
Inverse Scattering

Suppose that we are interested in a system in which sound waves, for example,

scatter off of some obstacle. Let p(x, t) be the pressure at position x and time t. In (a

somewhat idealized) free space, p obeys the wave equation ∂2p
∂t2

= c2∆p, where c is the speed

of sound. We shall assume that in most of the world, c takes a constant value c0. But we

introduce an obstacle by allowing c to depend on position in some compact region. We further

allow for some absorbtion in that region. Then p obeys

∂2p
∂t2

+ γ(x)∂p
∂t

= c(x)2∆p

where γ(x) is the damping coefficient of the medium at x. For solutions of fixed (temporal)

frequency, p(x, t) = Re
[

u(x)e−iωt
]

with

∆u+ ω2

c(x)2

[

1 + i
γ(x)
ω

]

u = 0

Outside of some compact region

ω2

c(x)2

[

1 + i
γ(x)
ω

]

= ω2

c2
0

= k2 where k = ω
c0

> 0

If we define the index of refraction by

n(x) =
c2
0

c(x)2

[

1 + i
γ(x)
ω

]

then

∆u+ k2n(x)u = 0 (1)

with n(x) = 1 outside of some compact region. We first consider two special cases.

Example 1 (Free Space) In the absence of any obstacle ∆u+ k2u = 0 on all of IR3. Then

we can solve just by Fourier transforming. The general solution is a mixture of solutions of

the form u = eikθ̂̂θ̂θ·x where θ̂̂θ̂θ is a unit vector. This represents a plane wave coming in from

infinity in direction θ̂̂θ̂θ.

Example 2 (Point Source) If we have free space everywhere except at the origin and we

have a unit point source at the origin, then

∆u+ k2u = δ(x)
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Except at the origin, where there is a singularity, we still have ∆u + k2u = 0. The point

source generates expanding spherical waves. So u should be a function of r = |x| only and

obey

u′′(r) + 2
r
u′(r) + k2u(r) = 0

This is easily solved by changing variables to v(r) = ru(r), which obeys

v′′(r) + k2v(r) = 0

So v(r) = α sin(kr) + β cos(kr) and u(r) = α
sin(kr)

r
+ β

cos(kr)
r

. To be an outgoing (rather

than incoming) wave u(r) = α′ eikr

r
. (Note that eikre−iωt is constant on r = ω

k
t, which is a

sphere that is expanding with speed c0.) To give the Dirac delta function on the right hand

side of ∆u+ k2u = δ(x) coefficient one, we need u(x) = − eik|x|

4π|x| . (See, for example, the notes

on Poisson’s equation.)

Now let’s return to the general case. We want to think of a physical situation in

which we send a plane wave ui(x) = eikθ̂̂θ̂θ·x in from infinity. This plane wave shakes up the

obstacle which then emits a bunch of expanding spherical waves eik|x−y|

|x−y| emanating from

various points y in the obstacle. So the full solution is of the form

u(x) = ui(x) + us(x)

where the scattered wave, us, obeys the “radiation condition”

∂
∂r
us(x)− ikus(x) = O

(

1
|x|2

)

as |x| → ∞ (2)

This condition is chosen to allow outgoing waves eik|x−y|

|x−y| but not incoming waves e−ik|x−y|

|x−y| .

Define

Φ(x,y) = eik|x−y|

4π|x−y|

Since δ(x− y) is the kernel of the identity operator,

(∆x + k2)Φ(x,y) = −δ(x− y)

says, roughly, that u(x) 7→ −
∫

Φ(x,y)u(y) dy is the inverse of the map u(x) 7→ (∆+k2)u(x)

for functions that obey the radiation condition. We can exploit this to convert (1), (2) into

an equivalent integral equation

∆u+ k2n(x)u = 0 =⇒ ∆u+ k2u = k2
(

1− n(x)
)

u

=⇒ ∆us + k2us = k2
(

1− n(x)
)

u
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since ∆ui + k2ui = 0. As us obeys the radiation condition

us(x) = −k2
∫

Φ(x,y)
(

1− n(y)
)

u(y) dy

so that

u(x) = ui(x)− k2
∫

(

1− n(y)
)

Φ(x,y)u(y) dy (3)

This is called the Lippmann–Schwinger equation. Observe that it is of the form u = ui −Fu

or (1l− F )u = ui where F is the linear operator u(x) 7→ k2
∫

Φ(x,y)
(

1− n(y)
)

u(y) dy. This

operator is compact (if you impose the appropriate norms) and so behaves much like a finite

dimensional matrix. If F has operator norm smaller than one, which is the case if k2(1−n) is

small enough, then 1l− F is trivially invertible and the equation (1l− F )u = ui has a unique

solution. Even if F has operator norm larger than or equal to one, (1l − F )u = ui fails to

have a unique solution only if F has eigenvalue one. One can show that this is impossible in

the present setting. Thus, one can prove

Theorem. If n ∈ C2(IR3), n(x)−1 has compact support and Ren(x), Imn(x) ≥ 0, then (1),

(2) has a unique solution.

For large |x|, Φ has the asymptotic behaviour

Φ(x,y) = eik|x|

4π|x| e
−ikx̂·y +O

(

1
|x|2

)

so that, when the incoming plane wave is moving in direction θ̂̂θ̂θ,

u(x; θ̂̂θ̂θ) = ui(x; θ̂̂θ̂θ) + eik|x|

4π|x|
u∞(x̂; θ̂̂θ̂θ) +O

(

1
|x|2

)

where

u∞(x̂; θ̂̂θ̂θ) = −k2
∫

e−ikx̂·y
(

1− n(y)
)

u(y; θ̂̂θ̂θ) dy

If we are observing the scattered wave from vantage points far from the obstacle, we will only

be able to measure u∞(x̂; θ̂̂θ̂θ). The inverse problem then is

Question: Given u∞(x̂; θ̂̂θ̂θ), for all x̂, θ̂̂θ̂θ ∈ S2, can we determine n? The short answer is

Answer: Yes, because we have the

Theorem. If n1, n2 ∈ C2(IR3) with n1 − 1, n2 − 1 of compact support and u1,∞(x̂; θ̂̂θ̂θ) =

u2,∞(x̂; θ̂̂θ̂θ), for all x̂, θ̂̂θ̂θ ∈ S2, then n1 = n2.

We can get a rough idea why this Theorem is true by looking at the Born approxi-

mation. In this approximation us is ignored in the computation of u∞ so that

u∞(x̂; θ̂̂θ̂θ) ≈ −k2
∫

e−ikx̂·y
(

1− n(y)
)

ui(y; θ̂̂θ̂θ) dy

= −k2
∫

e−ik(x̂−θ̂̂θ̂θ)·y
(

1− n(y)
)

dy
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If we measure u∞(x̂; θ̂̂θ̂θ), then, in this approximation, we know the Fourier transform of 1−n(y)

on the set
{

k(x̂ − θ̂̂θ̂θ)
∣

∣ x̂, θ̂̂θ̂θ ∈ S2
}

which is exactly the closed ball of radius 2k centered on

the origin in IR3. Since 1− n(y) is of compact support, its Fourier transform is analytic. So

knowledge of the Fourier transform on any open ball uniquely determines it.
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