Poisson's Equation

In these notes we shall find a formula for the solution of Poisson's equation

$$\vec{\nabla}^2 \varphi = 4\pi \rho$$

Here ρ is a given (smooth) function and φ is the unknown function. In electrostatics, ρ is the charge density and φ is the electric potential. The main step in finding this formula will be to consider an

arbitrary (smooth) function φ and an arbitrary (smooth) region V in \mathbb{R}^3 and an arbitrary point $\vec{\mathbf{r}}_0$ in the interior of V

and to find a formula which expresses $\varphi(\vec{\mathbf{r}}_0)$ in terms of

 $\vec{\nabla}^2 \varphi(\vec{\mathbf{r}})$, with $\vec{\mathbf{r}}$ running over V and $\vec{\nabla} \varphi(\vec{\mathbf{r}})$ and $\varphi(\vec{\mathbf{r}})$, with $\vec{\mathbf{r}}$ running only over ∂V .

This formula is

$$\varphi(\vec{\mathbf{r}}_0) = -\frac{1}{4\pi} \left\{ \iiint_V \frac{\vec{\nabla}^2 \varphi(\vec{\mathbf{r}})}{\|\vec{\mathbf{r}} - \vec{\mathbf{r}}_0\|} d^3 \vec{\mathbf{r}} - \iint_{\partial V} \varphi(\vec{\mathbf{r}}) \frac{\vec{\mathbf{r}} - \vec{\mathbf{r}}_0}{\|\vec{\mathbf{r}} - \vec{\mathbf{r}}_0\|^3} \cdot \hat{\mathbf{n}} dS - \iint_{\partial V} \frac{\vec{\nabla} \varphi(\vec{\mathbf{r}})}{\|\vec{\mathbf{r}} - \vec{\mathbf{r}}_0\|} \cdot \hat{\mathbf{n}} dS \right\}$$
(V)

When we take the limit as V expands to fill all of \mathbb{R}^3 (assuming that φ and $\nabla \varphi$ go to zero sufficiently quickly at ∞), we will end up with the formula

$$\varphi(\vec{\mathbf{r}}_0) = -\frac{1}{4\pi} \iiint_V \frac{\vec{\nabla}^2 \varphi(\vec{\mathbf{r}})}{\|\vec{\mathbf{r}} - \vec{\mathbf{r}}_0\|} d^3 \vec{\mathbf{r}}$$

that expresses φ evaluated at an arbitrary point, $\vec{\mathbf{r}}_0$, of \mathbb{R}^3 in terms of $\vec{\nabla}^2 \varphi(\vec{\mathbf{r}})$, with $\vec{\mathbf{r}}$ running over \mathbb{R}^3 , which is exactly what we want.

Let

$$\vec{\mathbf{r}} = x\,\hat{\mathbf{i}} + y\,\hat{\mathbf{j}} + z\,\hat{\mathbf{k}}$$
$$\vec{\mathbf{r}}_0 = x_0\,\hat{\mathbf{i}} + y_0\,\hat{\mathbf{j}} + z_0\,\hat{\mathbf{k}}$$

We shall exploit several properties of the function $\frac{1}{\|\vec{\mathbf{r}}-\vec{\mathbf{r}}_0\|}$. The first two properties are

$$\vec{\nabla} \frac{1}{\|\vec{\mathbf{r}} - \vec{\mathbf{r}}_0\|} = -\frac{\vec{\mathbf{r}} - \vec{\mathbf{r}}_0}{\|\vec{\mathbf{r}} - \vec{\mathbf{r}}_0\|^3}$$
$$\vec{\nabla}^2 \frac{1}{\|\vec{\mathbf{r}} - \vec{\mathbf{r}}_0\|} = -\vec{\nabla} \cdot \frac{\vec{\mathbf{r}} - \vec{\mathbf{r}}_0}{\|\vec{\mathbf{r}} - \vec{\mathbf{r}}_0\|^3} = 0$$

and are valid for all $\vec{\mathbf{r}} \neq \vec{\mathbf{r}}_0$. Verifying these properties are simple two line computations. The other property of $\frac{1}{\|\vec{\mathbf{r}} - \vec{\mathbf{r}}_0\|}$ that we shall use is the following. Let B_{ε} be the sphere of radius ε centered on $\vec{\mathbf{r}}_0$. Then, for any continuous function $\psi(\vec{\mathbf{r}})$,

$$\lim_{\varepsilon \to 0+} \iint_{B_{\varepsilon}} \frac{\psi(\vec{\mathbf{r}})}{\|\vec{\mathbf{r}} - \vec{\mathbf{r}}_{0}\|^{p}} dS = \lim_{\varepsilon \to 0+} \iint_{B_{\varepsilon}} \frac{\psi(\vec{\mathbf{r}}_{0})}{\|\vec{\mathbf{r}} - \vec{\mathbf{r}}_{0}\|^{p}} dS = \lim_{\varepsilon \to 0+} \frac{\psi(\vec{\mathbf{r}}_{0})}{\varepsilon^{p}} \iint_{B_{\varepsilon}} dS = \lim_{\varepsilon \to 0+} \frac{\psi(\vec{\mathbf{r}}_{0})}{\varepsilon^{p}} 4\pi \varepsilon^{2}$$

$$= \begin{cases}
4\pi \psi(\vec{\mathbf{r}}_{0}) & \text{if } p = 2 \\
0 & \text{if } p < 2
\end{cases} \tag{B}$$

