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Abstract: We improve on the abstract estimate obtained in Part 1 by assuming that there
are constraints imposed by ‘overlapping momentum loops’. These constraints are active
in a two dimensional, weakly coupled fermion gas with a strictly convex Fermi curve.
The improved estimate is used in another paper to control everything but the sum of all
ladder contributions to the thermodynamic Green’s functions.
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V. Introduction to Part 2

In the perturbative analysis of many fermion systems with weak short-range interaction
in two or more space dimensions, the presence of an overlapping loop in a Feynman
diagram introduces a volume effect in momentum space that leads to an improvement to
“naive power counting”. For a detailed discussion of this effect and its consequences, see
[FST1, FST2, FST3, FST4]. For a short description, see Subsect. 4 of [FKTf1, §II]. In
[FKTo3], we use nonperturbative bounds for systems, in two space dimensions, that are
based on the cancellation scheme between diagrams developed in Part 1 of this paper. In
this second part, we modify the construction so that we can exploit enough overlapping
loops to get improved power counting for the two point function and the non—ladder part
of the four point function. As in Part 1, the treatment is in an abstract setting, formulated
using systems of seminorms. The postulated volume improvement effects are expressed
in terms of these seminorms (Def.VI.1). The main result for the renormalization group
map is Theorem VI.6. It follows from Theorem VI.10, which is the main result on the
Schwinger functional.

The discussion of the renormalization group map in the first part of the paper is
based on the representation developed in [FKT1] (which in turn evolved out of the rep-
resentation developed in [FMRT]). The representation of [FKT1] decomposes Feynman
diagrams into annuli. The first annulus consists of all interaction vertices directly con-
nected to the external vertices. The second annulus consists of all interaction vertices
directly connected to the first annulus but not to the external vertices. And so on. See the
introduction to [FKT1]. Overlapping loops that only involve vertices of neighbouring
annuli are relatively easy to exploit. It turns out, that for the analysis of the two point
function and the non-ladder part of the four point function, it suffices to use overlap-
ping loops that involve only vertices of at most three adjacent annuli. A special case of
Theorem VI.10, for which this combinatorial fact is easier to see, is proven at the end of
§VIL. After some preparation in §VIII, the general case is proven at the end of §IX. In
§X, we apply Theorem VI.6 to a simple vector model. We also describe, by drawing an
analogy with the vector model, how sectors can be used to nonperturbatively implement
overlapping loops for many fermion systems. A notation table is provided at the end of
the paper.

VI. Overlapping Loops

VI.1. Norms. Again, let A be a graded superalgebra and A" = /\ , V' the Grassmann
algebra in the variable ¥ over A. Also fix two covariances C and D on V.

Definition VL.1. Let || - || and || - |limpr be two families of symmetric seminorms on the
spaces Ay, @ V" such that || - limpr < Il -l and || fllimpr =0 if f € Ay ® VO with

m > 1. We say that (C, D) have improved integration constants ¢ € Ny, b, J € Ry for
the families || - || and || - limpr of seminorms if ¢ is a contraction bound for the covariance
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C for both seminorms || - || and || - |limpr, b is an integral bound for C and D for both
seminorms and the following triple contraction estimate holds:

Letn,n' > 3; 1 <iy,ir, i3 <nand 1 < ji, o, j35 < n' with iy, ip, i3 all different
and ji, jo, ja all different. Also let the covariances C1, Cp, C3 each be either C or D with
at least one of these covariances equal to C. Then for f € Ag®@V®", f' € Ay ® yer,

| Conc, Conc, Concy (f @ f))yy < 0 I I

i1—=>j1 2—>j2 B3—>J3

Observe that Conc, Conc, Cong, (f ® f') € Ag® VO"+1'=0),

i1—=>j1 —>j2 373

Lemma VIL.2. Assume that (C, D) have improved integration constants ¢, b, J for the

families || - || and || - |limpr of seminorms. Letny, -+ ,np, Ny, -+, pps > 0, let
fl(g(l)’ e ’S(r)) € Ao[nla e 7"?‘]7
HETD o EUTY € Aglnggn, e npas],

and let iy, iz, i3 € {1,--- ,r}and j1, jo, j3s € {r +1,--- ,r + s}. Also let the covari-

ances C1, Cp, C3 each be either C or D with at least one of these covariances equal to
C. Then

4
= Jnpnpnp bl fil 21,
impr

H Conc, Conc, Cong; (f1 f2)
s(il)_>g’:(j1) é:(iz)_>§(jz) $(i3)_>é:(j3)

Cy
RN gy st g SRR
C3

Proof. The proof is analogous to that of Lemma I1.29.1. O

We define, for a Grassmann function f the improved norm Nimp;(f) as in Def. I1.23.
That is,

Nimpr(f§ a) = bLz Z a|"| b|"| ||f0;n1,--~n, ||impr-

ny,-ny =0

An abstract example of such norms is described at the end of this section, and this
abstract example is made concrete in §X.

Definition VI.3. Let f(E(l), cee ,5(’)) be a Grassmann function and I C {1,---,r}
We say that f has degree d in the variables €| i € I if

fe @ Auln.-.nl.

miny,-,nr

Diegni=d
where Apny, - -+, ny] was defined in Def. I1.21. We say that f has degree at least d in
the variables €D i € I'if f = Zd’z 4 Ja» where each fy has degree d' in the variables

@ i e I. Similarly we say that f has degree at most d in the variables eD ielif
f =2 a<a far, where each f; has degree d' in the variables eD el
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Proposition VI.4. Let (C, D) have improved integration constants ¢, b, J. Letr >t >
s > 1, and let fi(D, ... g® g6tD .o @ g+ £y gnd fHED, ...
£1)) be Grassmann functions. Set

gEtY D)
= / /:3f1(§(1)’ . ’§(x)7 .. ,é(’), - ,é(r))ig(“,--ué(”,c '.S“*'),W,S(’),D

s R t .
x oGV ED g e e g0 p [TdreED) T dupED).
T =1 j=s+1

If fi has degree at least one in the variables €V | ... | £) and degree at least three in
the variables €V, .. €D then

Nimpr(8; @) < 27T %N (fi; @) N(f2; @)

fora > 2.

Proof. Setf,- = j:ﬁzgmy‘,,‘ém’c :S““),-‘-,E(’),D'We first prove the statement in the case
that f1 and f> are both homogeneous, that is

fi€Aolny, -+ ng, - ng, -0 ],
.fz GAO[H/]a' an;]'

Then ¢ = O unless n; = n} for 1 <i <t ,and g € Ao[n;41 +n;+1,-~- ,nr +n.]. By

hypothesis ny + - -- +ng > l and ny + - - - + n; > 3. Therefore it is possible to choose
i1 €{1,---,s} withn; > 1, and to choose i, i3 € {1, -, t} such that

1 ifi .
nizZ ?%2;&1.17
2 ifip =1
1 ifiz #iy, iz
nj; > 2 ifiz € {i1,ix} buti; #is.
3 ifiz=i=10;
Set
ol ifsiss

v D ifs+1<i,<t

Clearly, C| = C. Also set Con, = Con¢; and
£liv) s p (iv)

gEWD, gD M ey = Cony Cony Cons f1(61, -+, 1)

sz(C(l)a R é‘(r))a
g"€W, . £M; ¢ .. D) = Con Cony Cons fi(5V, -, &)

Xﬁ(é‘(]), IR é‘(r))
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Observe that

g € Aplni — (81iy +81iy +81i)s -+ s nr — (8riy + 8y + 8ri3),

/

nll - (811'1 +81i2 +81i3)7"' Ny — (8ri1 +6ri2 +5ri3)]
and

g"EW, gD W )

cole( .1 . .
=g/ W, D W e e o0
cW e 6D L0 p

by Remark I1.12. By Lemma II.13,
s . t .
g= // g€ D, gD ) [TdpcE?) T1 dupE?).
i=1 j=s+1
By Lemma I1.29 and Lemma V1.2,

njy Ny Niy c

lgllimpr < B2 g iy < J HLERERE RROIE D ) £l (VL)
Therefore

L I R ST S AR TR R R o P AR S v
Nimpr(g):b_zc’[prl T r bl T " 11& limpr

My Mig My J ¢ nyeip a4t
< St S (@b) T A Al
Niy iy Nigy

J iy N(D N(f2)
5270%N(f1)N(f2)-

IA

The general case now follows by decomposing f1 and f> into homogeneous pieces. 0O

VI.2. Ladders. Theorem VI.6, below, which is the main result of this paper, shows
that under appropriate assumptions on an effective interaction W (y), the two point and
non-ladder four point parts of the effective interaction : W’ (W)y,p = Qc (: Wiy ct D),
constructed using the Grassmann Gaussian integral with covariance C, obeys estimates
that are better by a factor J than those one would expect from Theorem IV.1. To formulate
this precisely, we first give the definition of ladders.

In a ladder, neighbouring four legged vertices are connected by two covariances. Since
ladders result from integrating with covariance C, at least one of the connecting covari-
ances is equal to C. The other connecting covariance may be C or D.

In the rest of the paper, we will systematically use &, £’, &, - - - for fields associated
to the covariance C. We will use ¢, ¢’, ¢”, - - - for fields associated to the covariance D
and  for the external fields.
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Definition VL.5. (i) A rung is a Grassmann function
0, €:¢, 8 € A[0,2,0,2] ® A[1,1,0,2]1 @ A[0,2, 1, 1] @ A[1, 1, 1, 1].

We think of ¢, & as the D resp. C fields on the left side of the rung and of ', &' as
the D resp. C fields on the right side of the rung.

ce{p ).

An end is a Grassmann function
EW;¢,8) € A[2,0,2] @ Al2, 1, 1].

We think of { as the external fields at the end of the ladder and of ¢, & as the D
resp. C fields going into the ladder.

v (B et

(i) If E is an end and p is a rung, we define the end E o p by

Eopwic &) = [ [(EWic8) g 05880 g dne®dun@)

wg’, £
C?g
If E1, E3 are ends, we define the ladder E1 o E3 by

Eio Ex(y) = f / BN €D e B ¢ €D e due®)din(C)
<8 <8

B ()

(iii) Let F (&) € A[4]. Write

FED+ED 469 = Y Fynpm GV, 69,69,

ni+ny+n3=4

FED+EP 4+ 16y = 3" Fonpmymg GV, 6@, 69 @)
ni+na+n3+ns=4

With Fy, ny.ny € Alny, no, n3l and Fy| jy 03,04 € Alny, na, n3, nal. The rung asso-
ciated to F is

p(F)(¢, & ¢ ,€)=Foz02+ Fii102+ Foai1+ Fiai-

The end associated to F is

E(F)W: ¢, &) =Fao2+ Fa1,1.
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The ladder of length r > 1 with vertex F is defined as
L (F)(¥)=E(F)op(F)op(F)o---p(F)oE(F)

with (r — 1) copies of p(F).
=GR -~ e

In Appendix C, we describe ladders in terms of kernels.
The main result of this paper is

Theorem V1.6. Let W () be an even Grassmann function with coefficients in A. Assume
that N(W; 64a)0 < %a, and that ¢« > 8. Set

W) o= Qc(:Wiycip ).

If (C, D) have improved integration constants ¢, b, J, then

(i)

rwe 1 N(W;32a)?
N(W = W;a) < 55 v

/ . 1 N(W;32a)2
f — < —_—
Nlmpr(W W; Ol) =52 l—a%N(W;32a)'

(ii) Write W) = 3 0 Win (W), W) = 3 ., W, (W) with Wy, W, €
Al [n]. If Wo.2 = 0O, then

: . 2107 N(W;64a)?
Nimpr (Wo,25 @) = 35 175 3 ot
ENWs

o0
. / 1 . 2107 N(W:64)”
Nimpr (Wo 4 — Wo4 — 5 Z L,(Woa); ) < 255 [ e
r=1

Remark VI.7. 1) Part (i) of the theorem follows directly from Theorem IV.1. For the
proof of part (ii) one can replace the algebra A by Ao, since W(/),z’ W(S,z and L, (Wp 4)
depend only on Y2 4 Wo.,,.

ii) The hypothesis that Wy.o» = 0 in part (ii) of Theorem V1.6 prevents strings of two—
legged vertices from appearing in diagrammatic expansions. The expansion used in
the proof of part (ii) cannot detect certain overlapping loops containing such strings.
In practice a nonzero Wjy., can be absorbed in the propagator.
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The proof of part (ii) of Theorem VI.6 is based on an analysis of

VI.3. Overlapping Loops for the Schwinger Functional. We first generalise the concept
of a ladder. If U (¢; &) is a Grassmann function we write

UW+e+6+E) = Y Ungpropmima (V3 2.8/ 6.8

P1.P2
ny.ny.ny

with Uy 1 poinyna € Alnos p1, p2, 01, n2l.
Definition VL.8. Let U be as above.

(i) The rung associated to U is
Rung(U) (¢, &: ¢, &) = Uo,0,2:0.2 + Uo:1.1:0.2 + Uo:0.2:1.1 + Uo:1.1:1.1-
(ii) The tail T,(U) associated to U is recursively defined as

TVU)(W; ¢, &) = Uno,0:0,2 + U20,1:0,1,
T 1 (U)W ¢, 8" = Te(U) o Rung(U).

Observe that Ty(U)(Yr; ¢/, &) lies in A[2,0,2] ® A[2, 1, 1].
Later we need

Remark VI.9. Let E1, E> be ends whose coefficients are even elements of A and let
g(¢r; &) be a Grassmann function. Set

h) = [[ B ) Exr €8 e+ C D dp@) disc@),
W) = 3 ha(W)  with hy € Afnl.
n=4

Then
ha = E1 o Rung(g) o E.

Proof. By Lemma A.5,
h(z/f)://:El(w;c,s):;.D W+ A ETE
£c £.8/.C
CEx(Y; €N opdup (€, ¢ duc(§, ).
§.c

As E| is of degree at most one in ¢ and E» is of degree at most one in ¢’,

ha(Y) = //IEl(lﬁ: £, &) c Rung(9)(¢,&:¢ . 6N)e e c

Ex(Y: ¢ ENw cdup (¢, ¢ duc (€,
= (E1 oRung(g) o E2) (V).
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The main estimate on the Schwinger functional is:

Theorem VI1.10. Let A be a superalgebra, with all elements having degree zero (that is
A = Ag), || -l and || - llimpr be two families of symmetric seminorms on the spaces Ay @

VO and let (C, D) have improved integration constants ¢, b, J. Let 0(1//, £), f(w, &)
be Grassmann functions with coefficients in A of degree at least four and U even. Set

U, &) = :0(w,é):1§,
fW, &) = f,6):

A

’

FUS
ag

Assume that o« > 8 and N(l}; 32a) < %Ol. By Proposition I11.10,

' W)y, p = Su,c(f)

exists. Write

A

fW 8 =Y fonW.8, f @)=Y fi¥)

no,ni

With fuyn, € Alno,n1l, f. € Alnl. Then

. 2107 N@U;32 2.
Nimpr(fz/v a) < v %N(]ﬁ 320()

and there exists a Grassmann function g(y) such that
~ o0 A A A A A
fi=fro+ X T oTi(f) +1 ¥ Te(0)oRung(f) o Tp(0) + g
=1 £,0>1
and .
. . 2107 _ NU;320) F.
N1mpr(g7 a) < o5 1—%N(U;ZZQ)N(]F’ 32(1)

In the case D = 0 this theorem is proven in Sect. VI; in the general case it is proven
in Sect. VIIL

Proof that Theorem VI.10 implies Theorem VI.6. By part (i) of Remark VI.7 we may
assume that A = Ag. We write W,, for Wy, and W, for Wé, - Set

Uw.e)=ww+6e/\, V.
U, §) = :0(1//,5):?5,
:U(Y) wyp = Swu.cU).

