
Another Riesz Representation Theorem

In these notes we prove (one version of) a theorem known as the Riesz Representation

Theorem. Some people also call it the Riesz–Markov Theorem. It expresses positive linear

functionals on C(X) as integrals over X . For simplicity, we will here only consider the

case that X is a compact metric space. We denote the metric d(x, y). For more general

versions of the theorem see

◦ Gerald B. Folland, Real Analysis – Modern Techniques and Their Applications, Wiley,

theorems 7.2 and 7.17.

◦ Michael Reed and Barry Simon, Functional Analysis (Methods of modern mathemat-

ical physics, volume 1), Academic Press, theorems IV.14 and IV.18.

◦ H. L. Royden, Real Analysis, Macmillan, chapter 13, sections 4 and 5.

◦ Walter Rudin, Real and Complex Analysis, McGraw–Hill, theorem 2.14.

The background definitions that we need are

Definition 1 C(X) is the Banach space of continuous functions on X with the norm

‖ϕ‖C(X) = supx∈X |ϕ(x)|.

Definition 2 A map ℓ : C(X) → C is a positive linear functional if

(a) ℓ(αϕ+ βψ) = α ℓ(ϕ) + β ℓ(ψ) for all α, β ∈ C and all ϕ, ψ ∈ C(X) and

(b) ℓ(ϕ) ≥ 0 for all ϕ ∈ C(X) that obey ϕ(x) ≥ 0 for all x ∈ X .

Problem 1 Let ℓ : C(X) → C be a positive linear functional. Prove that
∣∣ℓ(ϕ)

∣∣ ≤ ℓ(1) ‖ϕ‖C(X)

for all ϕ ∈ C(X). Here 1 is of course the function on X that always takes the value 1.

Definition 3

(a) The set, BX , of Borel subsets of X is the smallest σ–algebra that contains all open

subsets of X .

(b) A Borel measure on X is a measure µ : BX → [0,∞].

(c) A Borel measure µ on X is said to be regular if, for all A ∈ BX ,

(i) µ(A) = inf
{
µ(O)

∣∣ A ⊂ O, O open
}

(ii) µ(A) = sup
{
µ(C)

∣∣ C ⊂ A, C compact
}

We shall prove
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Theorem 4 (Riesz Representation) Let X be a compact metric space. If ℓ : C(X) → C

is a positive linear functional on C(X), then there exists a unique regular Borel measure

µ on X such that

ℓ(f) =

∫
f(x) dµ(x)

The measure µ is finite.

Motivation: By way of motivation for the proof, let’s guess what the measure is. To

do so, we pretend that we already have a measure µ with ℓ(f) =
∫
f(x) dµ(x) and derive

a formula for µ in terms of ℓ. We start off by considering any open O ⊂ X . Of course

µ(O) =
∫
X
χO(x) dµ(x). As the characteristic function χO is not continuous, we cannot

express µ(O) = ℓ(χO). But we can express χO as a limit of continuous functions. For each

n ∈ IN, set

fn(x) =





0 if x ∈ X \ O

n d
(
x,X \ O) if x ∈ O and d(x,X \ O) ≤ 1

n

1 if x ∈ O and d(x,X \ O) ≥ 1
n

This is a sequence of continuous functions on X with

◦ 0 ≤ fn(x) ≤ 1 for all n ∈ IN and x ∈ X and

◦ fn ↾X \ O = 0 for all n ∈ IN. Here “↾” means “restricted to”.

◦ Because O is open, X \ O is compact, so that, for each x ∈ O,

∗ d(x,X \ O) > 0 and

∗ fn(x) = 1 for all n ≥ 1
d(x,X\O)

.

Consequently, lim
n→∞

fn(x) = χO(x) for all x ∈ X .

So by the dominated convergence theorem (or, if you prefer, the monotone convergence

theorem)

µ(O) = lim
n→∞

ℓ(fn)

Of course, this only determines µ on open sets. But if µ is regular, it is completely

determined by its values on opens sets. We are now ready to start the proof itself. See

the notes “Review of Measure Theory” for a collection of measure theory definitions and

theorems.

Start of the proof of Theorem 4: Define, for any open set O ⊂ X ,

µ∗(O) = sup
{
ℓ(f)

∣∣ f ∈ C(X), f ↾X \ O = 0, 0 ≤ f(x) ≤ 1 for all x ∈ X
}

and, for any A ⊂ X ,

µ∗(A) = inf
{
µ∗(O)

∣∣ O ⊂ X, O open , A ⊂ O
}
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Lemma 5

(a) µ∗ is a well–defined outer measure on X with µ∗(A) ≤ ℓ(1) for all A ⊂ X.

(b) µ∗(A) = inf
{
µ∗(O)

∣∣ O ⊂ X, O open , A ⊂ O
}
for all A ⊂ X.

(c) If O ⊂ X is open, then O is measurable.

(d) If U ⊂ X is Borel, then U is measurable.

