
An Elliptic Function – The Weierstrass Function

Definition W.1 An elliptic function f(z) is a non constant meromorphic function on C

that is doubly periodic. That is, there are two nonzero complex numbers ω1, ω2 whose ratio

is not real, such that f(z + ω1) = f(z) and f(z + ω2) = f(z).

Fix two real numbers β, γ > 0. The Weierstrass function with primitive periods γ

and iβ is the function ℘ : C → C defined by

℘(z) =
1

z2
+

∑

ω∈γZZ⊕iβZZ

ω 6=0

1

(z − ω)2
−

1

ω2

It is an important example of an elliptic function. Its elementary properties are given in

Problem W.1 Prove that

a) For each fixed z ∈ C\(γZZ⊕iβZZ), the series
∑

ω∈γZZ⊕iβZZ

ω 6=0

1
(z−ω)2

− 1
ω2 converges absolutely.

The convergence is uniform on compact subsets of C \ (γZZ⊕ iβZZ).

b) ℘(z) is analytic on C \ (γZZ⊕ iβZZ).

c) ℘(z + ζ) = ℘(z) for all ζ ∈ γZZ⊕ iβZZ.

d) ℘(−z) = ℘(z).

e) ℘(z) = ℘(z̄) for all C \ (γZZ⊕ iβZZ).

f) ℘(x) and ℘(x+ iβ
2
) are real for all x ∈ IR and ℘(iy) and ℘(iy+ γ

2
) are real for all y ∈ IR.

The following Lemma is one of the main properties of elliptic functions. It proves

that an elliptic function takes each value the same number of times and that number is just

the sum of the degrees of its poles.

Theorem W.2 Let f(z) be an elliptic function with periods ω1, ω2. Set Ω = ω1ZZ+ ω2ZZ.

Suppose that f(z) has poles of order n1, · · · , nk at p1+Ω, · · · , pk+Ω and is analytic elsewhere.

Let c be any complex number. Suppose that f(z) − c has zeroes of order m1, · · · , mh at(1)

z1 + Ω, · · · , zh +Ω and is nonzero elsewhere. Then

h
∑

i=1

mi =

k
∑

i=1

nk

Proof: The function f ′(z)
f(z)−c is meromorphic, has a simple pole with residue −nj at pj +Ω,

for 1 ≤ j ≤ k, a simple pole with residue mi at zi +Ω, for 1 ≤ i ≤ h and no other poles.

(1) Of course, pi − pj /∈ Ω and zi − zj /∈ Ω for all i 6= j.
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For each complex number ζ, let Cζ be the contour which consists of the four line

segments from ζ to ζ + ω1 to ζ + ω1 + ω2 to ζ + ω2 and back to ζ. Pick a ζ so that f(z)

has no pole on Cζ and does not take the value c on Cζ . This is always possible because any

non constant meromorphic function only has finitely many poles in any compact region and

takes the value c at only finitely many points in any compact region. Then, integrating by

residues,
∫

Cζ

f ′(z)
f(z)−c

dz = ± 2πi
[ h
∑

i=1

mi −
k
∑

i=1

nk

]

with a plus sign if Cζ is positively oriented and a negative sign otherwise. On the other hand,

by periodicity,

∫

Cζ

f ′(z)
f(z)−cdz =

∫ ζ+ω1

ζ

[

f ′(z)
f(z)−c −

f ′(z+ω2)
f(z+ω2)−c

]

dz +

∫ ζ+ω2

ζ

[

f ′(z+ω1)
f(z+ω1)−c −

f ′(z)
f(z)−c

]

dz

= 0

Corollary W.3 ℘(z) = ℘(z′) if and only if z − z′ ∈ γZZ⊕ iβZZ or z + z′ ∈ γZZ ⊕ iβZZ. If

z /∈ γZZ⊕ iβZZ but 2z ∈ γZZ⊕ iβZZ, ℘′(z) = 0.

Proof: That

z − z′ ∈ γZZ⊕ iβZZ ⇒ ℘(z) = ℘(z′) z + z′ ∈ γZZ⊕ iβZZ ⇒ ℘(z) = ℘(z′)

is an immediate consequence of Problem W.1, parts (c) and (d).

The Weierstrass function ℘ has a pole of order two at each point of γZZ⊕ iβZZ and is

analytic elsewhere, so the
∑k

i=1 nk of Theorem W.2 is two. Set c = ℘(z′) and Ω = γZZ⊕ iβZZ.

Then ℘ − c has a zero at z′ + Ω and at −z′ + Ω. If z′ − (−z′) = 2z′ /∈ Ω, then by Theorem

W.2, these zeroes must be simple and there are no others. Furthermore, z′ cannot be in Ω,

because ℘ has a pole at each point of Ω.

