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Basic Non-Relativistic Quantum Mechanics

A physical system is described by a Hilbert space H and a collection of self-adjoint operators

on H.

Every one dimensional subspace of H represents a possible state of the system. We may

represent a state by a unit vector ψ ∈ H, keeping in mind that ψ and eiθψ represent the same

state.

Observables are measurable quantities such as position, momentum or energy. They are repre-

sented by (possibly unbounded) self-adjoint operators.

Suppose A is a self-adjoint operator representing, say, potential energy. By the spectral

theorem, there is a unitary transformation from H to L2(X, dµ) so that UAU∗ is multiplication

by f(x). Under this unitary equivalence, every state ψ ∈ H corresponds to a function ψ(x) ∈

L2(X, dµ) with
∫

X

|ψ(x)|2dµ(x) = 1

Thus |ψ(x)|2dµ(x) is a probability measure. Let dνψ denote its push forward, via f , to the real

line. Then dνψ is the probability distribution for the potential energy. In other words, the quantity
∫

Ω

dνψ =

∫

f−1(Ω)

|ψ(x)|2dµ(x)

is the probability that a measurement of potential energy when the system is in the state ψ will

lie in the set Ω ⊂ R. Notice that dνψ is supported on the spectrum σ(A) of A. To see this recall

that the spectrum of A is equal to the range of values taken on by f . Therefore, if Ω has empty

intersections with σ(A) then f−1(Ω) = ∅ and the integral above is equal to zero.

The nature of the spectrum of A is reflected in the possible outcomes when measuring A. For

example, if A has discrete spectrum, then a measurement of A will produce one of only a discrete

set of values.

The probability distribution dνψ can be used to compute other quantities of physical interest.

For example, the expected value of the potential energy in the state ψ is
∫

R

λdνψ(λ) =

∫

X

f(x)|ψ(x)|2dµ(x) = 〈ψ,Aψ〉.

In fact, for any Borel function g, the expectation of g(A) is
∫

R

g(λ)dνψ(λ) =

∫

X

g(f(x))|ψ(x)|2dµ(x) = 〈ψ, g(A)ψ〉.
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In particular, if we set g to be the indicator function for an interval, we obtain the probability that

the system has its potential energy in that interval when it is in the state ψ.

It is conceptually important to realize that the probabilistic distribution of values of an ob-

servable in a given state does not arise from incomplete knowledge of the state, but is inherent in

the quantum description. (It is also possible to give a quantum description of a situation where

only partial information is known by considering mixed states. In this case, probability enters the

theory in two distinct ways.)

Time evolution

The total energy of system is a distinguished observable H called the Hamiltonian. It governs

the time evolution of states. If the system is in the state ψ0 at time t = 0, then the state ψ(t) at

future times is given (formally) by the solution of the time dependent Schrödinger equation

iψ′(t) = Hψ(t)

with initial condition ψ(0) = ψ0. Thus formally

ψ(t) = e−iHtψ0.

But this is a meaningful formula, by the spectral theorem. So we define this to be the time evolution

generated by the Hamiltonian H . The precise relationship between it and the Schrödinger equation

is given by Stone’s theorem below.

Actually, there is a second way in which the state of a system may change. This happens

whenever a measurement is made. This “collapse of the wave packet” leads to serious philosophical

difficulties. These are usually dealt with by ignoring them completely.

Stone’s theorem

A strongly continuous, one-parameter group of unitary transformations is a map U(t) from R

into the unitary operators on a Hilbert H space satisfying

(i) t 7→ U(t)ψ is continuous in H for every ψ ∈ H

(ii) U(t+ s) = U(t)U(s)

Every self-adjoint operator A defines a strongly continuous, one-parameter group of unitary

transformations given by e−itA. To see this, use the spectral theorem to diagonalize A. Then e−itA

becomes multiplication by e−itf(x) on L2(X, dµ). This is clearly unitary and satisfies (ii). To prove
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strong continuity, notice that |e−iεf(x)−1|2 tends to zero pointwise as ε→ 0, and |e−iεf(x)−1|2 ≤ 4.

Thus,

lim
ε→0

‖e−i(t+ε)Aψ − e−itAψ‖2 = lim
ε→0

∫

X

|
(

e−i(t+ε)f(x) − e−itf(x)
)

ψ(x)|2dµ(x)

= lim
ε→0

∫

X

|e−iεf(x) − 1|2|ψ(x)|2dµ(x)

= 0

by the dominated convergence theorem.