(e) If A ⊂ X is measurable, then µ∗(A) = sup
{
µ∗(C)

∣∣ C ⊂ A, C compact
}
.

Proof: (a) This follows almost directly from the definitions and the fact that, since ℓ

is a positive linear functional, 0 ≤ ℓ(f) ≤ ℓ(1) for any function f ∈ C(X) that obeys

0 ≤ f(x) ≤ 1 for all x ∈ X .

(b) This is of course part of the definition of µ∗.

(c) Recall that, by definition, O ⊂ X is measurable with respect to µ∗ if we have µ∗(A) =

µ∗(A ∩ O) + µ∗
(
A ∩ (X \ O)

)
for all A ⊂ X . So let A ⊂ X . That µ∗(A) ≤ µ∗(A ∩ O) +

µ∗
(
A ∩ (X \ O)

)
is part of the definition of “outer measure”. So it suffices to prove that,

for any ε > 0,

µ∗(A) ≥ µ∗(A ∩ O) + µ∗
(
A ∩ (X \ O)

)
− ε

So fix any ε > 0. The definition of µ∗ is more direct when applied to open sets than

to general sets, so we start by using the following argument to replace the general set A

with an open set Ã. By the definition of µ∗(A), there is an open set Ã ⊂ X such that

A ⊂ Ã and µ∗(A) ≥ µ∗(Ã) − ε
2 . As A ⊂ Ã, we have that µ∗(Ã ∩ O) ≥ µ∗(A ∩ O) and

µ∗
(
Ã ∩ (X \ O)

)
≥ µ∗

(
A ∩ (X \ O)

)
. So it suffices to prove that

µ∗(Ã) ≥ µ∗(Ã ∩O) + µ∗
(
Ã ∩ (X \ O)

)
− ε

2

Here is the idea of the rest of the proof. We are going to construct three continuous

functions f1, f2, f3 : X → [0, 1] and an open set Õc that contains, but is only a tiny bit

bigger than X \ O (remember that Ã ∩ (X \ O) is not open), such that

µ∗(Ã ∩ O) ≤ ℓ(f1) +
ε
4

f1 nonzero only on Ã ∩O

µ∗
(
Ã ∩ (X \ O)

)
≤ ℓ(f2) +

ε
4 f2 nonzero only on Ã ∩ Õc

f3 = f1 + f2
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Once we have succeeded in doing so, we have finished, since then f3 is nonzero only on Ã,

takes values in [0, 1] and is continuous so that

µ∗(Ã ∩ O) + µ∗
(
Ã ∩ (X \ O)

)
≤ ℓ(f1 + f2) +

ε
2 = ℓ(f3) +

ε
2 ≤ µ∗(Ã) + ε

2

So we now only have to construct f1, f2, f3 and Õc. The principal hazard that we

must avoid arises from fact that O and Õc overlap a bit. So there is a danger that f1 + f2

is larger than 1 somewhere on O ∩ Õc. Fortunately, f1 is zero on X \ O and all of O ∩ Õc

is very close to X \ O, so f1 is very small on O ∩ Õc. Here are the details.

Since Ã ∩ O is open, the definition of µ∗(Ã ∩ O) implies that there is a continuous

function F1 : X → [0, 1] that is nonzero only on Ã ∩O and obeys µ∗(Ã ∩ O) ≤ ℓ(F1) +
ε
5 .

Since ℓ(F1) ≤ ℓ(1) <∞, we can pick a δ > 0 such that δ
1+δ

ℓ(1) ≤ ε
20
. Set f1 = F1

1+δ
. Then

µ∗(Ã ∩ O) ≤ ℓ(F1) +
ε
5 = 1

1+δ
ℓ(F1) +

δ
1+δ

ℓ(F1) +
ε
5 ≤ ℓ(f1) +

ε
4

Since F1 is continuous and vanishes on X \ (Ã ∩ O), there is an open neighbourhood

Õc of X \ (Ã ∩ O) ⊃ X \ O such that F1(x) ≤ δ for x ∈ Õc. Since Ã ∩ Õc is open, the

definition of µ∗(Ã ∩ Õc) implies that there is a continuous function F2 : X → [0, 1] that is

nonzero only on Ã ∩ Õc and obeys

µ∗
(
Ã ∩ (X \ O)

)
≤ µ∗(Ã ∩ Õc) ≤ ℓ(F2) +

ε
5
= 1

1+δ
ℓ(F2) +

δ
1+δ

ℓ(F2) +
ε
5
≤ 1

1+δ
ℓ(F2) +

ε
4

Set f2 = F2

1+δ
and f3 = f1 + f2. It remains only to verify that 0 ≤ f3(x) ≤ 1, This follows

from (see the figure below) the facts that

◦ f1 is nonzero at most on Ã ∩ O and f2 is nonzero at most on Ã ∩ Õc

◦ on (Ã∩O)∩Õc, we have F1 ≤ δ and F2 ≤ 1 so that f3 = F1

1+δ
+ F2

1+δ
≤ δ

1+δ
+ 1

1+δ
= 1.