By Remark 11.24, N((}; a) < N(W; 2a). As in the proof of Theorem I1.28,

1
W @)y p — W)y p = /0 (U (¥):y.p — U, 0):y.p) dt mod A
S0

1
W) — W) = /O (UL — Dy, 00)di - mod Ao,
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In particular, for n = 2, 4,

1
W, — W, = / (U, = Uny) dt.
0
Therefore, by Theorem VI.10,

Nimor(W5) < max N /
1mpr( 2) =02 1mpr( ;’2)

< 2% N0 N 304)
= o 1-ENT:320) ’

210 7 N(W;64a)?
= 6 8 .
— o 1-EN(W:64e)

Observe that
Rung(0) = p(Wa),
To(U) = E(Wa) 0 p(Wa) 0 -+ 0 p(Wa)
with £ — 1 copies of p(W). Therefore
To(tU) o Ty(U) = t*Le(Wy),
Ty(tU) o Rung(U) o To (tU) = 1" Loy o (Wy).
Hence, by Theorem VI.10,

o pl 1 )
W, = Wy + Z/ t'LoWaydt +1 % T Losp (W) dt +g
=1J0

2,0>170
Wlth 10 7 10 2
g 29 J  NU;32a) y. 2% J  NW;64a)
Nimpr(g) =< 25 —1—2N(U;32a) N(U; 32a) < "o T-EN(Wibha)
Now
o0 1 1 , o0 1
y / t'Le(Wdt +1 % t Ly (Waydt =15 / (r 4+ 1) t"L,(Wy)dt
=1J0 ,0>1J0 r=1J0
1 o
=3 Z L, (Wy).
r=1
O
VI1.4. Configurations of Norms with Improved Power Counting.
Definition VL.11. Let g be an even natural number. For p = 1,2,3,--- ,q, let| - |,
be a system of symmetric seminorms on the spaces A, ® V®". We say that (C, D) have
integration constants ¢, b for the configuration || - |1, || - ll2, - -+, | - 4 of seminorms

if the following estimates hold:
Letm,m’' > 0and1 <i <n, 1 <j <n'.Alsolet f € Ap@V®, f' € Ay @V,
Then for all natural numbers p < q the simple contraction estimate

| Conc(ro I, <c X Ul 1S N
i—>n+j

p1+pa=p+l
at least
one odd

holds.
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Furthermore, if C2,C3 € {C, D}, m =m’ =0, 1 <iy,ip, i3 < nwithiy,iy, i3 all
different and 1 < jy, jo, j3 < n' with ji, jo, j3 all different, the improved contraction
estimate

| Conc Conc, Conc, (f®f’)||p§b4c > Wl 1 s

i1=>n+j1 ip—n+jp iz—>ntj3 p1+plz=p+3
at least
one odd

holds for p < g — 2.
Forevery f € A, @ V®" and every n’ < n the modified integral bound

| [ antutrrauc| . | [ antutrraus| | <4 o2 [isl+ 1511 ]

(VL.2)

9
p

holds. The partial antisymmetrization Ant, was defined in Def. I1.25.ii.

Lemma VIL.12. Let g be an even natural number. Assume that (C, D) have integration
constants c, b for the configuration || - |1, || - l2, -+, || - llg of seminorms and let J > 0.
For f € A, @ VO, set

q
Ifll= > 771D fl = fll + Il + S f s

p=1
LN+ -+ T £l
q—2
Z J—[(P—l)/Z]”f”p ifm=0
”f”impr = 7=l .
0 ifm#0
Here [(p — 1)/2] is the integer part of pT_z. Then (C, D) have improved integration
constants ¢, b, J for the families || - || and || - ||limpr of seminorms.
Proof. Clearly || - llimpr < Il - |l. To verify that ¢ is a contraction bound for C, let

feA, V™ fecA,® Vo' and1 <i <n, 1< j < n’. Observe that if
p1+ p2 = p + 1 with at least one of p; and p> odd, then

1 1 1 1
Jpi=0/21 JI(p2=D/21 — Jlpi+p2=2/21 — JI(p=D/21"

Consequently,
q
| Conc(f® )| =3 7P~V conc f® flp
i—n+j p=1 i—n+j

D DT A 2 [P 120 P

1 prtre=ptl
at least
one odd

q
Zc R e I AL TR T

pitp2=p+1

p=1
AN

M=

IA
~
Il

IA
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Replacing g by g — 2 gives the corresponding bound for || - ||impr. To verify the triple
contraction estimate of Def. VI.1,let C5, C3 € {C,D},m =m’' =0,1 < iy,i»,i3 <n
with iy, ip, i3 all different and 1 < jy, jo, j3 < n’ with ji, j», j3 all different. Then

Conc Cong, Cong, (f®f)H1mpr = Z J- an]” Conc Cong,

i1—=>n+j1 ip—n+jp i3—>n+j3 i1—>n+j1 ip—n+jo
x Conc, (f® f1],
i3—>n+j3
q—2 q
< Tb*e Z Z Jlp+1/2]
p= | PLpo=p+3
i
I W py 1L Mo
q
< Jb4 c Z ]*[(}71*1)/2]”f”pl
p1,p2=1
« J~1(p2=1)/2] ”f/”p2
= Jb el IS
We verify that b is an integral bound for C for the norm || - ||. The other cases are similar.

Let f € A, ® V®" and n’ < n. Then

| [ antu (e = 3 g ORI [ Anny e,

p=1

q
§ /2" 3 TR+ Ul

p=1

/2" 1 £1I. (VL3)

IA

In our main application, we use a special case of Def. VI.11 in which only norms
| - |l p, with p odd, appear.

Definition VL.13. Let g be an odd natural number. For p = 1,3,5,--- ,q, let || - |,
be a system of symmetric seminorms on the spaces A, ® V. We say that (C, D) have
integration constants c, b for the configuration || - |1, || - 13, - -+, | - ll4 of seminorms if b
is an integral bound for both C and D and all of the seminorms || - ||, (see Def. 11.25.ii)
and the following contraction estimates hold:

Letm,m’ > 0and1 <i<n, 1 <j<n.Alsolet f € An®@V®", f' € A @VE"
Then for all odd natural numbers p < q,

I Conc(f ® D, =e X 1 lp 1f Ml
i—>n+j

P1+p2=p+l1

P1,p2 odd
Furthermore, if C2,C3 € {C, D}, m =m’' =0, 1 < iy,i,i3 < n withiy, i, i3 all
different and 1 < jy, jo, j3 < n' with ji, ja, j3 all different, then, forall odd p < q — 2,

Conc Conc, Cong, (f® f)|, < bre X 1 lp 1 N

i1=>n+j1 iy—n+jo is—>n+j3 P1+p2=p+3
p1.p2 0dd
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Remark VI.14. If, in the setting of Def. VI.13, the norm || - ||, is defined to be zero for

all even p, then the conditions of Def. VI.11 are fulfilled, except that the factor of % in
(VI.2) does not appear in Def. I1.25.ii of integral bound.

Lemma VIL.15. Let g be an odd natural number. Assume that (C, D) have integration
constants ¢, b for the configuration || - ||y, || - I3, -+ -, || - 4 of seminorms and let J > 0.
For f € Ay @ VO set

q
Ifl =3 JEP2) £,
p=1

podd
q—2
> JEPR|f, ifm=0
”f”impr = 5;1;
0 ifm#0

Then (C, D) have improved integration constants ¢, b, J for the families || -|| and || - |limpr
of seminorms.

Proof. By Remark VI.14, Lemma VI.12 implies all of the conditions of Def. VI.1, except
that b be an integral bound for C and D for both seminorms. However, the proof of this

condition is virtually identical to (VL.3). O

Remark VI.16. Lemma VI.15 holds for all J > 0. In applications, J is chosen so that

I£1l, < const JP=D72) £y (VL4)

forall f of interest. If J satisfying (V1.4) can be chosen sufficiently small, Lemma VI.15
can be used in conjunction with Prop. V1.4 to obtain improved bounds, as the following
example illustrates.

For simplicity, we assume that ¢ = 3. Let f(é(l), 5(2)) € Aglni, np] withnp, > 3
and set

s(6) =/(:f(s“),s(”):g(z),c)zduc(s@).
The standard bound, without improvement, follows from (VI.4) in the proof of Prop. I1.33:
gl < n2eb2=D ) £I17.
On the other hand, by (VI.1), in the proof of Prop. V1.4,
gl = lighmpr < 13 Jeb®™ =D 712 = 03 Jeb?™=D (I 11y + J1£15)".
If | flI3 < const J| fll1,

lglli < constn3 Jeb> =D )2,
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VII. Finding Overlapping Loops

In this chapter, we give the proof of Theorem VI.10 in the case D = 0, using the rep-

resentation Sy c = f T lli’ duc of Theorem III.2. We assume that the coefficient
—Ry,Cc

algebra A contains only elements of degree zero, thatis A = Ag. Let || - || and || - |limpr
be two families of symmetric seminorms on the spaces A,, ® V®" such that (C, 0) has
improved integration constants ¢, b, J for these families of seminorms.

Recall from Remark III.6 that the operator R ¢ is written as a sum of operators
Rc(Ky, - -+, Ky) with even Grassmann functions K1 (&, &, n), - - , K¢(&, &', ). If one
of these Grassmann functions, say K has degree at least three in the variables &, n then,
for any Grassmann function f (&), there is a pair of overlapping loops in each Feynman
diagram contributing to Rc (K1, --- , K¢)(: f :). The way these overlapping loops can
occur is indicated in the figures below.

VIIL.1. Overlapping Loops Created by the Operator Rk c. In this subsection, we sup-
press the external fields ¢ by working in the Grassmann algebra /\ ,, V with coefficients
in the algebra A" = /\ , V generated by the fields 1. This algebra was defined in Sub-
sect. IIL.2. Recall that || - || and || - [|impr induce a family of symmetric seminorms on
the spaces A/, ® V®", which we here denote by the same symbols.

We split up the operators Rc(Kq, --- , K¢) of (II.2) in order to exhibit possible
overlapping loops. For Grassmann functions K»(&,&', 1), -+, K¢(&,&',n) and f(§)
we define

~ 4
Rc(K», - - ,KK)(f) = //:(l:[ziKi(évg/‘i‘;;://’ n/)igﬁ):n,
xf+n)ducE")duc). (VILI)

This is a Grassmann function of &, &', n that is schematically represented in the figure
below.
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Proposition VIL1. For even Grassmann functions K\(§,&',n),--- , K¢(§, &', n) and
f &)

Re(K1, - Ko)(f) = :f K16 €' n)iery R (Ko - K0)

x())E.E ey dicE)duc):,.

Proof. If
:fe = Re(Ky, -+, Ko)(f),

then by part (iii) of Prop. A.2 (applied to the variable £’) and Lemma A.5 (applied to the
variable 1)

4
1© = [ [{LKie g K& ., S0 dnc(@) dicto)

- f / [K1E & mee / iﬁZ:K,-(s, &+ miednc@)
x f(n)duc(E"duc(n)
= [ [ nmen( ilf[zzm<s,s’+s”, MyeducE)
f+n)yducm)ducE)duc(n)
= [ [k e ReKa - KODEE i
xduc (&) duc ).

m}

Remark VIIL.2. Set

KD, e56" )= KDE & +&"7),
fE &)= fE+é).

Then the map f +— :Rc (K2, -+, K¢)(f):¢ over the algebra A’ agrees with the map
f RC(Iez, S Ieg)(f) of (I1.2) over the algebra A of Grassmann functions in the
variables &, n with coefficients in A’. Therefore we can use the results of §1II to obtain
estimates on Rc.
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Lemma VIL3. Ler K (&, &', ) be an even Grassmann function with K(£,&',0) = 0.
Decompose

KE & m=KEE n+K"EE ),

where K’ has degree at most two in the variables &', n and K" has degree at least three
in the variables &', 1. Let each of the functions KV, ... | K© be one of K', K" or K,
and assume that at least one of them is equal to K”. Let f(§) € A\ 4V, and set

7 R, [ KOYCf)E) = ')
Then, ifa > 2,

Nimpe (s @) < 75 N(f120) N(K: 20)".
Proof. We may assume that K = K. Set

g€ & ) =Re(K? - [ KD)f)GE.8 0.
By Remark VII.2, in the algebra A,
gy = RC(IQ(Z),~- ,k([))(:f:).

Therefore, by part (ii) of Prop. III.7 and Remark I1.24,

Nt A
Em N = NG 1 N(K®)
1=

IA

¢ .
5 N(f3 20) [] N(KY; 20)
i=2

— N(f; 20) N(K; 20)" .

IA

By Prop. VIL.1,

& =g f / K68 g g (6.6 gy dic §) duc ().
Proposition V1.4 implies that
Nimpr (f'; @) < 225 N(K"; @) N(g; @)
2 N(f:20) N(K;: 20"
O
Proposition VIL4. Let K (€, &', n) be an even Grassmann function. Decompose

KE & m=KEE&, n+K"EE, n,

where K’ has degree at most two in the variables &', n and K" has degree at least three
in the variables €', 1. Let f(§) € \ 4 V, and set

:8&): = Ri,cCf), g = RgrcCf).
Then, ifoa > 2 and N(K; 2a)p < «,

5 .
Nimpr (g — g/§ a) < 2‘1_6{ N(f;2a) %'
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Proof. By Remark III.6,

i / i /
g= > &: g = g
=1 =1
where
g0t = L Rc(K, - K)Cf2),
gy = H Rc(K', -, K)Cf).
Since

Rc(K,--- ,K)—Rc(K',--- ,K') =Rc(K —K'.K,--- ,K)
+RC(K/7K_K/7K7”' 7K)
+---+Rc(K',---,K—K

= RC(K//v K’”' ’K)+RC(K/7 KU& K""

+---+RC(K/,-~- ,K’,K”)
it follows from Lemma VII.3 that
5
Nimpr(ge — &) < 2% N(f; 20) N(K; 2a)".

Therefore

0 5 .
Nimpr(8 = &) = 3 Nimpr(ge — 8) < %" N(f1 200) 020
(=1 @ ’

m}

Corollary VILS. Under the hypotheses of Prop. VIL4, set

1 1
h: = ——(Cf)

T—Rec ’7 71 —RK/,C(:f:)'

If N(K;2a)g < G, then

: . 25J _ N(K:20) .
Nlmpr(h, a) < 0 l—gN(K;Zot) N(f;2a).

Proof. Since
e = (1= Ric) " (Ri.c —Ric)(V = Rirc) G2

it follows from Cor. IIL.9, with Njyp, in place of N, and Prop. VIL.4 that

Nimpr(h) = <1 + O%M) Nimpr((RK,C - RK/,C)(ﬂ - RK’,C)_I(:f:)

1= =5 Nimpr (K)

259

, K)

)

< (1 42 Nimpr (K) )25_j N(K:2a) N((ﬂ _RK’,C)_1(1f3)§ 20{).

a? 1—§Nimp,(1<) a® 1-LN(K;20)
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By Def. VL1 and Remark I1.24, Niyp(K) < N(K) < N(K;Z2a) so that Cor. II1.9
implies

Nimpe (h) = (1 +a 1—112(11\(/;(?;)2(1)) %J_ 1—12(11\1((;12(201)
x (1 s ) N 20
< 2 (i) e (S N 2a)
=% pszl(K;za) 1712(1{/((;1?2@ 17&21\}(&20[) N(f;2e)
< I A N/ 20)
= 24 AU N (f: 20)

6 6 .
a® 1-8N(K:2a)

since, for X € Ny,

o0 o0
1 _ _ 3.4.5.. (3+r 1) _ 1
i =2 ()X = Z IHEX <) 6X) . = iy
r=0 r=0

Proposition VII.4 exploits overlapping loops that are created by one application of
the operator R c. There are additional overlapping loops created by the composite
operator Rk ¢ o Rk, c which we shall exploit now.

Lemma VIL6. Let B(n',n") € A'[1, 1]and let H(,§', 1), K(&,&', n) be even Grass-
mann functions that vanish for n = 0. Assume that H or K has degree at least two in
the variables &', 1. Let f(§) € \ 4 V and set

0@ = [<[ [ [ [ Bl sn g omsy e K+ iy

xducm',n", E’)] if e ().

Then, ifo > 2,

Nimpr (g; ) < N(f 2a) N(H;2a) N(K; 2a) N(B; ).
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Proof. We may assume that K has degree at least two in the variables &', 1. Set

B &'y = [[ BOI )& 8 O O O diac (e ©).
By Lemma A.5, applied to the variable 7,
¢(6) = / B 0" HGE + 1€ O e KE + 1 & mi e
F 4O medic’.n" € n, )
= [ € e K E 40 sy dic o £

Since B is of degree one in " and H is of degree at least one in ¢, iterated application
of Prop. I1.33 and Remark I1.24 yields
N(h) < xN(B)N(H; 2) N(f; 20).

