
The Fast Fourier Transform

Suppose that x(t) is a function that is periodic of period 2ℓ and that we only know its values at N

equally spaced points (in each period of course). Precisely, let

x[n] = x
(

n 2ℓ
N

)

n = 0, 1, 2, · · · , N − 1

Then it is natural to approximate the kth Fourier coefficient 1
2ℓ

∫ 2ℓ

0 e−ikπt/ℓx(t) dt by a Riemann sum in

which e−ikπt/ℓx(t) is replaced by a function which takes the constant value e−2πikn/Nx[n] for all t obeying

|t− n 2ℓ
N | < ℓ

N . The sum is

x̂[k] = 1
N

N−1
∑

n=0

e−2πikn/Nx[n] (D1)

Note that x̂[k+N ] = x̂[k]. Hence x̂[k] has period N , just like x[n]. The vector
(

x̂[k]
)

k=0,1,2,···,N−1
is called

the discrete Fourier transform of the vector
(

x[n]
)

n=0,1,2,···,N−1
. As we saw in class, we can recover the

x[n]’s from the x̂[k]’s by the inverse formula

x[n] =

N−1
∑

k=0

e2πikn/N x̂[k] (D2)

We now turn to the problem of evaluating, by computer, the right hand sides of (D1,2). The two are

very similar, so let’s concentrate on (D2). Define the complex number

ωN = e2πi/N

We may rewrite (D2) as

x[n] =

N−1
∑

k=0

ωnk
N x̂[k]

Note that ωN
N = e2πi = 1, so that there are only N different integer powers of ωN , namely

ω0
N , ω1

N , · · · , ωN−1
N , and they can all be computed with a total of N − 2 complex multiplications. For each

n, evaluating the sum
∑N−1

k=0 ωnk
N x̂[k] takes N complex multiplications, so it looks like computing x[n] for

all N values of n takes on the order of N2 multiplications. The fast fourier transform refers to a family of

algorithms that generates all the x[n]’s using only O(N log2 N) operations. They became widely known only

following a paper of J. W. Cooley and J. W. Tukey in 1965, though Gauss had known about them as early

as about 1805. They are not a required part of the course.

One such algorithm, due to Danielson and Lanczos in 1942, is based on the following observation.

Suppose that N is even. Then

x[n] =

N−1
∑

k=0

ωnk
N x̂[k]

=

N−2
∑

k=0

k even

ωnk
N x̂[k] +

N−1
∑

k=1

k odd

ωnk
N x̂[k]

=

N/2−1
∑

p=0

ωn2p
N x̂[2p] +

N/2−1
∑

q=0

ω
n(2q+1)
N x̂[2q + 1] where k = 2p in the first sum and k = 2q + 1 in the second

=

N/2−1
∑

p=0

ωnp
N/2x̂[2p] + ωn

N

N/2−1
∑

q=0

ωnq
N/2x̂[2q + 1] since ω2

N = ωN/2

= x[n](0) + ωn
Nx[n](1)

March 10, 2007 The Fast Fourier Transform 1



where

x[n](0) =

N/2−1
∑

k=0

ωnk
N/2x̂[2k]

x[n](1) =

N/2−1
∑

k=0

ωnk
N/2x̂[2k + 1]

are discrete Fourier series with N/2 rather than N points.

If one iterates this log2 N times, one gets to the trivial problem of finding the discrete Fourier transform

with N replaced by one. To see the iteration in action, lets do it explicitly for N = 8. Then the above

computation becomes

x[n] = x̂[0] + ωn
8 x̂[1] + ω2n

8 x̂[2] + ω3n
8 x̂[3] + ω4n

8 x̂[4] + ω5n
8 x̂[5] + ω6n

8 x̂[6] + ω7n
8 x̂[7]

=
(

x̂[0] + ωn
4 x̂[2] + ω2n

4 x̂[4] + ω3n
4 x̂[6]

)

+ ωn
8

(

x̂[1] + ωn
4 x̂[3] + ω2n

4 x̂[5] + ω3n
4 x̂[7]

)

= x[n](0) + ωn
8 x[n]

(1)

In the next iteration
x[n](0) = x̂[0] + ωn

4 x̂[2] + ω2n
4 x̂[4] + ω3n

4 x̂[6]

= (x̂[0] + ωn
2 x̂[4]) + ωn

4 (x̂[2] + ωn
2 x̂[6])

= x[n](00) + ωn
4 x[n]

(01)

x[n](1) = x̂[1] + ωn
4 x̂[3] + ω2n

4 x̂[5] + ω3n
4 x̂[7]

= (x̂[1] + ωn
2 x̂[5]) + ωn

4 (x̂[3] + ωn
2 x̂[7])

= x[n](10) + ωn
4 x[n]

(11)

and in the final iteration

x[n](00) = x̂[0] + ωn
2 x̂[4] = x[n](000) + ωn

2 x[n]
(001)

x[n](10) = x̂[1] + ωn
2 x̂[5] = x[n](100) + ωn

2 x[n]
(101)

x[n](01) = x̂[2] + ωn
2 x̂[6] = x[n](010) + ωn

2 x[n]
(011)

x[n](11) = x̂[3] + ωn
2 x̂[7] = x[n](110) + ωn

2 x[n]
(111)

Hence, for N = 8, the FFT computation would be the following. For each n, first set

x[n](000) = x̂[0] x[n](100) = x̂[1] x[n](010) = x̂[2] x[n](110) = x̂[3]

x[n](001) = x̂[4] x[n](101) = x̂[5] x[n](011) = x̂[6] x[n](111) = x̂[7]

Note that the argument k of each x̂[k] when expressed in binary is exactly the mirror image of the argument

n of the corresponding x[n]. For example 6 = 1× 22+1× 21+0× 20 = 110. When the order of these binary

digits are reversed we get 011, the supersrcript in x[n](011) = x̂[6]. Next compute

x[n](00) = x[n](000) + ωn
2 x[n]

(001) x[n](10) = x[n](100) + ωn
2x[n]

(101)

x[n](01) = x[n](010) + ωn
2 x[n]

(011) x[n](11) = x[n](110) + ωn
2x[n]

(111)

and then compute
x[n](0) = x[n](00) + ωn

4 x[n]
(01)

x[n](1) = x[n](10) + ωn
4 x[n]

(11)

and finally

x[n] = x[n](0) + ωn
8 x[n]

(1)

March 10, 2007 The Fast Fourier Transform 2