◦ on (Ã ∩ O) \ Õc, we have f1 ≤ 1 and f2 = 0

◦ on Õc \ (Ã ∩ O), we have f1 = 0 and f2 ≤ 1

Õc

f1=0
f2≤1

f1≤1
f2=0

Ã ∩O

f1≤
δ

1+δ

f2≤
1

1+δ

(d) By Carathéodory’s theorem, the set of all measurable sets is always a σ–algebra. In

our case it contains all open sets and hence must contain all Borel sets.

October 9, 2018 Another Riesz Representation Theorem 4



(e) Let A ⊂ X be measurable. Then

µ∗(A) = µ∗(X)− µ∗(X \A)

= µ∗(X)− inf
{
µ∗(O)

∣∣ O ⊂ X, O open , X \A ⊂ O
}

= µ∗(X)− inf
{
µ∗(X)− µ∗(X \ O)

∣∣ X \ O compact , X \ O ⊂ A
}

= sup
{
µ∗(C)

∣∣ C ⊂ A, C compact
}

Completion of the proof of Theorem 4: Define µ to be the restriction of µ∗ to the

Borel sets. By Carathéodory’s theorem, µ is a measure. By parts (b) and (d) of Lemma

5, it is a regular Borel measure. Since µ(X) = µ∗(X) = ℓ(1), it is a finite measure. That

ℓ(f) =
∫
f(x) dµ(x) is proven in Lemma 6, below.

That just leaves the uniqueness. If ν is a regular Borel measure and ℓ(f) =∫
f(x) dν(x) for all f ∈ C(X), then we must have

ν(O) = sup
{
ℓ(f)

∣∣ f ∈ C(X), f↾X\O = 0, 0 ≤ f(x) ≤ 1 for all x ∈ X
}
= µ∗(O) = µ(O)

for all open sets O. This was proven in the motivation leading up to the definition of µ∗.

The regularity of ν the forces ν(A) = µ(A) for all Borel sets A.

Lemma 6 If f ∈ C(X), then

ℓ(f) =

∫
f(x) dµ(x)

Proof: We first observe that it suffices to prove that ℓ(f) ≤
∫
f(x) dµ(x) for all real–

valued f ∈ C(X). (Then ℓ(−f) ≤
∫
(−f)(x) dµ too, so that ℓ(f) =

∫
f(x) dµ(x) for

all real–valued f ∈ C(X).) We then observe that, since µ(X) = ℓ(1) < ∞, it suffices to

consider f ≥ 0. (Otherwise replace f by f + ‖f‖∞.)

So fix any nonnegative f ∈ C(X) and any n ∈ IN. Define, for each m ∈ IN,

Bm = f−1
([

m−1
n
, m
n

))

This Bm is the intersection of f−1
([

m−1
n
,∞

))
, which is closed, and f−1

((
−∞, m

n

))
, which

is open. So Bm is Borel. Since f is bounded, there is an M ∈ IN such that Bm = ∅ for

all m > M . For each 1 ≤ m ≤ M , there is an open set Om ⊂ X such that Bm ⊂ Om,
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µ(Bm) ≥ µ(Om) − 1
nM

and 0 ≤ f ↾ Om ≤ m+1
n

, since µ is regular and f is continuous.

Again, for each 1 ≤ m ≤M , define

hm(y) =
d(y , X \ Om)

∑M
m′=1 d(y , X \ Om′)

and observe that

hm ∈ C(X) 0 ≤ hm ≤ 1 hm(y) 6= 0 ⇐⇒ y ∈ Om

M∑

m=1

hm(y) = 1

In particular, the denominator
∑M

m′=1 d(y , X \ Om′) never vanishes because each y ∈ X

is in Om′ for some 1 ≤ m′ ≤M . (So
{
hm

}
1≤m≤M

is a partition of unity. The only reason

that it isn’t subordinate to the open cover
{
Om

}
1≤m≤M

of X is that the support of hm is

Om.) Hence

ℓ(f) =

M∑

m=1

ℓ
(
hmf

)
≤

M∑

m=1

m+1
n
ℓ
(
hm

)
≤

M∑

m=1

m+1
n
µ(Om) ≤

M∑

m=1

m+1
n

[
µ(Bm) + 1

nM

]

=
M∑

m=1

m−1
n
µ(Bm) + 2

n

M∑

m=1

µ(Bm) +
M∑

m=1

m+1
n2M

≤

∫
f(x) dµ(x) + 2

n
µ(X) + max

1≤m≤M

m+1
n2

≤

∫
f(x) dµ(x) + 2

n
µ(X) + 1

n

(
‖f‖∞ + 1

n

)

(1)

For the first inequality we used the assumption that ℓ is positive. As (1) is true for all

n ∈ IN, we have that ℓ(f) ≤
∫
f(x) µ(x).
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