
The Spectrum of Periodic Schrödinger Operators

§I The Physical Basis for Periodic Schrödinger Operators

Let d ∈ IN and let
{
γγγ1, · · · , γγγd

}
be a set of d linearly independent vectors in IRd.

Construct a crystal by fixing identical particles at the points of the lattice

Γ =
{
n1γγγ1 + · · ·+ nd′γγγd′

∣∣ n1, · · · , nd′ ∈ ZZ
}

For example, if the γγγj ’s are the standard basis for IRd, then Γ = ZZ
d.

Place, in this environment, another particle. This particle is our main object of

interest. In classical mechanics, the energy of the particle would be the sum of

◦ its kinetic energy, 1
2mv2 = p2

2m , where m is the mass of the particle, v is its velocity

and p = mv is its momentum and

◦ its potential energy, V (x). This potential energy gives the effect of the interaction

of the particle with the underlying crystal. What V is depends on the nature of the

interaction. We shall just assume that it is a nice function (for example C∞) and is

periodic with respect to Γ. That is, V (x+ γγγ) = V (x) for all x ∈ IRd and γγγ ∈ Γ.

So, in classical mechanics, the total energy of our particle, when it is in “state” (x,p) ∈ IR2d

is p2

2m+V (x). In quantum mechanics, a “state” of our particle is a (unit) vector ϕ ∈ L2(IR).

When the particle is in state ϕ, |ϕ(x)|2 represents the probability (density) of finding the

particle at x. The momentum of the particle is represented by the operator i∇ and the

total energy of the particle is represented by the operator is

H = 1
2m

(
i∇∇∇

)2
+ V (x)

When the particle is in state ϕ, the inner product 〈ϕ,Hϕ〉 represents the expected value of

the energy of the particle. That is, if you repeatedly measure the energy of the particle in

state ϕ, you will get many different answers, but the average value of those measurements

will be 〈ϕ,Hϕ〉.

§II A Careful Definition of H = − 1

2m
∆+ V (x)

In these notes, we study the spectrum of the operator H = − 1
2m∆ + V (x), where

V is some real–valued, C∞ function that is periodic with respect to Γ. This H is an

unbounded operator so its domain will be some proper linear subspace of the Hilbert
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space H = L2(IRd). When V ≡ 0, it is easy to come up with a natural domain for

− 1
2m∆, by exploiting the fact that it is unitarily equivalent, under Fourier transform, to

multiplication by p2

2m . So we define − 1
2m∆ by

(− 1
2m∆ϕ)̂ (p) = p2

2m ϕ̂(p) with domain H2(IRd) =
{
ϕ ∈ L2(IRd)

∣∣ p2

2m ϕ̂(p) ∈ L2(IRd)
}

where ψ̂(p) is the Fourier transform of ψ(x). For any measurable function f : IRd → IR, the

multiplication operator ψ(p) 7→ f(p)ψ(p), with domain
{
ψ ∈ L2(IRd)

∣∣ fψ ∈ L2(IRd)
}
,

is a self–adjoint operator. As the Fourier transform is a unitary operator, − 1
2m∆ with

domain H2(IRd) is also a self–adjoint operator. As the multiplication operator V is a

bounded operator (since V (x) is a bounded function) and is also self–adjoint (since V (x)

is real–valued), H = − 1
2m

∆ + V is itself a self–adjoint operator on the domain H2(IRd),

by Problem S.1.b, below, with r = 0 and R = ‖V ‖L∞ .

Problem S.1 Let H be a Hilbert space and A : D(A) ⊂ H → H be a closed linear

operator. Let 0 ≤ r < 1, R ∈ [0,∞) and let B : D(B) ⊂ H → H be another linear

operator with D(A) ⊂ D(B) and

‖Bϕ‖ ≤ r‖Aϕ‖+R‖ϕ‖ for all ϕ ∈ D(A)

a) Prove that A+B, with domain D(A+B) = D(A), is again a closed operator.

b) Prove that if A is self–adjoint and B is symmetric then, A+B with domain D(A+B) =

D(A), is again self–adjoint.

c) Assume that A is self–adjoint and B is symmetric. Let D̃ be a linear subspace of

D(A). Prove that if A is essentially self–adjoint on D̃, then A+B is again essentially

self–adjoint on D̃.

We wish to determine all that we can about the spectrum of H. The main property

of H that we shall use is that “H commutes with lattice translations”. To make this

statement precise, define, for each γγγ ∈ IRd, the operator Tγγγ : L2(IRd) → L2(IRd) by

(Tγγγφ
)
(x) = φ(x+ γγγ) γγγ ∈ Γ

By Problem S.2.a, below, Tγγγ is a unitary operator. By Problem S.3, below, if ϕ ∈ H2(IRd)

and γγγ ∈ Γ, then Tγγγϕ ∈ H2(IRd) and

TγγγHϕ = HTγγγϕ

So we now have a family
{
H, Tγγγ , γγγ ∈ Γ

}
of commuting, normal operators. Furthermore,{

Tγγγ , γγγ ∈ Γ
}

is an abelian group, by Problem S.2.b, below. To understand how this

information can be exploited, we first argue formally, ignoring any “technical” operator

domain questions and pretending that all spectrum are eigenvalues. Then we will convert

our understanding into precise mathematical statements.
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Problem S.2 Let γγγ, γγγ′ ∈ IRd. Prove that

a) Tγγγ is a unitary operator on L2(IRd).

b) TγγγTγγγ′ = Tγγγ+γγγ′

Problem S.3

a) Let ϕ ∈ H2(IRd) and γγγ ∈ IRd. Prove that Tγγγϕ ∈ H2(IRd) and Tγγγ
(
− 1

2m∆
)
ϕ =

− 1
2m

∆Tγγγϕ.

b) Let γγγ ∈ Γ and ϕ ∈ L2(IRd). Prove that TγγγV ϕ = V Tγγγϕ.

§III The Main Idea

Pretend, for this section, that H and the Tγγγ ’s are matrices. We’ll give a rigorous ver-

sion of this argument later. We know that for each family of commuting normal matrices,

like {H, Tγγγ , γγγ ∈ Γ}, there is an orthonormal basis of simultaneous eigenvectors. These

eigenvectors obey
Hφα = eαφα

Tγγγφα = λα,γγγφα ∀γγγ ∈ Γ

for some numbers eα and λα,γγγ .

As Tγγγ is unitary, all its eigenvalues must be complex numbers of modulus one. So

there must exist real numbers βα,γγγ such that λα,γγγ = eiβα,γγγ . By Problem S.2.b,

TγγγTγγγ′ϕα = Tγγγ+γγγ′ϕα = eiβα,γγγ+γγγ′ϕα

= Tγγγe
iβα,γγγ′ϕα = eiβα,γγγeiβα,γγγ′ϕα = ei(βα,γγγ+βα,γγγ′ )ϕα

which forces

βα,γγγ + βα,γγγ′ = βα,γγγ+γγγ′ mod 2π ∀γγγ, γγγ′ ∈ Γ

Consequently, for each fixed α, all βα,γγγ , γγγ ∈ Γ are determined, mod 2π, by the d numbers

βα,γγγi , 1 ≤ i ≤ d. It is convenient to express the eigenvalues λα,γγγ in terms of another set

of d numbers that we shall denote kα ∈ IRd. It is the solution of the system of linear

equations
γγγi · kα = βα,γγγi 1 ≤ i ≤ d

that is
d∑

j=1

γi,jkα,j = βα,γγγi 1 ≤ i ≤ d

(where γi,j is the jth component of γγγi and kα,j is the jth component of kα). This system

of linear equations has a unique solution because the linear independence of γγγ1, · · · , γγγd
implies that the matrix

[
γi,j

]
1≤i,j≤d

is invertible. So, for each α, there exists a kα ∈ IRd

such that kα · γγγi = βα,γγγi for all 1 ≤ i ≤ d and hence

βα,γγγ = kα · γγγ mod2π ∀γγγ ∈ Γ
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Notice that, for each α, kα is not uniquely determined. Indeed

βα,γγγ = kα · γγγ mod 2π and βα,γγγ = k′
α · γγγ mod2π ∀γγγ ∈ Γ

⇐⇒ (kα − k′
α) · γγγ ∈ 2πZZ and βα,γγγ = kα · γγγ mod2π ∀γγγ ∈ Γ

⇐⇒ kα − k′
α ∈ Γ# and βα,γγγ = kα · γγγ mod2π ∀γγγ ∈ Γ

Here, by definition,

Γ# =
{
b ∈ IRd

∣∣ b · γγγ ∈ 2πZZ for all γγγ ∈ Γ
}

is the dual lattice for Γ. For example, if Γ = ZZ
d, then Γ# = 2πZZd. For more about lattices

and dual lattices, see the notes Lattices and Periodic Functions.