Since h is of degree one in 1", only the part of K that is of degree at least three in the
variables n”, &', n can contribute. Hence Prop. VL4 implies that

Nimpr(8) < 25 N(h) N(K; 20)
< %:—]({N(B)N(H; 20) N(f; 2a) N(K; 2cx).
O

Proposition VIL7. Let K (£, &', n) be a Grassmann function of degree at most two in
the variables &', n and of degree at least one in 1. Write

KEE M= Y Kuynm@EE.n) with Ky € A'lng, na,n3).

ni,na,n3

Also set K.y, ny = an K\ ny.ns- Furthermore let T (n) € A’[2] and write

T+n)=Tm +T0)+ Tnix(n, 1)
with Toix € A'[1, 1]. Set

- Ui
K(E &= /:T(n’):ﬂ, K& +n', & ey duc) ’7{1%:@
3
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Observe that K is independent of €'. Finally let f(£) € Aa V and set

') = Re(T)Rc (K, K)(: f2),
f(€):e =2Rc(K, K)(:f2),
f(&):e = Re(K)Cf2).

Then o .
Nimpr (f' = (f + /); @) < 5 N(f;20) N(K; 20)* N(T; 2).

Proof. By definition
£on = / T @)y Re(K, K)CFD0 + 1) dpcr).
Consequently, by part (ii) of Prop. A.2 and Lemma A.7, in the variable 7/,
GE / T ()i Re(K, K)Cf)E + 1)) duc ()
= f:T(n’):n/j[I (KGE+n' & me KE+n" & ) o f D],
xducE' 1)
= 2/:[:(/:T(n’>:nal<<s € iy diucD) K& E e ],

fm)yducE, )
+/|:/ Tmix(n/’ T’//):K(g + n/’ E/’ n):%_,!n, K(E + 77//7 %_/’ T])Zg:/’nu

xduc (00" |7 0y dc ()
_) / [REE e K EE ], F ) ducE )
4 / R (& & ey iy dpc (&)
+ / | / Toin O 1) (K & + ' 8 ey K€+ 06 ey
=K. 01E+0 & me K o1E+0n", &, n)isw)

xdpc(® 00" |1 idic ()

=fE+fE+E +8"®
with

§'(&) = / q| / Tonix (1 1") HE + 1 €' n)iery K+ 1" E s
xdpc(€ 0’0" | iy dc (o),
¢'(&) = / | / Tonix (1 1" K 0.1 (6 + 1+ €' )iy HE + 1 € )iy

xduc (€', 0, n”)] Ly f (i dpe (),
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where H = K — K. 1. In the last equality, we used the fact that K. o 1 (¢ + 7, &', 1)
and hence K is independent of &', so that we are free to drop the Wick ordering with
respect to &’ in the expression yielding f (£). By Lemma VIL6 and the observations that

N(K.p,1;2a), N(K — K.p,1; 20) < N(K; 20),
N(Tmix; @) < N(T(n+1'); @) < N(T; 2a),

we have

Nimpe(f = f = ) = Nimpr(8' + 8") < T N(f320) N(K:20)? N(T: 200).

VII.2. Tails. In this subsection let K (y; &, &', ) be an even Grassmann function with
coefficients in A that has degree at least four in the variables v, &, £’, n and degree at
least one in the variable n. We always write

K = Z Kno,nl,nz,ng with Kno,nl,nz,m € Alng, ni, na, n3l.

no,-,n3

For f(¢; &) :€ A\4,(V' @ V) we are interested in the two and four legged contributions

to ﬂ% (: f:¢). Therefore we make the following
—Rk.c

Definition VIL8. The projection
P: /\A(V’ea V) — /\A v/
W 8)ie v fao0r,0) + f20(,0),
where f(lﬁ, &) = Zno,nl fno,nl (V; &) with fno,nl € Alng, n1].

Definition VIL.9. (i) An n-legged tail is a Grassmann function T(¥;n) €
@D, Ald, nl. We say that an n—legged tail T has at least d external legs if

T € @y-qAld nl.
(1) If T is a two—legged tail we define the two—legged tail T o K by

(ToK)(;n) = /:T(w; )y :Ko2,02005 0 & )y dic ()

Observe that T o K depends only on the part of K that has degree at most two in
the variables &', 1.

Remark VIL.10. A two-legged tail with two external legs is an end in the sense of
Def. VLS54 If K(Y;6,&',n) = UW; & +& +n) — UY; &€ + &) for some even
Grassmann function U (v; &) then T o K agrees with 7 o Rung(U) of Def. VL.5.iii.
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Lemma VIL.11. Assume that K has degree at most two in the variables §',n. Let T
be a two—legged tail. Then there exists a one—legged tail t| with at least three exter-
nal legs and a two-legged tail to with at least three external legs such that for any
f: &) e Ny(V' @ V) the following holds:

Set

@) = P[RC(T)RK,C(ifI) —Rc(ToK)(:f:) = Rc(T oK, Kz0,02)(f)
—Re(t +0)Cf))
where : f: is shorthand for : f:¢. Then

6
Nimpr (f'; @) < 23 N(f; 20) N(K; 20)* N(T; 20).
If T has at least three external legs then
PRc(TYRk.c(Gf:)=PRc(T oK) f:)+ PRc(t1 +10)(f).

Proof. By assumption, K (1; &, &', n) is of degree atleasttwoin/, £,s0 Rc(K, - -+ , K)
(:f:) (with £K’s) is of degree at least 2¢ in i, &. Since T is two-legged, Rc(T)
Rc(K,---,K)(:f:) is of degree at least 2¢ — 2 4+ 2 = 2¢ (with the last +2
coming from the d > 2 external legs of T') in ¥ and is independent of &. So, by
Remark II1.6,

P[Rc(T)Rk.c(:f)] = P[Re(T)Rc(K)(:f)] + A P[Re(T)Re (K, K)(: )]

Set
m;n) = f:T(l/f; )y K 2010 € )y duc (),

n1(Ysn) = /:T(llf; 1oy (Ko20200:0', & n)
—Ko2.0200: 1, &, m) Ly A ).

Since K has degree at least four overall and T has degree at least two in ¥, #1] is a
one—legged tail and 1 is a two—legged tail, both having at least three external legs. As
K has degree at most two in the variables &',  and degree at least one in n and T has
degree two in 7 and the definition of R¢ (K) Wick orders K with respect to &',

P[Rc(D)Rc(K)(:f)] = P[Rc(T)Rc (K200 ()] + P[Rc(T)Rc (K. 2,02)(:f )]
= P[Rc(ti + 1) f)] + P[Rc(T o K)(: f)].
Define the projection
PN Vev)— AV
S 8) > fao(¥, 0) + f20(¥, 0).
As P and P’ only differ by Wick ordering in the £—argument,
P[Re(T)Re(K, K)(:.f)] = P'[Re(T)Re(K, K)Gf9)]
= P'[Rc(T)Rc(K, K)(:f)(¥;0,0,8)],
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so that we can apply Prop. VIL.7. Modulo a term whose improved norm Njy,, is bounded
by 24 N(f: 2a) N(K; 20)* N(T; 20),

P'[Rc(T)Rc(K, K)G:f)(¥;0,0,8)] = 2P[Rc(K, K)(:f)] + P[Rc(K)(:£2)]
with

K€, n) = /:w; )y KW', & )y duc (),

R 6.8 m = / Tonix (03 7 ") K 0,1 (05 1 €', )y

Koo 0" & mprduc(’, n").

Here we have used the projection P to set £ = 0 and we used that Tix (¥; 1', n”) is of
degree one in " and in n”. Again, since K has degree at least four overall and T is of

degree at least two in y, the tail K has at least six external legs, so that P [Rc (1% )G f :)] =
0. Finally, since

e P sets the £’s in the argument K of P[RC(K, K)(:f:)] to zero.

e K isof degree at least two in .
e K. 0,0,1 is of degree at least three in .
e K is of degree at most two in &',  and degree at least one in 7,

we have

P[Rc(K, K)(:f)] = P[Rc(K.0.... K.002) )]+ P[Rc(K. ..., K010 )]
= P[Rc(K.0,0, K.002)Cf)] + P[Rc(K. 0.1, K. 01,0)CFD)],

and since

e K is of degree at least four overall and K is of degree at least two in v,

we have
P[Rc(K,K)(:f)] = P[Rc(K2.00... K2,002)CfD)]
+P[Rc(K2,0.1,-» K2,01,0C )]
= P[Rc(K2,0,02, K2,002)Cf)]
+P[Rc(Ka0.1.1. K2,01.1)Gf9)]
= P[Rc(T o K, K2,002)Cf)] + P[Rc (1) f1)],

where
ba (Y ) = / oo 1 (W3 €8 1) Koo (s £, € ) dpc ()

is a two-legged tail with at least four external legs.

Setting 11 = 11 and t, = t>1 +2t», yields the main result. If 7" has at least three exter-
nal legs, then Rc(T)Rc (K, - -+, K)(: f:) (with £K’s) is of degree at least 2¢ —2 43 =
20+ 1, s0

P[Rc(T)Rk.c(:f)] = P[Rc(T)Rc(K)(:f)]
P[Rc(t11 + 020 f)] + P[Re(T o K)(: ).
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Lemma VIL.12. Assume that K has degree at most two in the variables §', n. Let Ty, T»
be two—legged tails. Then there exists a one—legged tail t| and a two-legged tail ty, each
with at least four external legs, such that for any f(y; &) € N\ 4(V' @ V) the following
holds:

Set

f'W) = P[Re(Ty. TORK c(.f) = Re(Ti o K, Ty 0 K)G.f) = Re(ty +2)(£2)].
Then, ifa > 2,
Nimpe (f: @) < Zd N(f120) N(K: 20)* N(T1: 20) N(T2: 20).

Proof. Again, since K has degree at most two in the variables &', n and degree at least
four in all variables,

P[Rc(T1, T)Ri.c(:f)] = P[Re(Ti, ) Re(K)(:f1)]
+3 P[Re(Ti, TH)Rc (K, K)(:f2)]
and

P[Rc(T1, T))Rc(K)(:f2)] = P[Rc(T1, T)Re(Ko4,0,) ()]
P[Rc (i + 1) Gf)],

where
m;n) = /:Tl(w; T2 (s 0') iy Koo (s 0’ &' ) duc (),
(Y5 n) = f:Tl(llf; MTa(rs 0y Koo 200’ 6 n) duc(n)

are one— resp. two—legged tails with at least four external legs. Similarly

P[Rc(T1, T))Re(K, K)(:f1)] = P[Rc(Ti, T2)Re(Ko,2,0.2: K0,2,02) ()]
+P[Rc(Ti, T)Rc(Ko2,1,1, Ko2,1,)CfD)]-

The second term is P Rc(t22)(: f:), where

to(Y;n) = /ITl W (s )y Ko 1,1 (00’ &)
xKoo,1,1(¥: 0" & m)yy duc(n)

is a two—legged tail with at least four external legs. To deal with the first term we use
Prop. VIIL.1 to see that

Rc(Ty, T))Rc(Ko2,0,2, Ko,2,02)( 1) = /ITl W)y g )y dine ('),

where
g n) = Rc(T2)Re(Ko2,0.2, K0,2,02)Cf2).
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By Prop. VIL7, :g(¥; §):¢ is — modulo terms whose improved norm can be bounded by
f—l({ N(f;20)N(K; 20)% N(T»; 20) —equal to 2 Rc(Ko.2,0.2, T2 o K)(: f:). Therefore
by Prop. I1.33, modulo terms whose improved norm can be bounded by 3:—12] N(f;2a)
N(K; 20)* Nimpr(T1; @) N(T2; 200),
3 P[Re(Ty, T Re(Ko.2,02, K0.2,02)Cf)]
=P [Ty Re(Koa0a. To o K)GFOOs 1) diac )
= P[Rc(Tio K, Ty 0 K)(:f)].

Since Nimpr(T1; @) < N(T1; @) < N(T1; 2a), the lemma follows. O

Lemma VIL13. Assume that K has degree at most two in the variables &', 1. Let T be
a one-legged tail with at least three external legs. Then there is a two—legged tail t» with
at least four external legs such that for all f(y; &) € N,V @ V),

P[Rc(T)Rk.c(:f)] = P[Re(@)(:f2)].
Proof. Since T is one-legged and K has degree at least four

PRc(T)Rk,c = P Rc(T) Re(K)

=PRc(T)Rc(Y. Kar01+ Y Kai02)
d>2 d>1

= P Rc(T) Rc(K1,1,02) = P Rc(h)
with
b n) = / T n')Kijo2(Wsn' € ) duc().
o

Definition VII.14. The two—legged tails Ty (K) are recursively defined by

TV (K)(Y;n) = K2,0,02(0: €, &),
Te1(K) =Ty oK for ¢ > 1.

Remark VIL.15. (i) Clearly T;(K) has two external legs. Using Prop. I1.33 one proves
by induction that for o > 2,

N(Te(K)) < == N(K)".

MK 8,0 =UW;E+E +n)—Up; &+ &) for some even Grassmann
function U (¢; €) then, by Remark VIL.10, T,(K) = T,(U), where T;(U) was
defined in Def. VL.8.ii.

(iii) Ty (K) depends only on the part of K that has degree at most two in the variables

g, n.
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Proposition VIL.16. Assume that K has degree at most two in the variables &', n. For
each £ > 1 there exists a one—legged tail t| and a two—legged tail ty, each with at least
three external legs such that for any f(y; §) € \,(V' @ V) the following holds: Set

Fl@) =P[Ry cCf) — Re(Te(K)) G f) =5 3 Re(Tw(K), Tor(K))(:f2)
o =>1
max{¢/, ¢ }=¢

—Re(t +2)Cf2)].
Then, ifoa > 2 and N(K; 2a)g < o?,

7 N(K:2 £+1
Nimpr (f33 @) < J s N(f 20) K20
[l—a—zN(K;Za)]

Proof by induction on £. Set Ny = N(K; 2«). Since K has degree at most two in the
variables &’, n and degree at least four overall, for £ = 1,

PRk.c=PRc(K 002+K.001)+%PRc(Kao1,1.K201,1)
+% P Rc(K2,0,0,2, K2,0,0,2)
= P Rc(Ti(K)) + P Re(t1 +12) + L P Ro(Ti(K), Ti(K))
with
1 = K3,0,0,1 + K4,0,0,1,
= K3002+ K4002+ 1 / Kro01,1(¥: 6,8 n)
xK20,1,1005 6,8, n)ducE).

Now assume that the statement of the lemma is true for £. By the induction hypothesis
there exist a one—legged tail #; and a two—legged tail r,, each with at least three external
legs, such that

PR ECF0] = P[Ri c(Ri.cCf)]

differs from

P[RC(Te(K)) (Ri.cGf) +3 % Re(Tu(K), Tor(K)) (Ri ¢ £2)
e >1
max{¢/,¢"}=¢

+Rc(t + tz)(RK,c(lfi))]

by a function go(y) with

N; < 2N N
1mpr(go) = 76 [l*aizNK][il (f, Ol)
27 N Nk .
= % [l—a%NK]Z_I 2 I_M%NKN(f,Z(x)
42
< 2 J M N(f:20),
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where : f: = Rg.c(:f:). Here, we used Lemma IIL8, with « replaced by 2a, to estimate
N(f; Za).
By Lemma VII.11, there exists a one—legged tail 71 and a two—legged tail 7,1, with
at least three external legs each, such that
P[Re(T(K)) (R (:2) | = P[Re(Tes1 (K)) G 5]
+P[Re(Te+1(K), Ti(K)) ()]
+P[Re(tin + 20)Cf) + g1(¥)]
= P[Rc(Te1(K)) (9]
+3 P[Re(Ter1(K), Ti(K)) f )]
+3P[Re(T1(K), Tes1 (K)) (f )]
+P[Re(ti + 020G f) + g1(¥)]
with
6
Nimpr(81) < £ N(f;:200) Ny N(To(K): 2a)
6
< S N(f:20) N
Here, we used Remark VII.15 to bound N (T;(K); 2«) by #Né.

