

Another Riesz Representation Theorem

In these notes we prove (one version of) a theorem known as the Riesz Representation Theorem. Some people also call it the Riesz–Markov Theorem. It expresses positive linear functionals on $C(X)$ as integrals over X . For simplicity, we will here only consider the case that X is a compact metric space. We denote the metric $d(x, y)$. For more general versions of the theorem see

- Gerald B. Folland, *Real Analysis – Modern Techniques and Their Applications*, Wiley, theorems 7.2 and 7.17.
- Michael Reed and Barry Simon, *Functional Analysis (Methods of modern mathematical physics, volume 1)*, Academic Press, theorems IV.14 and IV.18.
- H. L. Royden, *Real Analysis*, Macmillan, chapter 13, sections 4 and 5.
- Walter Rudin, *Real and Complex Analysis*, McGraw–Hill, theorem 2.14.

The background definitions that we need are

Definition 1 $C(X)$ is the Banach space of continuous functions on X with the norm $\|\varphi\|_{C(X)} = \sup_{x \in X} |\varphi(x)|$.

Definition 2 A map $\ell : C(X) \rightarrow \mathbb{C}$ is a *positive linear functional* if

- (a) $\ell(\alpha\varphi + \beta\psi) = \alpha\ell(\varphi) + \beta\ell(\psi)$ for all $\alpha, \beta \in \mathbb{C}$ and all $\varphi, \psi \in C(X)$ and
- (b) $\ell(\varphi) \geq 0$ for all $\varphi \in C(X)$ that obey $\varphi(x) \geq 0$ for all $x \in X$.

Problem 1 Let $\ell : C(X) \rightarrow \mathbb{C}$ be a positive linear functional. Prove that

$$|\ell(\varphi)| \leq \ell(1) \|\varphi\|_{C(X)}$$

for all $\varphi \in C(X)$. Here 1 is of course the function on X that always takes the value 1.

Definition 3

- (a) The set, \mathcal{B}_X , of *Borel subsets* of X is the smallest σ –algebra that contains all open subsets of X .
- (b) A *Borel measure* on X is a measure $\mu : \mathcal{B}_X \rightarrow [0, \infty]$.
- (c) A Borel measure μ on X is said to be *regular* if, for all $A \in \mathcal{B}_X$,
 - (i) $\mu(A) = \inf \{ \mu(\mathcal{O}) \mid A \subset \mathcal{O}, \mathcal{O} \text{ open} \}$
 - (ii) $\mu(A) = \sup \{ \mu(C) \mid C \subset A, C \text{ compact} \}$

We shall prove

Theorem 4 (Riesz Representation) *Let X be a compact metric space. If $\ell : C(X) \rightarrow \mathbb{C}$ is a positive linear functional on $C(X)$, then there exists a unique regular Borel measure μ on X such that*

$$\ell(f) = \int f(x) \, d\mu(x)$$

The measure μ is finite.

Motivation: By way of motivation for the proof, let's guess what the measure is. To do so, we pretend that we already have a measure μ with $\ell(f) = \int f(x) \, d\mu(x)$ and derive a formula for μ in terms of ℓ . We start off by considering any open $\mathcal{O} \subset X$. Of course $\mu(\mathcal{O}) = \int_X \chi_{\mathcal{O}}(x) \, d\mu(x)$. As the characteristic function $\chi_{\mathcal{O}}$ is not continuous, we cannot express $\mu(\mathcal{O}) = \ell(\chi_{\mathcal{O}})$. But we can express $\chi_{\mathcal{O}}$ as a limit of continuous functions. For each $n \in \mathbb{N}$, set

$$f_n(x) = \begin{cases} 0 & \text{if } x \in X \setminus \mathcal{O} \\ n d(x, X \setminus \mathcal{O}) & \text{if } x \in \mathcal{O} \text{ and } d(x, X \setminus \mathcal{O}) \leq \frac{1}{n} \\ 1 & \text{if } x \in \mathcal{O} \text{ and } d(x, X \setminus \mathcal{O}) \geq \frac{1}{n} \end{cases}$$

This is a sequence of continuous functions on X with

- $0 \leq f_n(x) \leq 1$ for all $n \in \mathbb{N}$ and $x \in X$ and
- $f_n|_{X \setminus \mathcal{O}} = 0$ for all $n \in \mathbb{N}$. Here “|” means “restricted to”.
- Because \mathcal{O} is open, $X \setminus \mathcal{O}$ is compact, so that, for each $x \in \mathcal{O}$,
 - * $d(x, X \setminus \mathcal{O}) > 0$ and
 - * $f_n(x) = 1$ for all $n \geq \frac{1}{d(x, X \setminus \mathcal{O})}$.

