
Lattices and Periodic Functions

Definition L.1 Let f(x) be a function on IRd.

a) The vector γγγ ∈ IRd is said to be a period for f if

f(x+ γγγ) = f(x) for all x ∈ IRd

b) Set

Pf =
{

γγγ ∈ IRd
∣

∣ γγγ is a period for f
}

If γγγ, γγγ′ ∈ Pf then γγγ+γγγ′ ∈ Pf and if γγγ ∈ Pf then −γγγ ∈ Pf (sub x = z−γγγ into f(x+γγγ) = f(x)).

Furthermore, the zero vector 0 ∈ IRd is always in Pf . Thus Pf is a (commutative) group

under addition and

γγγ1, · · · , γγγp ∈ Pf ⇒ n1γγγ1 + · · ·+ npγγγp ∈ Pf for all p ∈ IN and n1, · · · , np ∈ ZZ

Example L.2

a) If f(x, y) = sin
(

2πx
ℓ1

)

cos
(

2πy
ℓ2

)

, then Pf =
{

(mℓ1, nℓ2)
∣

∣ m,n ∈ ZZ
}

.

b) If f(x, y) = sin
(

2πx
ℓ1

)

, then Pf =
{

(mℓ1, y)
∣

∣ m ∈ ZZ, y ∈ IR
}

.

c) If f(x, y) = sin
(

2πx
ℓ1

)

sinh y, then Pf =
{

(mℓ1, 0)
∣

∣ m ∈ ZZ
}

.

To exclude functions, as in Example L.2.b, that are constant in some direction, it suffices to

require that 0 be an isolated point of Pf . That is, to require that there be a number r > 0

such that every nonzero γγγ ∈ Pf obeys |γγγ| ≥ r.

Proposition L.3 If P is an additive subgroup of IRd and 0 is an isolated point of P, then

there are d′ ≤ d and independent vectors γγγ1, · · · , γγγd′ ∈ IRd such that

P =
{

n1γγγ1 + · · ·+ nd′γγγd′

∣

∣ n1, · · · , nd′ ∈ ZZ
}
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Proof:

Claim 1. P has a shortest nonzero element.

Proof of Claim 1: Define r = inf
{

|γγγ|
∣

∣ γγγ ∈ P, γγγ 6= 0
}

. If there were no shortest element,

there would be a sequence of vectors βββ1, βββ2 · · · in P with limi→∞ |βββi| = r and r < |βββi| ≤ 2r

for every i = 1, 2, · · ·. Because the closed ball of radius 2r is compact, the sequence has a

limit point and hence has a Cauchy subsequence. In particular, there are βββi and βββj in the

sequence, with βββi 6= βββj with |βββi − βββj | <
r
2 . But this is impossible, because βββi − βββj would be

a nonzero element of P with length smaller than r.

Claim 2. Let γγγ1 be a shortest nonzero element of P and set P1 =
{

γγγ ∈ P
∣

∣ γγγ ‖ γγγ1

}

. Then

P1 =
{

nγγγ1

∣

∣ n ∈ ZZ
}

.

Proof of Claim 2: If xγγγ1 ∈ P with x not an integer, then (x− [x])γγγ1 (where [ · ] denotes

integer part) is a nonzero element of P with length strictly smaller than the length of γγγ1.

If P = P1, we have finished. Otherwise continue with

Claim 3. Denote by IP1 orthogonal projection in IRd onto the line
{

xγγγ1

∣

∣ x ∈ IR
}

and

by IP⊥
1 = 1l − IP1 orthogonal projection perpendicular to the line

{

xγγγ1

∣

∣ x ∈ IR
}

. Then

P \ P1 has an element whose distance from the line
{

xγγγ1

∣

∣ x ∈ IR
}

is a minimum, i.e. that

minimizes |IP⊥
1 γγγ|.

Proof of Claim 3: Define r1 = inf
{

|IP⊥
1 γγγ|

∣

∣ γγγ ∈ P \ P1

}

. If there were no minimizing

element, there would be a sequence of vectors βββ1, βββ2 · · · in P with

2r1 ≥ |IP⊥
1 βββ1| > |IP⊥

1 βββ2| > |IP⊥
1 βββ3| > · · · > r1

Because |IP⊥
1 βββi| = |IP⊥

1 (βββi + nγγγ1)| for all n, we may assume, without loss of generality, that

|IP1βββi| ≤ |γγγ1| for every i. Because
{

x ∈ IRd
∣

∣ |IP⊥
1 x| ≤ 2r1, |IP1x| ≤ |γγγ1|

}

is compact, the sequence has a limit point and hence has a Cauchy subsequence. In particular,

there are βββi and βββj in the sequence, with βββi 6= βββj with |βββi −βββj | <
r
2
. But this is impossible,

because βββi − βββj would be a nonzero element of P with length smaller than r.