Similarly, for ¢/, " > 1 with max{¢’, £} = £, by Lemma VIIL.12, there exists a

one-legged tail tl(g’,e”) and a two-legged tail tég/’w with at least three external legs such
that

P[Re (T (K), Ty (K)) (R c (.19) | = P Re(Tys1 (KD, Torsa (KD) G|
+P[Re(tly " + 15 1) + g0 ()
with
Nimr (@2,0107) < 2 N(f; 200) N2 N(Ty (K): 20) N(Tpr (K): 20)
< J —Fm N 20) N HH2,

By Lemma VII.13, there exists a two—legged tail f,3 with at least four external legs such
that

P[Re@(Ri.c(.£2)] = P[Re@)ro].
Finally, by Lemma VIIL.11
P[Re@)(Ri.c(:£))] = P[Retzo K +na+ 020G 1],

where t14, 124 are one— resp. two—legged tails with at least three external legs.
Combining the results above, we see that

PIRGECTD] = Fl1 ) + P[Re(Ter1 (K)) G2

1T Re(Tu(K), T (K)) G + Relr] + 5)Gf)]
=1
max{¢/, ¢ }=+1
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with one- resp. two—legged tails 7{, #; with at least three external legs, and

I 1
feri=8+81+3 X e
o >1
max{¢/,¢"}=¢

By the triangle inequality

Nimpr(fe/Jr]) = Nimpr(gO) + Nimpr(gl) + % Z Nimpr(gZ,Z’,Z”)
o>
max{¢/, " }=¢t

6 £oNY
< Fr I N2 NP [—L— 1+ 3 2]
[1= 2 ve] =1
< Fa I N2 N[l 1 5 (4]
* [I-Lwe] =0 @
Nf(JrZ

;
s I N (f5 20) —5—.
(1= k]

m}

Corollary VIL17. Let K(; €, &', 1) be an even Grassmann function that has degree
at most two in the variables &', n, degree at least one in n and degree at least four in
the variables v, &, &', n. Furthermore let f(\; &) be a Grassmann function of degree
at least four in the variables ¥, §. Set

1 e
W) = Pl — G = & Re(TeK)Gf

—3 ¥ Re(Ty(K), T (K)) (£,

0" >1
Ifa >2and N(K; 2a)y < &, then

: 27y . N(K:20)?
Nimpr(h) = <5 N(f; 20) 1= 5 N(K:2a)’

Proof. By Prop. VII.16,
o0
Nimpr(h) = Z Nimpr(fz/)
=1

27 . . 2 1 N(K;2e) -1
= N5 20) N(K; 20) zgl [oﬂl—izN(K;za)

_ 21y . . 2[1 1 NK;2) ]*1
= ZLN(f:20) N(K: 2002 1 e
a7y _ . 5 l—a%N(K;Za)

=5 N(f;2a) N(K; 2a) —1_%21\]([(;2“)

277 . N(K;2a)?
o8 N(f9 2(1) lfa%N(K;Za)'
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Proof of Theorem VI.10 in the case D = 0. Set K(y; £, ,n) = U(Y; &€ + & +1n) —
U@; & + &). By Theorem III.2 and Prop. 1115,

PI = PSucCf) = Plh—Cfo)

Observe that K has degree at least one in n and four overall and that, by part i of Remark
11.24 (twice),

N(K;2a)9 < N(UW3 & + & +n); 20)0 < N(U (3 §); 8o < &.
Decompose

KW: & n=K:;68, n+K"(Y: &8, n),

where K’ has degree at most two in the variables &', n and K" has degree at least three
in the variables &', n. By Cor. VIL5 and Cor. VII.17 there exists a Grassmann function

g(¥) with

4
. N . . -z N(K;2a)
Nimpr(8) = %5 N(f: 20) N(K: 2"‘)[172N(K;2a> 1*%"’(’“2‘”]
5 N ) 1+2 N(K;20)
< S N(/f:20) N(K: 20) =550
27 N(F ] 1
<Z N(f,za)N(K,Za)l_gN(K;Za) 1-ZN(K;20)
25J ~. . 1
< 5 N (£ 20) N(K; 20) iy
B (A N(U;80)
=5 N(f,Za) 1-3N(U;8a)

and

Pf = P[00+ X Re(Te(K))F) + § X Re(Te(K). T (KD GF)] + g

e

We have used that P:f(w, &) = Pf(w, 0) and Ty (K') = T;(K). Since f and K have
degree at least four overall,

P Re(To(K)) (1) = Tu(K) o Ti(f)

(where the o composition was defined in Def. VI.5.ii) and by Remark VI.9,
P[Re(Te(K), To(K))(: )] = Te(K) o Rung(f) o Ty (K).

Furthermore, by part (ii) of Remark VIIL.15, T, (K) = T, (0 ). Thus

Pf'=PfW,00+ Y Tu(0) o Ti(f)+ 1 ¥ T(0) o Rung(f) o Ty (U) + g.
=1 0,0>1
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VIIIL. The Enlarged Algebra

The estimate of Theorem IV.1 on W’ (¥r), defined by
W @W)iy.p = Qc(W:iy.ctp)

was proven in the following way. We applied the results of Theorem II.28, combined
with the estimates on Wick ordering (Cor. I1.32) to get estimates on

W' () = Qc(:Wiy.cyp) = QcC:Wiynly o)

in terms of the norm of W. Then we used Cor. I1.32 again to estimate the norm of W' in
terms of the norm of W”. The transition from W” to W' = :W":y, _p creates new two
and four legged vertices, whose improved norm cannot be estimated by the technique
of Sect. VI. This transition also creates new ladder diagrams.

The same difficulty would occur if we tried to reduce the general case of Theorem
VI1.10 to the special case D = 0 by Wick ordering Sy, ¢ (f) at the end of the construction.
Therefore we monitor the Wick ordering with respect to D throughout the construction.
To do this we introduce fields ¢, ¢’, ¢ for these Wick contractions and use an analogue
of the operator Rk ¢ of Def. II1.4.

Definition VIILL. (i) Let Ki(y;¢, ¢/ ;6,6 n), -, Ke(W; ¢, 06,6, m) be

even Grassmann functions with K;(y; ¢, ¢, ¢, §,8',0) = 0. For a Grassmann
function g(yr; ¢; &) we define

_ _ e
Ok Ko@wie6) = | [ [ c a8 en) oo
8¢ +eimipp dup@ @) duc@E' ) [, o

The structure of Q is illustrated in the figure

(i) For a Grassmann function K (Yr; ¢, ¢, @3 €, &', ) with K (Y5 ¢, ¢/, 93 £,€',0) = 0
we define the operator Qg by

Qz(g) = gl HOK, - K)().
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In this definition, the fields &, &',  involving the covariance C are treated in the same
way as in Sect. III. The fields ¢ are analogous to the fields n and describe Wick con-
tractions between g and the K;. The fields ¢’ are analogous to the fields & and describe
Wick contractions among K;. Similar to the £ fields, the fields ¢ are not integrated out
and are later used for Wick contractions in further applications of Q. In contrast to
the £—fields, however, also Wick contractions between fields of g and kernels appearing
in future applications of Q¢ have to be allowed. This is the reason for the field ¢ that
appears in the term g (¥; ¢ + @; ):p,p in Def. VIIL1.i.

Definition VIIL.1.i of Q was chosen so that

:O(Ky, -+, Ko)(©)ie.p = RCKyie.ps -+, :Keie.p) (8. D)

when K; (5 £, ¢/, 3 €,§, 1) = Ki (Y5 ¢ + ¢+ ¢; €&, m). This formula is proven in
Lemma VIIL12.i.! Consequently

Qe (W):ep =Rl ,Chig.p)

forn =0, 1, 2, ---. From this one can deduce, as in Prop. VIIL.9, that
o0

Su.cCfiyp) =" / Y QMW 0:6) duc®) 1y s
n=0

where, given an even Grassmann function U (¥; &) and a Grassmann function f(v; &),

U &)= U &) s
h(Y; 8 8) = f( + 83 6),
KW; g, 0 g 6,8 m=UW+¢+ +e:E+E +n)
W4+ +pE+8).

However, this formula would not be good enough to get an estimate on Sy ¢ (: f:c+p)-
At each application of Q g, the passage from g(¥; £; &) to g(¥; ¢ + ¢; n), that is the
separation between the D- fields that are to be Wick contracted at the present step and
those that are to be Wick contracted at a future step, leads to a deterioration in the norm:

N(g(W; ¢ +esn;a) < N(gWr; ¢ 6); 2a)

by Remark I1.24. In iterated applications of Q3 this deterioration in the norm would
build up excessively. For this reason, we avoid Wick contractions at most steps of the
construction and perform them only before and during steps in which overlapping loops
are exploited. For bookkeeping of the partially Wick ordered fields in intermediate steps
we introduce an enlarged algebra.

1 To see this, choose f=:8¢p-
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VIII. 1. Definition of the Enlarged Algebra.

Definition VIIL.2. (i) A Zy—graded vector space is a complex vector space E, together
with a decomposition E = E @ E_. The elements of E are called even, the ele-
ments of E_ odd. A graded vector space is a complex vector space E, together with
a decomposition E = @,_ E. Every graded vector space is considered as a
Zn—graded vector space with

E+=@Em E_=@Em.

r even r odd

(ii) If E is a (Zo—) graded vector space, the tensor algebra T (E) has a natural (Z,—)
grading. The symmetric superalgebra over E is denoted S(E) and is defined as the
quotient of T (E) by the two sided ideal I (E) generated by

a®b—-—b®a withae Eyorbe Ey,
a@®b+bQRa witha,b e E_.

It is a superalgebra, and it is a graded superalgebra if E is a graded vector space
(see [BS]).

Example VIII.3. Let E be a complex vector space. Setting E, = {0}, E_ = E, we
give E the structure of a Zy—graded vector space in which all elements are odd. Then
the symmetric superalgebra over E is the Grassmann algebra /\ E over E. Setting
EL =E, E_ = {0}, S(E) is the classical symmetric algebra S(E) over E.

Remark VIII.4. There is a natural isomorphism ¢ between S(E) and the algebra S(E4) ®
/\ E_, constructed in the following way:
Observe that

TE)= P EeETe--®EY" @ E®.

my,ny,-,mp,np=0
ny,my,-,n_1,mp=l1

Define the algebra homomorphism ¢’ : T(E) — S(E+) ® /\ E_ by
L’<vf®vf®~~®v;"®vr_) = ...ov)® (v .. vy)

forvt e E%m" V€ E®™ Clearly I (E) lies in the kernel of ¢/, so ¢/ induces an algebra
homomorphism ¢ : S(E) - S(E+) ® /\ E—. One can check that ¢ is an isomorphism.

As S(E) and /\ E are subalgebras of the tensor algebra T'(E), S(E) can also be viewed
as a subalgebraof T(E)  T(E) = T(E).

Definition VIILS. (i) Let E be a complex vector space. The symmetric superalgebra
S(/\ E) over \ E (considered as a graded vector space) is called the enlarged

algebra //\ E over E. It is a graded superalgebra.
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(i1) Multiplication
fi® Q@ fr—> fi- - f

defines an algebra homomorphism from the tensor algebra T (/\ E) to )\ E. The
ideal 1(/\ E) of part (ii) of Def. VIIL.2 lies in the kernel of this homomorphism.
Therefore it induces an algebra homomorphism

Ev: //\E—)/\E

called the evaluation map. It is graded, that is

Ev(x) /\m E whenx e (//\ E)m.

(i) If A is a superalgebra, we define the enlarged algebra over E with coefficients in

A as the tensor product
JN\LE=A®//\E

in the sense of Def. I1.1.iv. The evaluation map extends by A-linearity to an algebra
homomorphism
Ev: [\sE— /\,E.

Remark VIILG6. (i) /\ E is identified with the subspace (//\ V)1 of //\ V.
(i) Ev(x . y) = Ev(x ~EV(y)) = Ev(Ev(x) . y) forallx, y € //\ V.
(iii) By Remark VIIL.4, there is a natural inclusion of //\ E=S ( NE ) as a graded
subalgebra of T( A\ E) C T(T(E)) = T(E).

VIII.2. Norm Estimates for the Enlarged Algebra. As in Subsect. IIL3,1let A" = A , V’
be the Grassmann algebra in the variables 1; with coefficients in A. Furthermore let
E be a copy of V with generators ¢; corresponding to the fields 1/;. We will use the

enlarged algebra
A= /Ny E

over E with coefficients in A’. Elements of A will be written as Grassmann functions
f(; ¢). They are linear combinations of monomials of the form

Vip Vi (G0 E0) @ (G- 40) @ -+ @ (Em -+ §5m)-

The evaluation map Ev : A — A, E = A4(V & E) maps such a monomial to
Yi Vi, {J.u) -~-§j(1) §j(z) e {J.(r) . As in Remark VIIL.6, the Grassmann algebra
1 Pl 1 pr

/\ 4 E of Grassmann functions g(; ¢) is viewed as a subspace of A.
The evaluation map Ev: A — A 4 E = A 4(V @ E) extends to a map

Ev : /\A(V(l) DD V(r)) — /\A/(E ovile...q V(r))

= N\voEevVe ..av?),
A

where V), j =1,... r are copies of V with generators £ /).
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Definition VIIL7. By Remark VIIL6.iii, A can be viewed as a graded subalgebra of
A" Q@ T(E) = A’ ® T(V). Therefore the family || - || of seminorms on the spaces
Al ® V@ introduced in Subsect. 111.3, induces a family of symmetric seminorms on

the spaces A,y ® Ve \which we again denote by || - ||'. This definition extends the
definition of || - ||” given in Subsect. I11.3. Also, ¢ is a contraction bound and b an integral
bound for the covariance C with respect to these norms.

Lemma VIILS. Let f € A 4(Vi @ --- & V,). Then

N'(Ev(f); ) < N'(f; ).

Proof. Ev(f) is obtained from f by antisymmetrization. O

VIIL.3. Schwinger Functionals over the Extended Algebra. Recall that for any even
U(y; &) € A\ 4 V, the Schwinger functional with respect to U and C is the map from
/A4 V to A’ given by

Su.c(f)W) = L f V) (s £) dpuc ©), Z-= / VO @),

Also recall that for an even Grassmann function K (¥, E ;&,&', n) inthe variables £, &',
over the extended algebra A and any Grassmann function f(y; £; &) € A\ 4V,

R.c(f) = f f KV EEE e 1 G duc (@) dpc ) ¢

Proposition VIIL.9. Let
UW: &) = U &)y
£,C
be even and set
KW.g:6.8 =00 +:6+& +mep—UW +: 6+ p.

Let f(y;6) € Ny Vandset f(;0:6) =:f (W +;8):ep € Ay V. Then

Su.c(:fy.0)W) = / / Bv(1=— (1) duc®dun@).,,

Observe that m(f) € A4V, sothat [ 1]—71€1<,c (Hduc ) € A.

For the proof of this proposition we use
Lemma VIIL.10. Let f(; &) be a Grassmann function and set
FW:e:6) =/ (¥ + ¢ 6.

Furthermore, let n > 1.
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(i) Let £1, - -+ , £, > 1 and let

Kji(y; 6,8, ), j=Lln, i=1,--- ¢

be even Grassmann functions with coefficients in A. Let

Kji(Ws o 6,8 ) = Kji(Y + 86,6 miep

considered as Grassmann functions in the variables &, &', n with coefficients in the
enlarged algebra A. Then

< l_[l Rc(llejlllp,D, e, 3I€j€j:¢,D)>(:f:WsD)
j:
- ;/Ev( {1 Re (k.- Kj) (D) dun(©):,
2

On the left-hand side of the equation above, the operator Rc (defined in (I11.2) ) is
considered over the algebra A’, while on the right-hand side it is considered over
the extended algebra A.

(ii) Let I%(w; £,&',n) be an even Grassmann function and

KW e & =KW+ 68, m)ip.
Then
Rig o c(fin) = | [ BVRY c(P o),

Iki:/;,D,C
Proof. (i) Let
n A A
h(Y: &) =:8(¥:§)yp = ( [T Rc(:Kji:y.p, - v:Kij:w,D))(:f:w,D)-
j=1
By part (ii) of Prop. A.2, in the Grassmann algebra over A with variables ¥, ¢, &,
g,
n ~
W +6:8) =8 + 8 = ([T Re(Kji-+ . Kje,)) (Fic.p).
j=1
Hence, by the construction of 4 and Ev,

Re(Kji,-+ Kje,) ) (:Fen)]

s

h(Yy +¢;8) =g +&:8)ep = EV[(

1

J

Therefore

e E) = /:gw 08 n dpp(@)
= fEV< ﬁ Rc(Kji, -+ ,sz_,-)(f)> dup(Z).
j=1

(ii) follows from part (i) and Remark I1I.6. O
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Proof of Proposition VIII.9. Set
KW 6.8 o = 01§ +& +miyp —UWi§+8)y.p.