Consequently, $\lim_{n \rightarrow \infty} f_n(x) = \chi_{\mathcal{O}}(x)$ for all $x \in X$.

So by the dominated convergence theorem (or, if you prefer, the monotone convergence theorem)

$$\mu(\mathcal{O}) = \lim_{n \rightarrow \infty} \ell(f_n)$$

Of course, this only determines μ on open sets. But if μ is regular, it is completely determined by its values on open sets. We are now ready to start the proof itself. See the notes “Review of Measure Theory” for a collection of measure theory definitions and theorems.

Start of the proof of Theorem 4: Define, for any open set $\mathcal{O} \subset X$,

$$\mu^*(\mathcal{O}) = \sup \{ \ell(f) \mid f \in C(X), f|_{X \setminus \mathcal{O}} = 0, 0 \leq f(x) \leq 1 \text{ for all } x \in X \}$$

and, for any $A \subset X$,

$$\mu^*(A) = \inf \{ \mu^*(\mathcal{O}) \mid \mathcal{O} \subset X, \mathcal{O} \text{ open}, A \subset \mathcal{O} \}$$

Lemma 5

- (a) μ^* is a well-defined outer measure on X with $\mu^*(A) \leq \ell(1)$ for all $A \subset X$.
- (b) $\mu^*(A) = \inf \{ \mu^*(\mathcal{O}) \mid \mathcal{O} \subset X, \mathcal{O} \text{ open}, A \subset \mathcal{O} \}$ for all $A \subset X$.
- (c) If $\mathcal{O} \subset \mathcal{X}$ is open, then \mathcal{O} is measurable.
- (d) If $\mathcal{U} \subset \mathcal{X}$ is Borel, then \mathcal{U} is measurable.
- (e) If $A \subset \mathcal{X}$ is measurable, then $\mu^*(A) = \sup \{ \mu^*(C) \mid C \subset A, C \text{ compact} \}$.

Proof: (a) This follows almost directly from the definitions and the fact that, since ℓ is a positive linear functional, $0 \leq \ell(f) \leq \ell(1)$ for any function $f \in C(X)$ that obeys $0 \leq f(x) \leq 1$ for all $x \in X$.

(b) This is of course part of the definition of μ^* .

(c) Recall that, by definition, $\mathcal{O} \subset X$ is measurable with respect to μ^* if we have $\mu^*(A) = \mu^*(A \cap \mathcal{O}) + \mu^*(A \cap (X \setminus \mathcal{O}))$ for all $A \subset X$. So let $A \subset \mathcal{X}$. That $\mu^*(A) \leq \mu^*(A \cap \mathcal{O}) + \mu^*(A \cap (X \setminus \mathcal{O}))$ is part of the definition of “outer measure”. So it suffices to prove that, for any $\varepsilon > 0$,

$$\mu^*(A) \geq \mu^*(A \cap \mathcal{O}) + \mu^*(A \cap (X \setminus \mathcal{O})) - \varepsilon$$

So fix any $\varepsilon > 0$. The definition of μ^* is more direct when applied to open sets than to general sets, so we start by using the following argument to replace the general set A with an open set \tilde{A} . By the definition of $\mu^*(A)$, there is an open set $\tilde{A} \subset X$ such that $A \subset \tilde{A}$ and $\mu^*(A) \geq \mu^*(\tilde{A}) - \frac{\varepsilon}{2}$. As $A \subset \tilde{A}$, we have that $\mu^*(\tilde{A} \cap \mathcal{O}) \geq \mu^*(A \cap \mathcal{O})$ and $\mu^*(\tilde{A} \cap (X \setminus \mathcal{O})) \geq \mu^*(A \cap (X \setminus \mathcal{O}))$. So it suffices to prove that

$$\mu^*(\tilde{A}) \geq \mu^*(\tilde{A} \cap \mathcal{O}) + \mu^*(\tilde{A} \cap (X \setminus \mathcal{O})) - \frac{\varepsilon}{2}$$