Now relabel the eigenvalues and eigenvectors, replacing the index α by the correspond-

ing value of k ∈ IRd/Γ# and another index n. The index n is needed because many different

α’s can have the same value of kα. Under the new labelling the eigenvalue/eigenvector

equations are
Hφn,k = en(k)φn,k

Tγγγφn,k = eik·γγγφn,k ∀γγγ ∈ Γ
(S.1)

The H–eigenvalue is denoted en(k) rather than en,k because, while k runs over the contin-

uous set IRd/Γ#, n will turn out to run over a countable set. Now fix any k and observe

that “Tγγγφn,k = eik·γγγφn,k for all γγγ ∈ Γ” means that

φn,k(x+ γγγ) = eik·γγγφn,k(x)

for all x ∈ IRd and γγγ ∈ Γ. If the eik·γγγ were not there, this would just say that φn,k is

periodic with respect to Γ. We can make a simple change of variables that eliminates the

eik·γγγ . Define

ψn,k(x) = e−ik·xφn,k(x)

Then subbing φn,k(x) = eik·xψn,k(x) into (S.1) gives

1
2m

(
i∇∇∇− k

)2
ψn,k + V ψn,k = en(k)ψn,k

ψn,k(x+ γγγ) = ψn,k(x)
(S.2)

Problem S.4 Prove that, for all ψ(x) in the obvious domains,

a) (i∇∇∇)
(
eik·xψ(x)

)
= eik·x(i∇∇∇− k)ψ(x)

b) (i∇∇∇)2
(
eik·xψ(x)

)
= eik·x(i∇∇∇− k)2ψ(x)

c) V (x)
(
eik·xψ(x)

)
= eik·xV (x)ψn,k(x)

d) Tγγγ
(
eik·xψ(x)

)
= eik·xeik·γγγTγγγψ(x)
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We now encode what we have just learned into a structure, that for now is still formal,

but which we shall implement rigorously shortly. Denote by INk the set of values of n that

appear in pairs α = (k, n) and define

Hk = span
{
φn,k

∣∣ n ∈ INk

}

H̃k = span
{
ψn,k

∣∣ n ∈ INk

}

Uk : ϕ(x) ∈ Hk 7→ ψ(x) = e−ik·xϕ(x) ∈ H̃k

As multiplication by e−ik·x is a unitary operator, Uk is a unitary map from Hk to H̃k.

Each ψ ∈ H̃k obeys ψ(x+γγγ) = ψ(x) for all γγγ ∈ Γ. So H̃k is a linear subspace of L2(IRd/Γ).

We shall later show that it is exactly L2(IRd/Γ). Then, formally, and in particular ignoring

that k runs over an uncountable set,

L2(IRd) = span
{
φn,k

∣∣ k ∈ IRd/Γ#, n ∈ INk

}
= ⊕k∈IRd/Γ#Hk

Define

U : ⊕k∈IRd/Γ#Hk → ⊕k∈IRd/Γ#H̃k by U ↾Hk = Uk for all k ∈ IRd/Γ

This U is a unitary operator, so U maps L2(IRd) unitarily to ⊕k∈IRd/Γ#H̃k. The restriction

of UHU∗ to H̃k is Hk = 1
2m

(
i∇∇∇− k

)2
+ V . It maps H̃k into itself, since each ψn,k is an

eigenfunction of Hk.

So what have we gained? At least formally, we now know that to find the spectrum

of H = 1
2m

(
i∇∇∇

)2
+ V (x), acting on L2

(
IRd

)
, it suffices to find, for each k ∈ IRd/Γ#, the

spectrum of Hk = 1
2m

(
i∇∇∇ − k

)2
+ V (x) acting on L2

(
IRd/Γ

)
. In matrix terminology, we

have “block diagonalized” H, with the diagonal blocks being the Hk’s. We shall shortly

prove that, unlike H, Hk has compact resolvent. So, unlike H (which we shall see has

continuous spectrum), the spectrum of Hk necessarily consists of a sequence of eigenvalues

en(k) converging to ∞. We shall also prove that the functions en(k) are continuous in k

and periodic with respect to Γ# and that the spectrum of H is precisely

σ(H) =
{
en(k)

∣∣ n ∈ IN, k ∈ IRd/Γ#
}

Our next steps are to construct a rigorous version of “L2(IRd) is unitarily equivalent

to ⊕k∈IRd/Γ#H̃k”, to really prove that the spectrum of H is determined by the spectra of

the Hk’s and then that the Hk’s have compact resolvent.
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§IV The Reduction from H to the Hk’s

We now rigorously express H as a “sum” (technically a direct integral) of Hk’s. Be-

cause we are working in a rather concrete setting, we will never have to define what a direct

integral is. We shall make “L2(IRd) is unitarily equivalent to ⊕k∈IRd/Γ#H̃k” rigorous by

constructing a unitary operator U , from the space of L2 functions f(x),x ∈ IRd to the

space of L2 functions ψ(k,x), k ∈ IRd/Γ#, x ∈ IRd/Γ, that has the property that

(UHU∗ψ)(k,x) = Hkψ(k,x)

(Think of the k in ψ(k,x) as an index. For each fixed k ∈ IRd/Γ#, ψk(x) = ψ(k,x) is the

“component” of ψ ∈ ⊕k∈IRd/Γ#H̃k that lies in H̃k.) Start by defining

S
(
IRd/Γ# × IRd/Γ

)
=

{
ψ ∈ C∞

(
IRd × IRd

) ∣∣∣ ψ(k,x+ γγγ) = ψ(k,x) ∀γγγ ∈ Γ

eib·xψ(k+ b,x) = ψ(k,x) ∀b ∈ Γ#
}

The conditions ψ(k,x + γγγ) = ψ(k,x) and, particularly, eib·xψ(k + b,x) = ψ(k,x) may

be more transparent when expressed in terms of φk(x) = eik·xψ(k,x). The first condition

becomes φk(x + γγγ) = eik·γγγφk(x), which is the Tγγγφk = eik·γγγφk condition of (S.1). The

second condition becomes φk+b(x) = φk(x).

Define an inner product on S
(
IRd/Γ# × IRd/Γ

)
by

〈ψ, φ〉Γ = 1
|Γ#|

∫

IRd/Γ#

dk

∫

IRd/Γ

dx ψ(k,x) φ(k,x)

Here, |Γ#| is the volume of IRd/Γ#. For example, if Γ = ZZ
d, so that Γ# = 2πZZd, then

|Γ#| = (2π)d. See the notes Lattices and Periodic Functions. A “practical” definition

of the integrals over IRd/Γ# and IRd/Γ is provided in Remark S.2, below. With this

inner product S
(
IRd/Γ# × IRd/Γ

)
is almost a Hilbert space. The only missing axiom is

completeness. Call the completion L2
(
IRd/Γ# × IRd/Γ

)
.

Remark S.1 The condition ψ(k,x + γγγ) = ψ(k,x) ∀γγγ ∈ Γ just says that ψ is periodic

with respect to Γ in the argument x. The condition eib·xψ(k+ b,x) = ψ(k,x) ∀b ∈ Γ#,

or equivalently ei(k+b)·xψ(k + b,x) = eik·xψ(k,x) ∀b ∈ Γ#, says that eik·xψ(k,x) is

periodic with respect to Γ# in the argument k. The extra factor eik·x means that ψ(k,x)

itself need not be periodic with respect to Γ# in the argument k. So ψ(k,x) need not

be continuous on the torus IRd/Γ# × IRd/Γ and my notation S
(
IRd/Γ# × IRd/Γ

)
is not

very technically correct. There is a fancy way of formulating the second condition as a

continuity condition which leads to the statement “ψ(k,x) is a smooth section of the line

bundle . . . over IRd/Γ# × IRd/Γ”.
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Remark S.2 On the other hand, if both ψ(k,x) and φ(k,x) are in S
(
IRd/Γ# × IRd/Γ

)
,

then the integrand ψ(k,x) φ(k,x) is periodic with respect to Γ# in k and is periodic with

respect to Γ in x. Hence if D is any fundamental domain (“full period”) for Γ and D# is

any fundamental domain for Γ#

〈ψ, φ〉Γ = 1
|Γ#|

∫

D#

dk

∫

D

dx ψ(k,x) φ(k,x)

The value of the integral is independent of the choice of D and D#. Thus, you can always

realize L2
(
IRd/Γ# × IRd/Γ

)
as the conventional L2

(
D# ×D

)
. For example, if Γ = ZZ

d so

that Γ# = 2πZZd one can choose D to be the rectangle [0, 1)d and D# to be the rectangle

[0, 2π)d.

Also define

S
(
IRd

)
=

{
f ∈ C∞

(
IRd

) ∣∣∣ sup
x

∣∣∣(1 + x2n)
( d∏

j=1

∂ij

∂x
ij
j

f(x)
)∣∣∣ <∞ ∀n, i1, · · · id ∈ IN

}

This is called “Schwartz space”. A function f(x) is in Schwartz space if and only all of its

derivatives are continuous and decay, for large |x|, faster than one over any polynomial.

Think of S
(
IRd

)
as a subset of L2(IRd

)
. Set

(uψ)(x) = 1
|Γ#|

∫

IRd/Γ#

ddk eik·xψ(k,x)

(ũf)(k,x) =
∑

γγγ∈Γ

e−ik·(x+γγγ)f(x+ γγγ)

Proposition S.3

a) u : S
(
IRd/Γ# × IRd/Γ

)
→ S

(
IRd

)

b) ũ : S
(
IRd

)
→ S

(
IRd/Γ# × IRd/Γ

)

c) ũuψ = ψ for all ψ ∈ S
(
IRd/Γ# × IRd/Γ

)

d) uũf = f for all f ∈ S
(
IRd

)

e) 〈ũf, ũg〉Γ = 〈f, g〉 for all f, g ∈ S
(
IRd

)

f) 〈uψ, uφ〉 = 〈ψ, φ〉Γ for all ψ, φ ∈ S
(
IRd/Γ# × IRd/Γ

)

g) 〈f, uφ〉 = 〈ũf, φ〉Γ for all f ∈ S
(
IRd

)
, φ ∈ S

(
IRd/Γ# × IRd/Γ

)
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Proof:

a) This is Problem S.5 . It is the usual integration by parts game. Note that the

integrand eik·xψ(k,x) is periodic with respect to Γ# in the integration variable k.

b) Fix f ∈ S
(
IRd

)
and set

ψ(k,x) =
∑

γγγ∈Γ

e−ik·(x+γγγ)f(x+ γγγ)

As f(x) and all of its derivatives are bounded by const
1+|x|d+1 the series

∑

γγγ∈Γ

d∏
ℓ=1

∂iℓ

∂x
iℓ
ℓ

∂jℓ

∂k
jℓ
ℓ

e−ik·(x+γγγ)f(x+ γγγ)

converges absolutely and uniformly in k and x (on any compact set) for all i1, · · · , id,
j1, · · · jd. Consequently ψ(k,x) exists and is C∞. We now verify the periodicity conditions.