By Prop. IIL5, with U(é) replaced by 10(’#;5)1;0,0 and K (&,&’,n) replaced by
:12(1//; £, &, 1n):y,p, and part ii of Lemma VIIIL. 10,

Ry c(:fy.0) = Rflk:w.a,c(ifix/f,u)
= [ B (R D@y,

By Theorem I11.2,

Sv.c(:fy.p)(W) = Zo Ry o (:fty,p) dic(®)
_ - / Ev( f T Ric(Dduc®)dip@)’,,

= ([ e (D die®) din@):,

We use the extended algebra to give

VIILA4. A Second Proof of Theorem IV.1.
Proposition VIIL11. Let U (; &), f(; ) € Ay V with U even. Set
U:8) = UW: ).
fr:6) = 1 f:8):

s
ag

’

oS
ao

Assume that ¢ is a contraction bound for the covariance C and b is an integral bound
for C and for D and that N(ﬁ; 8a)y < "2—2. Then Sy.c(f) exists. If

Sv.c(f) = :f'()y.p,
then A
N(f'@) = (3 0); ) < 5 N(f5 4a) %
Proof. As above, set
KW 668 m) =00 +5E+E +men— U@+ E+E)0D,
F:6:8 = f W+ p.
By Remark I1.24 and Cor. 11.32,
N(U; 8a),
N(f;4a).

N(K)
N(f)

IAIA
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By Cor. II1.9, applied with A replaced by A,

1]*7131<,c Cfiec)—:fiec = gy, & £)ie.c
with

/ 2 AL NE 2 A NK) 2 2, N(U:8a)
N'©) = 5N e = @ VD e = & Ve XD

Consequently, by Lemma I1.31,

1

N/[/ (—ﬂ —RK,c(:f:S'C) - :f:s,c)duc@)] = /</:g(l//; L 6)ec d,uc(g))

Observe that
/3ffs,c dpc®) = f(r:2:0) = :f (¥ +¢: 0):z.p.

Hence, by Prop. VIIL.9, with f (; &) replaced by :f(w; &):e,c,Lemmall.31 and Lemma
VIILS,

N(f = F@,0) = N'(f' - f(,0)

=V [ B [ oz CFeodnc®

—f(+¢, 0):;,1)) dun(f)}

= N ([ o o dic®) - sfw +;,0):<,D)}

| / (T () = Fec) duc@]

< 2 F. N(lA/;SfX)
< 5 V(e A

IA

O
Proof of Theorem IV.1, again. By Remark III.1.i, with W replaced by :W:c4p,
W @) = W) iyp = QeWicep) (W) — W)y,

1
=](; (Siv,c(U) = :W @)y, p) dt mod Ay,

where

U:é) = ZW(¢+§):$’.€).
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Define f; and f by

f@:6) =W +8),
S W)iy.p = Siw.c(U).
Then
W) — W) = fo 1 (F/@) = f(,0)dt  mod Ao.
By Prop. VIIL11, with U, (; §) = tW (¢ + £),
NW' = W:a) < max N(f/(9) = (. 0 )
< a%orgtaé N(f;4a) %

2 N(W:l16a)?

= o2 1- L N(W;l6a)
o

for all W with N(W; 16a)¢ < %. Replacing o by 2« gives

N(W;320)?

/ . iy i)
N(W — W, 2a) < 202 l—a%N(W;32a)

o

for all W with N(W; 32a)p < o?. O

VIILS. The Operator Q.

Lemma VIIL.12. Let f (Y, g:; &) be a Grassmann function over the extended algebra A
and set . f' (¥, ¢ €):e,p = Ev(f).

(i) Let K; (W, C; 6,8 ,n), i =1, -+, Lbe Grassmann functions with K; (¥, £; €, &', 0)
= 0. Set

IEZ(Wv é" Clv @ Ev é/’ 77) = Kz(‘ﬂ, C + C/ + @; E’ E/v 77)
Then

Ev Re(:Kiigp. -+ :Keie p)(f) = 1 Q(Ky, -+ ,Ize)(f/).‘{‘D.
(ii) Let K(Yr, ¢; &, &', 1) be a Grassmann function with K (Y, £; €, &,0) = 0. Set
KW; s, 0 @ 6, =KW: ¢+ +¢; €& ).

Then, when R.g- cp.C IS considered as an operator over A,

EV(R;K:{,D,C(JC)) = :Qk(f/):g,D'
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Proof. Applying Remark VIII.6 and Cor. A.3 to the variable ¢ we see that

EV(:Ki1 (¥, 56,8 mup - Ke(p, § 6.8 e p - F(W, T3 )
=Ev(:Kiep---:Keep BV, &)
=EBEv(:Kiep-Keep - f.p)

4
= /(I—IIKI(I//’ &+ é‘/ + ¢; Sv 5/1 r’):{’,D) :gﬂ,D 5f/(1/f’ ¢
+e:mippdup@’ 0)., b

Applying each of the following operations to both sides of this equation:

Wick order each :K;:; p with respect to C in the & " variable
Wick order the product [ [, : K; . &.c with respect to C in the 7 variable
¢,D

Integrate using [ - duc(§', )
e Wick order the result with respect to C in the & variable

yields Ev Rc(:K1:c.p, -+, :Keie,p)(f) on the left and : Q(Ky, -+, I?@)(f’);{ pon
the right.
(ii) follows from part (i), the definition of Q and Remark II1.6. O

Asin Subsect. VII.1, we define for Grassmann functions K, (1/; ¢, § ©; S &,n), -
Ke(Y;¢, ¢, @ €,&,n) and f (i, ¢; €) the Grassmann function O(Ka,---, Ky) by

0(Ks, - Ke)(f)(llf ¢.¢ o E.8 )
/ H KiW: 8.8+ ¢ 6.8 +&" 1) 0n) vp

el.c W, C

f G, ;“ +o+ein+n0)y pdup” @ )ducE" ).
We have, as in Prop. VII.1

Pl'OpOSitiOﬂ VIIL13. Let Kl(wy ;, é‘/» 7N é» %_/a 77)» ) K@(ws é‘v g/s @3 ‘51 g/v 77) be
Grassmann functions with K; (¥; ¢, ¢, ¢; &, &', 0) = 0. Then for any Grassmann func-
tion f (Y, ¢, §),

O(Ky, -, K)(f)(W, ¢ )
=://K1<w;c 9, &€, n);m

& C
0(Ka - K)(NW3 8. 03 6.6 ) ep dip (@ @) dpc € om) T o

& C

Lemma VIIL14. Let Ki(W; .0, @: 6,6, n), i =1,---, € be Grassmann functions
such that K;(Y; ¢, ¢, ¢, &,&',0) = 0. Furthermore let f(, ¢, &) be any Grassmann
Sfunction. Set

i 0 E)ec =4 OQKy, - KOG fie.0) (W, 8, 6).
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Then

¢ _
N(fi;@) < 2 N(f; 2) ] N(Ki; @),
i=1

¢ _
N1, 0,6);0) < 3r N(f3 ) [T N(Kiz ).

~ - _ [ _
N(z2m Q(Ka, -+, Ko fie.0); @) < = N(f; 4) ] N(Ki; 20),

-1
o ;
i=2

o ) ¢ .
Nimpr(ﬁ 0Kz, -, K fec)a) < # Nimpr (f; 4a) I—[ Nimpr (K3 2a).
i=2

Proof. Set f(y;¢,¢',8) = f(Y; ¢ + ¢, &) and

W5 e ¢ E)sc = % ‘RcCKiigrp, -, Ikzig’,D)(ifis,c)ZWP,;D,
.0 0.9 E) e = % Re(Ky, -+, Ko)(:fe.0),

where R is considered as an operator over the Grassmann algebra with coefficientsin A,

generated by ¥;, i, &, i, @] Then fi(¥, £, &) = [ fit¥: ¢, ¢, 9. 9: €)dup(C', 9) ,
and consequently by Lemma I1.31 (twice, with C replaced by D), Prop. III.7 and Remark

I1.24,

. _ ¢ _ ¢ _
N(f1) = N(f2) = N [N < ot N(f:2e) [T N(Ksz ).

When ¢ is set to zero,
(0.8, 9,¢ E)ec = % Re(Ky, -+ J@z)(lfig,c)‘zzo

SO

- ¢ -
N(fi(¥,0,8) < N(L¥,0,8€) < LN [ NK)).

i=1

The proofs of the other inequalities are similar. O

IX. Overlapping Loops Created by the Second Covariance

In this section we prove Theorem VI.10 in the general case. We assume that A is a
superalgebra in which all elements have degree zero and that || - || and || - [/impr are
two systems of symmetric seminorms on the spaces A ® V®" such that the covariances
(C, D) have improved integration constants ¢, b, J for these families of seminorms.
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IX.1. Implementing Overlapping Loops.

Proposition IX.1. Let K(; £, ¢/, @; &, &', ) be an even Grassmann function such that
KW;¢, ¢ ¢ &, €,0) = 0. Decompose

KZK/—i-K//,

where K’ has degree at most two in the variables {', &', ¢, n and K" has degree at least
three in these variables. Let f(¥; ¢; &) be a Grassmann function, and set

giec = Qx(fie0), gec = Qx(fie0).
Then, ifa > 2 and N(K; 2a)p < «,

5 ;2
Nimpr(g — g'10) < 2 N(f1der) 120

The proof is analogous to the proof of Prop. VII.4 and is given following

Lemma IX.2. Let K (Vr; ¢, ¢/, ; €, &', n) be an even Grassmann function that satisfies
KW;¢, ¢ ;& E,0) = 0. Decompose

K=K +K",

where K’ has degree at most two in the variables {', &', ¢, n and K" has degree at least
three in these variables. Let each of the functions KV ... | K©® be either K’ or K",
and assume that at least one of them is equal to K". Let f(Yr; ¢; &) be a Grassmann
function, and set

7 QKD KON E) = o f (8 e
where : f: is shorthand for : f (¥; ¢ &):e,c. Then, if o > 2,
5

Nimpe (f's @) < gares J N (f: 4) N(K: 2e)".

Proof. We may assume that K = K. Set
g6, ¢ 956 = 0K? - KOS

By Lemma VIII.14

2 V(@) < = N(f3 4a) N(K; 2007
By Prop. VIII.13,

FiE) =4 f/:K”(w; G EE D)

&mC
W8 E 8 ) ey dup (@) ducE ).
& .n:C
Proposition V1.4 implies that
Nimpr (f') < 726 N(K") N(g)
5
< 25 I N(f: 4a) N(K; 20)".

A
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Proof of Prop. IX.1. By Def. VIII.1 ii

= !/ & /
g= > 8, g =2 g
=1 =1
where
gt = 4 OK, -+ K)Cf),
g = 4 QK - KNS
Since

Q(K,u-,K)—Q(K/,u-,K/)
=Q(K—-K,K,--- ,K)+QK',K—K',K,---,K)
+..-4+0K',--- ,K-K)
=Q(K”,K,~~,K)—i—Q(K/,K”,K,---,K)—i—---—i—Q(K’,uo,K”),

it follows from Lemma IX.2 that
5
Nimpr(ge — &) < =55 J N(f; 4a) N(K; 2a0)".

Therefore

o 5 .
Nimpr(8 = 8) = 3 Nimpr(ge — 81) < 2 N(f14o) 1025
(=1 o ’

]

Proposition IX.3. Let K (V; £, ¢/, @; &, &', 1) be an even Grassmann function of degree
at most two in the variables ', &', ¢, n and of degree at least one in n. Write

K@it &6 m= 3 Knqro) Wi g 68

nyn
ng,ny,ny,n3
P1:P2-P3

with Kpo(r1r2r3y € Alno, pi, p2. p3, n1,na, nsl. Let
2n3

nynyn

p100

)

Ki= Y Kpl

no,n1,pi n101

be the part of K that has degree precisely one in ', &', @, n.

Furthermore let T (V; ¢; n) be a Grassmann function that has degree two in the vari-
ables ¢, n and degree at least one in the variable n. Write T = Ty1 + Ty, where T1;
has degree one in ¢ and n, and Ty has degree two in 1. Set

Tmix (V5 @', ¢"s 0", 0") = T (¥ @5 0") + T (s ¢"5 1)
H[Too (W 00 + 0") — Toa (W5 05 ') — Toa (W5 0; ).
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Furthermore set
Ki(; ¢, ¢ 96,8 ) = //:T(l/f;w’; n)yc K@ ¢
+(p/’ g/» @3 ‘5;: + ’7/, é/a 77) ¢'.D dMD((P/) dMC(’?/),
n',C
Ky ¢,¢ 036,81 =/T11(w;<p; ") :KW; ¢t ;6

+0' &, n)y.cduc(n),

g/ ‘C/

andk=151+152,

K¢, 0:6,1) Z//Tmix(‘ﬁ;(p/v‘p”; n'.n") K¢
+o' o E+n E ) b
n',C

KW e+e" o E+0" E ) o

w,.C

xdup('. @', " ducE  n',n"),
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Finally let f(; ¢; &) be a Grassmann function and set

F'Wi¢.9:8) = Q1) Q(K, K)(:f16.0)(¥:£,0,9:0,0,8),
W@ E)ee =20K, K)Cfie.0) (Wi ¢ +¢; 6),
W80 60 = QERICF5.0Wi 6 +9:8).
Then, ifo > 2,
Nimpe (' = (f + Pli) < 2 N(f: 4a) N(K: 4a)® N(T: 20).
The proof is similar to the proof of Prop. VII.7 and is given following

Lemma IX.4. Let B(y; ¢, ¢"; ', n") be a Grassmann function that has degree one
in the variables ¢', v/, degree one in the variables ¢",n" and degree at least one in
the variables n',n". Furthermore let H(\W; £, ¢, v, 6,8, n), KW ¢, 0,y 6,8, 1)
be even Grassmann functions that vanish for n = 0. Assume that H or K has degree
at least two in the variables ¢, y, &', n. Let f(¥; ¢; §) be any Grassmann function and
set

g, 91 €) = /[j[//B(I//up/wp”; 0"y HW; ¢+
+(p/’ Clv Vs E + 77/7 é/’ 77) ¢ ¢'iD
n.§;C

KW o+ Ly E4n" E ) v
é‘,vn//;c

xdup(y's¢", ¢ dpct 0" €)] o
n,

SWt+e+yin: rD dup(y)ducm).
Then, ifo > 2,
Nimpr(g: @) < Zif N(B: @) N(H: 4a) N(K: 4a) N(f: 40).

Proof. In the proof we suppress the variable 1. We assume that K has degree at least
two in the variables ¢’, y, &', n. First we discuss the case that B has degree one in the
variable n’. Set

h, o, 7. ¢ 9" 60,8, 1")
_ f / B @00’ HE 4o+ ¢ 8" 6+ € &) e
n/’EU;C

fC+e+ty+in+EN: 0 dup(¢’, ") duc(n’, &").

By Lemma A.5, twice
f/:H(-A-,V---, MKy, 77):57:5 Zf(--»y;n):%v dpc(mdup(y)
=/ PH (e 80 8 L p K Gy ) Sy f Gy 88 e

£.C n,&";C

xdpc(n,§Mdup(y, ¢") IX.1)



Convergence of Perturbation Expansions in Fermionic Models. Part 2 287

SO

g, ¢ é)=f/:h(§,<p, v. . " & E ") vy

& .n;C

K(é‘ + (,0 + (p//v C/, )/, E + 7)”7 5/7 77):«:”‘{’%0

n.& n;C
xdup(y,¢", ) ducm, n", §).

By iterated application of Lemma II.31 combined with Prop. I1.33, first integrating
[ - dpc()dup(¢’) and then integrating [ - duc(§”)dup(¢”), and Remark I1.24,
several times,

N(h) < N(B) N(H (c+g+¢ ¢/ "6+ 8 £"); @) N(f gty +e"n+8"); @)
< GNBNHE +¢,8,.8" 5,6 20) N(f(E +v3 1) 20)
< L N(B)N(H;:4a) N(f; 4).

