{cases} (x, y) & \text{if } 0 \le x < \frac{1}{4} \\ (x - 1, -y) & \text{if } \frac{3}{4} < x < 1 \end{cases}$$

Example 8 (Projective *n*-space, \mathbb{P}^n) The projective *n*-space, \mathbb{P}^n , is the set of all lines through the origin in \mathbb{R}^{n+1} . If $\vec{x} \in \mathbb{R}^{n+1}$ is nonzero, then there is a unique line $L_{\vec{x}}$ through the origin in \mathbb{R}^{n+1} that contains \vec{x} . Namely $L_{\vec{x}} = \{ \lambda \vec{x} \mid \lambda \in \mathbb{R} \}$. If $\vec{x}, \vec{y} \in \mathbb{R}^{n+1}$ are both nonzero, then $L_{\vec{x}} = L_{\vec{y}}$ if and only if there is a $\lambda \in \mathbb{R} \setminus \{0\}$ such that $\vec{y} = \lambda \vec{x}$. One choice of atlas for \mathbb{P}^n is $\mathfrak{A} = \{ (U_i, \varphi_i) \mid 1 \leq i \leq n+1 \}$ with

$$U_i = \{ L_{\vec{x}} \mid \vec{x} \in \mathbb{R}^{n+1}, \ x_i \neq 0 \} \qquad \varphi(L_{\vec{x}}) = (\frac{x_1}{x_i}, \dots, \frac{x_{i-1}}{x_i}, \frac{x_{i+1}}{x_i}, \dots, \frac{x_{n+1}}{x_i}) \in \mathbb{R}^n$$

Observe that if φ_i is well–defined, because if $\vec{x}, \vec{y} \in \mathbb{R}^{n+1}$ are both nonzero and $L_{\vec{x}} = L_{\vec{y}}$, then, for each $1 \le i \le n+1$, either both x_i and y_i are zero or both x_i and y_i are nonzero and in the latter case

$$\left(\frac{x_1}{x_i}, \dots, \frac{x_{i-1}}{x_i}, \frac{x_{i+1}}{x_i}, \dots, \frac{x_{n+1}}{x_i}\right) = \left(\frac{y_1}{y_i}, \dots, \frac{y_{i-1}}{y_i}, \frac{y_{i+1}}{y_i}, \dots, \frac{y_{n+1}}{y_i}\right)$$

Each line through the origin in \mathbb{R}^{n+1} intersects the unit sphere $S^n = \{ \vec{x} \in \mathbb{R}^{n+1} \mid |\vec{x}| = 1 \}$ in exactly two points and the two points are antipodal (i.e. \vec{x} and $-\vec{x}$). So you can think of \mathbb{P}^n as S^n but with antipodal points identified:

$$\mathbb{P}^{n+1} = \{ \{ \vec{x}, -\vec{x} \} \mid \vec{x} \in S^n \}$$

Each line $L_{\vec{x}} \in \mathbb{P}^n$ that is not horizontal (i.e. with $x_{n+1} \neq 0$) intersects the northern hemisphere $\{\vec{x} \in \mathbb{R}^{n+1} \mid |\vec{x}| = 1, x_{n+1} \geq 0\}$ in exactly one point. Each line $L_{\vec{x}} \in \mathbb{P}^n$ that is horizontal (i.e. with $x_{n+1} = 0$) intersects the northern hemisphere in exactly two points and the two points are antipodal. By ignoring x_{n+1} , you can think of the northern hemisphere as the closed unit disk $\{\mathbf{x} \in \mathbb{R}^n \mid |\mathbf{x}| \leq 1\}$ in \mathbb{R}^n . So you can think of \mathbb{P}^n as the closed unit ball in \mathbb{R}^n but with antipodal points on the boundary $|\mathbf{x}| = 1$ identified.

In the case of three dimensions, you can also think of SO(3) as being the closed unit disk $\{ \mathbf{x} \in \mathbb{R}^3 \mid |\mathbf{x}| \leq 1 \} \subset \mathbb{R}^3$ but with antipodal points on the boundary $|\mathbf{x}| = 1$ identified. This is because, geometrically, each element of SO(3) is a matrix which implements a rotation by some angle about some axis through the origin in \mathbb{R}^3 . We can associate each $\omega \hat{\Omega} \in \mathbb{R}^3$, where $\hat{\Omega}$ is a unit vector and $\omega \in \mathbb{R}$, with the rotation by an angle $\pi \omega$ about the axis $\hat{\Omega}$. But then any two ω 's that differ by an even integer give the same rotation. So the set of all rotations is associated with $\{ \omega \hat{\Omega} \mid |\omega| \leq 1, \ \hat{\Omega} \in \mathbb{R}^3, \ |\hat{\Omega}| = 1 \}$ but with $1\hat{\Omega}$ and $-1\hat{\Omega}$ identified. Thus SO(3) and \mathbb{P}^3 are diffeomorphic.