If γγγ ∈ Γ,

ψ(k,x+ γγγ) =
∑

γγγ′∈Γ

e−ik·(x+γγγ+γγγ′)f(x+ γγγ + γγγ′)

=
∑

γγγ′′∈Γ

e−ik·(x+γγγ′′)f(x+ γγγ′′) where γγγ′′ = γγγ + γγγ′

= ψ(k,x)

and, if b ∈ Γ#,

ei(k+b)·xψ(k+ b,x) =
∑

γγγ∈Γ

ei(k+b)·xe−i(k+b)·(x+γγγ)f(x+ γγγ) =
∑

γγγ∈Γ

e−i(k+b)·γγγf(x+ γγγ)

=
∑

γγγ∈Γ

e−ik·γγγf(x+ γγγ) = eik·x
∑

γγγ∈Γ

e−ik·(x+γγγ)f(x+ γγγ)

= eik·xψ(k,x)

c) Let

f(x) = (uψ)(x) = 1
|Γ#|

∫

IRd/Γ#

ddk eik·xψ(k,x)

Ψ(k,x) = (ũf)(k,x) =
∑

γγγ∈Γ

e−ik·(x+γγγ)f(x+ γγγ)

Then

Ψ(k,x) =
∑

γγγ∈Γ

e−ik·(x+γγγ) 1
|Γ#|

∫

IRd/Γ#

ddp eip·(x+γγγ)ψ(p,x+ γγγ)
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so that, by the periodicity of ψ in γγγ,

eik·xΨ(k,x) =
∑

γγγ∈Γ

e−ik·γγγ 1
|Γ#|

∫

IRd/Γ#

ddp eip·(x+γγγ)ψ(p,x)

Fix any x and recall that h(p) = eip·xψ(p,x) is periodic in p with respect to Γ#. Hence

by Theorem L.10, (all labels “L.*” refer to the notes “Lattices and Periodic Functions”)

with Γ → Γ#, b → −γγγ, f → h, x → p in the integral and x → k in the sum

h(k) = 1
|Γ#|

∑

γγγ∈Γ

e−iγγγ·k

∫

IRd/Γ#

ddp eiγγγ·p h(p)

Subbing in h(p) = eip·xψ(p,x)

eik·xψ(k,x) = 1
|Γ#|

∑

γγγ∈Γ

e−iγγγ·k

∫

IRd/Γ#

ddp eiγγγ·p eip·xψ(p,x)

so that eik·xΨ(k,x) = eik·xψ(k,x) and Ψ(k,x) = ψ(k,x), as desired.

d) Let

ψ(k,x) = (ũf)(k,x) =
∑

γγγ∈Γ

e−ik·(x+γγγ)f(x+ γγγ)

F (x) = (uψ)(x) = 1
|Γ#|

∫

IRd/Γ#

ddk eik·xψ(k,x)

Then

F (x) = 1
|Γ#|

∫

IRd/Γ#

ddk
∑

γγγ∈Γ

e−ik·γγγf(x+ γγγ) =
∑

γγγ∈Γ

f(x+ γγγ) 1
|Γ#|

∫

IRd/Γ#

ddk e−ik·γγγ

=
∑

γγγ∈Γ

f(x+ γγγ)

{
1 if γ = 0
0 if γ 6= 0

= f(x)

e) Let

[γγγ1, · · ·γγγd] =
{ d∑

j=1

tjγγγj

∣∣∣ 0 ≤ tj ≤ 1 for all 1 ≤ j ≤ d
}

be the parallelepiped with the γγγj ’s as edges.

〈ũf, ũg〉Γ = 1
|Γ#|

∫

IRd/Γ#

dk

∫

IRd/Γ

dx (ũf)(k,x) (ũg)(k,x)

= 1
|Γ#|

∫

IRd/Γ#

dk

∫

[γγγ1,···,γγγd]

dx (ũf)(k,x) (ũg)(k,x)
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= 1
|Γ#|

∫

IRd/Γ#

dk

∫

[γγγ1,···,γγγd]

dx
[ ∑

γγγ∈Γ

e−ik·(x+γγγ)f(x+ γγγ)
] [ ∑

γγγ′∈Γ

e−ik·(x+γγγ′)g(x+ γγγ′)
]

=

∫

[γγγ1,···,γγγd]

dx
∑

γγγ,γγγ′∈Γ

f(x+ γγγ)g(x+ γγγ′) 1
|Γ#|

∫

IRd/Γ#

dk eik·(γγγ−γγγ′)

=

∫

[γγγ1,···,γγγd]

dx
∑

γγγ∈Γ

f(x+ γγγ) g(x+ γγγ)

=

∫

IRd
dx f(x) g(x)

f) Set f = uψ and g = uφ. Then, by part (c), ũf = ψ and ũg = φ so that, by part (e),

〈uψ, uφ〉 = 〈f, g〉 = 〈ũf, ũg〉Γ = 〈ψ, φ〉Γ

g) Set g = uφ. Then, by part (c), ũg = φ so that, by part (e),

〈f, uφ〉 = 〈f, g〉 = 〈ũf, ũg〉Γ = 〈ũf, φ〉Γ

The mass m plays no role, so we set it to 1
2 from now on.

Proposition S.4 Let V be a C∞ function that is periodic with respect to Γ and set

h =
(
i∇∇∇

)2
+ V (x)

hΓ =
(
i∇∇∇x − k

)2
+ V (x)

with domains S
(
IRd

)
and S

(
IRd/Γ# × IRd/Γ

)
, respectively. Then,

(ũhuψ)(k,x) = (hΓψ)(k,x)

for all ψ ∈ S
(
IRd/Γ# × IRd/Γ

)

Proof: Observe that
(
i∇∇∇x

)[
eik·xψ(k,x)

]
= −keik·xψ(k,x) + eik·x

(
i∇∇∇xψ

)
(k,x) = eik·x

(
[i∇∇∇x − k]ψ

)
(k,x)

As (uψ)(x) = 1
|Γ#|

∫
IRd/Γ# d

dk eik·xψ(k,x) , we have

(huψ)(x) =
[(
i∇∇∇

)2
+ V (x)

]
1

|Γ#|

∫

IRd/Γ#

ddk eik·xψ(k,x)

= 1
|Γ#|

∫

IRd/Γ#

ddk eik·x
((

[i∇∇∇x − k]2ψ
)
(k,x) + V (x)ψ(k,x)

)

= (uhΓψ)(x)

Now apply ũ to both sides and use Proposition S.3.iii.
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Theorem S.5

a) The operators u and ũ have unique bounded extensions U : L2
(
IRd/Γ# × IRd/Γ

)
→

L2
(
IRd

)
and Ũ : L2

(
IRd

)
→ L2

(
IRd/Γ# × IRd/Γ

)
and

ŨU = 1l
L2
(
IRd/Γ#×IRd/Γ

) UŨ = 1l
L2
(
IRd

) Ũ = U∗ U = Ũ∗

b) The operators h (defined on S
(
IRd

)
) and hΓ (defined on S

(
IRd/Γ#×IRd/Γ

)
) have unique

self–adjoint extensions. The extension of h is H (with domain H2(IRd)). We denote the

extension hΓ by HΓ. They obey

U∗HU = HΓ

Proof: a) ũ and u are bounded by Proposition S.3 parts (e) and (f) respectively. As

S
(
IRd/Γ#× IRd/Γ

)
is dense in L2

(
IRd/Γ#× IRd/Γ

)
and S

(
IRd

)
is dense in L2

(
IRd

)
, ũ and

u have unique bounded extensions Ũ and U , by BLT. The remaining claims now follow

from Proposition S.3 parts (c), (d), (g) and (g) respectively, by continuity.

b) Step 1:
(
i∇∇∇

)2
is essentially self–adjoint on the domain S

(
IRd

)

The Fourier transform is a unitary map from L2(IRd) to L2(IRd), that maps S(IRd)

onto S(IRd). Under this unitary map −∆, with domain S
(
IRd

)
, becomes the multiplication

operator Mp2 : S(IRd) ⊂ L2(IRd) → L2(IRd) defined by Mp2ϕ(p) = p2ϕ(p). So it suffices

to prove that the operator Mp2 is essentially self–adjoint on S(IRd). But if ϕ(p) ∈ S(IRd),

then ϕ(p)
p2±i ∈ S(IRd). Hence the range of Mp2 ± i1l contains all of S(IRd) and consequently

is dense in L2(IRd). Now just apply the Corollary of [Reed and Simon, volume I, Theorem

VIII.3].

b) Step 2: h is essentially self–adjoint, with unique self–adjoint extension H.

In step 1, we saw that
(
i∇∇∇

)2
is essentially self–adjoint on S

(
IRd

)
. The multiplication

operator V (x) is bounded and self–adjoint on L2
(
IRd

)
. Consequently, by Problem S.1.c,

their sum, h is essentially self–adjoint on S
(
IRd

)
and has a unique self–adjoint extension

in L2
(
IRd

)
. Since H is a self–adjoint extension of h, it must be the unique self–adjoint

extension.

b) Step 3: Deal with hΓ.