Since h, through B, has degree one in ¢”, ", only the part of K(¢ + ¢+ ¢”, ', y; € +
n”, &', n) that has degree at least one in ¢”, n” can contribute to g(¢, ¢; &). As K also
has degree at least two in the variables ¢’, v, &', n and degree at least one in 1, Prop. V1.4
implies that

A

Nimpr(8) < 2L N () N(K; 4ar)

IA

2L N(B) N(H: 4) N(f; 4a) N(K: 4av).

Next we discuss the situation that B has degree zero in the variable »’. This implies
that B has degree one in ¢’ and degree one in n”. Set

h oy, ¢ 6,8 n,0) = f/:H(é“ +o+9. 0"+ €, 5”)15:33
SCH+o+y+n+E) o dup(@”)ducE"),
e

k@, o, v. ¢ ¢ 6 & n.n) =//B(<//,<p”: 0" K@C+e+¢", 0 v §

+n" & n): yrodup(@”)dpuc ).

" C

Again by (IX.1),

g = f/:h(f,w, v. . o 68 ) ey

& C
k(é‘v LY, g/s (p/; Ev ‘i:/s n, 77/) o' ¢ yiD d/*LD((p/v g/s )/) d/,l,c(i’]/, %Jv 77)
n' & mC
By Lemma I1.31, Prop. 11.33 and Remark I1.24,
N(h) < 5 N(H; 4a) N(f; 4a),
N(k) < -5N(B; @) N(K; 4a).
Since k has degree at least one in 1 and degree at least three in ¢’, ¢', y, n’, &', n we have

Nimpe(8) < ZLN(YNGk) < 2 N(H: 40) N(f; 40) N(K: 4a) N(B).
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Proof of Prop. IX.3. We again suppress v in the proof. By definition

fl&, om) = / f:T(wﬂ )iy c:QK, K)Cfie.c)C+o+@in+n0)g D
xdup(@")duc(n')

so that, by Lemma A.7, recalling that T (¢’, n’) is of degree two in ¢/, 7/,

1@, 9 8)

f/:T(w’, )iy c: QK K)Cf)C+o+¢ E+n0)p

xdup(@)ducn')

//:T(so/, iy .c I[I(IK(E +o+o L viE+n E ) iop
&.c

KC+o+¢, 0 y;E+0 €, n):;/,u>:y,o
g.c

n,C

b

SfC e+ +yin: y.g] “wp dup @' y)ducE n,n)
. .C

2]/:T(¢/’ 71/)3r;/,C I:(K(C +(p+(p/v C/’ V;E_'—n/’é/v 77)1;/,«;’;0

e

K(§ +§0’ é‘/v 7/’ Svgl’ 77) {’,D) y.D
§.c

n.C

fCte+e +yin: ?"c)] opdnp@ ¢ yyducE 0. n)

+// : [Tmix(‘/’/s "' ") K@ H+o+o i +0 E )y
&hc

n

KC+o+¢", ¢ vie+0", & n): q)”,y;o] )

n".ghc 4 e

e +yimivo dup(e’, 9", ¢, y)duct',n", &, n). (X.2)
n,

The Thix term in (IX.2) above differs from

//:13(§+¢,y;$,n):z,g Zf(f+§0+V;77)1g7.zc)d,u0()/)dﬂc(77)=f(§1<.0§§)

by
// j I:Tmix(§0/v "0’ ")y HC+o+¢ 0 viE+n. 8 0 ven
n.&;C

HC+o+¢" 0 viE+0" &, U):w/’.:’:D]:%D

U//vé/lc n,C
SCHe+yin: rp dup(@',¢". ¢, v)duc',n", &, n)
+2 // j [Tmix(fp’, "'y HC+o+¢, v E+0 6 0y
n'.&;C

KaC+e+¢" ¢ viE+0" &, ’7):(;/’.;’;1)] D

U//‘E/ic n,C

SCHe+yin: rp dup(@',¢". ¢, v)duc',n" &, n),
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where K = K. 1+ H. By Lemma IX.4, the improved norm of this difference is bounded
by
3 2 N (Tix: @) N(H; 40) N (K 4e) N(f; 400)
9
< L N(T; 20) N(K; 4a)” N(f; 4a).

We apply Lemma A5 to the variable ¢’ in the 2 :T (¢, '):)y, ¢ term of (IX.2). We get
2/ /:T(w’ +¢"s )y e (:K(; +o+o yiE+n E iy
e

KC+e, ¢y 68 n): g/,D) y.D
£.C

n,C
@+ " +yim: 0 dup' ¢ 9" y)ducE' n. 1.

As T has degree at most one in ¢’ + ¢”, this is equal to
2/ / j (:T(w’; Miyc KC+e+e ¢ yi6+n.& . i
KG+o.¢ yiE 8, n):y,D)jy.
g.c/
/

fCHo+y; n):?? dup(&'. ¢, y)ducE 0, 1)

D
C

+2//:T11(q0”; n)y.c :(:K(;“ +o. ¢ty E+n ) oo
2;,:/, 4

n';C
K(; + o, §/7 Vs E7 é/v 71) §/<D> v.D
gc/ e

fCHe+e" +yin: i dup(’,¢", v)ducE' n,n).
n,

Applying Lemma A.5, with & replaced by y and &’ replaced by ¢”, to the second term,
this is equal to

2/ / : (rT(w’; My  KC+o+@ 0 vi6+0 .80 vwn

N He

K¢+t v 68, n):;',D)I%D
el n,C
/

fCHe+yin: rp dup(C'. @' y)ducE . n. 1)
+2//I(Tn(y;n’) K@+, ¢ yiE+0.8. 0 vp
& iCc

K(g +(pv g/v )’?‘57‘5/7 n):C’~D):V*D
el n,C

SfCHe+yin: v dup(',y)ducE' ,n,n")

N 2//3(3’51@ F9 86 n KE + e i g n):y,D):y,D
el

g.c/ o e

fCHe+yin: rp dup(',y)ducE' n)
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+2ff:(:k2(§+¢7 ¢y &€, n):g;D K@+, ¢ yi§ 8, n):;cn)jy.o

:C &c n,C
fC+e+yin: ro dup(&',y)duc(€', n).
Sothe 2:T (¢, )y, ¢ term of (IX.2) equals
fiC, 0. 6) + fr(L, ; 6),

where

20(K1, K)CF)(E + g3 6),
20(K2, K)CF)E + 93 ).

(8, 93 )i
H(C, @ &)ec

As f = fi + f», the proposition follows. O

IX.2. Tails. Inthissubsectionlet K (v; ¢, ¢/, @; &, &', n) be an even Grassmann function
that has degree at least four in the variables ¥, ¢, ¢, ¢, &, &', nsuchthat K (¥; ¢, ', ¢;
£,&',0) = 0. We always write

K = Z Ko (P1r2p3) with Kny(r1r2r3) € Alno, p1, p2, p3, ni, na, n3l.

nypnpn3 nypnpng
ney.ny.ny.n3
P1-P2:P3

Definition IX.5. (i) An n-legged tail with at least e external legs is a Grassmann
function

TW;osmeP P Ald ni,nal.

d>e nytnpy=n
ny>1

A n—legged tail is a n—legged tail with at least two external legs.
@i1) If T is a two—legged tail we define the two—legged tail T o K by

(T o K)(Wr; 05 1) = f/:T(llf; @)y

2 Kopimy(:e'. o' m)
1)3#1;131:2 e

xdup(@")duc).

Remark IX.6. Again, a two—legged tail with two external legs is an end in the sense of
Def. VLS. IEK (Y5 ¢, ¢, ;6,6 M) =UW +¢{ 4+ +9: 6+ +n) - U+ +¢'+
@; & + &") for some Grassmann function U (1; &) then T o K agrees with T o Rung(U)
of Defs. VI.5 and VL.8.

Recall that we are interested in the two— and four—legged contributions to the Grass-
mann function f’(y) of Theorem VI.10. As in Def. VIL.8 such contributions are extracted
by

Definition IX.7. The operator P maps f(Y;;8)ie.c to fa0,0(0;0;0) + f20,0
(Wa 07 0)’ When f = Zno,nl,nz fno,m,nz Wlth fno,m,nz € A[n()v nl ’ n2]~

Definition IX.8. Let T (; ¢; n) be an n—legged tail.
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i) An element v of the norm domain Ny is said to be an effective bound for T if
N(/:T(w; oimich(Vgim gD, £D) ducn s a) = HN @)

Nimpr(/:T(I/f§ @; ﬂ)in,ch(lﬂ; @3 n; g(])’ AR é(r)) ducm) ; 05) = a%Nimpr(h; a)
for all Grassmann functions h(w; o n; 5(1), e, S(’)).

ii) For v € Ny, we write

Negt (T; ) < v — v is an effective bound for T .
Remark IX.9. Proposition I1.33 and the fact that Niyp(T'; @) < N(T'; o) imply
Nefi (T o) < N(T'; ).

Lemma IX.10. Assume that K (Y; ¢, &', @; €, &', n) has degree at most two in the vari-
ables ', ¢, &', nandthat o > 2. Let T be a two—legged tail with at least e external legs.
If e > 4, then

PO Qk(f)=PQO(T o K)(:f2),
where : [ is shorthand for : f:¢ c. More generally, if e > 2, there exists a one—legged
tail t; with at least e + 1 external legs, a two—legged tail t, with at least e + 1 external
legs and a two—legged tail T(\y; @; ) with at least e + 2 external legs and degree two*

in 1 such that for any Grassmann function f(\r; ¢; &) the following holds:
Set

') = P[Q(T)Qk(if:) — QT o K)(f)— Q(T o K, Ti(K))(: )

—0(n + 1+ 1)),
where
Ti(K) = Ka(gen) + Kagp).
Then
Nimpr (f; @) < 28 N(f3 4a) N(T3 200 N(K: 4 (1+ BN (K; 4)).
Furthermore

N(t) < &5 N(T) N(K),
N(1) < 2 N(T) N(K),
Neii (t) < 25 N(T) N(K)*.

Proof. The proof is similar to that of Lemma VIL11. If : fp:e ¢ = Q(T)Q(K, .-+ , K)
(:f:), with £K’s, then, as K is of degree at least two in ¥, ¢, & and T is 2-legged with
e external legs, fy has degree at least e 4+ 2¢ — 2. Hence

P[O(T)Qk (:f)] = P[Q(T)QK)(:f)] ife >4,
P[O(T)Qk (:f)] = P[Q(M)QK):f)] + s P[QT)Q(K, K)(:f1)] ife>2.

2 Hence 7 is independent of ¢.
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The contribution P Q(T) Q(K,,O(m P23 )) vanishes unless
nynpn3

e p1 +np < 2, since otherwise Q(T)Q(K.(m P2 P3 )) is of degree at least one in ¢ and
nynpn3
P sets ¢ to zero.
e n1 € {1, 2}, since these fields must connect to 1 fields of T and T has degree one or
two in 7.
e py = np = 0, since there is only a single K in PQ(T)Q(KnO(m P2 P3 )).
nynpyn3
e p3 +n3 < 2because K is of degree at most two in ¢/, ¢, &', 7.
e n3 > 1 because K is of degree at least one in 7.
e no+n1+ p1 +n3+ p3 > 4 because K is of degree at least four overall.

Hence
P O(T)Q(K) = P Q(T) Q( ,,1+,Z,1=2 K.(z;}gfg)) + P Q(T) Q(W%:2 K-(‘f%ﬁg ))
p3t+n3=2
+P Q(T) Q(m;}:2 K (nom) + P o) (K ¢a)
= P[Q(T o K) + Q(k) + Q(t1 + 121 + 122) ],
where

k(s @3 m) =/Tn(1ﬁ;<p; (X Kng(Q9r)(W30,0, 050, 0,m) dpc (),

p3t+n3=2 !
np=1

n(sein) = //:T(iﬁ;w’; ")y ( 2_2 Kno(ggg?))
np=1

x (Y ¢,0,0;0',0,m)dup(@)duc(n)
is a one—legged tail with at least e 4 1 external legs,

(Y @) = //:T(w:rp/; M) (20 Kng(11023))
no>1 prm=2 "0
p3tn3=2
x (¢, 0,0;1',0,m) dup(@)ducn)
is a two-legged tail with at least e + 1 external legs,

s i) = [ T o) 5 Kun(2g0) (03 0.0.0:1/,0. 1) )
noy>2
is a two-legged tail with at least e 4 2 external legs.

Ife > 4,
PQO(k) = PQ(t1) = PO(t21) = PQ(t22) = 0.
If e > 2, by Lemma I1.31 and Prop. 11.33,

N(t1), N(21), N(t2) < 25 N(T) N(K).
Furthermore k has degree at least one in the variable 1 and degree three in the variables
¢, n. By Lemma IX.2 and Prop. 11.33
5
25 J N(k; 2) N(f; 4a)
< Z JN(T; 20)N(K; 2a) N(f; 4a).

=B

Nimpr(P Q(k)(f))

IA
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We define the projection P’ by

P(F:6:8) = W 0:0) + (15 0, 0.
Observe that

P[O(TO(K, K)(:f)] = P/[Q(T)Q(K, K)Cf)(¥3£,0,0:6,0,0)]
= P'[O(T)Q(K, K)(:f)(¥30,0,0;0,0,0)]

so that we can apply Prop. IX.3. Modulo a term whose improved norm Njmp, is bounded
by 2 N(f: 4a) N(K; 40)* N(T: 2a)

P/[Q(T)Q(K: K)Cf)(W:¢.0,0; 0,~0,$)] )
=2P[Q(K1, K)(:f)] +2 P[Q(K2, K)(f)] + P[QK)IC )],

where 151, 152, K are as in Prop. IX.3. Since K. has degree at least three in ¥, ¢, §,
the tail K has at least six external legs, so that P [Q(Ie )Cf :)] = 0. Similarly, as 122 has
degreeatleast threein ¥, £, & and K has degreeatleasttwoiny, ¢, &, P[Q(K2, K)(:f2)]
=0.As K 1 and K have degree at most two in ¢’, ¢, &', n and degree at least four overall,

P[O(K1, K)(:f)] = P[Q(TV(KD), T1(K)) G f)] + P[Q(D(f)]
= P[Q(T o K, Ti(K)(:f)] + P[Q(D):f2)],

where

tWigim = X2 //(151)2(352?)(1#;0, ¢',0:0,&",m)
p2tna=1 2
X Ka(3r20) (50,8, 05 0, ) dpp(@) dpac (§)

is a two—legged tail with at least e + 2 external legs and degree two in 1. By Prop. 11.33,

N X Rin(gmoyw:0.¢,0;0,€ )

p2+na=1
= N(f/:Tn(I/f; ¢'sn)y.c ( Y Ky(inO(¥ieh g 00 & n))
p2+na=1 2
xdpp(e") duc(n/)>

< 5N(T) N(K).

Therefore, by Prop. I1.33, for any Grassmann function #,

N(//:f(w;sa; Mic h(y:orm D, [ £0) dw(n))

A n( P (RD2(gt)(#:0.¢,0:0.8 ) ) NCK) N(hy
p2thn2=

25 N(T) N(K)> N (h).

IA

IA
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Similarly,
Nimpr(//if(llf; o mich(y: im0, (g0 duc(n))
= %Nimpr(T) Nimpr(K)2 Nimpr(h)
< 25 N(T) N(K)? Nimpr (h).
Therefore
Neti(t) < 25 N(T) N(K)*.
[m}

Lemma IX.11. Assume that K (V; ¢, &', ; €, &', n) has degree at most two in the vari-
ables {', ¢, &', n. Let Ty, Ty be two-legged tails. Then there exists a one—legged tail 1,
a two-legged tail t, and a two-legged tail T(V; @; n) of degree two in 1, each with at
least four external legs, such that for any Grassmann function f (r; ¢; &) the following
holds:

Set

F') = PO, T Qk () = O(Ti 0 K, Ty 0 K)Gf) = Ol + 12+ D)D)
Then, ifo > 2,

9 .
Nimpe(f) < 23 N (f1 4ar) N (Ty: 200) N (To; 200) N(K: 4ar) (1 4 2EZ2)
and

N(n) < 2 N(T) N(T2) N(K),
N(n) < B N(T1) N(T2) N(K),
Neii (t) < 35 N(T1) N(T2) N(K).

