The Fast Fourier Transform

Suppose that z(¢) is a function that is periodic of period 2¢ and that we only know its values at N
equally spaced points (in each period of course). Precisely, let

x[n]:x(n%) n=20,1,2,--- N—1

Then it is natural to approximate the k' Fourier coefficient % foy e tkmt/ ‘x(t)dt by a Riemann sum in
which e=#7t/£z(t) is replaced by a function which takes the constant value e~27*"/Ny[n] for all ¢ obeying
[t —nZ| < £. The sum is

N—1
Bk = % Y e 2Nyl (D1)
n=0
Note that Z[k + N] = &[k]. Hence Z[k] has period N, just like x[n]. The vector (i[k])kzo Lo N iscalled

the discrete Fourier transform of the vector (I[n])n:O 1o..n_1- As we saw in class, we can recover the
x[n]’s from the Z[k]’s by the inverse formula

N-1
x[n] = Z e2mkn/N 3 (D2)
k=0

We now turn to the problem of evaluating, by computer, the right hand sides of (D1,2). The two are
very similar, so let’s concentrate on (D2). Define the complex number

wy = e2mi/N
We may rewrite (D2) as
N-1
aln] =) wiFa(k]
k=0
Note that wd = e?™ = 1, so that there are only N different integer powers of wy, namely
w®, wh, -+, wy ', and they can all be computed with a total of N — 2 complex multiplications. For each

n, evaluating the sum Eg:_ol wiFi[k] takes N complex multiplications, so it looks like computing x[n] for

all N values of n takes on the order of N2 multiplications. The fast fourier transform refers to a family of
algorithms that generates all the 2:[n]’s using only O(N log, N) operations. They became widely known only
following a paper of J. W. Cooley and J. W. Tukey in 1965, though Gauss had known about them as early
as about 1805. They are not a required part of the course.

One such algorithm, due to Danielson and Lanczos in 1942, is based on the following observation.
Suppose that N is even. Then

x[n] = Z_ Wi [k]

N-2 N—-1
= > wifalkl+ > witilk]
k=0 k=1

k even k odd
N/2—-1 N/2-1
_ n2p - n(2g+1) 4 o . - .
= Z wi P &[2p] + Z Wy #[2q + 1] where k = 2p in the first sum and k = 2¢ + 1 in the second
p=0 q=0
N/2—-1 N/2-1
= Z wzpmzi:[Qp] +wh Z wzq/2:i:[2q + 1] since w3y = wxo
p=0 q=0

= 2[n]© + W z[n]®

March 10, 2007 The Fast Fourier Transform 1

where
N/2—1

zn)©@ = Y Wik, a[2k]
k=0
N/2—-1

pp)® =)" wibd2k + 1]
k=0

are discrete Fourier series with N/2 rather than N points.
If one iterates this log, N times, one gets to the trivial problem of finding the discrete Fourier transform
with N replaced by one. To see the iteration in action, lets do it explicitly for N = 8. Then the above

computation becomes

[0] + wla[1] + W& [2] + wir2[3] + wi™E[4] + w32 [5] + wi"E[6] 4+ WL (7]

In the next iteration

and in the final iteration

x[n] (00) — Z[0] + wy z[4] = w[n](ooo) + w"w[n](om)
2[n]1 = £[1] + wiz[5] = x[n] 10 + wia[n)0D
z[n]OV) = 2[2] + wii[6] = z[n] 1 + wWha[n])CV)
2] = 2[3] + wiz[7] = x[n] M0 4+ wian) Y

z[n]) " = 0] xn] 1% = 1])™ = &[2] wn) 1 = (3]
o =5l4] 2n0 =as] o@D =afg] e[=47
Note that the argument k of each #[k] when expressed in binary is exactly the mirror image of the argument

n of the corresponding z[n]. For example 6 = 1 x 22+ 1 x 21 40 x 20 = 110. When the order of these binary
digits are reversed we get 011, the supersreript in x[n](®'Y) = #[6]. Next compute

x[n](OO) _ :E[TL](OOO) _i_w;zx[n](OOl) x[n](lo) — x[n](loo) +w§x[n](101)

x[n](m) = x[n](ow) + ng[n]“)”) x[n x[n](llo) + ng[n](lll)

—~
=
[,

~—

and then compute
z[n)© = z[n]©0 + wPz[n]OV

ol = 2ln)00 + o fo] 1

and finally

March 10, 2007 The Fast Fourier Transform 2