Even though e−itAψ is defined and continuous as a function of t for every ψ ∈ H, it may not

be differentiable in t.

Lemma 1.1 LetA be a selfadjoint operator with domain D(A). Then e−itAψ is differentiable in t if and only

if ψ ∈ D(A). In this case
d

dt
e−itAψ = −iAe−itAψ

So even though the equation only makes sense if ψ ∈ D(A), the solution e−itAψ makes sense

for all initial conditions ψ. To illustrate this point, consider A = −id/dx acting in L2(R). Then

the equation

i
dψ

dt
= Aψ = −i

dψ

dx

with initial condition some differentiable function ψ0 has solution ψ0(x − t) since

dψ

dt
= −ψ′0(x− t) = −

dψ

dx

So, the equation only makes sense for suitably differentiable initial conditions, for which ψ′0 has

a meaning. However the solution (e−itAψ0)(x) = ψ0(x − t) makes sense for any ψ0 ∈ L2(R) and

defines a strongly continuous unitary group of transformations.

Stone’s theorem asserts that all one-parameter groups of unitary transformations are given by

self-adjoint operators.

Theorem 1.2 (Stone’s theorem) Every strongly continuous, one-parameter group of unitary transfor-

mations is given by e−itA for some self-adjoint operator A.

This theorem shows that if a symmetric operator has different self-adjoint extensions, then

these extensions will generate different dynamics.

This can be illustrated by the symmetric operator A = −id/dx acting in L2([0, 1], dx) with

domain C∞0 . Different self-adjoint extensions Aα correspond to the boundary conditions ψ(0) =

eiαψ(1). The group e−iAαt acts by shifting functions to the right, just like the example on the

whole line. But when the left endpoint is reached, the function gets fed in again from the right—

multiplied by the phase eiα.

3



The wave operators

The goal of time dependent scattering theory is to give a detailed description of the evolution

of e−itHψ as t→ ±∞.

If ψ is an eigenfunction of H with Hψ = λψ then the time evolution of ψ is given by

ψt = e−itHψ = eitλψ.

Theses are just different unit vector representations for the same state. The the probability mea-

sures dνψt
(for any observable) do not change with time. These states are called bound states.

We therefore restrict our attention to ψ ∈ Hc(H) and study e−itHPc, where Pc is the projection

onto the continuous spectral subspace Hc(H).

One way to describe the long time behaviour of e−itHψ is to find a simpler operator H0 (called

the free Hamiltonian) that describes the large time behaviour. We will assume that H0 has purely

absolutely continuous spectrum. The pair (H,H0) are said to be asymptotically complete if

(1) For large positive and negative times, every orbit e−itHψ with ψ ∈ Hc(H) is approximated

by a free orbit. In other words, for every ψ ∈ Hc(H) there exists two vectors ϕ± such that

lim
t→±∞

‖e−itHψ − e−itH0ϕ±‖ = 0

(2) For large positive and negative times, every free orbit e−itH0ϕ is the asymptotic description

of some orbit under H . In other words, for every ϕ ∈ H there exists two vectors ψ± ∈ Hc(H)

such that

lim
t→±∞

‖e−itH0ϕ− e−itHψ±‖ = 0

Since

‖e−itHψ − e−itH0ψ±‖ = ‖e−itH0

(

(eitH0e−itHψ − ψ±
)

‖ = ‖(eitH0e−itHψ − ψ±‖

condition (1) is equivalent to the existence of the strong limit

Ω±(H0, H) = s-lim
t→∓∞

eitH0e−itHPc

while condition (2) is equivalent to the existence of the strong limit

Ω±(H,H0) = s-lim
t→∓∞

eitHe−itH0

It is usually much easier to establish the existence of the wave operators Ω±(H,H0).
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Proposition 1.3 Suppose that Ω±(H,H0) exist. Then

RanΩ±(H,H0) ⊆ Hac(H)

Proof: To begin, we note that if dνψ,H is the probability measure associated with the observable H

and the state ψ, then

〈ψ, e−itHψ〉 =

∫

R

e−itλdνψ,H(λ)

is the Fourier transform of the measure.