Proof. The proof is similar to that of Lemma VII.12. Again, if

Seee =0, D)OK, -+, K)Cf)

with £K’s, then, as K is of degree at least two in ¥, ¢, £ and T}, T» are 2-legged with
at least two external legs, fy has degree at least 4 + 2¢ — 4. Hence

P[Q(Th, T)Qk (:f)] = P[Q(T1, TH) Q(K)(: /)] + 5 P[Q(T1, ) Q(K, K)(:£)].

The contribution P Q (T, T>) Q (K,,O (P1r2r3 )) vanishes unless
nl )‘12 Yl3

e no = 0 because 77 and T are each of degree at least two in .
e pi+ny < 4,since otherwise Q(T7, Tz)Q(Ko(m P23 )) is of degree at least one in ¢
npnyny
and P sets ¢ to zero.
e n1 > 2 since these fields must connect to 7 fields of 77, 7, which have combined
degree at least two in 7.
e py = ny = 0 since there is only a single K in P Q (T, Tz)Q<K,,O(m P2 p3 )).
nynpn3
e p3 +n3 < 2because K is of degree at most two in ¢/, ¢, &, 7.
e n3 > 1 because K is of degree at least one in 7.
e n1 + p1 +n3+ p3 > 4 because K is of degree at least four overall.
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Hence

P[O(T1. 7)) Q(K)(: )] = P[Q(t11 + 121 + 122 + 123) . )] + P[ QU /)]

where
mse;n) = ff:ﬂ(llmp/; ML ' n): v
n.C

X( 2 KO(”lg(l’)(O;@/,O,O;77/,0,77)>dMD(90/)dMC(77/),
pir+ni=4 "

10 @1 ) = //:n(w; o VT 05 1)

n.C

X( 2 Ko(g}g;;;)(o;wﬁowo;n’,O,n))duu(w’)duc(n’),
p1+ny=4
p3+n3=2

(Y5 3 1) = //:Tl(w;w; UBYLICAT A DI

(X Konon©:¢,0,¢:0,0,m)dune) ductn),
p1+n1=3 m 01

mivin = [[ TN Bwien:, o

X( 2 Ko(ﬂlg?)(o;so/,O,qo;n/,O,n)>duD(<p/)duc(n/),
p1+n1=3 "l

ki = [[ i,

X( > Ko(3rs)(0:0,0,¢; n/,O,n))duc(n’).

p3+n3=2 2
n3>1

Here, each t;; is a i—legged tail with at least four external legs, that, by Lemma II.31 and
Prop. 11.33, with £ = 2, fulfills

N(tij) < 2 N(Tv) N(T2) N(K).

Furthermore k has degree at least one in the variable 1 and degree three in the variables
@, n. By Lemma IX.2 and Prop. I1.33 with £ = 2 and « replaced by 2,

Nimpe (P Q) () < 20 T Nk 20) N(f; 400)
< a% J N(Ty; 20)N(T2; 2a) N(K; 20) N(f; 4ar).

By Prop. VIIL.13.
Q(T1, 1) Q(K, K)(:f2)

= [[smicvs ginre e c.0.08.0.07 o dien@) e’ o
where g = Q(TZ)Q(K, K)(:f:). In particular
P O(T1. T5) Q(K. K)(.f?)
_ P’//:w; G5 Minc 183 0,0,050,0,1)%.p dun(@) duc(i.
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By Prop. IX.3,

g(¥:0,0,9:0,0,m) =g1(¥; 0:n) + &2 @i m) + (W i) + h (Y @5 ),

where

a1y @i = 20Ky, K)CLIWs 93 ),
&2 @in) =20(K, K)Cf)(W: @i n),
gWseim) = QK)CFHWs @i m),

and
9
Nimpr (h) < 238 N(f: 4e) N(K: 4a)> N (T2; 200).

By Lemma II.31 and Prop. I1.33, the improved norm of

[ [ e hwigin:yp duntorancan
is bounded by
Q%Nimpr(Tl)Nimpr(h) = f—lzJ N(f;4a) N(K; 4a)> N(Ty; a) N(T»; 2a).
Observe that ¢ has degree at least six, so that
P [[ st imine s e o dun ductr) <o

Similarly, g» has degree at least five, so that

P’//:Tmlf; ©;Miy,c 82 @; n):f’,g dup(e)duc(n’) =0.

Finally, the contribution to g; with y¥y—degree two and overall degree four is g1 + £12,
where

g1 = 2Q<T2 oK, Zlern]:% K()(!’l()p3 ))(f),

p3+n3= n10ng
g2 = ZQ(P, > mm=2 Ko(n 1’2"))(1f1),
patnp=1 nynyl

where
P ¢ 08 ) = f/:mw; o'y e

X( > Ko(;’}g?)(l/fﬂﬂ/,ﬁl,(ﬂ;ﬁ/,él,ﬁ))dMD(w/)nd(ﬁ/)-
p1+n;=2
pytnp=1

Then

p’//:Tl(w; oM gy ¢; n):rz,g dup(p)dic(n)
=2PQ(T1 oK, Th o K)(: f2),
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while
P [[iticus g e o g dio@) ducn = P O@GS)

with the two—legged tail, with four external legs and degree two in 7,

T = 2/ P o & ) p' W e € ) dup () duc (§),

where p was defined above and
Pt g8 ) = f/ITl(W;W, ")y e

(X KomyWie' &g & m )dunle duc .
p1+n1=2
pat+npy=1

By Lemma II.31 and Prop. I1.33,
N(p) < ZN(T)N(K),
N(p') < ZN(T)N(K).
By Lemma I1.31 and Prop. I1.33, with £ = 2,

N(//:t(t/f;co: e h(y; o3 D, [ £0) duc(n))

S N(p)N(p')N(h)
S N(T)N(T)N(K)?N (h)

for all Grassmann functions /. A similar estimate applies for the Njmp, norm so that

IAIA

Neti(t) < EN(T)N(T)N(K).
O

Lemma IX.12. Assume that K has degree at most two in the variables {', ¢, &', 1. Let
T be a one-legged tail with at least three external legs. Then there is a two—legged tail
ty with at least four external legs such that for all Grassmann functions f(Jr; ¢, &),

P[O(T)Qk (:f)] = P[Q) ()]
and
N(n) < 2 N(T) N(K).

Proof. The proof is similar to that of Lemma VII.13. Since T is one-legged and K has
degree at least four

P Q(T) Ok = P Q(T) O(K)
=Pomo( ¥ Kium) = POw)

p3tn3=2 !
with

) =/T(¢;¢); (K199 (30,0, 03,0, 1)

101

+K1(009)(¥; 0,0,0; 7,0, n)) dpc(n)
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Definition IX.13. The two—legged tails T;(K) are recursively defined as follows: T1 (K)
was defined in Lemma IX.10, and

Try1(K)=Tyo K for £ > 1

Remark IX.14. (i) Clearly T;(K) has two external legs. Using Lemma I1.31 and
Prop. 11.33 one proves by induction that for ¢ > 2,

N(Te(K)) < == N(K)".

() HKW; 8,8 06,8 n) = UW+L+ +0 E4+E+n) - U+ + +¢; E+E7)
for some even Grassmann function U (v; &) then, by Remark IX.6, Ty (K) = T, (U).
Recall that T, (U) was defined in Definition VI.8.

IX.3. Proof of Theorem VI.10 in the General Case. First, we prove the analog of
Prop. VII. 16 for the enlarged algebra.

Proposition IX.15. Let K (V; ¢; &, &', 1) be an even Grassmann function that vanishes
for n = 0 and has degree at least four overall. Set

KW, ¢ ;6,8 ) =KW+ + ¢ &8, n).

Assume that « > 8 and N(IZ; da)g < 2?“ Furthermore let f(Y; ¢; &) be a Grassmann
function. For each n > 1 there exists a Grassmann function h, (¥; ), a one—legged
tail t1, a two—legged tail t, each with at least three external legs and a two—legged tail
t(Y; @; n) with at least four external legs and of degree two in n such that

P/EV R?K:;,D,C(:f:?g)dﬂD(C) = P[Q(Tn(lz))(:fig}:’c)
+1 Y (TR Ty(B))(fre.0)

,0/>1
max{¢,¢'}=n

O + 1+ D Fie.0) |+ ha(Wi )

and

-1 N(R:)" N(K ;a)1t!
N(11), N(n) < 4(0%)n %, Nefi () < Ot%n I—(Ta()k-a)’

—1 _
: ) 210 ”Z 1 N(R:da)"™ PN
Nlmpr(hn (W, f)s a) S 0(5 o at—m 17%1\/?12;40[) N(Fm (w: f)’ 4“)9

where
Fp (Y5 f):f:g = EVRZ"K:LD‘C(:f:?g).
Proof. Decompose _
K=K +K",
where K’ has degree at most two in the variables ¢’, §’, ¢, n and K” has degree at least

three in these variables.
We perform induction on n. For n = 1, by Lemma VIIL.12.ii,

Ev R:Kzg,u,c(ifii,g) =:Qp(f.0)ie,Ds



Convergence of Perturbation Expansions in Fermionic Models. Part 2 299

and therefore
f EVRuky p.0(f150) dun(@) = Qg (f16.)(W, 0 6).

Set
hi(fs f) =P (Qg — Q) fe0)-
By Prop. IX.1,

Nimpe (1 (05 1)) = 2 N(f+ ) G20

Since K’ has degree at most two in the variables ¢, ¢, &', n and degree at least four
overall

PQy =P Q(K.(gg?) + K.(000) 4 K (001 )

002 001

+1P QKo + Kol - Ko+ Ka(ai)
+3 P O(Kaqean) + Kaaah) « Kooy + Kaiah))

=P Q(Ti(K)) + P Q(t1 + 1) + 3 P Q(T1(K), T1(K))
with

= K3(88?) + K4(000

000y,
f = K3(309) + Ka(g90) + K3(990) + Ka(30) + 3 /Kz(g?‘f) K000y dpic(§),
r= 14 [ Ko Ko dun(@).
In particular
N(1) < N(K).
N(12) < N(K) + 50 N(K)* < %
Netr(t) < 325 N(K)* < % N(K)*.

Proposition, I1.33, with £ = 1, was used to bound the last term of #;. Lemma I1.31 and
Prop. 11.33, with £ = 2, were used to bound [:7 (V5 @; n)zy.c h(W; @3 s €D, -+ D)
duc(n) as in Definition [X.8.

Now assume that the statement of the lemma is true for n. By Remark VIIL.6.ii,

EVR?IE,D,C(:]C:?%) =EvR. p.c (:Fl(w; f):?'zc))'

By Lemma VIII.12.ii,
Fi(ys fiee = Qg G

The induction hypothesis therefore implies that
P/EV R?I?:;D,C(:f: glc)) dup(¢)

= P/EV Rf’K:[,D’C(:Q,g(:fig,c)ig,D) dup(¢)
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= ha(Y; F1(¥; 1))+ PO(T(K))(Qg (:f:2.0))
+33 P O(To(K), To(K)) (Qg (: f16.0))

0,0>1
max{¢,£'}=n

+P Ot + 12+ ) (Qg (:f.0))
with

N(IE)"'H
1—aL2N(1€)

—1 \ 1
N, N(n) < 4(3)" I_Né’ij(m, Neit(t) < 5

and

1 n=l1 - Aoy )t —M
N (a5 F 05 ) = 255 50 b {250 N (B (s P13 ): o).

By Remark VIIL.6.ii,

W3 R )i = BV R e (2R D )
=Ev R?IE(:LD,C (EV R:K:(,D,C(: b
=Ev Rf’};f;’D,C (:f: f,’g)
= Fnn1 (Y3 f)lgg'

: ?:2))

Therefore

10 1 G- gyt 1—m
Nimpe (ha (0 F1 (W5 ) < 257 Py T 1 gy N (Fn (0 1); 4e).

Let go be the difference between

PLO(TA(R))(Qg (:f6.0) + 1X Q(Te(K), Te(K)) (Qp (- fi5.0)
0,0>1
max{¢,¢'}=n

+0(n + 12+ )(Qg(f6.0)) |
and

PO (B) Qi f15.0)) + 1Y Q(Te(R), To (R))(Qk (- i5.0))
0,0'>1
max{¢,¢'}=n

+0(t1 + 1 + r)(QK’(ifZE,C))]'

Let:f":e p = Qg (:fe,c) — Qk'(: fie,c). By Lemma VIII. 14 and Def. IX.8

Nimpr(80) = & Nimpr (£ @) [N (T (R)) + & 52 N (T (R)) N (T (R)
0,0>1
max{¢,¢'}=n

+N(t1) + N(2) + v]
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if v is any effective bound for tr. By Prop. IX.1, Remark IX.14 and the induction
hypothesis,

5 o ~ ” )¢
Nimpr (80) = 24 N(f3 40) (K20 T Lo Ny (142 3 MET)
=1

IN(K;20)
l n—1 N(k)" i N(k)rH»l :I
+8(a2) l—a%N(I?) a? 1-5N(&K) I’
Since
_ 1 - 1 ‘ 2 -
N(K),g _ N (&) SNK)  1-HNE)+ZNK)
1+2Z —1+20teZ1 L) 51+2a1—ai21v(1€)_ LN
<8178(¥—2N(K)+@N(K) 1 1 ]
= I~ LN =TI LNE) 1+ L NE)—ENE)
<38 1 _ <81 |
T (e L)NE) T I NE)
we have
: 25J . N(K:20)"*!
Nimpr (80) = 5 N(f: 4a) =IN K20

3 n—1 1 1
X [_a2"4 —1 NG +8( ) 1-ZNK) 1—ai2N(15)]

N(K;20)"t! [ 8 1 8 \n—1 1 ]
SN da )3 —INEK:20) L2 1-LN(K) +8(a2) 1- L N(K)

- n+1
am N(f:4a )M[8+81

= N(K;2a)
< 2 N(f34a) -

| /\

N(K;20)"t!
-2 N(K:2e)

By Lemma IX.10 and Remark I1.24, there exists a one—legged tail 11, a two—legged
tail 71, each with at least three external legs, and a two-legged tail t; with at least four
external legs and of degree two in 1 such that

PlO(T.(R))(Qx:f2.0)) | = P[Q(Ths1 (B))(: fre.0)]
+P[O(Ths1(K), T1(K))(: fie.0)]
+P[Q(t11 + 121 + 1) fre.0)] + g1(¥)

with

Nimpe (1) < 2 N(f; 400) N(To(K): 20) N(K; do) (1 + LN (K 4a)

27 . o.hoi_ N(K;4a)
< S N(f;4a) N(K;2a) l—aizN(k;mx)

N(K;40)"t!
< Sl N(f; 4a) B

and

N(t11), N(t21)
Nett (71)

N(T,(K)) N(K) < Z-N(K)""!
N(T,(K)) N(K)? < > N(K)" 2.

INIA

2

2
4

-7
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Similarly, for 1 < £ < n, by Lemma IX.11, there exists a one—legged tail tl(g) and a

two-legged tail Ig), each with at least three external legs, and a two—legged tail (©

with at least four external legs and of degree two in n such that

PLO(T(R). Tu(R)) (Qur:f22.0)) | = P[Q(Tert (B, Tt (B)) - fi6.0)]
+P[O) + 135 + TN fre.0)] + g2 (W)
with
Nimpr(82.0) < 25 N(f: 4er) N(T(K); 200) N(Ty (K): 20)
x N(K; 4a)(1 4+ 5 N(K; 4a))
< 2L N(f: 4a) N(K: 20)" (LN (K 2m))" -

— q2n+6

t__N(K;4a)
1= N(K:da)

9 ¢ _N(K;4a)"!