The unitary operator U provides a unitary equivalence with

L2
(
IRd/Γ# × IRd/Γ

)
↔ L2

(
IRd

)

S
(
IRd/Γ# × IRd/Γ

)
↔ S

(
IRd

)

hΓ on S
(
IRd/Γ# × IRd/Γ

)
↔ h = H ↾ S

(
IRd

)
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So hΓ is essentially self–adjoint on S
(
IRd/Γ#× IRd/Γ

)
, has a unique self–adjoint extension

in L2
(
IRd/Γ# × IRd/Γ

)
given by HΓ = U∗HU .

§V Compactness of the Resolvent of Hk, for each fixed k

In this section we fix a lattice Γ in IRd and a vector k ∈ IRd and a smooth, real–valued,

function V (x) ∈ C∞(IRd/Γ) and study the operator

Hk =
(
i∇∇∇− k

)2
+ V (x)

acting on a suitable domain in L2
(
IRd/Γ

)
.

We denote by

(Ff
)
(b) = 1√

|Γ|

∫

IRd/Γ

ddx e−ib·xf(x)

(F−1ϕ
)
(x) = 1√

|Γ|

∑

b∈Γ#

eib·xϕ(b)
(S.3)

the Fourier transform and its inverse, normalized so that they are unitary maps from

L2
(
IRd/Γ

)
to ℓ2(Γ#) and from ℓ2(Γ#) to L2

(
IRd/Γ

)
respectively.

Lemma S.6

a) The operator
(
i∇∇∇− k

)2
is self–adjoint on the domain

D =
{
(F−1ϕ)(x)

∣∣ ϕ(b), b2ϕ(b) ∈ ℓ2(Γ#)
}

and essentially self–adjoint on the domain

D0 =
{
(F−1ϕ)(x)

∣∣ ϕ(b) = 0 for all but finitely many b ∈ Γ#
}

b) The spectrum of
(
i∇∇∇− k

)2 − λ1l is

{
(b− k)2 − λ

∣∣ b ∈ Γ#
}

c) If 0 is not in
{
(b − k)2 − λ

∣∣ b ∈ Γ#
}
,
[(
i∇∇∇− k

)2 − λ1l
]−1

exists and is a compact

operator with norm

∥∥∥
[(
i∇∇∇− k

)2 − λ1l
]−1

∥∥∥ =
[
min
b∈Γ#

|(b− k)2 − λ|
]−1

For d < 4, it is Hilbert-Schmidt.
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Proof: a) Let

D̃ =
{
ϕ ∈ ℓ2(Γ#)

∣∣ b2ϕ(b) ∈ ℓ2(Γ#)
}

D̃0 =
{
ϕ ∈ ℓ2(Γ#)

∣∣ ϕ(b) = 0 for all but finitely many b ∈ Γ#
}

M = the operator of multiplication by (b− k)2 on D̃
m = the operator of multiplication by (b− k)2 on D̃0

If ϕ ∈ D̃0 then ϕ(b)
(b−k)2±i is also in D̃0 so that ϕ = (m± i) ϕ

(b−k)2±i is in the range of m± i.

Thus the range of m ± i is all of D̃0 and hence is dense in ℓ2(Γ#). This proves that m is

essentially self–adjoint.

Recall that, since (α− β)2 ≥ 0, we have 2αβ ≤ α2 + β2 for all real α and β. Hence

b2 = (b− k+ k)2 = (b− k)2 + 2(b− k) · k+ k2 ≤ (b− k)2 + 2‖b− k‖ ‖k‖+ k2

≤ (b− k)2 + ‖b− k‖2 + ‖k‖2 + k2 = 2(b− k)2 + 2k2

Consequently, if ϕ ∈ ℓ2(Γ#), then ϕ(b)
(b−k)2±i ∈ D̃ so that ϕ = (M ± i) ϕ

(b−k)2±i is in the

range ofM± i. Thus the range ofM± i is all of ℓ2(Γ#). This proves thatM is self–adjoint

and hence is the unique self–adjoint extension of m.

The operator F
(
i∇∇∇−k

)2F−1 is the operator of multiplication by (b−k)2 on ℓ2(Γ#).

Hence
(
i∇∇∇−k

)2
is self–adjoint on F−1D̃ = D and essentially self–adjoint on F−1D̃0 = D0

.

b) The operator
(
i∇∇∇−k

)2−λ1l is unitarily equivalent to the operator of multiplication by

(b−k)2−λ on ℓ2(Γ#). The function A(b) = (b−k)2−λ has range
{
(b−k)2−λ

∣∣ b ∈ Γ#
}
.

Each of these values is taken on a set of nonzero measure (with respect to the counting

measure on Γ#). So the spectrum of (b− k)2 − λ contains
{
(b− k)2 − λ

∣∣ b ∈ Γ#
}
.

In part c, below, we shall show that, if 0 is not in
{
(b − k)2 − λ

∣∣ b ∈ Γ#
}
, then

1
(b−k)2−λ

is bounded uniformly in b. That is, 0 is not in the spectrum of multiplication

by (b − k)2 − λ. This is all we need, because if µ is not in
{
(b − k)2 − λ

∣∣ b ∈ Γ#
}
,

then 0 is not in
{

(b − k)2 − λ′
∣∣ b ∈ Γ#

}
, with λ′ = λ + µ, so that 0 is not in the

spectrum of multiplication by (b−k)2 − λ′ and µ is not in the spectrum of multiplication

by (b− k)2 − λ.

c) Fix any k and any λ ∈ C such that (b− k)2 − λ is nonzero for all b ∈ Γ#. Set

Cr = inf
{ ∣∣(b− k)2 − λ

∣∣ ∣∣ b ∈ Γ#, |b| ≥ r
}

Since (b− k)2 ≥ 1
2
b2 − k2, Cr ≥ 1

2
r2 − k2 − λ so that limr→∞ Cr = ∞ and

sup
b∈Γ#

∣∣∣ 1
(b−k)2−λ

∣∣∣ =
[

inf
b∈Γ#

|(b− k)2 − λ|
]−1

= max
{
max
|b|<r

∣∣∣ 1
(b−k)2−λ

∣∣∣, 1
Cr

}
<∞
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Let R and Rr be the operators on ℓ2(Γ#) of multiplication by 1
(b−k)2−λ and

1
(b−k)2−λ

{
1 if |b| ≤ r
0 if |b| > r

respectively. Then R is a bounded operator, with norm
[
minb∈Γ# |(b − k)2 − λ|

]−1

, Rr

is a finite rank operator and ‖R−Rr‖ = 1
Cr

converges to zero as r tends to infinity. This

proves that R is compact. As
(
i∇∇∇− k

)2 − λ1l is unitarily equivalent to the multiplication

operator (b − k)2 − λ, its inverse
[
(i∇∇∇ − k)2 − λ1l

]−1
is unitarily equivalent to R and is

also compact, with the same operator norm as R.

Now restrict to d < 4. The spectrum of R is
{

1
(b−k)2−λ

∣∣ b ∈ Γ#
}
and its set of

singular values is
{

1
|(b−k)2−λ|

∣∣ b ∈ Γ#
}
. To prove that R is Hilbert-Schmidt, we must

prove that ∑

b∈Γ#

∣∣∣ 1
(b−k)2−λ

∣∣∣
2

<∞

Choose any b1, · · · ,bd such that

Γ# =
{
n1b1 + · · ·+ ndbd

∣∣ n1, · · · , nd ∈ ZZ
}

Let B be the d × d matrix whose (i, j) matrix element is bi · bj . For every nonzero

x = (x1, · · · , xd) ∈ Cd

x ·Bx = |x1b1 + · · ·xdbd|2 > 0

since the bi, 1 ≤ i ≤ d are independent. Consequently, all of the eigenvalues of B are

strictly larger than zero. Let β be the smallest eigenvalue of B. Then

|x1b1 + · · ·xdbd|2 = x ·Bx ≥ β|x|2

Hence if b = n1b1 + · · ·+ ndbd and n2 =
∣∣(n1, · · · , nd)

∣∣2 ≥ 4
β

(
k2 + |λ|

)

∣∣(b− k)2 − λ
∣∣ ≥ 1

2
b2 − k2 − |λ| ≥ β

2
n2 − k2 − |λ| ≥ β

2
n2 − β

4
n2 ≥ β

4
n2

so that
∑

b∈Γ#

∣∣∣ 1
(b−k)2−λ

∣∣∣
2

=
∑

n∈ZZd

∣∣∣ 1
(n1b1+···+ndbd−k)2−λ

∣∣∣
2

≤
∑

n∈ZZd

n2≤ 4
β

(k2+|λ|)

∣∣∣ 1
(n1b1+···+ndbd−k)2−λ

∣∣∣
2

+
∑

n∈ZZd

n2> 4
β

(k2+|λ|)

∣∣∣ 4
βn2

∣∣∣
2

≤ #
{
n ∈ ZZ

d
∣∣ n2 ≤ 4

β
(k2 + |λ|)

}
max
n∈ZZd

n2≤ 4
β

(k2+|λ|)

∣∣∣ 1
(n1b1+···+ndbd−k)2−λ

∣∣∣
2

+ 16
β2

∑

n∈ZZd

n 6=0

1
|n|4
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This is finite because d < 4 and we have assumed that (b − k)2 − λ does not vanish for

any b ∈ Γ#.