Claim 4. Let γγγ2 be an element of P \ P1 that minimizes |IP⊥
1 γγγ| and set

P2 = P ∩
{

x1γγγ1 + x2γγγ2

∣

∣ x1, x2 ∈ IR
}

Then P2 =
{

n1γγγ1 + n2γγγ2

∣

∣ n1, n2 ∈ ZZ
}

.
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Proof of Claim 4: If x1γγγ1+x2γγγ2 ∈ P with x2 not an integer, then γγγ′ = x1γγγ1+(x2−[x2])γγγ2

is an element of of P \ P1 with |IP⊥
1 γγγ

′| = |x2 − [x2]| |IP
⊥
1 γγγ2| < |IP⊥

1 γγγ2|. So x2 must be an

integer. But then (x1γγγ1 + x2γγγ2)− x2γγγ2 = x1γγγ1 ∈ P and, by Claim 2, x1 must be an integer

as well.

If P = P2, we have finished. Otherwise continue with . . . .

To exclude functions, as in Example L.2.c, that are “mixed periodic/non–periodic”,

we shall assume that d′ = d. Let γγγ1, · · · , γγγd ∈ IRd be d linearly independent vectors and set

Γ =
{

n1γγγ1 + · · ·+ ndγγγd

∣

∣ n1, · · · , nd ∈ ZZ
}

Γ is called the lattice generated by γγγ1, · · · , γγγd.

Problem L.1 The set of generators for a lattice are not uniquely determined. Let Γ be

generated by d linearly independent vectors γγγ1, · · · , γγγd ∈ IRd. Let Γ′ be generated by d

linearly independent vectors γγγ′
1, · · · , γγγ′

d ∈ IRd. Prove that Γ = Γ′ if and only there is a d× d

matrix A with integer matrix elements and | detA | = 1 such that γγγ′
i =

∑d
j=1 Ai,jγγγj .

Problem L.2 Let γγγ1, · · · , γγγd ∈ IRd be d linearly independent vectors. Prove that there are

two constants C and c, depending only on γγγ1, · · · , γγγd such that

c|x| ≤
∣

∣x1γγγ1 + · · · + xdγγγd

∣

∣ ≤ C|x|

for all x ∈ IRd.

We’ll now find a bunch of functions that are periodic with respect to Γ. Consider

f(x) = eib·x. This function has period γγγ if and only if eib·(x+γγγ) = eib·x for all x ∈ IRd. This

is the case if and only if eib·γγγ = 1 and this is the case if and only if b · γγγ ∈ 2πZZ.

Definition L.4 Let Γ be a lattice in IRd. The dual lattice for Γ is

Γ# =
{

b ∈ IRd
∣

∣ b · γγγ ∈ 2πZZ for all γγγ ∈ Γ
}

Remark L.5 Let γγγ1, · · · , γγγd ∈ IRd be linearly independent and denote by Γ the lattice

that they generate. A vector b ∈ IRd is an element of Γ# if and only if

b · γγγj ∈ 2πZZ for all 1 ≤ j ≤ d
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Example L.6 Let e1, · · · , ed be the standard basis of IRd. That is, ej has all components

zero, except for the jth, which is one. Choosing ℓ1, · · · , ℓd > 0 and γγγj = ℓjej,

Γ =
{

(n1ℓ1, · · · , ndℓd)
∣

∣ n1, · · · , nd ∈ ZZ
}

Then (x1, · · · , xd) is in Γ# if and only if

(x1, · · · , xd) · γγγj = ℓjxj ∈ 2πZZ ⇐⇒ xj ∈
2π
ℓj
ZZ

Thus

Γ# =
{ (

n1
2π
ℓ1
, · · · , nd

2π
ℓd

)
∣

∣ n1, · · · , nd ∈ ZZ
}

Example L.7 Let

Γ =
{

n(1, 0) +m(π, 1)
∣

∣ n,m ∈ ZZ
}

Then

Γ# =
{

n(0, 2π) +m(2π,−2π2)
∣

∣ n,m ∈ ZZ
}

Since
[

n′(1, 0) +m′(π, 1)
]

·
[

n(0, 2π) +m(2π,−2π2)
]

= 2π
(

n′m+m′n
)

every vector of the form n(0, 2π) + m(2π,−2π2) with m,n ∈ ZZ is indeed in Γ#. To verify

that only vectors of this form are in Γ#, let z = x(0, 2π) + y(2π,−2π2) be any vector in IR2.

