
Poisson’s Equation

In these notes we shall find a formula for the solution of Poisson’s equation

~∇2ϕ = 4πρ

Here ρ is a given (smooth) function and ϕ is the unknown function. In electrostatics, ρ is the

charge density and ϕ is the electric potential. The main step in finding this formula will be

to consider an

arbitrary (smooth) function ϕ and an

arbitrary (smooth) region V in IR3 and an

arbitrary point ~r0 in the interior of V

and to find a formula which expresses ϕ(~r0) in terms of

~∇2ϕ(~r), with ~r running over V and
~∇ϕ(~r) and ϕ(~r), with ~r running only over ∂V .

This formula is

ϕ(~r0) = − 1
4π

{
∫∫∫

V

~∇2ϕ(~r)
‖~r−~r0‖

d3~r−

∫∫

∂V

ϕ(~r) ~r−~r0
‖~r−~r0‖3 · n̂ dS −

∫∫

∂V

~∇ϕ(~r)
‖~r−~r0‖

· n̂ dS

}

(V )

When we take the limit as V expands to fill all of IR3 (assuming that ϕ and ~∇ϕ go to zero

sufficiently quickly at ∞), we will end up with the formula

ϕ(~r0) = − 1
4π

∫∫∫

V

~∇2ϕ(~r)
‖~r−~r0‖

d3~r

that expresses ϕ evaluated at an arbitrary point, ~r0, of IR
3 in terms of ~∇2ϕ(~r), with ~r running

over IR3, which is exactly what we want.

Let
~r = x ı̂ıı+ y ̂+ z k̂

~r0 = x0 ı̂ıı+ y0 ̂+ z0 k̂

We shall exploit several properties of the function 1
‖~r−~r0‖

. The first two properties are

~∇ 1
‖~r−~r0‖

= − ~r−~r0
‖~r−~r0‖3

~∇2 1
‖~r−~r0‖

= −~∇ · ~r−~r0
‖~r−~r0‖3 = 0

and are valid for all ~r 6= ~r0. Verifying these properties are simple two line computations. The

other property of 1
‖~r−~r0‖

that we shall use is the following. Let Bε be the sphere of radius ε

centered on ~r0. Then, for any continuous function ψ(~r),

lim
ε→0+

∫∫

Bε

ψ(~r)
‖~r−~r0‖p dS = lim

ε→0+

∫∫

Bε

ψ(~r0)
‖~r−~r0‖p dS = lim

ε→0+

ψ(~r0)
εp

∫∫

Bε

dS = lim
ε→0+

ψ(~r0)
εp

4πε2

=

{

4πψ(~r0) if p = 2
0 if p < 2

(B)
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~r0
Vε

V
Bε

Here is the derivation of (V ). Let Vε be the part of V outside of Bε. Note that the

boundary ∂Vε of Vε consists of two parts — the boundary ∂V of V and the sphere Bε — and

that the unit outward normal to ∂Vε on Bε is −
~r−~r0
‖~r−~r0‖

. By the divergence theorem

∫∫∫

Vε

~∇ ·
(

1
‖~r−~r0‖

~∇ϕ− ϕ~∇ 1
‖~r−~r0‖

)

dV =

∫∫

∂V

(

1
‖~r−~r0‖

~∇ϕ− ϕ~∇ 1
‖~r−~r0‖

)

· n̂ dS

+

∫∫

Bε

(

1
‖~r−~r0‖

~∇ϕ− ϕ~∇ 1
‖~r−~r0‖

)

·
(

− ~r−~r0
‖~r−~r0‖

)

dS

(M)

Subbing in ~∇ 1
‖~r−~r0‖

= − ~r−~r0
‖~r−~r0‖3 and applying (B)

lim
ε→0+

∫∫

Bε

(

1
‖~r−~r0‖

~∇ϕ− ϕ~∇ 1
‖~r−~r0‖

)

·
(

− ~r−~r0
‖~r−~r0‖

)

dS = − lim
ε→0+

∫∫

Bε

(

~∇ϕ · (~r−~r0) + ϕ
)

1
‖~r−~r0‖2 dS

= −4π
[

~∇ϕ · (~r−~r0) + ϕ
]

~r=~r0

= −4πϕ(~r0) (R)

Applying ~∇·
(

f~F
)

= ~∇f · ~F+ f ~∇ · ~F, twice, we see that the integrand of the left hand side is

~∇ ·
(

1
‖~r−~r0‖

~∇ϕ− ϕ~∇ 1
‖~r−~r0‖

)

= ~∇ 1
‖~r−~r0‖

· ~∇ϕ+ 1
‖~r−~r0‖

~∇2ϕ− ~∇ϕ · ~∇ 1
‖~r−~r0‖

− ϕ~∇2 1
‖~r−~r0‖

= 1
‖~r−~r0‖

~∇2ϕ (L)

since ~∇2 1
‖~r−~r0‖

= 0 on Vε. So applying limε→0+ to (M) and applying (L) and (R) gives

∫∫∫

V

1
‖~r−~r0‖

~∇2ϕ dV =

∫∫

∂V

(

1
‖~r−~r0‖

~∇ϕ− ϕ~∇ 1
‖~r−~r0‖

)

· n̂ dS − 4πϕ(~r0)

which is exactly equation (V).
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