Inverse Scattering

Suppose that we are interested in a system in which sound waves, for example,

scatter off of some obstacle. Let p(x,t) be the pressure at position x and time ¢. In (a
2

somewhat idealized) free space, p obeys the wave equation % = c?Ap, where c is the speed

of sound. We shall assume that in most of the world, ¢ takes a constant value cy. But we

introduce an obstacle by allowing ¢ to depend on position in some compact region. We further

allow for some absorbtion in that region. Then p obeys

where 7(x) is the damping coefficient of the medium at x. For solutions of fixed (temporal)

frequency, p(x,t) = Re [u(x)e~™*] with

Au + 0&2)2 1 +i7g)}u =0

Outside of some compact region

s 14+i28] =2 = k2 where k=2 >0

2
<5 Cco

If we define the index of refraction by

then
Au+ E*n(x)u =0 (1)

with n(x) = 1 outside of some compact region. We first consider two special cases.

Example 1 (Free Space) In the absence of any obstacle Au 4 k?u = 0 on all of IR®. Then
we can solve just by Fourier transforming. The general solution is a mixture of solutions of
ik6-x

the form u = e where @ is a unit vector. This represents a plane wave coming in from

infinity in direction 6.

Example 2 (Point Source) If we have free space everywhere except at the origin and we

have a unit point source at the origin, then

Au + k*u = 6(x)
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Except at the origin, where there is a singularity, we still have Au + k?u = 0. The point
source generates expanding spherical waves. So u should be a function of r = |x| only and
obey

u(r) + 2d/(r) + K*u(r) = 0

This is easily solved by changing variables to v(r) = ru(r), which obeys

v (r) + k*u(r) = 0

So v(r) = asin(kr) + Bcos(kr) and u(r) = aSingkr) - 6cosgkr). To be an outgoing (rather

: : ik i it - S
than incoming) wave u(r) = o/ <—. (Note that e’*"e~™* is constant on r = £¢, which is a

sphere that is expanding with speed cy.) To give the Dirac delta function on the right hand
eikz|x\

side of Au + k?u = §(x) coefficient one, we need u(x) = — (See, for example, the notes

4r|x]| "
on Poisson’s equation.)

Now let’s return to the general case. We want to think of a physical situation in

which we send a plane wave u'(x) = k0% in from infinity. This plane wave shakes up the

obstacle which then emits a bunch of expanding spherical waves % emanating from

various points y in the obstacle. So the full solution is of the form
u(x) = u'(x) + u*(x)
where the scattered wave, u®, obeys the “radiation condition”

%us(x) —iku®(x) = O(#) as x| — o0 (2)

ik|x—y]| —ik|x—y]|

but not incoming waves aar=—t

This condition is chosen to allow outgoing waves &

[x—y]
Define
etklx—yl

Since §(x —y) is the kernel of the identity operator,
(Ay +k*)P(x,y) = —d(x — )

says, roughly, that u(x) — — [ ®(x,y)u(y) dy is the inverse of the map u(x) — (A+k?)u(x)
for functions that obey the radiation condition. We can exploit this to convert (1), (2) into

an equivalent integral equation

Au+kn(x)u=0 = Au+k’u=k(1-n(x))u
= AU+ k= k(1 —n(x))u
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since Au’ + k?u? = 0. As u® obeys the radiation condition

W) =~ [ @0 y)(1 - n(y)uly) dy
so that

() = ') [ (1= nly) @ y)uy) dy ®)

This is called the Lippmann-Schwinger equation. Observe that it is of the form u = u’ — Fu
or (1 — F)u = u’ where F is the linear operator u(x) — k? [ ®(x,y)(1 — n(y))u(y) dy. This
operator is compact (if you impose the appropriate norms) and so behaves much like a finite
dimensional matrix. If F' has operator norm smaller than one, which is the case if k2(1—n) is
small enough, then 1 — F is trivially invertible and the equation (1 — F)u = u® has a unique
solution. Even if F' has operator norm larger than or equal to one, (1 — F)u = u* fails to
have a unique solution only if F' has eigenvalue one. One can show that this is impossible in

the present setting. Thus, one can prove

Theorem. If n € C?(IR?), n(x) — 1 has compact support and Re n(x),Imn(x) > 0, then (1),
(2) has a unique solution.

For large |x|, ® has the asymptotic behaviour

eik\x|

O(x,y) = e XY 4 O(#)

47 |x|

so that, when the incoming plane wave is moving in direction é,
~ ) ~ ik|x| oA
u(x;0) = u'(x;0) + —Zﬂx\ Uoo (X;0) + O(#)
where
Uoo (%;60) = —kz/e_ik*'y(l —n(y))uly;6) dy
If we are observing the scattered wave from vantage points far from the obstacle, we will only
be able to measure us(X; é) The inverse problem then is
Question: Given uq, (X; é), for all fc,é € 52, can we determine n? The short answer is

Answer: Yes, because we have the

Theorem. If ni,ny € C2(R?) with ny — 1,ny — 1 of compact support and uj, o0 (X; é) =

U2, 00 (X; é), for all %,0 € S2, then ny = no.

We can get a rough idea why this Theorem is true by looking at the Born approxi-
mation. In this approximation u* is ignored in the computation of u, so that

(i) & <7 [ €Y (1 () (v:0) dy

— 2 / e—ik(fc—é)'}’(l —n(y))dy
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If we measure us (X; é), then, in this approximation, we know the Fourier transform of 1—n(y)
on the set { k(x — é) ‘ X,0 € 52 } which is exactly the closed ball of radius 2k centered on
the origin in IR®. Since 1 — n(y) is of compact support, its Fourier transform is analytic. So
knowledge of the Fourier transform on any open ball uniquely determines it.
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