(Certainly, (0, 2π) and (2π,−2π2) form a basis for IR2.) For z to be in Γ# it is necessary that

z · (1, 0) = 2πy ∈ 2πZZ

z · (π, 1) = 2πx ∈ 2πZZ

which forces x, y ∈ ZZ.

Problem L.3 Let Γ be generated by γγγ1, · · · , γγγd ∈ IRd (assumed linearly independent) and

let

[γγγ1, · · ·γγγd] =
{

d
∑

j=1
tjγγγj

∣

∣ 0 ≤ tj ≤ 1 for all 1 ≤ j ≤ d
}

be the parallelepiped with the γγγj ’s as edges. Prove that if b ∈ Γ#, then
∫

[γγγ1,···γγγd]

ddx eib·x =

{
∣

∣[γγγ1, · · ·γγγd]
∣

∣ if b = 0
0 if b 6= 0

where
∣

∣[γγγ1, · · ·γγγd]
∣

∣ is the volume of
∣

∣[γγγ1, · · ·γγγd]
∣

∣. By Problem L.1, the volume
∣

∣[γγγ1, · · ·γγγd]
∣

∣ is

independent of the choice of generators. That is, if Γ is also generated by γγγ′
1, · · · , γγγ′

d ∈ IRd,

then
∣

∣[γγγ1, · · ·γγγd]
∣

∣ =
∣

∣[γγγ′
1, · · ·γγγ

′
d]
∣

∣. Consequently, it is legitimate to define |Γ| =
∣

∣[γγγ1, · · ·γγγd]
∣

∣.

Hence
1
|Γ|

∫

[γγγ1,···γγγd]

ddx eib·x =

{

1 if b = 0
0 if b 6= 0
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Proposition L.8 If γγγ1, · · · , γγγd ∈ IRd are linearly independent and

Γ =
{

n1γγγ1 + · · ·+ ndγγγd

∣

∣ n1, · · · , nd ∈ ZZ
}

then there exist d linearly independent vectors b1, · · · , bd ∈ IRd such that

Γ# =
{

n1b1 + · · ·+ ndbd

∣

∣ n1, · · · , nd ∈ ZZ
}

Proof: For each 1 ≤ i ≤ d

Vi =
{

x1γγγ1 + · · ·+ xdγγγd

∣

∣ x1, · · · , xd ∈ IR, xi = 0
}

is a d− 1 dimensional subspace of IRd. So V ⊥
1 is a one dimensional subspace of IRd. Let Bi

be any nonzero element of V ⊥
i and define

bi =
2π

γγγi·Bi
Bi

Note that γγγi ·Bi cannot vanish because then γγγi would have to be in Vi, i.e. would have to

be a linear combination of γγγj , j 6= i. Denote

B =
{

n1b1 + · · ·+ ndbd

∣

∣ n1, · · · , nd ∈ ZZ
}

As

bi · γγγj =

{

2π if i = j
0 if i 6= j

we have that bi ∈ Γ# and hence B ⊂ Γ#.

If x1b1 + · · · + xdbd = 0 then (x1b1 + · · · + xdbd) · γγγj = 2πxj = 0 for every

1 ≤ j ≤ d. So the bi’s are linearly independent and every vector in IRd may be written in

the form x1b1 + · · ·+ xdbd. If x1b1 + · · ·+ xdbd ∈ Γ#, then

(x1b1 + · · ·+ xdbd) · γγγj = 2πxj ∈ 2πZZ

so that xj ∈ ZZ for every 1 ≤ j ≤ d. Hence γγγ# ⊂ B.

From now on, we fix d linearly independent vectors γγγ1, · · · , γγγd ∈ IRd, set

Γ =
{

n1γγγ1 + · · ·+ ndγγγd

∣

∣ n1, · · · , nd ∈ ZZ
}

The set of all C∞ functions on IRd that are periodic with respect to Γ is denoted C∞
(

IRd/Γ
)

.

