
Numerical Solution of Partial Differential Equations

In these notes we develop a method for generating, numerically, approximate solu-

tions to the vibrating string problem

utt(x, t) = c2uxx(x, t) 0 ≤ x ≤ ℓ t ≥ 0 (wave equation) (1)

u(x, 0) = f(x) 0 ≤ x ≤ ℓ (initial position) (2a)
u(x, t)

L(t)
R(t)

0 ℓ
x

ut(x, 0) = g(x) 0 ≤ x ≤ ℓ (initial speed) (2b)

u(0, t) = L(t) t ≥ 0 (left boundary) (3a)

u(ℓ, t) = R(t) t ≥ 0 (right boundary) (3b)

The function u(x, t) gives the amplitude of the string at position x and time t. Equation (1) is

the wave equation. It is the equation of motion for the vibrating string and is a consequence

of Newton’s law, F = ma. Equations (2a,b) specify the initial position and speed of the

string and equations (3a,b) specify the position of the two ends of the string for all time.

The method will be an extension of those (like Euler’s method, for example) used

for generating, numerically, approximate solutions to the initial value problem

y′(t) = f
(

t, y(t)
)

t ≥ 0 (ode) (4)

y(0) = y0

Recall that under Euler’s method, rather that generating approximate values for y(t) for all

values of t ≥ 0, we pick a step size ∆t and consider only t = 0, ∆t, 2∆t, · · · , tn = n∆t, · · ·.

We approximate the ordinary differential equation (4) by an equation, that does not contain

any derivatives and that involves only the times tn, by approximating

y′(tn) = lim
h→0

y(tn + h)− y(tn)

h
≈

y(tn +∆t)− y(tn)

∆t
=

y(tn+1)− y(tn)

∆t

Denoting y(tn) = yn, this gives

yn+1 − yn
∆t

≈ y′(tn) = f
(

tn, y(tn)
)

= f(tn, yn)
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which simplifies to the Euler’s method formula

yn+1 ≈ yn +∆t f(tn, yn)

We now apply the same strategy to the wave equation (1). As there are two inde-

pendent variables, x and t, we pick two step sizes, ∆x and ∆t and set xm = m∆x, tn = n∆t.

To ensure that the right hand boundary x = ℓ is one of the xm’s, we choose ∆x = ℓ/M for

some integer M . We shall generate approximate values for u(xm, tn) for 0 ≤ m ≤ M and

n ≥ 0 by replacing the partial differential equation(1) by a difference equation. To do so we

need approximations for utt and uxx analogous to y′(tn) ≈
y(tn+1)−y(tn)

∆t
.

A Difference Approximation for y′′(tn)

We can get a symmetric looking approximation for y′′(tn) by combining

y′′(tn) = lim
h→0

y′(tn)− y′(tn − h)

h
≈

y′(tn)− y′(tn −∆t)

∆t

with

y′(tn) = lim
h→0

y(tn + h)− y(tn)

h
≈

y(tn +∆t)− y(tn)

∆t

y′(tn −∆t) = lim
h→0

y(tn −∆t+ h)− y(tn −∆t)

h
≈

y(tn)− y(tn −∆t)

∆t
In all three cases we approximated a limit limh→0 by choosing h = ∆t. Substituting

y′′(tn) ≈
y′(tn)− y′(tn −∆t)

∆t
≈

y(tn +∆t)− y(tn)

∆t
−

y(tn)− y(tn −∆t)

∆t
∆t

=
y(tn +∆t)− 2y(tn) + y(tn −∆t)

∆t2
(difference approximation) (5)

The Explicit Finite Difference Method for the Wave Equation

In terms of um,n = u(m∆x, n∆t) = u(xm, tn) the analogs of the difference approxi-

mation (5) for utt(xm, tn) and uxx(xm, tn) are

utt(xm, tn) ≈
u(xm, tn +∆t)− 2u(xm, tn) + u(xm, tn −∆t)

∆t2

=
um,n+1 − 2um,n + um,n−1

∆t2

uxx(xm, tn) ≈
u(xm +∆x, tn)− 2u(xm, tn) + u(xm −∆x, tn)

∆x2

=
um+1,n − 2um,n + um−1,n

∆x2
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Substituting into the wave equation (1)

um,n+1 − 2um,n + um,n−1

∆t2
= c2

um+1,n − 2um,n + um−1,n

∆x2

and simplifying

um,n+1 =
c2∆t2

∆x2

(

um+1,n + um−1,n

)

+ 2

(

1−
c2∆t2

∆x2

)

um,n − um,n−1

(finite difference wave equation) (6)

The finite difference wave equation (6) is used in much the same way as Euler’s

method. Before we can use it to generate approximate values of u(x, t) at time tn+1 we must

know approximate values at times tn and tn−1. We shall shortly see how to use the two initial

conditions (2a,b) to get approximate values for u(x, t) at times t0 and t1. So suppose that

um,0 and um,1 are known for all 0 ≤ m ≤ M . Then (6) with n = 1

um,2 =
c2∆t2

∆x2

(

um+1,1 + um−1,1

)

