Easy Perturbation Theory

Let M(e) be a one parameter family of matrices that depends smoothly on the
parameter . That is, each matrix element of M (¢) is a C* function of €. Suppose that it is
known that the unit vector vq is an eigenvector of M (0) of eigenvalue Ay and that it is also
known that the eigenvalue g is simple. Then det (M (0) — )\]1) has a simple zero at A = Ag.
Since zeroes of polynomials depend continuously on the coefficients of the polynomials, there
is a neighbourhood O of A\g such that det (M(e) — )\]1) has exactly one zero in O for each
sufficiently small . Hence, for each sufficiently small €, M (¢) has exactly one eigenvalue, A\(¢),
in O. Of course the corresponding eigenvector, v(¢), is only determined up to a multiplicative
constant, but we can select a unique eigenvector by requiring that, for example, the dot
product (v(e),vo) = 1. Thus

Differentiating with respect to € gives
[M'(e) = N(e)T]v(e) + [M(e) — AMe)]v'(e) =0 (v'(e), vo) = (1.)

or

M'(e)v(e) + M(e)v'(e) = N(e)v(e) + A(e)Vv'(e)

Taking the inner product with v, and exchanging the left and right hand sides of the equation,
N(e)= (M'(e)v(e) + M(e)Vv'(e), vo) (2.)

To simplify the coming computations, let’s also assume that the matrix M (0) is self—
adjoint. That is (M (0)v,w) = (v, M (0)w) for all vectors v and w. Then, since M (0) — A1
maps the line L = {avo} to zero (which is in the line), M (0) — Aol maps the orthogonal
complement of the line, L+ = { v ‘ v 1L vy }, to itself. Since )y is a simple eigenvalue
of M(0), the dimension of the kernel of M (0) — Aol is exactly one and so the restriction of
M(0) — A1 to L+ must be one-to-one and hence invertible. Let, with abuse of notation,
[M(0) — )\0]1}_1 denote the matrix whose restriction to L is zero and whose restriction to
L+ is the inverse of the restriction to L+ of M(0) — Agll. That is, [M(0) — )\O]l}_lvo =0
and if v L vo, then [M(0) — )\O]l]_lv is the unique w € L+ obeying [M(0) — Aol]w = v.
The matrix [M(0) — Ao1] - may be constructed as follows. Let M (0) — Aol = UDU ™! be a
diagonalization of M (0) — A\gll. Thus D is a diagonal matrix with diagonal entries being the
eigenvalues of M (0)—\oll. Exactly one of these diagonal entries is zero. Let D’ be the diagonal
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matrix with each diagonal entry being the inverse of the corresponding diagonal entry of D,
except that the zero diagonal entry of D is left as is. Then [M(0) — Ao1] ' —upU-t.

Now, setting ¢ = 0 in (2) and using
(M(0)v'(0),vo) = (v'(0), M(0)vg) = (v'(0), Xovo) = Ao (v'(0),vp) =0

gives

)\’(O) = (M’(O)Vo, V()) (20)
Setting € = 0 in (1.) and subbing back in (2¢) gives
[M(O) - /\(0) ]1} V/(O) = —M’(O)VO + /\/(O)VO == —M/(O)VO + (M/(O>V0, Vo)VO
The right hand side is exactly the projection of —M’(0)vg on L and, in particular, is in L*.
Since (v/(0),vo) = 0, v/(0) is itself in L+ and

-1

v'(0) = —[M(O)—A(O)]l}‘l[M’(O)v0+(M’(0)v0,v0)v0} = —[M(0)=X(0)1] "M'(0)vy (1o)

Recall that, by definition, [M(0) — A(0)1] “'vo = 0. We now know X'(0) and v'(0).
Differentiating (2.) with respect to e gives

N'(e) = (M"(e)v(e) + 2M' (e)V' (¢) + M (e)v" (e), vo)
Setting ¢ = 0 and using
(M(0)v"(0),vo) = (v"(0), M(0)vo) = (v"(0), Aovo) = Ao (v"(0),v0) =0
(the derivative of (1.) includes (v”(¢),vo) = 0) and (1o) gives

A'(0) = (M"(0)vo + 2M'(0)v'(0), vo)
= (M (0)vo, vo) — 2(M’(0)[M(0) — A(0)1]

_1M,(O>V0, V())

Continuing in this way, one can compute all derivatives, A (0) and v(™(0), of \(¢) amd
v(e) at e = 0. If M(e) is analytic in € at € = 0, the same is true for A(¢) and v(e) and the

computed derivatives determine them.
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