Secondly, we note the intertwining property

e−itHΩ±(H,H0) = s-lim
s→∓∞

e−itHeisHe−isH0

= s-lim
s→∓∞

ei(s−t)He−i(s−t)H0e−itH0

= Ω±(H,H0)e
−itH0

Since Ω± are limits of unitary operators ‖Ω±ψ‖ = ‖ψ‖ for any ψ ∈ H. This implies

〈Ω±ψ,Ω±φ〉 = 〈ψ, φ〉. Now suppose that ψ ∈ RanΩ±. Then ψ = Ω±φ±. Therefore

d̂νψ,H(t) = 〈ψ, e−itHψ〉

= 〈Ω±φ±, e
−itHΩ±φ±〉

= 〈Ω±φ±,Ω±e
−itH0φ±〉

= 〈φ±, e
−itH0φ±〉

= ̂dνφ±,H0
(t)

This implies dνφ,H0
= dνψ,H . But dνφ±,H0

is purely absolutely continuous, since H0 has purely

absolutely continuous spectrum. Thus ψ ∈ Hac(H).

Proposition 1.4 Suppose that Ω±(H,H0) exist. Then Ω±(H0, H) exist (and asymptotic completeness

holds) if and only if Hc(H) ⊆ RanΩ±(H,H0)

Proof: Ω±(H0, H) exists if and only if for every ψ ∈ Hc(H), there exists ψ± with

lim
t→±∞

‖e−itHψ − e−itH0ϕ±‖ = 0.

This happens if and only if for every ψ ∈ Hc(H), there exists ψ± with

lim
t→±∞

‖ψ − eitHe−itH0ϕ±‖ = 0,

i.e., with ψ = Ω±(H,H0)ϕ±.

These two propositions show that asymptotic completeness is equivalent to the existence of the

wave operators Ω±(H,H0) and the equalities RanΩ±(H,H0) = Hc(H) = Hac(H). In particular,

if asymptotic completeness holds, H has no singular continuous spectrum.
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If asymptotic completeness holds, the scattering operator, defined by

S = Ω−(H0, H)Ω+(H,H0)

is an isometry. The scattering operator has the following physical interpretation. Consider an

orbit ψt = e−itHψ. If in the distant past ψt ∼ e−itH0φ, then in the far future ψt ∼ e−itH0Sφ.

Trace class scattering

There are two main methods in time dependent scattering theory. They are trace class meth-

ods and positive commutator methods. Positive commutator methods have led to great advances

in the last fifteen years. They give the strongest results in situations where H0 is known explicitly.

A good reference is Scattering Theory of Classical and Quantum N -particle Systems, by Dereziński and

Gérard.

In this lecture I will present a sketch of the proof of the existence of wave operator under

a trace condition. This theorem is due to Pearson and taken from Barry Simon’s book on trace

ideals. Omitted details can be found there.

Notice that to show that a strong limit of operators of the form Wt = eitAJe−itBPc(B) exists,

it suffices to show that the limit exists on a dense set D. Here J is assumed to be a bounded

operator. To see this notice

‖Wt‖ ≤ ‖J‖

and so is bounded independently of t. Thus to show that Wtψ has a limit we let ε > 0 and choose

φ ∈ D such that ‖ψ − φ‖ < ε. Then

lim sup
s,t→∞

‖Wtψ −Wsψ‖ ≤ lim sup
s,t→∞

‖Wtφ−Wsφ‖+ 2‖J‖ε = 2‖J‖ε

This implies that Wtψ is Cauchy and thus converges.

We will need the following lemma

Lemma 1.5 Suppose that A is self-adjoint, C is bounded with C(A + i)−n compact for some n. Then

s-lim
t→±∞

Ce−itAPac = 0

Theorem 1.6 Let A and B be self-adjoint operators. Suppose there exists a bounded operator J so that

AJ − JB is trace class. Then

Ω±(A,B; J) = s-lim
t→∓∞

eitAJe−itBPc(B)

exist.
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If J = I we obtain the so-called Kato-Rosenblum theorem. However, for H = −∆ + V and

H0 = −∆ this would require V to be trace class. This never happens for a multiplication operator.

The power of including the operator J is demonstrated by the following corollary.

Corollary 1.7 (Kuroda-Birman theorem) If (A+ i)−1− (B+ i)−1 is trace class then the pair (A,B)

then Ω±(A,B) exists.

Since the hypotheses are symmetric in A and B we automatically get asymptotic completeness.

Proof: Take J = (A + i)−1(B + i)−1. Then AJ − JB = (A + i)−1 − (B + i)−1 and is compact, so

we may apply Theorem 1.6 to conclude that Ω±(A,B; (A+ i)−1(B + i)−1) exist.