+ 2

(

1−
c2∆t2

∆x2

)

um,1 − um,0 (7)

determines um,2 for all 1 ≤ m ≤ M − 1. For example, when M = 4, setting, successively

m = 1, 2, 3 in (7) gives

u1,2 =
c2∆t2

∆x2

(

u2,1 + u0,1

)

+ 2

(

1−
c2∆t2

∆x2

)

u1,1 − u1,0

u2,2 =
c2∆t2

∆x2

(

u3,1 + u1,1

)

+ 2

(

1−
c2∆t2

∆x2

)

u2,1 − u2,0

u3,2 =
c2∆t2

∆x2

(

u4,1 + u2,1

)

+ 2

(

1−
c2∆t2

∆x2

)

u3,1 − u3,0

Notice that every um,n which appears on the right hand side has n ∈ {0, 1} and m ∈

{0, 1, 2, 3, 4}. All these um,n’s are known prior to the beginning of the n = 1 step. In

general, when 1 ≤ m ≤ M − 1, the subscripts m + 1 amd m − 1, which appear on the right

hand side of (6), are both between 0 and M . The two boundary conditions (3a,b) determine

u0,2 and uM,2 respectively. For M = 4

(3a) =⇒ u0,2 = u(0, 2∆t) = L(2∆t)

(3b) =⇒ u4,2 = u(M∆x, 2∆t) = u(ℓ, 2∆t) = R(2∆t)

At this point um,n is known for every 0 ≤ m ≤ M and n ≤ 2. Then (6) with n = 2 yields

um,3 for all 1 ≤ m ≤ M − 1. Again, (3a) and (3b) determine u0,3 and uM,3. And so on.
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The first step

To generate, using (6), approximate values of u(x, t) at time t1 = ∆t it is necessary

to already know approximate values at times t0 = 0 and t−1 = −∆t. The initial position

condition (2a) tells us that

um,0 = u(m∆x, 0) = f(m∆x) (8)

and the initial speed condition (2b) tells us indirectly and approximately um,−1. Naively,

g(x) = ut(x, 0) = lim
h→0

u(x, 0)− u(x,−h)

h
≈

u(x, 0)− u(x,−∆t)

∆t

=⇒ um,−1 = u(m∆x,−∆t) ≈ u(m∆x, 0)−∆t g(m∆x)

= um,0 −∆t g(m∆x)

We can get a more accurate approximation by using

g(x) = ut(x, 0) = lim
h→0

u(x, h)− u(x,−h)

2h
≈

u(x,∆t)− u(x,−∆t)

2∆t

=⇒ um,−1 = u(m∆x,−∆t) ≈ u(m∆x,∆t)− 2∆t g(m∆x)

= um,1 − 2∆t g(m∆x) (9)

instead. (To see that it is more accurate, compare the Taylor expansions of u(x,∆t)−u(x,−∆t)
2∆t

and u(x,0)−u(x,−∆t)
∆t

in powers of ∆t.) Substituting (9) into the finite difference wave equation

(6) with n set to 0 gives

um,1 =
c2∆t2

∆x2

(

um+1,0 + um−1,0

)

+ 2

(

1−
c2∆t2

∆x2

)

um,0 − um,−1

=
c2∆t2

∆x2

(

um+1,0 + um−1,0

)

+ 2

(

1−
c2∆t2

∆x2

)

um,0 − um,1 + 2∆t g(m∆x)

=⇒ 2um,1 =
c2∆t2

∆x2

(

um+1,0 + um−1,0

)

+ 2

(

1−
c2∆t2

∆x2

)

um,0 + 2∆t g(m∆x)

=⇒ um,1 =
1

2

c2∆t2

∆x2

(

um+1,0 + um−1,0

)

+

(

1−
c2∆t2

∆x2

)

um,0 +∆t g(m∆x) (10)

Equations (8) and (10) give um,n for all n = 0, 1 and 1 ≤ m ≤ M − 1.
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The final procedure

To start, set, for all 1 ≤ m ≤ M − 1,

um,0 = f(m∆x)

um,1 =
1

2

c2∆t2

∆x2

(

um+1,0 + um−1,0

)

+

(

1−
c2∆t2

∆x2

)

um,0 +∆t g(m∆x)

Then, for each successive step n = 1, 2, 3, · · ·, set

um,n+1 =
c2∆t2

∆x2

(

um+1,n + um−1,n

)

+ 2

(

1−
c2∆t2

∆x2

)

um,n − um,n−1

for all 1 ≤ m ≤ M − 1. Whenever u0,k or uM,k is encountered on the right hand

sides of these formulae use
u0,k = L(k∆t)

uM,k = R(k∆t)

Further reading

The subject of numerical methods for partial differential equations is enormous. It

is also a lot more subtle than suggested by the above discussion. You can start learning more

about this subject by reading the partial differential equations chapter in the popular book

Numerical Recipes, W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetter-

ling, Cambridge University Press.
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