Lemma S.7 The following hold for all k ∈ IRd.

a) The operator Hk is self–adjoint on the domain

D =
{
(F−1ϕ)(x)

∣∣ ϕ(b), b2ϕ(b) ∈ ℓ2(Γ#)
}

and essentially self–adjoint on the domain

D0 =
{
(F−1ϕ)(x)

∣∣ ϕ(b) = 0 for all but finitely many b ∈ Γ#
}

b) If λ is not in the spectrum of Hk, the resolvent
[
Hk − λ1l

]−1
is compact. If d < 4 it is

Hilbert-Schmidt. If Imλ 6= 0 or λ < − supx |V (x)|, then λ is not in the spectrum of Hk.

c) Let R > 0. There is a constant C such that

∥∥∥
(
Hk −Hk′

)
1

1−∆

∥∥∥ ≤ C|k− k′|

for all k,k′ ∈ IRd with |k|, |k′| ≤ R. The constant C depends on V and R, but is otherwise

independent of k and k′.

d) Let R > 0 and λ < − supx |V (x)|. There is a constant C′ such that

∥∥∥
[
Hk − λ1l

]−1 −
[
Hk′ − λ1l

]−1
∥∥∥ ≤ C′|k− k′|

for all k,k′ ∈ IRd with |k|, |k′| ≤ R. The constant C′ depends on V , λ and R, but is

otherwise independent of k and k′.

e) Let c ∈ Γ# and define Uc to be the multiplication operator eic·x on L2(IRd/Γ). Then

Uc is unitary and

U∗
cHkUc = Hk+c

Proof: a)
(
i∇∇∇− k

)2
is self–adjoint on D and essentially self–adjoint on D0 and V (x) is

a bounded operator on L2
(
IRd/Γ

)
. Apply Problem S.1.c.

b) If λ is not in the spectrum of Hk, the resolvent
[
Hk − λ1l

]−1
exists and is bounded.

This is just the definition of “spectrum”. As Hk is self–adjoint, its spectrum is a subset

of IR. Now consider λ < − supx |V (x)|. As
[(
i∇∇∇− k

)2 − λ1l
]−1

is unitarily equivalent to

multiplication by 1
(b−k)2−λ1l ≤ 1

|λ| , it is a bounded operator with norm at most 1
|λ| . As
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λ < − supx |V (x)|, the operators
[(
i∇∇∇ − k

)2 − λ1l
]−1

V and V
[(
i∇∇∇ − k

)2 − λ1l
]−1

both

have operator norm at most supx |V (x)|/|λ| < 1. Consequently 1l +
[(
i∇∇∇− k

)2 − λ1l
]−1

V ,

1l + V
[(
i∇∇∇− k

)2 − λ1l
]−1

and

Hk − λ1l =
[(
i∇∇∇− k

)2 − λ1l
]{

1l +
[(
i∇∇∇− k

)2 − λ1l
]−1

V
}

=
{
1l + V

[(
i∇∇∇− k

)2 − λ1l
]−1

}[(
i∇∇∇− k

)2 − λ1l
]

all have bounded, everywhere defined inverses and
∥∥∥ 1

Hk − λ1l

∥∥∥ =
∥∥∥ 1

1l + 1
(i∇∇∇−k)2−λ1lV

1
(
i∇∇∇− k

)2 − λ1l

∥∥∥ ≤ 1

1− sup
x
|V (x)|
|λ|

1

|λ|

=
1

|λ| − supx |V (x)|
Hence the spectrum of Hk is a subset of [− supx |V (x)|,∞).

By the resolvent identity

[
Hk − λ1l

]−1
=

[(
i∇∇∇− k

)2
+ 1l

]−1 −
[
Hk − λ1l

]−1
[V − (1 + λ)1l)]

[(
i∇∇∇− k

)2
+ 1l

]−1

=
{
1l−

[
Hk − λ1l

]−1
[V − (1 + λ)1l)]

}[(
i∇∇∇− k

)2
+ 1l

]−1

The left factor
{
1l−

[
Hk − λ1l

]−1
[V − (1 + λ)1l)]

}
is a bounded operator and, by Lemma

S.6, the right factor
[(
i∇∇∇ − k

)2
+ 1l

]−1
is compact (Hilbert-Schmidt for d < 4), so the

product is compact (Hilbert-Schmidt for d < 4).

c) First observe that, by Problem S.7 below, 1
1l−∆ maps all of L2(IRd/Γ) into D so that

Hk
1

1−∆
and Hk′

1
1−∆

are both defined on all of L2
(
IRd/Γ

)
. Expanding gives

(
Hk −Hk′

)
1

1−∆ =
[(
i∇∇∇− k

)2 −
(
i∇∇∇− k′

)2] 1
1−∆ =

[
− 2i(k− k′) · ∇∇∇+ k2 − k′2

]
1

1−∆

Hence F
(
Hk −Hk′

)
1

1−∆F−1 is the multiplication operator

2(k−k′)·b+k2−k′2

1+b2 = (k− k′) · 2b+k+k′

1+b2

The claim then follows from
∣∣∣2b+k+k′

1+b2

∣∣∣ ≤ 2|b|+2R
1+b2 ≤ 1+b2+2R

1+b2 ≤ 1 + 2R

d) By the resolvent identity

1

Hk − λ1l
− 1

Hk′ − λ1l
=

1

Hk − λ1l

[
Hk′ −Hk

] 1

Hk′ − λ1l

=
1

Hk − λ1l

[
Hk′ −Hk

] 1

1−∆

1−∆

(i∇∇∇− k′)2 − λ1l

1

1l + V 1
(i∇∇∇−k′)2−λ1l
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By part c and the bound on the resolvent in part b,

∥∥∥ 1
Hk−λ1l − 1

H
k′−λ1l

∥∥∥ ≤ 1
|λ|−sup

x
|V (x)|C|k− k′|

∥∥∥ 1−∆
(i∇∇∇−k′)2−λ1l

∥∥∥ |λ|
|λ|−sup

x
|V (x)|

As 1−∆
(i∇∇∇−k′)2−λ1l is unitarily equivalent to multiplication by 1+b2

(b−k′)2−λ ,
∥∥ 1−∆
(i∇∇∇−k′)2−λ1l

∥∥ is

bounded uniformly on |k′| < R.

e) Since multiplication operators commute, U∗
cV Uc = U∗

cUcV = V and the claim follows

immediately from Problem S.6, below.

Problem S.6 Let c ∈ Γ# and Uc be the multiplication operator eic·x on L2(IRd/Γ). Let

F be the Fourier transform operator of (S.3).

a) Fill in the formulae (
FUcF−1ϕ

)
(b) = ϕ(b )

(
FU∗

cF−1ϕ
)
(b) = ϕ(b )

b) Prove that Uc and U∗
c both leave the domain D invariant.

c) Prove that

U∗
c

(
i∇∇∇− k

)2
Uc =

(
i∇∇∇− k− c

)2

Problem S.7 Prove that 1
1l−∆ maps all of L2(IRd/Γ) into D.

§VI The spectrum of H

We have just proven that the spectrum of the operator Hk (acting on L2(IRd/Γ))

is contained in the half of the real line to the right of − supx |V (x)|. We have also just

proven that the resolvent of Hk is compact. Hence the spectrum of
[
Hk − λ1l

]−1
(for any

fixed λ in the resolvent set of Hk) is a sequence of eigenvalues converging to zero, so that

the spectrum of Hk consists of a sequence of eigenvalues converging to +∞. Denote the

eigenvalues of Hk by

e1(k) ≤ e2(k) ≤ e3(k) ≤ · · ·

Proposition S.8

a) For each n, en(k) is continuous in k and periodic with respect to Γ#.
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b) limn→∞ en(k) = ∞, with the limit uniform in k.

c) Denote by Vd the volume of a sphere of radius one in IRd. Let b1, · · · ,bd be any set

of generators for Γ# and B =
{ ∑d

j=1 tjbj

∣∣ − 1
2 ≤ tj <

1
2 for all 1 ≤ j ≤ d

}
be the

parallelepiped, centered on the origin, with the bj’s as edges. Denote by D the diameter of

B. For each k ∈ IRd and each R > 0

#
{
n ∈ IN

∣∣ en(k) < R
}
≤ Vd

|Γ#|

(√
R+ ‖V ‖+ 1

2D
)d

= Vd
|Γ#|

Rd/2 +O
(
R
d−1
2

)

For each k ∈ IRd and each R > 1
4D

2 + ‖V ‖

#
{
n ∈ IN

∣∣ en(k) < R
}
≥ Vd

|Γ#|

(√
R− ‖V ‖ − 1

2
D
)d

= Vd
|Γ#|

Rd/2 +O
(
R
d−1
2

)

This more detailed result concerning the rate at which en(k) tends to infinity with n is not

used in these notes and so may be safely skipped.

Proof: b) Denote, in increasing order, the eigenvalues of
(
i∇∇∇− k

)2

ê1(k) ≤ ê2(k) ≤ ê3(k) ≤ · · ·

Each ên(k) is (b − k)2, for some b ∈ Γ#. Furthermore, by Lemma S.6, the spectrum of(
i∇∇∇− k

)2
is periodic in k, so that each ên(k) is periodic in k. We have already observed

that (b−k)2 ≥ 1
2b

2 −k2, so that, as n tends to infinity, ên(k) tends to infinity, uniformly

in k.