We have already observed that f(x) = eib·x is in C∞
(

IRd/Γ
)

if and only in b ∈ Γ#.
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Remark L.9 Here is the story (at least in short form) behind the notation C∞
(

IRd/Γ
)

. We

have already observed that IRd is a group (under addition) and that Γ is a subgroup of of

IRd. As IRd is abelian, all subgroups are normal and the set of equivalence classes under the

equivalence relation

x ∼ y ⇐⇒ x− y ∈ Γ

is itself a group, denoted, as usual IRd/Γ. Precisely, the equivalence class of x ∈ IRd is

[x] =
{

y ∈ IRd
∣

∣ x ∼ y
}

⊂ IRd and IRd/Γ =
{

[x]
∣

∣ x ∈ IRd
}

. The group operation in

IRd/Γ is

[x] + [y] = [x+ y]

As well as being a group, IRd/Γ can also be turned into a smooth manifold, called

a d–dimensional torus. If O is any open subset of IRd with the property that no two points

of O are equivalent under ∼, then the map

ξO : O → IRd/Γ

x 7→ [x]

is one–to–one. Its inverse is a coordinate map for IRd/Γ. If Γ is generated by γγγ1, · · · , γγγd and

X is any point in IRd,
{

X + t1γγγ1 + · · ·+ tdγγγd

∣

∣ 0 < tj < 1 for all 1 ≤ j ≤ d
}

is one possible

choice of O. The notation C∞
(

IRd/Γ
)

designates the set of smooth (that is, C∞) functions

on the manifold IRd/Γ.

Theorem L.10 (Fourier Series) A function f : IRd → C is in C∞
(

IRd/Γ
)

if and only if

f(x) = 1
|Γ|

∑

b∈Γ#

f̂b eib·x

with
∑

b∈Γ#

|b|2n
∣

∣f̂b
∣

∣ < ∞ for all n ∈ IN

Furthermore, in this case,

f̂b =

∫

[γγγ1,···γγγd]

ddx e−ib·x f(x)

Proof of “if”: Suppose that we are given f̂b, b ∈ Γ# obeying
∑

b∈Γ# |b|2n
∣

∣f̂b
∣

∣ < ∞

for all n ∈ IN. In particular
∑

b∈Γ#

∣

∣f̂b
∣

∣ < ∞ so the series 1
|Γ|

∑

b∈Γ# f̂b eib·x converges

absolutely and uniformly to some continuous function that is periodic with respect to Γ. Call

the function f(x). Furthermore for any i1, · · · id ∈ IN

∣

∣

∣

( d
∏

j=1

∂ij

∂x
ij

j

)

f̂b eib·x
∣

∣

∣
=

∣

∣

∣

( d
∏

j=1
b
ij
ij

)

f̂b eib·x
∣

∣

∣
≤ |b|Σij

∣

∣f̂b
∣

∣
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so the series 1
|Γ|

∑

b∈Γ#

( d
∏

j=1

∂ij

∂x
ij

j

)

f̂b eib·x also converges absolutely and uniformly. This implies

that f(x) is C∞. Furthermore

∫

[γγγ1,···γγγd]

ddx e−ib·x f(x) =

∫

[γγγ1,···γγγd]

ddx e−ib·x
[

1
|Γ|

∑

c∈Γ#

f̂c e
ic·x

]

= 1
|Γ|

∑

c∈Γ#

∫

[γγγ1,···γγγd]

ddx ei(c−b)·xf̂c

= 1
|Γ|

∫

[γγγ1,···γγγd]

ddx f̂b + 1
|Γ|

∑

c∈Γ#

c 6=b

∫

[γγγ1,···γγγd]

ddx ei(c−b)·xf̂c

= f̂b

by Problem L.3.

Proof of “only if”: Now suppose that we are given f ∈ C∞
(

IRd/Γ
)

. Define

f̂b =

∫

[γγγ1,···γγγd]

ddx e−ib·x f(x)

Then for any i1, · · · id ∈ IN

∣

∣

∣

( d
∏

j=1
b
ij
ij

)

f̂b

∣

∣

∣
=

∣

∣

∣

∣

∫

[γγγ1,···γγγd]

ddx
( d
∏

j=1
b
ij
ij

)

e−ib·xf(x)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

[γγγ1,···γγγd]

ddx
( d
∏

j=1

∂ij

∂x
ij

j

e−ib·x
)

f(x)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

[γγγ1,···γγγd]

ddx e−ib·x
( d
∏

j=1

∂ij

∂x
ij

j

f(x)
)

