Another Riesz Representation Theorem

In these notes we prove (one version of) a theorem known as the Riesz Representation
Theorem. Some people also call it the Riesz—Markov Theorem. It expresses positive linear
functionals on C'(X) as integrals over X. For simplicity, we will here only consider the
case that X is a compact metric space. We denote the metric d(z,y). For more general
versions of the theorem see

o Gerald B. Folland, Real Analysis — Modern Techniques and Their Applications, Wiley,

theorems 7.2 and 7.17.

o Michael Reed and Barry Simon, Functional Analysis (Methods of modern mathemat-

ical physics, volume 1), Academic Press, theorems V.14 and IV.18.

o H. L. Royden, Real Analysis, Macmillan, chapter 13, sections 4 and 5.
o Walter Rudin, Real and Complex Analysis, McGraw—Hill, theorem 2.14.
The background definitions that we need are

Definition 1 C(X) is the Banach space of continuous functions on X with the norm
lellex) = supgex o)l

Definition 2 A map ¢: C(X) — C is a positive linear functional if
(a) L(ap + Bv) = al(p)+ BL() for all a, B € € and all p,9 € C(X) and
(b) 4(p) >0 for all p € C(X) that obey p(x) > 0 for all z € X.

Problem 1 Let ¢: C(X) — C be a positive linear functional. Prove that
(o] < £D) llellex)

for all ¢ € C(X). Here 1 is of course the function on X that always takes the value 1.

Definition 3

(a) The set, Bx, of Borel subsets of X is the smallest o—algebra that contains all open
subsets of X.

(b) A Borel measure on X is a measure p: Bx — [0, c0].

(¢) A Borel measure p on X is said to be regular if, for all A € By,
(i) p(A) =inf{ p(0) | AC O, O open }
(i) w(A) =sup{ u(C) | C C A, C compact }

We shall prove
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Theorem 4 (Riesz Representation) Let X be a compact metric space. If £ : C(X) — C
is a positive linear functional on C(X), then there exists a unique regular Borel measure
u on X such that

o) = / f(x) du(z)

The measure . 1s finite.

Motivation: By way of motivation for the proof, let’s guess what the measure is. To
do so, we pretend that we already have a measure p with ¢(f) = [ f(z) du(z) and derive
a formula for p in terms of ¢. We start off by considering any open O C X. Of course
1w(O) = [y xo(x) du(z). As the characteristic function xe is not continuous, we cannot
express 11(O) = £(xo). But we can express yo as a limit of continuous functions. For each
n € IN, set

0 ifre X\O
fo(@) ={ nd(z,X\0) ifzeOandd(z,X\0) <1
1 ifz €O andd(z,X\0)>1

This is a sequence of continuous functions on X with
0 0< fu(z) <1lforalln €N and z € X and
o frn [ X\ O =0 for all n € IN. Here “|” means “restricted to”.
o Because O is open, X \ O is compact, so that, for each z € O,
* d(z, X\ O) >0 and
% fo(z)=1for alln > W.
Consequently, nh_}n(go fn(z) = xo(2x) for all x € X.
So by the dominated convergence theorem (or, if you prefer, the monotone convergence
theorem)

w(0) = lim £(fn)

n—oo

Of course, this only determines g on open sets. But if p is regular, it is completely
determined by its values on opens sets. We are now ready to start the proof itself. See
the notes “Review of Measure Theory” for a collection of measure theory definitions and
theorems.

Start of the proof of Theorem 4: Define, for any open set O C X,
p*(O)=sup{ €(f) | fEC(X), FIX\O=0,0< f(z)<1lforallzeX }
and, for any A C X,
p*(A) = inf { p*(0) } OCX, Oopen, ACO }
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Lemma 5

(a) u* is a well-defined outer measure on X with p*(A) < 4(1) for all AC X.
(b) p*(A) =inf { p*(0) | O C X, O open, ACO } forall AC X.

(c) If O C X is open, then O is measurable.

(d) If U C X is Borel, then U is measurable.

(¢) If A C X is measurable, then p*(A) =sup { p*(C) | C C A, C compact }.

Proof: (a) This follows almost directly from the definitions and the fact that, since ¢
is a positive linear functional, 0 < ¢(f) < /(1) for any function f € C(X) that obeys
0< f(x)<1lforallxe X.

(b) This is of course part of the definition of p*.

(c) Recall that, by definition, O C X is measurable with respect to p* if we have p*(A) =
p(ANO)+p* (AN (X \O)) for all A C X. Solet A C X. That pu*(A) < p*(ANO) +
p* (AN (X \ 0)) is part of the definition of “outer measure”. So it suffices to prove that,
for any € > 0,

W*(A) 2 1F(ANO) + (AN (X \ 0)) -

So fix any € > 0. The definition of x* is more direct when applied to open sets than
to general sets, so we start by using the following argument to replace the general set A
with an open set A. By the definition of p*(A), there is an open set A C X such that
A C A and p*(A “(A) — £. As A C A, we have that p*(ANO) > p*(ANO) and

)
w(An(X\0)) > \

> W
p* (AN (X \ 0)). So it suffices to prove that

pr(A) > (ANO) + p* (AN (X )\ 0)) - £

Here is the idea of the rest of the proof. We are going to construct three continuous
functions f1, fa, f3 : X — [0,1] and an open set O¢ that contains, but is only a tiny bit
bigger than X \ O (remember that A N (X \ O) is not open), such that

p (AN O) < (f) + 5 f1 nonzero only on ANoO
w (fl N(X\O)) <L(f2)+% f2 nonzero only on Anoe
fa=T i+ /2
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Once we have succeeded in doing so, we have finished, since then f5 is nonzero only on A,
takes values in [0, 1] and is continuous so that