Here is the idea of the rest of the proof. We are going to construct three continuous functions $f_1, f_2, f_3 : X \rightarrow [0, 1]$ and an open set $\widetilde{\mathcal{O}}^c$ that contains, but is only a tiny bit bigger than $X \setminus \mathcal{O}$ (remember that $\tilde{A} \cap (X \setminus \mathcal{O})$ is not open), such that

$$\begin{aligned} \mu^*(\tilde{A} \cap \mathcal{O}) &\leq \ell(f_1) + \frac{\varepsilon}{4} & f_1 \text{ nonzero only on } \tilde{A} \cap \mathcal{O} \\ \mu^*(\tilde{A} \cap (X \setminus \mathcal{O})) &\leq \ell(f_2) + \frac{\varepsilon}{4} & f_2 \text{ nonzero only on } \tilde{A} \cap \widetilde{\mathcal{O}}^c \\ f_3 &= f_1 + f_2 \end{aligned}$$

Once we have succeeded in doing so, we have finished, since then f_3 is nonzero only on \tilde{A} , takes values in $[0, 1]$ and is continuous so that

$$\mu^*(\tilde{A} \cap \mathcal{O}) + \mu^*(\tilde{A} \cap (X \setminus \mathcal{O})) \leq \ell(f_1 + f_2) + \frac{\varepsilon}{2} = \ell(f_3) + \frac{\varepsilon}{2} \leq \mu^*(\tilde{A}) + \frac{\varepsilon}{2}$$

So we now only have to construct f_1 , f_2 , f_3 and $\tilde{\mathcal{O}}^c$. The principal hazard that we must avoid arises from fact that \mathcal{O} and $\tilde{\mathcal{O}}^c$ overlap a bit. So there is a danger that $f_1 + f_2$ is larger than 1 somewhere on $\mathcal{O} \cap \tilde{\mathcal{O}}^c$. Fortunately, f_1 is zero on $X \setminus \mathcal{O}$ and all of $\mathcal{O} \cap \tilde{\mathcal{O}}^c$ is very close to $X \setminus \mathcal{O}$, so f_1 is very small on $\mathcal{O} \cap \tilde{\mathcal{O}}^c$. Here are the details.

Since $\tilde{A} \cap \mathcal{O}$ is open, the definition of $\mu^*(\tilde{A} \cap \mathcal{O})$ implies that there is a continuous function $F_1 : X \rightarrow [0, 1]$ that is nonzero only on $\tilde{A} \cap \mathcal{O}$ and obeys $\mu^*(\tilde{A} \cap \mathcal{O}) \leq \ell(F_1) + \frac{\varepsilon}{5}$. Since $\ell(F_1) \leq \ell(1) < \infty$, we can pick a $\delta > 0$ such that $\frac{\delta}{1+\delta} \ell(1) \leq \frac{\varepsilon}{20}$. Set $f_1 = \frac{F_1}{1+\delta}$. Then

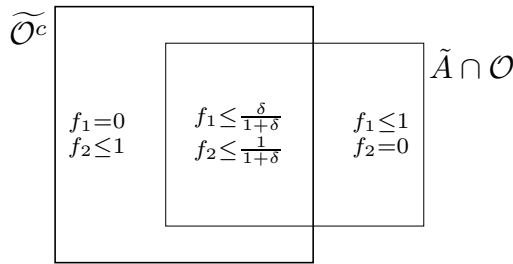
$$\mu^*(\tilde{A} \cap \mathcal{O}) \leq \ell(F_1) + \frac{\varepsilon}{5} = \frac{1}{1+\delta} \ell(F_1) + \frac{\delta}{1+\delta} \ell(F_1) + \frac{\varepsilon}{5} \leq \ell(f_1) + \frac{\varepsilon}{4}$$