We are about to apply the min-max principle. Here is what it says, in the current

context. Let H be a self–adjoint operator whose spectrum consists solely of eigenvalues

e1 ≤ e2 ≤ e3 ≤ · · ·

Then, for each n ∈ IN,

en = sup
ϕ1,···,ϕn−1

inf
ψ∈D, ‖ψ‖=1
ψ⊥ϕ1,···,ϕn−1

〈ψ,Hψ〉

This is a formula for the eigenvalue en that does not use any information about the

eigenfunctions. Here is how to see that it is true. Let
{
ξn
}
n∈IN

be an orthonormal basis

consisting of eigenvectors of H with Hξn = enξn for all n ∈ IN. Then

〈ψ,Hψ〉 =
∞∑

ℓ=1

eℓ| 〈ξℓ, ψ〉 |2

If we choose ϕ1 = ξ1, · · ·, ϕn−1 = ξn−1, then, writing aℓ = | 〈ξℓ, ψ〉 |2,

inf
ψ∈D, ‖ψ‖=1
ψ⊥ϕ1,···,ϕn−1

〈ψ,Hψ〉 = inf
{ ∞∑

ℓ=n

aℓeℓ

∣∣∣ 0 ≤ aℓ ≤ 1 for all n ≤ ℓ <∞ and
∞∑
ℓ=n

aℓ = 1
}
= en
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This proves that

en ≤ sup
ϕ1,···,ϕn−1

inf
ψ∈D, ‖ψ‖=1
ψ⊥ϕ1,···,ϕn−1

〈ψ,Hψ〉

For the other inequality, observe that given any ϕ1, · · ·, ϕn−1, we can always find a unit

vector ψ ∈ span
{
ξ1, · · · , ξn

}
that is orthogonal to all ϕ1, · · ·, ϕn−1. For any such ψ,

〈ψ,Hψ〉 =
n∑

ℓ=1

eℓ| 〈ξℓ, ψ〉 |2 ≤ en

This proves that

inf
ψ∈D, ‖ψ‖=1
ψ⊥ϕ1,···,ϕn−1

〈ψ,Hψ〉 ≤ en

and hence

en ≥ sup
ϕ1,···,ϕn−1

inf
ψ∈D, ‖ψ‖=1
ψ⊥ϕ1,···,ϕn−1

〈ψ,Hψ〉

Now back to the main proof. By the min-max principle

en(k) = sup
ϕ1,···,ϕn−1

inf
ψ∈D, ‖ψ‖=1
ψ⊥ϕ1,···,ϕn−1

〈ψ,Hkψ〉

= sup
ϕ1,···,ϕn−1

inf
ψ∈D, ‖ψ‖=1
ψ⊥ϕ1,···,ϕn−1

( 〈
ψ, (i∇∇∇− k)2ψ

〉
+ 〈ψ, V ψ〉

)

ên(k) = sup
ϕ1,···,ϕn−1

inf
ψ∈D, ‖ψ‖=1
ψ⊥ϕ1,···,ϕn−1

〈
ψ, (i∇∇∇− k)2ψ

〉

For any unit vector ψ,
∣∣ 〈ψ, V ψ〉

∣∣ ≤ supx |V (x)|, so
∣∣en(k)− ên(k)

∣∣ ≤ sup
x

|V (x)|

and, as n tends to infinity, en(k) tends to infinity, uniformly in k.

a) Fix any λ < − supx |V (x)|. Denote, in increasing order, the eigenvalues of −[Hk−λ1l]−1

ẽ1(k) ≤ ẽ2(k) ≤ ẽ3(k) ≤ · · ·

As (
ϕ, [Hk − λ1l]ϕ

)
=

(
ϕ,

(
i∇∇∇− k

)2
ϕ
)
+

(
ϕ, [V − λ1l]ϕ

)

≥
∫

IRd/Γ

[V (x)− λ]
∣∣ϕ(x)

∣∣2 dx

≥
[
|λ| − sup

x

|V (x)|
](
ϕ, ϕ

)
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for all ϕ ∈ D, ẽn(k) < 0 and

en(k) = − 1
ẽn(k)

+ λ

for all n. Pick any R > 0. By Lemma S.7.d, for all unit vectors ϕ and all k,k′ with

|k|, |k′| < R, ∣∣∣
〈
ϕ,

[
1

Hk−λ1l
− 1

H
k′−λ1l

]
ϕ
〉 ∣∣∣ ≤ C′|k− k′|

Consequently, by the min-max principle, applied to A = − 1
Hk−λ1l and B = − 1

H
k′−λ1l∣∣ẽn(k)− ẽn(k

′)
∣∣ ≤ C′|k− k′|

Hence, each ẽn(k), and consequently each en(k), is continuous. The periodicity follows

from Lemma S.7.e.

c) By Lemma S.6, the spectrum of
(
i∇∇∇ − k

)2
is

{
(b − k)2

∣∣ b ∈ Γ#
}
. Label these

eigenvalues, in order, f1(k) ≤ f2(k) ≤ f3(k) ≤ · · ·. Observe that Hk and
(
i∇∇∇− k

)2
both

have domain D and that, for every ϕ ∈ D,∣∣∣
〈
ϕ,

[
Hk −

(
i∇∇∇− k

)2]
ϕ
〉 ∣∣∣ =

∣∣ 〈ϕ, V ϕ〉
∣∣ ≤ ‖V ‖ ‖ϕ‖2

Hence, by the min-max principle,
∣∣en(k)− fn(k)

∣∣ ≤ ‖V ‖
for all n and k so that, for all R > 0,

#
{
n ∈ IN

∣∣ en(k) < R
}
≤ #

{
n ∈ IN

∣∣ fn(k) < R + ‖V ‖
}

#
{
n ∈ IN

∣∣ fn(k) < R
}
≤ #

{
n ∈ IN

∣∣ en(k) < R+ ‖V ‖
} (S.4)

Let b+B be the half open parallelepiped, centered on b, with edges parallel to the bj’s.

Then
{
b + B

∣∣ b ∈ Γ#
}
is a paving of IRd. This means that (b + B) ∩ (b′ + B) = ∅

unless b = b′ and every point in IRd is in some b+B. So, for each r > 0

#
{
n ∈ IN

∣∣ fn(k) < r
}
= #

{
b ∈ Γ#

∣∣ |b− k| <
√
r
}

= 1
|Γ#|

Volume
(
∪b∈Sr b+B

) (S.5)

where Sr =
{
b ∈ Γ#

∣∣ |b− k| < √
r
}
.

Every point of b + B lies within distance of 1
2
D of b, so every point of ∪b∈Srb + B

lies within a distance
√
r + 1

2D of k. On the other hand, if p ∈ IRd lies within a distance√
r− 1

2
D of k, then p lies in precisely one b+B and that b obeys |p−b| ≤ 1

2
D and hence

|b− k| ≤ √
r − 1

2D + 1
2D ≤ √

r. Thus

Vd
(√
r − 1

2
D
)d ≤ Volume

(
∪b∈Sr b+B

)
≤ Vd

(√
r + 1

2
D
)d

(S.6)

Subbing (S.6) in (S.5) gives

Vd
|Γ#|

(√
r − 1

2
D
)d ≤ #

{
n ∈ IN

∣∣ fn(k) < r
}
≤ Vd

|Γ#|

(√
r + 1

2
D
)d

and subbing this into (S.4) gives the desired bounds.
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Problem S.8 Let b1, · · · ,bd be any set of generators for Γ# and

B =
{ d∑

j=1

tjbj

∣∣ − 1
2 ≤ tj <

1
2 for all 1 ≤ j ≤ d

}

Prove that
{
b+B

∣∣ b ∈ Γ#
}
is a paving of IRd.

Theorem S.9 Let V be a C∞ function of IRd that is periodic with respect to the lattice Γ

and H =
(
i∇∇∇

)2
+ V (x) the self–adjoint operator of Theorem S.5. The spectrum of H is

{
en(k)

∣∣ k ∈ IRd/Γ#, n ∈ IN
}

Proof: Denote by ΣH the spectrum of H and by

S =
{
en(k)

∣∣ k ∈ IRd/Γ#, n ∈ IN
}

the set of all eigenvalues of all the Hk’s.

Proof that S ⊂ ΣH : Fix any p ∈ IRd and any n ∈ IN. We shall construct, for each

ε > 0, a vector ψε ∈ S
(
IRd/Γ# × IRd/Γ

)
obeying

∥∥(ũHu− en(p)1l
)
ψε

∥∥ ≤ ε‖ψ‖

This will prove that
[
ũHu− en(p)1l

]−1
and hence

[
H − en(p)1l

]−1
cannot be a bounded

operator with norm at most 1
ε , for any ε > 0; hence that

[
H − en(p)1l

]−1
cannot be a

bounded operator and hence that en(p) ∈ ΣH .

By hypothesis, en(p) is an eigenvalue of Hp. So there is a nonzero vector ϕ̃(x) ∈ D
such that

[
Hp − en(p)

]
ϕ̃ = 0. As Hp is essentially self–adjoint on D0, there is a sequence

of functions ϕm(x) ∈ D0 obeying

lim
m→∞

ϕm = ϕ̃ lim
m→∞

Hpϕm = Hpϕ̃

=⇒ lim
m→∞

‖ϕm‖ = ‖ϕ̃‖ 6= 0 lim
m→∞

∥∥(Hp − en(p)1l
)
ϕm

∥∥ = 0

Hence there is a member of that sequence, call it ϕε(x), for which

∥∥(Hp − en(p)1l
)
ϕε

∥∥ ≤ ε
2
‖ϕε‖

Let f(k) be any nonnegative C∞ function that is supported in
{
k ∈ IRd

∣∣ |k| < 1
}

and whose square has integral one. Define, for each δ > 0,

fδ(k) =
1

δd/2
f(kδ )

c© Joel Feldman. 2009. All rights reserved. December 16, 2009 The Spectrum of Periodic Schrödinger Ops 21



Observe that fδ(k) is a nonnegative C∞ function that is supported in
{
k ∈ IRd

∣∣ |k| < δ
}

and whose square has integral one. Set

ψε(k,x) =
∑

c∈Γ#

eic·xfδε(k− p+ c)ϕε(x)

We shall choose δε later. The function ψε(k,x) is in S
(
IRd/Γ# × IRd/Γ

)
because

• the term fδε(k−p+ c)ϕε(x) vanishes unless k is within a distance δε of p− c. Hence

ψε vanishes unless k ∈ Bδε(p − c), the ball of radius δε centered on p − c, for some

c ∈ Γ#. There is a nonzero lower bound on the distance between points of Γ#.

