Poisson’s Equation

In these notes we shall find a formula for the solution of Poisson’s equation
§2g0 =A4mp

Here p is a given (smooth) function and ¢ is the unknown function. In electrostatics, p is the
charge density and ¢ is the electric potential. The main step in finding this formula will be
to consider an

arbitrary (smooth) function ¢ and an

arbitrary (smooth) region V in IR® and an

arbitrary point ry in the interior of V'
and to find a formula which expresses ¢(rp) in terms of

V2 (F), with T running over V and

V(F) and ¢(F), with ¥ running only over 9V .

This formula is
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When we take the limit as V expands to fill all of R (assuming that ¢ and ﬁcp go to zero

sufficiently quickly at oo), we will end up with the formula

otro) =~ [ See o
14

that expresses ¢ evaluated at an arbitrary point, 7o, of IR® in terms of 6290(1_"), with ¥ running

over IR?, which is exactly what we want.

Let .
r=zi+yj+zk
ry = woi‘i‘yoj‘i‘?«‘of(
We shall exploit several properties of the function I\F—”oll The first two properties are
ViRl = e
Vil =~V e =

and are valid for all ¥ # ry. Verifying these properties are simple two line computations. The
other property of Hf—ilfon that we shall use is the following. Let B. be the sphere of radius ¢

centered on ry. Then, for any continuous function (r),
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Here is the derivation of (V). Let V. be the part of V' outside of B.. Note that the
boundary 9V; of V. consists of two parts — the boundary 9V of V' and the sphere B, — and

that the unit outward normal to V. on B. is — ﬁ By the divergence theorem
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since V2 = rO” =0 on V.. So applying lim._,o4 to (M) and applying (L) and (R) gives
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which is exactly equation (V).
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