Now we have

Ω±(A,B; (A + i)−1(B + i)−1)(B + i)ψ = Ω±(A,B; (A+ i)−1)ψ

so Ω±(A,B; (A+ i)−1) exists on the dense set D(B) and hence exists.

Since (A + i)−1 − (B + i)−1 is compact Ω±(A,B; (A + i)−1 − (B + i)−1) and equals zero by

the lemma. Thus

Ω±(A,B; (B + i)−1) = Ω±(A,B; (A+ i)−1)− Ω±(A,B; (A + i)−1 − (B + i)−1)

exists. But Ω±(A,B; (B + i)−1)(B + i)ψ = Ω±(A,B)ψ so Ω±(A,B) exists on the dense set D(B)

and hence everywhere.

When H = −∆ + V and H0 = −∆ this theorem applies when (−∆ + V + i)−1V (−∆ + i)−1

is trace class. This can be proved for sufficiently rapidly decaying V (V ∼ |x|−n−ε in Rn).

We need the following lemma

Lemma 1.8 There is a dense subsetM of Hac(A) such that for φ ∈M
∫ ∞

−∞

|〈ψ, e−itAφ〉|2dt ≤ Cφ‖ψ‖

Proof of Theorem 1.6: Let Wt = eitAJe−itBPc(B). We will show that limWtφ exists for φ ∈M.

Since

‖(Wt −Ws)φ‖
2 = 〈φ,W ∗

t (Wt −Ws)φ〉 − 〈φ,W
∗
s (Wt −Ws)φ〉

it suffices to show lims,t→∞〈φ,W
∗
t (Wt −Ws)φ〉 = 0. For convenience we consider the case s ≤ t.

Now

〈φ,W ∗
t (Wt −Ws)φ〉

= 〈φ, eiaBe−iaBW ∗
t (Wt −Ws)e

iaBe−iaBφ〉

= 〈φ, eiaB

(

W ∗
t (Wt −Ws) +

∫ a

0

d

dw

(

e−iwBW ∗
t (Wt −Ws)e

iwB
)

dw

)

e−iaBφ〉

= 〈φ, eiaBW ∗
t (Wt −Ws)e

−iaBφ〉+

∫ a

0

〈φ, eiaBe−iwB [W ∗
t (Wt −Ws), iB]eiwBe−iaBφ〉

= 〈φ, eiaBW ∗
t (Wt −Ws)e

−iaBφ〉+

∫ a

0

〈φ, eiuB [W ∗
t (Wt −Ws), iB]e−iuBφ〉
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Here we made the change of variable u = a− w.

Now we let a→∞.

Wt −Ws = i

∫ t

s

eiuA(AJ − JB)e−iuBPc(B)du

is compact. So as a→∞ the first term above tends to zero.

To estimate the second term, we use that the quantity [W ∗
t (Wt −Ws), iB] is a sum of terms

of the form Y (s, t)Ce−isB or its adjoint, where Y (s, t) is uniformly bounded in s and t and C is

trace class. Let

C =
∑

µn〈ψn, ·〉ηn

with
∑

µn <∞. Then we must estimate terms like

∫ ∞

0

〈φ, eiuBY (s, t)Ce−isBe−iuBφ〉du

≤

∫ ∞

0

∑

µn〈φ, e
iuBY (s, t)ηn〉〈ψn, e

−isBe−iuBφ〉du

≤

∫ ∞

0

∑

µn|〈e
−iuBφ, Y (s, t)ηn〉||〈ψn, e

−i(s+u)Bφ〉|du

≤

{
∫ ∞

0

∑

µn|〈e
−iuBφ, Y (s, t)ηn〉|

2du

}1/2{∫ ∞

s

∑

µn|〈ψn, e
iuBφ〉|2du

}1/2

Since φ ∈ M we have

∫ ∞

0

∑

µn|〈e
−iuBφ, Y (s, t)ηn〉|

2du ≤
∑

µn

∫ ∞

−∞

|〈e−iuBφ, Y (s, t)ηn〉|
2du

≤
∑

µn‖Ys,t‖
2Cφ

≤ C ′φ

Similary we find that
∑

µn|〈ψn, eiuBφ〉|2 ∈ L1(du) Hence

lim
s→∞

∫ ∞

s

∑

µn|〈ψn, e
i(u)Bφ〉|2 = 0
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