We will choose δε to be strictly smaller than half that lower bound. Then the balls

Bδε(p − c), c ∈ Γ# are disjoint. For k outside their union ψε(k,x) vanishes. For k

in Bδε(p − c0) the only term in the sum that does not vanish is that with c = c0.

Consequently ψε(k,x) is C
∞.

Bδε(p− c)

k

• ψε(k,x) is periodic in x with respect to Γ because ϕε(x) is.

•
ψε(k+ b,x) =

∑

c∈Γ#

eic·xfδε(k+ b− p+ c)ϕε(x)

=
∑

c′∈Γ#

ei(c
′−b)·xfδε(k− p+ c′)ϕε(x)

= e−ib·xψε(k,x)

so ψε(k,x) has the required “twisted” periodicity in k.

The square of the norm

∥∥(ũHu− en(p)1l
)
ψε

∥∥2 = 1
|Γ#|

∫

IRd/Γ#

dk

∫

IRd/Γ

dx
∣∣((ũHu− en(p)1l)ψε

)
(k,x)

∣∣2

By Problem L.4 of the notes “Lattices and Periodic Functions”, we may choose

p+B = p+
{ d∑

j=1
tjbj

∣∣ − 1
2 ≤ tj <

1
2 for all 1 ≤ j ≤ d

}
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as the domain of integration in k. Here
{
bj

∣∣ 1 ≤ j ≤ d
}
is any basis for Γ#. This

domain contains the ball Bδε(p− c) with c = 0 and does not intersect Bδε(p− c) for any

c ∈ Γ# \ {0} (again assuming that δε has been chosen sufficiently small). On p + B,

p+B

ψε(k,x) = fδε(k− p)ϕε(x) and

(
(ũHu− en(p)1l)ψε

)
(k,x) = fδε(k− p)

(
Hk − en(p)1l)ϕε)(x)

so that

∥∥(ũHu− en(p)1l
)
ψε

∥∥2 = 1
|Γ#|

∫
dk

∫

IRd/Γ

dx fδε(k− p)2
∣∣(Hk − en(p)1l)ϕε)(x)

∣∣2

= 1
|Γ#|

∫
dk fδε(k− p)2

∥∥(Hk − en(p)1l)ϕε

∥∥2
L2(IRd/Γ,dx)

The norm

‖
(
Hk − en(p)1l)ϕε

∥∥ ≤ ‖
(
Hp − en(p)1l)ϕε

∥∥+ ‖
(
Hk −Hp)ϕε

∥∥

≤ ε
2‖ϕε

∥∥+ ‖
(
Hk −Hp)

1
1l−∆

∥∥ ‖(1l−∆)ϕε‖
≤ ε

2
‖ϕε

∥∥+ C|k− p| ‖(1l−∆)ϕε‖
≤ ε

2‖ϕε

∥∥+ Cδε ‖(1l−∆)ϕε‖

for k in the support of fδε(k− p). Now choose

δε = ε
2C

‖ϕε‖
max{1,‖(1l−∆)ϕε‖}

With this choice of δε, ‖
(
Hk − en(p)1l)ϕε

∥∥
L2(IRd/Γ,dx)

≤ ε‖ϕε

∥∥
L2(IRd/Γ,dx)

so that

∥∥(ũHu− en(p)1l
)
ψε

∥∥2 ≤ ε2

|Γ#|

∫
dk fδε(k− p)2‖ϕε‖2L2(IRd/Γ,dx) = ε2‖ψε‖2

as desired.
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Proof that ΣH ⊂ S: Fix any λ /∈ S. We must show that λ /∈ ΣH . As, for each fixed n,

en(k) is periodic and continuous in k,

inf
k

∣∣en(k)− λ
∣∣ > 0

By Lemma S.8.b,

lim
n→∞

inf
k
en(k) = ∞

Hence

D = inf
k∈IRd

n∈IN

∣∣en(k)− λ
∣∣ > 0

By the spectral theorem

∥∥(Hk − λ1l)ϕ
∥∥
L2(IRd/Γ,dx)

≥ D
∥∥ϕ

∥∥
L2(IRd/Γ,dx)

for all ϕ in the domain, D, of Hk and in particular for all ϕ ∈ C∞
(
IRd/Γ

)
. Consequently,

for all ψ(k,x) ∈ S
(
IRd/Γ# × IRd/Γ

)

∥∥(ũHu− λ1l
)
ψ
∥∥2 = 1

|Γ#|

∫

IRd/Γ#

dk

∫

IRd/Γ

dx
∣∣((ũHu− λ1l)ψ

)
(k,x)

∣∣2

= 1
|Γ#|

∫

IRd/Γ#

dk

∫

IRd/Γ

dx
∣∣((Hk − λ1l)ψ

)
(k,x)

∣∣2

= 1
|Γ#|

∫

IRd/Γ#

dk
∥∥(Hk − λ1l)ψ(k, · )

∥∥2
L2(IRd/Γ,dx)

≥ D2

|Γ#|

∫

IRd/Γ#

dk
∥∥ψ(k, · )

∥∥2
L2(IRd/Γ,dx)

= D2‖ψ‖2

Recall that u is a unitary map from S
(
IRd/Γ# × IRd/Γ

)
onto S(IRd). Hence

∥∥(H − λ1l)f
∥∥ ≥ D‖f‖ (S.7)

for all f ∈ S(IRd). By Theorem S.5, H is essentially self–adjoint on S(IRd), so (S.7) applies

for all f in the domain of H. As a result, H − λ1l is injective and the inverse is bounded

with norm at most 1
D . No self–adjoint operator can have residual spectrum, so the range

of H − λ1l is dense. As the inverse is bounded the range is also closed. Hence H − λ1l has

an everywhere defined bounded inverse, and λ is not in the spectrum of H.

c© Joel Feldman. 2009. All rights reserved. December 16, 2009 The Spectrum of Periodic Schrödinger Ops 24



§VII A Nontrivial Example – the Lamé Equation

Fix two real numbers β, γ > 0. The Weierstrass function with primitive periods γ

and iβ is the function ℘ : C → C defined by

℘(z) =
1

z2
+

∑

ω∈γZZ⊕iβZZ
ω 6=0

1

(z − ω)2
− 1

ω2

It is an elliptic function, which means that it is a meromorphic function that is doubly

periodic. It is analytic everywhere except for a double pole at each point of γZZ ⊕ iβZZ

and it has periods γ and iβ. The Weierstrass function is discussed in the notes “An

Elliptic Function – The Weierstrass Function”. The labels “W.*” refer to those notes.

Two functions closely related to ℘ are

σ(z) = z
∏

ω∈γZZ⊕iβZZ
ω 6=0

(
1− z

ω

)
e
z
ω+ 1

2
z2

ω2

ζ(z) = σ′(z)
σ(z)

= 1
z
+

∑

ω∈γZZ⊕iβZZ
ω 6=0

1
z−ω

+ 1
ω
+ z

ω2

As ζ ′(z) = −℘(z), ζ is an antiderivative of −℘ and consequently is, except for some

constants of integration, periodic too. Similarly, σ is the exponential of an antiderivative

of ζ and it is not hard to determine how σ(z + γ) and σ(z + iβ) are related to σ(z).

Lemma W.4 There are constants η1 ∈ IR and η2 ∈ iIR satisfying

η1iβ − η2γ = 2πi

such that
ζ(z + γ) = ζ(z) + η1 ζ(z + iβ) = ζ(z) + η2

σ(z + γ) = −σ(z) eη1(z+
γ
2 ) σ(z + iβ) = −σ(z) eη2(z+i β2 )

Now set, for z ∈ C \
(
γZZ⊕ iβZZ

)
,

ϕ(z, x) = eζ(z)x
σ
(
z − x− iβ

2

)

σ
(
x+ iβ2

)

λ(z) = −℘(z)
k(z) = −i

(
ζ(z) − z η1

γ

)

ξ(z) = eγik(z) = eγζ(z)−zη1
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Lemma S.10

a)

ϕ(z, x+ γ) = ξ(z) ϕ(z, x)

b)

−d2

dx2ϕ(z, x) + 2℘
(
x+ iβ2

)
ϕ(z, x) = λ(z)ϕ(z, x)

c)

ξ(z + γ) = ξ(z) ξ(z + iβ) = ξ(z)

Proof: a) By Problem W.3.d and Lemma W.4

ϕ(z, x+ γ) = eζ(z)(x+γ) σ
(
z − x− γ − iβ

2

)

σ
(
x+ γ + iβ2

)

= −eζ(z)(x+γ) σ
(
− z + x+ γ + iβ2

)

σ
(
x+ γ + iβ

2

)

= −eζ(z)(x+γ) σ
(
− z + x+ iβ2

)
eη1(−z+x+i β2 + γ

2 )

σ
(
x+ iβ2

)
eη1(x+i β2 + γ

2 )