Assume that z′ /∈ Ω but 2z′ ∈ Ω. This is the only remaining possibility. By Problem

W.1, ℘ is even and periodic with respect to Ω. Consequently its derivative is odd and periodic

with respect to Ω, so that

℘′(z′) = −℘′(−z′) = −℘′(−z′ + 2z′) = −℘′(z′) ⇒ ℘′(z′) = 0

Thus ℘− c has a zero of order at least two at each point of z′ + Ω. By Theorem W.2, these

zeroes must be exactly double and there are no others.
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Define

σ(z) = z
∏

ω∈γZZ⊕iβZZ

ω 6=0

(

1− z
ω

)

e
z
ω
+ 1

2

z2

ω2

and

ζ(z) = σ′(z)
σ(z) = 1

z +
∑

ω∈γZZ⊕iβZZ

ω 6=0

1
z−ω + 1

ω + z
ω2

Problem W.2 Let a1, a2, a3, · · · be a sequence of nonzero complex numbers. The infinite

product
∏

∞

n=1 an is said to converge if limN→∞

∏N
n=1 an exists and is nonzero. In this case,

∏

∞

n=1 an is defined to be limN→∞

∏N
n=1 an.

a) Prove that, if
∏

∞

n=1 an converges, then limn→∞ an = 1.

b) Suppose that
∞
∑

n=1
|an − 1| < ∞. Prove that

∏

∞

n=1 an converges. Prove that if π is any

permutation of 1, 2, 3, · · ·, then
∏

∞

n=1 aπ(n) also converges and
∏

∞

n=1 aπ(n) =
∏

∞

n=1 an.

Problem W.3 Prove that

a)
∣

∣

∣
(1− z)ez+

1

2
z2

− 1
∣

∣

∣
≤ 3e3/2|z|3 for all complex numbers z with |z| < 1.

b) For each fixed z ∈ C \ (γZZ ⊕ iβZZ), the infinite product z
∏

ω∈γZZ⊕iβZZ

ω 6=0

(

1− z
ω

)

e
z
ω
+ 1

2

z2

ω2

converges. The convergence is uniform on compact subsets of C \ (γZZ⊕ iβZZ).

c) σ(z) is analytic on C.

d) σ(−z) = −σ(z).

Problem W.4 Prove that

a) For each fixed z ∈ C\(γZZ⊕iβZZ), the series
∑

ω∈γZZ⊕iβZZ

ω 6=0

1
z−ω+

1
ω+

z
ω2 converges absolutely.

The convergence is uniform on compact subsets of C \ (γZZ⊕ iβZZ).

b) ζ(z) is analytic on C \ (γZZ⊕ iβZZ).

c) ζ ′(z) = −℘(z).

d) ζ(−z) = −ζ(z).

e) ζ(z) = ζ(z̄).

f) ζ(x) is real for all x ∈ IR and ζ(iy) is pure imaginary for all y ∈ IR.

Lemma W.4 There are constants η1 ∈ IR and η2 ∈ iIR satisfying

η1iβ − η2γ = 2πi

such that
ζ(z + γ) = ζ(z) + η1 ζ(z + iβ) = ζ(z) + η2

σ(z + γ) = −σ(z) eη1(z+
γ
2
) σ(z + iβ) = −σ(z) eη2(z+i β

2
)
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Proof: For all ω ∈ γZZ⊕ iβZZ,

d
dz

[

ζ(z + ω)− ζ(z)
]

= ℘(z) − ℘(z + ω) = 0

Hence there exist constants Cω, ω ∈ γZZ⊕ iβZZ such that

ζ(z + ω) = ζ(z) + Cω

As σ(z+ω)
σ(z) solves the differential equation

d
dz

σ(z+ω)
σ(z) = σ′(z+ω)

σ(z) − σ(z+ω)σ′(z)
σ2(z) =

[

ζ(z + ω)− ζ(z)
]σ(z+ω)

σ(z) = Cω
σ(z+ω)
σ(z)

there exist constants Dω, ω ∈ γZZ⊕ iβZZ such that

σ(z+ω)
σ(z) = Dωe

Cωz

By Problem W.3.d, if ω
2
6∈ γZZ⊕ iβZZ, σ(ω/2) 6= 0 and

−1 = σ(ω/2)
σ(−ω/2)

= σ(z+ω)
σ(z)

∣

∣

z=−ω/2
= Dωe

−Cωω/2

so that Dω = −eCωω/2. Set η1 = Cγ = ζ
(

γ
2

)

−ζ
(

− γ
2

)

and η2 = Ciβ = ζ
(

iβ2
)

−ζ
(

− iβ2
)

∈ iIR.