Since F_1 is continuous and vanishes on $X \setminus (\tilde{A} \cap \mathcal{O})$, there is an open neighbourhood $\tilde{\mathcal{O}}^c$ of $X \setminus (\tilde{A} \cap \mathcal{O}) \supset X \setminus \mathcal{O}$ such that $F_1(x) \leq \delta$ for $x \in \tilde{\mathcal{O}}^c$. Since $\tilde{A} \cap \tilde{\mathcal{O}}^c$ is open, the definition of $\mu^*(\tilde{A} \cap \tilde{\mathcal{O}}^c)$ implies that there is a continuous function $F_2 : X \rightarrow [0, 1]$ that is nonzero only on $\tilde{A} \cap \tilde{\mathcal{O}}^c$ and obeys

$$\mu^*(\tilde{A} \cap (X \setminus \mathcal{O})) \leq \mu^*(\tilde{A} \cap \tilde{\mathcal{O}}^c) \leq \ell(F_2) + \frac{\varepsilon}{5} = \frac{1}{1+\delta} \ell(F_2) + \frac{\delta}{1+\delta} \ell(F_2) + \frac{\varepsilon}{5} \leq \frac{1}{1+\delta} \ell(F_2) + \frac{\varepsilon}{4}$$

Set $f_2 = \frac{F_2}{1+\delta}$ and $f_3 = f_1 + f_2$. It remains only to verify that $0 \leq f_3(x) \leq 1$, This follows from (see the figure below) the facts that

- f_1 is nonzero at most on $\tilde{A} \cap \mathcal{O}$ and f_2 is nonzero at most on $\tilde{A} \cap \tilde{\mathcal{O}}^c$
- on $(\tilde{A} \cap \mathcal{O}) \cap \tilde{\mathcal{O}}^c$, we have $F_1 \leq \delta$ and $F_2 \leq 1$ so that $f_3 = \frac{F_1}{1+\delta} + \frac{F_2}{1+\delta} \leq \frac{\delta}{1+\delta} + \frac{1}{1+\delta} = 1$.
- on $(\tilde{A} \cap \mathcal{O}) \setminus \tilde{\mathcal{O}}^c$, we have $f_1 \leq 1$ and $f_2 = 0$
- on $\tilde{\mathcal{O}}^c \setminus (\tilde{A} \cap \mathcal{O})$, we have $f_1 = 0$ and $f_2 \leq 1$



(d) By Carathéodory's theorem, the set of all measurable sets is always a σ -algebra. In our case it contains all open sets and hence must contain all Borel sets.

(e) Let $A \subset X$ be measurable. Then

$$\begin{aligned}
\mu^*(A) &= \mu^*(X) - \mu^*(X \setminus A) \\
&= \mu^*(X) - \inf \{ \mu^*(\mathcal{O}) \mid \mathcal{O} \subset X, \mathcal{O} \text{ open}, X \setminus A \subset \mathcal{O} \} \\
&= \mu^*(X) - \inf \{ \mu^*(X) - \mu^*(X \setminus \mathcal{O}) \mid X \setminus \mathcal{O} \text{ compact}, X \setminus \mathcal{O} \subset A \} \\
&= \sup \{ \mu^*(C) \mid C \subset A, C \text{ compact} \}
\end{aligned}$$

■

Completion of the proof of Theorem 4: Define μ to be the restriction of μ^* to the Borel sets. By Carathéodory's theorem, μ is a measure. By parts (b) and (d) of Lemma 5, it is a regular Borel measure. Since $\mu(X) = \mu^*(X) = \ell(1)$, it is a finite measure. That $\ell(f) = \int f(x) d\mu(x)$ is proven in Lemma 6, below.