= eζ(z)(x+γ)e−η1z
σ
(
z − x− iβ2

)

σ
(
x+ iβ

2

)

= eζ(z)γ−η1z ϕ(z, x)

b) First observe that, since

d

dx

σ
(
z − x− iβ2

)

σ
(
x+ iβ2

) = −
[
σ′
(
z − x− iβ2

)

σ
(
z − x− iβ2

) +
σ′
(
x+ iβ2

)

σ
(
x+ iβ2

)
]
σ
(
z − x− iβ2

)

σ
(
x+ iβ2

)

= −
[
ζ
(
z − x− iβ2

)
+ ζ

(
x+ iβ2

)]σ
(
z − x− iβ

2

)

σ
(
x+ iβ2

)

we have

d
dxϕ(z, x) =

(
ζ(z)− ζ

(
z − x− iβ2

)
− ζ

(
x+ iβ2

))
ϕ(z, x)
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Differentiate again

d2

dx2ϕ(z, x) =
(
ζ ′
(
z − x− iβ2

)
− ζ ′

(
x+ iβ2

))
ϕ(z, x)

+
[
ζ(z)− ζ

(
z − x− iβ2

)
− ζ

(
x+ iβ2

)]2
ϕ(z, x)

= −
(
℘
(
z − x− iβ

2

)
− ℘

(
x+ iβ

2

))
ϕ(z, x)

+
[
ζ(z)− ζ

(
z − x− iβ2

)
− ζ

(
x+ iβ2

)]2
ϕ(z, x)

Lemma W.5 says that

[
ζ(u+ v)− ζ(u)− ζ(v)

]2
= ℘(u+ v) + ℘(u) + ℘(v)

for all u, v ∈ C such that none of u, v, u+ v are in γZZ⊕ iβZZ (basically because, for each

fixed v ∈ C \ (γZZ⊕ iβZZ), both the left and right hand sides are periodic and have double

poles, with the same singular part, at each u ∈ γZZ⊕ iβZZ and each u ∈ −v + γZZ⊕ iβZZ).

By this Lemma,

d2

dx2ϕ(z, x) = −
(
℘
(
z − x− iβ

2

)
− ℘

(
x+ iβ

2

))
ϕ(z, x)

+
(
℘(z) + ℘

(
z − x− iβ2

)
+ ℘

(
x+ iβ2

))
ϕ(z, x)

=
(
℘(z) + 2℘

(
x+ iβ2

))
ϕ(z, x)

c) By Lemma W.4,

ξ(z + γ) = eγζ(z+γ)−(z+γ)η1 ξ(z + iβ) = eγζ(z+iβ)−(z+iβ)η1

= eγζ(z)−zη1 = eγη2−iβη1eγζ(z)−zη1

= ξ(z) = ξ(z)

Set Γ = γZZ and
V (x) = 2℘(x+ iβ

2
)

H =
(
id
dx

)2
+ V (x)

By Problem W.1, parts (b), (c) and (f), V ∈ C∞(IR/Γ) and is real valued. The Lamé

equation is

−d2

dx2 φ+ 2℘(x+ iβ2 )φ = λφ i.e. Hφ = λφ (S.8)

A solution φ(k, x) of (S.8) that satisfies

φ(k, x+ γ) = eiγkφ(k, x) (S.9)
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is called a Bloch solution with energy λ and quasimomentum k.

Lemma S.10 says that, for each z ∈ C \
(
γZZ ⊕ iβZZ

)
, ϕ(z, x) is a Bloch solution of

the Lamé equation with energy λ = λ(z) and quasimomentum k = k(z). I claim that the

energy λ and multiplier ξ = eγik are fully parameterized by

λ(z) = −℘(z) ξ(z) = eγζ(z)−zη1

That is, the boundary value problem (S.8), (S.9) has a nontrivial solution if and only if

(λ, eiγk) = (λ(z), ξ(z)), for some z ∈ C \
(
γZZ⊕ iβZZ

)
. The only if implication follows from

the observation, which is an immediate consequence of Lemma S.11 below, that unless

2z ∈ γZZ ⊕ iβZZ the functions ϕ(z, x) and ϕ(−z, x) are linearly independent solutions of

(S.8) for λ(z) = λ(−z). As a second order ordinary differential equation, (S.8) only has

two linearly independent solutions for each fixed value of λ. For z ∈ γZZ ⊕ iβZZ, λ(z) is

not finite. For 2z ∈ γZZ⊕ iβZZ with z /∈ γZZ⊕ iβZZ, λ′(z) = 0, by Corollary W.3, and the

second linearly independent solution is ∂
∂zϕ(z, x).

Lemma S.11

a) Let z1, z2 ∈ C \
(
γZZ ⊕ iβZZ

)
. If z1 − z2 /∈ γZZ ⊕ iβZZ, then ϕ(z1, x) and ϕ(z2, x) are

linearly independent (as functions of x).

b) If z ∈ C\
(
γZZ⊕ iβZZ

)
, then ϕ(z, x) and ∂

∂z
ϕ(z, x) are linearly independent (as functions

of x).

Proof: a) If ϕ(z1, x) and ϕ(z2, x) were linearly dependent, there would exist a, b ∈ C,

not both zero, such that aϕ(z1, x) + bϕ(z2, x) = 0 for all x ∈ IR. But

ϕ(z1, x) = eζ(z1)x
σ
(
z1 − x− iβ2

)

σ
(
x+ iβ2

) and ϕ(z2, x) = eζ(z2)x
σ
(
z2 − x− iβ2

)

σ
(
x+ iβ2

)

have analytic continuations to x ∈ C \
(
− iβ2 + γZZ⊕ iβZZ

)
. These analytic continuations

must obey aϕ(z1, x) + bϕ(z2, x) = 0 for all x ∈ C \
(
− iβ2 + γZZ ⊕ iβZZ

)
. In particular,

the zero set of ϕ(z1, x), which is z1 − iβ2 + γZZ⊕ iβZZ, must coincide with the zero set of

ϕ(z2, x), which is z2 − iβ2 + γZZ⊕ iβZZ. This is the case if and only if z1 − z2 ∈ γZZ⊕ iβZZ.

b) Fix any z ∈ C \
(
γZZ⊕ iβZZ

)
. As

∂ϕ

∂z
= xζ ′(x)ϕ(z, x) + eζ(z)x

σ′
(
z − x− iβ

2

)

σ
(
x+ iβ2

)

and σ has only simple zeroes, the zero set of ∂ϕ
∂z cannot coincide with that of ϕ.
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Theorem S.12 Set

Λ1 = −℘(γ
2
) Λ2 = −℘(γ

2
+ iβ

2
) Λ3 = −℘(iβ

2
)

Then Λ1,Λ2,Λ3 are real, Λ1 < Λ2 < Λ3 and the spectrum of H is [Λ1,Λ2] ∪ [Λ3,∞).

Proof: If, for given values of λ and k, the boundary value problem (S.8), (S.9) has a

nontrivial solution and if k is real then λ is in the spectrum of H. We know that all such

λ’s are also real.

Imagine walking along the path in the z–plane that follows the four line segments

from 0 to γ
2 to γ

2 + iβ2 to iβ2 and back to 0. As ℘(z) = ℘(z̄), ℘(−z) = ℘(z) and ℘(z− γ) =

℘(z − iβ) = ℘(z) (this is part of Problem W.1.f), λ(z) = −℘(z) remains real throughout

the entire excursion. Near z = 0,

λ(z) = −℘(z) ≈ − 1
z2

so λ starts out near −∞ at the beginning of the walk and moves continuously to +∞ at

the end of the walk. Furthermore, by Corollary W.3, which states, in part,

℘(z) = ℘(z′) if and only if z − z′ ∈ γZZ⊕ iβZZ or z + z′ ∈ γZZ⊕ iβZZ.

λ never takes the same value twice on the walk, because no two distinct points z, z′ on

the walk obey z + z′ ∈ γZZ⊕ iβZZ or z − z′ ∈ γZZ⊕ iβZZ.

• On the first quarter of the walk, from z = 0 to z = γ
2 , λ(z) increases from −∞ to

Λ1 = −℘(γ2 ). But we cannot put these λ’s into the spectrum of H because, by Problem

W.5.e, k(z) is pure imaginary on this part of the walk. You might worry that k(z)

might happen to be exactly zero at some points of this first quarter of the walk. This

could only happen at isolated points, because k(z) is a nonconstant analytic function. If

this were to happen, the Lamé Schrödinger operator would have an isolated eigenvalue

of finite multiplicity. We have already seen that no periodic Schrödinger operator can

have such eigenvalues.
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• On the second quarter of the walk, from z = γ
2 to z = γ

2 + iβ2 , λ(z) increases from Λ1

to Λ2 = −℘(γ2 + iβ2 ). By Problem W.5.d, k(z) is pure real on this part of the walk, so

these λ’s are in the spectrum of H.

• On the third quarter of the walk, from z = γ
2 + iβ2 to z = iβ2 , λ(z) increases from Λ2

to Λ3 = −℘(iβ2 ). By Problem W.5.e, these λ’s do not go into the spectrum of H.

• On the last quarter of the walk, from z = iβ2 back to zero, λ(z) increases from Λ3 to

+∞. By Problem W.5.d, these λ’s are in the spectrum of H.

For more information on the Lamè equation, see

Edward Lindsay Ince, Ordinary Differential Equations, Dover Publications, 1956,

section 15.62.

Edmund Taylor Whittaker and George Neville Watson, A Course of Modern Anal-

ysis, chapter XXIII.
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