∣

∣

∣

∣

≤ |Γ| sup
x

( d
∏

j=1

∂ij

∂x
ij

j

f(x)
)

∣

∣

∣

∣

< ∞

so that, by Problem L.2,

∑

b∈Γ#

∣

∣

∣

( d
∏

j=1
b
ij
ij

)

f̂b

∣

∣

∣
=

∑

b∈Γ#

1+|b|d+1

1+|b|d+1

∣

∣

∣

( d
∏

j=1
b
ij
ij

)

f̂b

∣

∣

∣

≤

[

sup
b∈Γ#

(1 + |b|d+1)
∣

∣

∣

( d
∏

j=1
b
ij
ij

)

f̂b

∣

∣

∣

]

∑

b∈Γ#

1
1+|b|d+1

≤

[

sup
b∈Γ#

(1 + |b|d+1)
∣

∣

∣

( d
∏

j=1

b
ij
ij

)

f̂b

∣

∣

∣

]

∑

n∈ZZd

1
1+(c|n|)d+1 < ∞
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Hence, by the “only if” part of this Theorem, that we have already proven,

g(x) = 1
|Γ|

∑

b∈Γ#

f̂b eib·x

is a C∞ function and

f̂b =

∫

[γγγ1,···γγγd]

ddx e−ib·x g(x) (L.1)

We just have to show that g(x) = f(x).

Here is one proof that g(x) = f(x). By (L.1)

∫

[γγγ1,···γγγd]

ddx e−ib·x [g(x)− f(x)] = 0

for all b ∈ Γ#. Consequently,

∫

[γγγ1,···γγγd]

ddx ϕ(x) [g(x)− f(x)] = 0

for any function ϕ ∈ P(Γ#) where P(Γ#) is the set of all functions that are finite linear

combinations of the e−ib·x’s with b ∈ Γ#. Consequently,

∫

[γγγ1,···γγγd]

ddx ϕ(x) [g(x)− f(x)] = 0

for any function ϕ ∈ P(Γ#) where P(Γ#) is the set of all functions that are uniform limits

of sequences of functions in P(Γ#). But by the Stone–Weierstrass Theorem [Walter Rudin,

Principles of Mathematical Analysis, Theorem 7.33], P(Γ#) is the set of all continuous func-

tions that are periodic with respect to Γ. In particular, the complex conjugate of g(x)−f(x)

is in P(Γ#). Hence
∫

[γγγ1,···γγγd]

ddx |g(x)− f(x)|2 = 0

so that g(x) = f(x) for all x.

One may also build Problem L.5, below, into a second proof that g(x) = f(x). Just

make a change of variables so that Γ is replaced by 2πZZd and apply Problem L.5.b, once in

each dimension.

Problem L.4 Let Γ be generated by γγγ1, · · · , γγγd ∈ IRd (assumed linearly independent) and

also by γγγ′
1, · · · , γγγ′

d ∈ IRd (also assumed linearly independent). Recall that

[γγγ1, · · ·γγγd] =
{

d
∑

j=1
tjγγγj

∣

∣ 0 ≤ tj ≤ 1 for all 1 ≤ j ≤ d
}
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is the parallelepiped with the γγγj ’s as edges. Let, for y ∈ IRd,

y + [γγγ1, · · ·γγγd] =
{

y +
d
∑

j=1

tjγγγj

∣

∣ 0 ≤ tj ≤ 1 for all 1 ≤ j ≤ d
}

be the translate of [γγγ1, · · ·γγγd] by y. Let f(x) be periodic with respect to Γ. Prove that

∫

[γγγ1,···γγγd]

ddx f(x) =

∫

y+[γγγ1,···γγγd]

ddx f(x) =

∫

[γγγ′
1
,···γγγ′

d
]

ddx f(x)

We denote
∫

IRd/Γ

ddx f(x) =

∫

[γγγ1,···γγγd]

ddx f(x)

Problem L.5 Let f ∈ C1(IR) be periodic of period 2π. Set

cn =

∫ 2π

0

e−inxf(x) dx

and

(SMf)(θ) = 1
2π

M
∑

n=−M

cne
inθ

a) Prove that SMf(θ) = 1
2π

∫ 2π

0
f(θ + x) sin(M+1/2)x

sin(x/2) dx.

b) Prove that SMf(θ) converges to f(θ) as M → ∞.
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