Here is the derivation of (V). Let V_{ε} be the part of V outside of B_{ε} . Note that the boundary ∂V_{ε} of V_{ε} consists of two parts — the boundary ∂V of V and the sphere B_{ε} — and that the unit outward normal to ∂V_{ε} on B_{ε} is $-\frac{\vec{\mathbf{r}} - \vec{\mathbf{r}}_0}{\|\vec{\mathbf{r}} - \vec{\mathbf{r}}_0\|}$. By the divergence theorem

$$\iiint_{V_{\varepsilon}} \vec{\nabla} \cdot \left(\frac{1}{\|\vec{\mathbf{r}} - \vec{\mathbf{r}}_{0}\|} \vec{\nabla} \varphi - \varphi \vec{\nabla} \frac{1}{\|\vec{\mathbf{r}} - \vec{\mathbf{r}}_{0}\|} \right) dV = \iint_{\partial V} \left(\frac{1}{\|\vec{\mathbf{r}} - \vec{\mathbf{r}}_{0}\|} \vec{\nabla} \varphi - \varphi \vec{\nabla} \frac{1}{\|\vec{\mathbf{r}} - \vec{\mathbf{r}}_{0}\|} \right) \cdot \hat{\mathbf{n}} dS + \iint_{B_{\varepsilon}} \left(\frac{1}{\|\vec{\mathbf{r}} - \vec{\mathbf{r}}_{0}\|} \vec{\nabla} \varphi - \varphi \vec{\nabla} \frac{1}{\|\vec{\mathbf{r}} - \vec{\mathbf{r}}_{0}\|} \right) \cdot \left(- \frac{\vec{\mathbf{r}} - \vec{\mathbf{r}}_{0}}{\|\vec{\mathbf{r}} - \vec{\mathbf{r}}_{0}\|} \right) dS \tag{M}$$

Subbing in $\vec{\nabla} \frac{1}{\|\vec{\mathbf{r}} - \vec{\mathbf{r}}_0\|} = -\frac{\vec{\mathbf{r}} - \vec{\mathbf{r}}_0}{\|\vec{\mathbf{r}} - \vec{\mathbf{r}}_0\|^3}$ and applying (B)

$$\lim_{\varepsilon \to 0+} \iint_{B_{\varepsilon}} \left(\frac{1}{\|\vec{\mathbf{r}} - \vec{\mathbf{r}}_{0}\|} \vec{\nabla} \varphi - \varphi \vec{\nabla} \frac{1}{\|\vec{\mathbf{r}} - \vec{\mathbf{r}}_{0}\|} \right) \cdot \left(- \frac{\vec{\mathbf{r}} - \vec{\mathbf{r}}_{0}}{\|\vec{\mathbf{r}} - \vec{\mathbf{r}}_{0}\|} \right) dS = -\lim_{\varepsilon \to 0+} \iint_{B_{\varepsilon}} (\vec{\nabla} \varphi \cdot (\vec{\mathbf{r}} - \vec{\mathbf{r}}_{0}) + \varphi) \frac{1}{\|\vec{\mathbf{r}} - \vec{\mathbf{r}}_{0}\|^{2}} dS$$

$$= -4\pi \left[\vec{\nabla} \varphi \cdot (\vec{\mathbf{r}} - \vec{\mathbf{r}}_{0}) + \varphi \right]_{\vec{\mathbf{r}} = \vec{\mathbf{r}}_{0}}$$

$$= -4\pi \varphi (\vec{\mathbf{r}}_{0})$$
(R)

Applying $\vec{\nabla} \cdot (f\vec{\mathbf{F}}) = \vec{\nabla} f \cdot \vec{\mathbf{F}} + f \vec{\nabla} \cdot \vec{\mathbf{F}}$, twice, we see that the integrand of the left hand side is

$$\vec{\nabla} \cdot \left(\frac{1}{\|\vec{\mathbf{r}} - \vec{\mathbf{r}}_0\|} \vec{\nabla} \varphi - \varphi \vec{\nabla} \frac{1}{\|\vec{\mathbf{r}} - \vec{\mathbf{r}}_0\|} \right) = \vec{\nabla} \frac{1}{\|\vec{\mathbf{r}} - \vec{\mathbf{r}}_0\|} \cdot \vec{\nabla} \varphi + \frac{1}{\|\vec{\mathbf{r}} - \vec{\mathbf{r}}_0\|} \vec{\nabla}^2 \varphi - \vec{\nabla} \varphi \cdot \vec{\nabla} \frac{1}{\|\vec{\mathbf{r}} - \vec{\mathbf{r}}_0\|} - \varphi \vec{\nabla}^2 \frac{1}{\|\vec{\mathbf{r}} - \vec{\mathbf{r}}_0\|}$$

$$= \frac{1}{\|\vec{\mathbf{r}} - \vec{\mathbf{r}}_0\|} \vec{\nabla}^2 \varphi$$
(L)

since $\vec{\nabla}^2 \frac{1}{\|\vec{\mathbf{r}} - \vec{\mathbf{r}}_0\|} = 0$ on V_{ε} . So applying $\lim_{\varepsilon \to 0+}$ to (M) and applying (L) and (R) gives

$$\iiint_{V} \frac{1}{\|\vec{\mathbf{r}} - \vec{\mathbf{r}}_{0}\|} \vec{\nabla}^{2} \varphi \ dV = \iint_{\partial V} \left(\frac{1}{\|\vec{\mathbf{r}} - \vec{\mathbf{r}}_{0}\|} \vec{\nabla} \varphi - \varphi \vec{\nabla} \frac{1}{\|\vec{\mathbf{r}} - \vec{\mathbf{r}}_{0}\|} \right) \cdot \hat{\mathbf{n}} \ dS - 4\pi \varphi(\vec{\mathbf{r}}_{0})$$

which is exactly equation (V).