P(ANO) + p (AN (X\O)) < Ufr+ fo) +5=Lf3) +5 < p'(A)+5

So we now only have to construct fi, fs, f3 and Oc. The principal hazard that we
must avoid arises from fact that O and O¢ overlap a bit. So there is a danger that f; + fo
is larger than 1 somewhere on O N Oc. Fortunately, f; is zero on X \ O and all of O N O
is very close to X \ O, so fi is very small on O N O¢. Here are the details.

Since A N O is open, the definition of y*(A N ©) implies that there is a continuous
function F; : X — [0, 1] that is nonzero only on AN O and obeys ,u* (An0O) < K(Fl) + .

Since ¢(F1) < £(1) < oo, we can pick a 6 > 0 such that 1+5€( ) < 55- Set fi = 1+5 Then

pH(ANO) <UF) + & = 5 0(F) + 2350(F) + £ < (fL) + §

Since Fi is continuous and vanishes on X \ (fl N O), there is an open nelghbourhood
Oc of X \ (AN O) > X\ O such that Fy(z) < 6 for = € Oc. Since AN O is open, the
definition of ;* (A N O¢) implies that there is a continuous function Fy : X — [0, 1] that is
nonzero only on A N O¢ and obeys

p (AN (X\0)) < w* (AN G°) < U(Fy) + £ = rh5l(Fs) + LS5 0(F) + § < T50(Fy) +

(@1
AN

Set fo = —25 and f3 = f1 + fo. It remains only to verify that 0 < f3(z) < 1, This follows
from (see the figure below) the facts that
o f1 is nonzero at most on ANO and f2 is nonzero at most on Anoe
o on (Aﬂ(’))ﬁ@z,wehaveFl <0 and F5 < 1 so that f3 = 5+1+5 < %—i—% =1.
o on (AHO)\(/QVC, we have f; <1 and fo =0
o on(/QvC\(/iﬁO),we have fi =0 and f; <1

Oc
ANQO
f1=0 fi<ts f1<1
f2<1 fzﬁl—i(; f2=0

(d) By Carathéodory’s theorem, the set of all measurable sets is always a o—algebra. In
our case it contains all open sets and hence must contain all Borel sets.
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(e) Let A C X be measurable. Then

pr(A) = p(X) = p" (X \ 4)
= p*(X) —inf { u*(O ‘OCX,Oopen,X\ACO}
= pu*(X) - 1nf{u —p* (X \O) | X\ O compact , X\ OCA}
=sup { pu* ‘CCA C compact }

Completion of the proof of Theorem 4: Define i to be the restriction of u* to the
Borel sets. By Carathéodory’s theorem, p is a measure. By parts (b) and (d) of Lemma
5, it is a regular Borel measure. Since pu(X) = p*(X) = £(1), it is a finite measure. That
= [f(x ) is proven in Lemma 6, below.
That Just leaves the uniqueness. If v is a regular Borel measure and /(f) =

[ fz ) for all f € C(X), then we must have
v(0) =sup { {(f) | f € C(X), fFIX\O=0,0< f(z)<1forallze X }=p"(0)=pO)

for all open sets . This was proven in the motivation leading up to the definition of p*.
The regularity of v the forces v(A) = u(A) for all Borel sets A. [ |

Lemma 6 If f € C(X), then
— [ 1) duta)

Proof: We first observe that it suﬁices to prove that £(f) < [ f (z) for all real—
valued f € C(X). (Then ¢(—f) < [(=f)(z) du too, so that o f ff ) for
all real-valued f € C(X).) We then observe that, since pu(X) = ¢(1 ) < 00, it sufﬁces to
consider f > 0. (Otherwise replace f by f + || f]lcc-)

So fix any nonnegative f € C(X) and any n € IN. Define, for each m € IN,

B = ([ %)

This B,, is the intersection of f~ ([—1 oo)), which is closed, and f~! ((—oo, %)), which
is open. So B,, is Borel. Since f is bounded, there is an M € IN such that B,, = () for
all m > M. For each 1 < m < M, there is an open set O,, C X such that B,, C O,,,
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1w(Bm) > w(Op) — =4 and 0 < f [ O, < 2L since i is regular and f is continuous.
Again, for each 1 < m < M, define

dly, X\ On)
M _d(y, X\ On)

hon(y) =

and observe that

M
hn €C(X)  0<hm <1 hy(y)#0 < y€On Y ha(y)=1
m=1

In particular, the denominator Z%:l d(y, X \ Op,) never vanishes because each y € X
is in O,/ for some 1 < m’ < M. (So {hm}1<m<M is a partition of unity. The only reason
that it isn’t subordinate to the open cover {Om}1<m<M of X is that the support of h,, is
O,,.) Hence -

m=1 m=1 m=1 (1)
< | f@) dp(w) + (X)) + max

< / F(@) dp(@) + 2(X) + L (| fllo + 1)

For the first inequality we used the assumption that ¢ is positive. As (1) is true for all
n € IN, we have that ¢(f) < [ f(z) p(z). |
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