By Problem W.4.f, η1 ∈ IR and η2 ∈ iIR. Then Dγ = −eη1γ/2, Diβ = −eiη2β/2 so that

ζ(z + γ) = ζ(z) + η1 ζ(z + iβ) = ζ(z) + η2

σ(z + γ) = −σ(z) eη1(z+
γ
2
) σ(z + iβ) = −σ(z) eη2(z+i β

2
)

It remains only to prove that η1iβ−η2γ = 2πi. Let C be the contour in C consisting

of the four line segments from −γ
2 − iβ2 to γ

2 − iβ2 to γ
2 + iβ2 to −γ

2 + iβ2 and back to −γ
2 − iβ2 .

Then

∫

C

ζ(z) dz =

∫
γ

2
−i β

2

−
γ
2
−i β

2

[

ζ(z) − ζ(z + iβ)
]

dz −

∫

−
γ

2
+i β

2

−
γ
2
−i β

2

[

ζ(z) − ζ(z + γ)
]

dz

=

∫
γ
2
−i β

2

−
γ

2
−i β

2

[

− η2
]

dz −

∫

−
γ
2
+i β

2

−
γ

2
−i β

2

[

− η1
]

dz

= −η2γ + iη1β

Inside C, ζ(z) has only one simple pole with residue 1, so

∫

C

ζ(z) dz = 2πi

as desired.
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Problem W.5 Set

k(z) = −i
(

ζ(z)− z η1

γ

)

Prove that

a) k(−z) = −k(z).

b) k(z) = −k(z̄).

c) k(z + γ) = k(z) and k(z + iβ) = k(z)− 2π
γ
.

d) k(iy) and k
(

iy + γ
2

)

are real for all y ∈ IR.

e) k(x) is pure imaginary and k(x+ iβ2 ) has real part
π
γ for all x ∈ IR.

Lemma W.5

℘(u+ v) + ℘(u) + ℘(v) =
[

ζ(u+ v)− ζ(u)− ζ(v)
]2

for all u, v ∈ C such that none of u, v, u+ v are in γZZ⊕ iβZZ.

Proof: Fix any v ∈ C \ (γZZ⊕ iβZZ) and set

f(u) = ℘(u+ v) + ℘(u) + ℘(v)−
[

ζ(u+ v)− ζ(u)− ζ(v)
]2

Then f(u) is analytic except at u ∈ γZZ ⊕ iβZZ and u ∈ −v + γZZ ⊕ iβZZ. I claim that f(u)

has an analytic extension to all of C. Set

g(u) = ℘(u+ v) + ℘(v)

h(u) = ζ(u+ v)− ζ(v)

r(u) =
∑

ω∈γZZ⊕iβZZ

ω 6=0

1

(u− ω)2
−

1

ω2

s(u) =
∑

ω∈γZZ⊕iβZZ

ω 6=0

1
u−ω + 1

ω + u
ω2

All are analytic for u in a neighbourhood of 0 and h(0) = s(0) = 0. Furthermore

f(u) = 1
u2 + r(u) + g(u)−

[

h(u) − 1
u − s(u)

]2

= r(u) + g(u)−
[

h(u)− s(u)
]2

+ 2
u

[

h(u)− s(u)
]

(W.1)

Because h(0)−s(0) = 0, 2
u

[

h(u)−s(u)
]

has an analytic extension to a neighbourhood of zero.

Consequently, f(u) has an analytic extension to a neighbourhood of zero. The other points of

γZZ⊕ iβZZ and −v + γZZ⊕ iβZZ are dealt with similarly. Thus f(u) has an analytic extension

to all of C. This analytic extension is periodic with respect to γZZ⊕ iβZZ and consequently is

bounded on C. But any function which is analytic and bounded on C must be constant. We
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may determine that constant by setting u = 0, or rather taking the limit as u → 0, in (W.1).

As r(0) = h(0) = s(0) = s′(0) = 0,

lim
u→0

f(u) = r(0) + g(0)−
[

h(0)− s(0)
]2

+ 2
[

h′(0)− s(0)
]

= 2℘(v) + 2ζ ′(v) = 0

So, for all allowed v,

℘(u+ v) + ℘(u) + ℘(v)−
[

ζ(u+ v)− ζ(u)− ζ(v)
]2

is independent of u and in fact takes the value zero.

For more information on elliptic functions in general and the Weierstrass function in partic-

ular, see

K. Chandasekharan, Elliptic Functions, Springer–Verlag, 1985.

Patrick Du Val, Elliptic Functions and Elliptic Curves, London Mathematical

Society, Lecture Note Series 9, Cambridge University Press.

Harry Rauch, Elliptic Functions, Theta Functions and Riemann Surfaces,

Abaltimore Williams and Wilkins, 1973.
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