That just leaves the uniqueness. If ν is a regular Borel measure and $\ell(f) = \int f(x) d\nu(x)$ for all $f \in C(X)$, then we must have

$$\nu(\mathcal{O}) = \sup \{ \ell(f) \mid f \in C(X), f \upharpoonright X \setminus \mathcal{O} = 0, 0 \leq f(x) \leq 1 \text{ for all } x \in X \} = \mu^*(\mathcal{O}) = \mu(\mathcal{O})$$

for all open sets \mathcal{O} . This was proven in the motivation leading up to the definition of μ^* . The regularity of ν forces $\nu(A) = \mu(A)$ for all Borel sets A . ■

Lemma 6 *If $f \in C(X)$, then*

$$\ell(f) = \int f(x) d\mu(x)$$

Proof: We first observe that it suffices to prove that $\ell(f) \leq \int f(x) d\mu(x)$ for all real-valued $f \in C(X)$. (Then $\ell(-f) \leq \int (-f)(x) d\mu$ too, so that $\ell(f) = \int f(x) d\mu(x)$ for all real-valued $f \in C(X)$.) We then observe that, since $\mu(X) = \ell(1) < \infty$, it suffices to consider $f \geq 0$. (Otherwise replace f by $f + \|f\|_\infty$.)

So fix any nonnegative $f \in C(X)$ and any $n \in \mathbb{N}$. Define, for each $m \in \mathbb{N}$,

$$\mathcal{B}_m = f^{-1}\left(\left[\frac{m-1}{n}, \frac{m}{n}\right)\right)$$

This \mathcal{B}_m is the intersection of $f^{-1}\left(\left[\frac{m-1}{n}, \infty\right)\right)$, which is closed, and $f^{-1}\left((-\infty, \frac{m}{n})\right)$, which is open. So \mathcal{B}_m is Borel. Since f is bounded, there is an $M \in \mathbb{N}$ such that $\mathcal{B}_m = \emptyset$ for all $m > M$. For each $1 \leq m \leq M$, there is an open set $\mathcal{O}_m \subset X$ such that $\mathcal{B}_m \subset \mathcal{O}_m$,

$\mu(\mathcal{B}_m) \geq \mu(\mathcal{O}_m) - \frac{1}{nM}$ and $0 \leq f \upharpoonright \mathcal{O}_m \leq \frac{m+1}{n}$, since μ is regular and f is continuous. Again, for each $1 \leq m \leq M$, define

$$h_m(y) = \frac{d(y, X \setminus \mathcal{O}_m)}{\sum_{m'=1}^M d(y, X \setminus \mathcal{O}_{m'})}$$

and observe that

$$h_m \in C(X) \quad 0 \leq h_m \leq 1 \quad h_m(y) \neq 0 \iff y \in \mathcal{O}_m \quad \sum_{m=1}^M h_m(y) = 1$$

In particular, the denominator $\sum_{m'=1}^M d(y, X \setminus \mathcal{O}_{m'})$ never vanishes because each $y \in X$ is in $\mathcal{O}_{m'}$ for some $1 \leq m' \leq M$. (So $\{h_m\}_{1 \leq m \leq M}$ is a partition of unity. The only reason that it isn't subordinate to the open cover $\{\mathcal{O}_m\}_{1 \leq m \leq M}$ of X is that the support of h_m is $\overline{\mathcal{O}_m}$.) Hence

$$\begin{aligned} \ell(f) &= \sum_{m=1}^M \ell(h_m f) \leq \sum_{m=1}^M \frac{m+1}{n} \ell(h_m) \leq \sum_{m=1}^M \frac{m+1}{n} \mu(\mathcal{O}_m) \leq \sum_{m=1}^M \frac{m+1}{n} \left[\mu(\mathcal{B}_m) + \frac{1}{nM} \right] \\ &= \sum_{m=1}^M \frac{m-1}{n} \mu(\mathcal{B}_m) + \frac{2}{n} \sum_{m=1}^M \mu(\mathcal{B}_m) + \sum_{m=1}^M \frac{m+1}{n^2 M} \\ &\leq \int f(x) d\mu(x) + \frac{2}{n} \mu(X) + \max_{1 \leq m \leq M} \frac{m+1}{n^2} \\ &\leq \int f(x) d\mu(x) + \frac{2}{n} \mu(X) + \frac{1}{n} (\|f\|_\infty + \frac{1}{n}) \end{aligned} \tag{1}$$

For the first inequality we used the assumption that ℓ is positive. As (1) is true for all $n \in \mathbb{N}$, we have that $\ell(f) \leq \int f(x) \mu(x)$. ■