< aoits N(f14a) (3 N(K: 20)) _(1 Nf';)m)

and

N(g). N() = BNE) N(TR)) N(Te(R)) < oty NRY™,
Neii (v?) < EN(K)? N(T,(K)) N(Te(K)) < —gitms N(K)" 2
In particular
n

- n+1
1mpr(g1) + 2 1mpr(g2,€) = 2n+6 (fs ) _ IZN(K;40¢)

1

X —
1—LN(K-2a)

N(K:40)"t!
S 2n+6 N(f 4 ) 22N(I€;4Ot)’

n n n+1
M)+ X N(), M) + X V() = 35 255

© 4 1. 8§  N(K)"t2
Neff(fl+ZT +5 )_WW

By Lemma IX.12, there exists a two—legged tail #;3 with at least four external legs such
that

Ploan(Qx ¢ fe0)] = P[0 fie0)]
and, by the induction hypothesis,
N(13) < ZN(0) N(K).
Also, by Lemma IX.10,

PlO®)(Qx(:fe0)| = P[ Qs+ 12 +125): Fre.00 | + 85,

where t14, 24 are one— resp. two—legged tails with at least three external legs, fulfilling

N(t14), N(t24) < ZN(12) N(K).
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tys =ty o K’ is a two—legged tail with at least four external legs fulfilling
N(1s) < > N(12) N(K),

and the g3 term obeys

IA

2N (f; da) N1 20) N(K; do) (1 + LN (K 4a)

207 . 23 =1 NK;2a)" N(K;4a)
& N(fi40)4(35) = L N(K:20) 1= 5N (Kda)

Nimpr (83)

IA

210y N(K;4a)"H!
< e N(f do) —5——.
— g2n+6 (f7 ) 17()(22 N(K;4da)

Here we have used that Q(t2 oK, Ti(K ))(: f) has at least five external legs so that

PQ(r oK', Ti(K))(:f:) =0.

For the same reason, the term “P Q(7)(: f:)” of Lemma IX.10 also vanishes.
Finally, by Lemma IX.10,

Plo@(Qxfe0)| = P[00 o))

where 16 = 7 o K’ is a two-legged tail with at least four external legs. By Def. IX.8,
N(t) < a—lzv N(K) for any effective bound v for 7. Hence, by the induction
hypothesis,

18 NE™L Nepy - 8 NE™?
N(QG) = o2 o 170%21\/(12) N(K) T gnt2 liaiZN(k)

Combining the results above, we see that
P / EvRIEL, c(f5c)dun@) = P Q(Tut (K))(f¢.0)

X PO(R. TR 0]
max{é,(/3=”+1

+P Q@) + 15+ 1) fre.0) + hnp1 (Y5 f)
with

n—1
Pt (05 f) = ha (W3 FL(Y: £)) + 20(¥) + 1) + 3820 (¥) + ZZI 82,e(¥) + &3

one- resp. two-legged tails with at least three external legs,

;o Lo, "o

ty =t + 5ty + Do, +ta,
=1

/ Lo, o

th =11 + 5ty + D by + 13+t + 125 + e,
=1

and the two-legged tail with four external legs and degree two in n

n—1
U=n+3tW+ Y 0.
=1
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By the estimates obtained above

\n+1 —
NN = G YT+ NGO 2N () + 2V @) + N |

8 N(I;'))H»Z
+_a2n+2' —1_(%21\,([5)
12 NEK)'! 5 AR 8\l NK:a)"
< B PO EN) + ENG) A(E) T e
12 N(IZ)'”'] 5 ( 8 )n N(K;a)"t!
o 1—2 N(K) o? — 221\1(12;0[)
n N(K a)n-H

= (8 ) 1= 5 N(K;a)

& n N(K a)n+1

4 ( 2) 1—ZNK:®) SN(K:a)’

8 N(K)n+2
o2n+2 lffN(K)

A

IA

IA

Negr (')

IA

and

Nlmpr(g()) + Nlmpr(gl) + Z Nlmpr(gZ ¢) + Nimpr(g3)

N(K:4a) n+1 2n+l
= a;1+6 N(f;4a) w[l toor ]

2107 . N(K;4a)"+!
< s N(f4e) -2 N’
so that
Nimpr(hn-ﬁ-l(lp; f)) = Nimpr(hn(w; Fi(y; f))) + Nimpr(gO) + Nimpr(gl)

n
+ Z Nimpr(gZ,Z) +Nimpr(g3)
=1

n K n+l—m
= T % o YA N (a0 ) 4at)

= 015 = an+l—m 1—%N(K;4a)
2190 N Fr dg) N Kby

- 4 )
+ore N(f:4a) 1— 5 N(K;4a)

210J n 1 N(IZ;40{)"+17W’
< _ . .
- & mg() ontt1-—m 17%1\/(1{24(}() N(Fm(l//’ f)7 4@),

since Fo(yr; f)=f. O

Corollary IX.16. Let K (; ¢; &, &', 1) be a Grassmann function that vanishes forn = 0
and has degree at least four overall. Furthermore let f(; ¢; &) be a Grassmann func-
tion of degree at least four in the variables r, ¢, €. Set

1
nn) = P [ By ——fi) dun (@) — i 05 e
ppCA

- Z O(Te(K))(: fie.c) — 5 Zl O(Tu(K), To (K)) (: fre, c)]
>
Ifa > 8and N(K; 16a)y < S, then

Nimpr (1) < o6 N(f; 16a) I—3N(K:16a)"
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FRKW;GEE N =UW+8E+E+n—UW+LE+E), a > 8and N(U; 32a)
< 3q, then

_ 2100 o, _N@:16a)
Nimpr (h) < v N(f; 16a) 1-3N(0;32e)

Proof. By Prop. IX.15
1
Ve (fiec) — ifiec ] dup(©)
¢,D ¢,D

1 - R:K:;_D,C

~
—
| —
o5

Il
113

P[/EVR;KK;;,D,C(:f:ig)dMD(O]

o~
Il
-

Il
M8

PO(Tu(K))(fe.0)]+ 5 X P[O(Te(K), Ty (K))(:fie.0)]

£,0'>1

~
Il

1
Z he(s )+ P[Q(11 + 1) (: f16,0)]

with a one-legged tail 7] and a two—legged tail 7, each with at least three external legs. As

the degree of f is at least four, P[Q(t_l +t_2)(:f:g,c)] =0.Seth(y) =Y g2, he(¥; f).
Then,

=1 N(I?;4a)e_m

o0
2107 3 1
. < =
Nimpr(h) = =5 ab=m - 2 N(K;da)

N(Fu(¥; f); 4a).

Define F,, (¥; f) by
Fn (s fiec = EVRf’}(:;’D’C(:f:ig).
Then, by Remark 11.24, followed by Lemma VIII.8 and Lemma III.8,

N(Fu (s f);4a) < N(Fn (Y5 £); 8a)

1 NGK:gpiBo) ) P
< (32,1 LN (Ko N(:f:c.p: 8c)

so that
—1 _ 1 K- .
2107 S I _N(R:da)" ( g7 VCK20380) )m
8 < = 5
Nimpr (h) = =75 gl 2 7 1= N (Ko \ 1= L NGK o pisen) N(f: 16a)
510 o0 00 I N (K :4)P ( 322N(K;D 8a) )m
— L s N(f; 16a
@ p2=:1 mXZ:o P 1= 55 N(K:da) \1= 35 N(K g pisa) (f )
_ 2197 N(K:4a) 1 1 N(f:16
o 1-IN&Kide) 1-2 N(K 4w %ZIZN(K;D 8a) (f’ a)
1-—- L N(K: pi8a)
2107 N(K:4a) 1 1 .
= ab 1-5/\/(1%;40() 1——N(K 4ar) 1——N( K:¢ p;8a) (f’ 16a)
10 .
< 2%7 _ N(K:l6a) 1 L N(f;: 16c)

o 1-L1N(K;160) 1- 2 N(K;160) 1—@N(K;16a)

2107 _ N(K:16w) .
6 1—3N(K;16a)N(f’ 16a).

IA
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If
KW GaEEmM=UW+LE+E+n-UW +¢:E+8)
so that
KW 6.8 068 m=KW;¢+¢ +¢:66 .0
=UW 4+ +e:E+E +n)
U+ 4+ 49 E+8)
and

KW 36,8 mip = f[0<w+c+z/; E+E+m)—OW+L 4+ E+€)]dup(C)
then, by Lemma II.31 and Remark 11.24,

N(K:4a) < N(U: 160),
N(K: p;8a) < NWU; 32a).

Consequently
10 N(K;4a) 1 1
N (1) < 2% 4 _ - 16
impr (1) = 1-LN(K;da) 1- 2 N(K:de) 1——'2N(:K:;D;8a>N(f’ 6 )
. 16a ’
2107 _ NU:16w) 1 1
< L - = N(f; 16a
= o 1-1N@;320) 1-2N(U;320) 1-—5 N(U:320) (s )
. 160
< 2197 _ NWU:16w)
= o 1-3NO;320)°
|

Proof of Theorem VI.10. Set

KW GEEMN=UW+LE+E+n -UW +¢:E+8)
and

KW:¢.0 96,6 m=KW:¢+¢ +¢:6,6 .0
=UW+e++@6+8 +n)

) U +i+0 + 9 E+8),
FW 8 8) =y +¢:8).

By Prop. VIII.9
Sv.c(f) = Su.c(:f (W 0:€):c)
= ff BV, Cfiso)duc®dun©):y,

ﬂ*R:K:Z,D,C

so that
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Therefore, by Cor. IX.16 and Remark I1.24, there is g(y) with

Pf'=P|f: 0+ 2 Q(TeK)Cfscrty ¥ QTe(K). To(R)Gfec) | +

0,0>1

and

IA

297 _ NWU:32e) 3
af 1—%N(0;32Q)N(f’ 16e)

2107 N@O:320) 2.
=56 1—§N(U;32a)N(f’ 32a)'

Nimpr (g)

Since f and K have degree at least four overall,
P O(Te(K))(fie0) = Te(K) o Ti(f),
and by Remark VI.9,
PO(Te(K), Ty (K))(: fiec) = Te(K) o Rung(f) o T (K).

Furthermore, by part (ii) of Remark IX.14, T (K)=T; (0 ). Thus

Pf =Pfy, 0)+€Z1 (@) o Ti(f) +% Y To(U)oRung(f) o Ty (U) + g.
= 0,0>1

X. Example: A Vector Model

We consider a model, which while simple, still captures the main features of one scale
of a many fermion model. Let F be a finite set of at least two “colours” (Farben)
and & be a finite set of points in “space—time”. Let V be the complex vector space
with basis { Ecx | ceF, xe X } and V' be the complex vector space with basis
{Vex | c€F, x € X} Let C(x,x), x,x’ € X be a skew symmetric matrix and
define the covariance

C(Sc,x» Ec/,x/) = 5c,c’c(x, x/)'

An antisymmetric function W on (F x X)", with n even, is said to be colour preserving
if it is of the form

W((Cl, x1), - (cn, xn)) = Ant[sq,cz o 'acn,l,cnw(xlv Ty, xn)]s (X.1)

where Ant means antisymmetrization. An example, with n = 2, is the function
8¢.C(x, x"). An even element W of the Grassmann algebra /\ V is said to be colour
preserving if it is of the form

W = Z Z Wn((Cl,Xl),"'(Cnaxn)) Sc1,x1"'ECn,Xn

ne2N cp..cne€F
X1, Xp€X

with each coefficient function W,, colour preserving.
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For p odd, we define the (O—dimensional) norm ||¢||, of a complex valued function
@ on (F x X)" by

lel, = max sup Y
IS’|1<<'];<<;I1PS’I L’[I,"',Cipej: cieF
- il ip
X Sup Z |g0((clv-x1)s"'(cn7xl’l))|'
xkeX xjeXx
JF#k

Also, for a colour preserving function W on (F x X)", we define

W]l = inf{ max sup Y. ‘w(xl, e ,x,,)| ‘ w satisfies (X.1) }
1<k<n XREX xjEX
J#k
Then
n—p—1
Wi, < |1FI72 lIIWIIl, .
MWl < (m — D! W]-1 if |F|> 3. (X.2)

In particular, if n = 4,
(Wi < |FTIIWII < 31FIW]l3.

Every element f € V®" has a unique representation

f= Z (p((c1,x1),~-~(c,,,xn)) cix) @ - @, x,
e

with ¢ a complex valued function on (F x X')". We set

1f1lp = llellp-

Observe that, for each odd p, || - ||, is a family of symmetric norms on the spaces yen,
in the sense of Def. II.18.

Proposition X.1. Suppose that X is a disjoint union of two subsets X, and X, such that
Cx,x'y=0 ifbothx,x" € X, orbothx,x' € X,.

Assume furthermore that there is a Hilbert space H and vectors wy € 'H, x € X such
that

C(x,x") = (wy, wy )y forall x € &, x’ € X,.

Set
b =2sup,cy lwxll,
4
c=sup,cy 2 1C(x,x")].
x'eX
Then (C, 0) has integration constants ¢, b for the configuration || - ||, of seminorms, in

the sense of Def. VI.13.
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Proof. We first verify that b is an integral bound for C with respect to each family || - ||,
of seminorms. Set

H =L*(F)QH,
/

We x =0 ® wy,

where &, is the function on F which vanishes except at ¢ and takes the value one there.
Then, forall ¢, ¢’ € F,

Ccx ) =0 if both x, x’ € X, orboth x,x" € A,
and
CEex e xr) = Se.er (W Wy )y = <w/c’x, u/c,ﬁx,>H/ forall x € &X,, x’ € X,.

Furthermore

lwl N3 < lwelln < 5
Let V. (respectively V) be the subspace of V generated by { & | x € X, c € F }
(respectively { &, | x € X,, ¢ € F }). By Prop. B.1,

‘f&l,xl € xm d'U“C(S)‘ < (g)m

As in Example I1.26, b is an integral bound for C with respect to each family || - ||, of
seminorms.
Also
2
sup |ClEex.60a)| = sup [Cx,x)l = sup flwell fwell < 5. (X3)
c,c/eF x,x'eX x,x'eX
xx'ex

We now verify the contraction estimates of Def. VI.13. Let

f= Z QD((C], x1), -+ (cn, xn)) Ecl,xl ®"'®§cn,xn € V®n’

cl,cn€F
Xl,"anGX

!

= Z @ ((cr,x1), -+ (ens X)) €y @+ ® Ecox, € yen
cpaac €F
X],---,xn/eX

and,forl <k <mnand1 <k <n/,

CDk(Cla 5cn) = sup Z |(p((c17x1)7 "’(Cnvxn))

xpeX xjeX
ik
), (c, -+, cly) = sup Z o' ((ch, x])s -+ (chy x0)) -

3

Observe that, forall 1 <k <mn,alll <i; <--- <ip <nandall¢,--- s Ciys

> @uler e <ol = 1£1p.

cieF
iF#i],uip

and similarly for @'
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For the first contraction estimate of Def. VI.13,let 1 <i <nand 1 < j < n’. By

the symmetry of the norms, it suffices to consideri = j = 1. Set

¥ ((2,32),++(ensxn) (€h,x)), () 1 ¥1))

= Z (p((q,xl),... (Cnaxn)) 561’6/1 C(xl,xi) (p/((cll'xi)""’(C;l”x;;’))'

C|.C,1€.7‘_
xl.xieX
Then
!/
Conc(f ® f*)
1—-n+1

= Z V((Cl JX1), (Cn+n’727 xn+n’72)) §c1 V- ® Scn+n/_2,xn+n/_2-

CL s Cyqn/ =2 eF
X[, ’Xn+n/72€X

In particular || 'Corlc'(f ® f) ||p =1yl
i—>n+j

Fixanyl51’1<---<ip§n+n’—2andcoloursc,~1,~~~,c,-p.Setqzmax{v|iU§

n—1 }with the convention that if{ % | iy <n-1 } = (J, then ¢ = 0. Set j; =

ir+1, -, jy=ig+1; j{:iq+1—n+2, -~-,j;_q=ip—n+2and
de:CiUl)Il,-'-,q,

d}ézciﬁvv:l,ou,p—q.

Alsofix 1 < k < n+n’—2.Firstassume thatk < n— 1. Wehave, forallcy, -+ , ¢ypn—2
e F,

sup Z |)/((Cl’ xl)v ) (Cn+n’—2» xn+n’—2))|
Yy itk
=< Z (Dk+l(C, €1, 5 Cp—1) 8c,c’c cb/l (C/a Cny "y Cn+n’—2)-
c,c'eF

Now assume that ¢ is odd. Then p — ¢ is even and

Z sup Z |J/((Cla xl)7 T (Cn+n’—2v xn+n’—2))|

X .
ceF Yk xik

’.#il""»’p
<c > o) Orpiledr e dy) See D dy, L d)y)
djeF djeF c,ceF
J#L 1 g 5751’]'1’___’]'1/’7‘]
<c Y O, ody) sup Y By, db, e, dy)
djeF 4 ger
J#i1 g é#l’j{’m‘jl/’—q
/
< cllfllg If Ilp—g+1-

In the event that g is even, one obtains in a similar way that

Y sup Y r(Cenxn) o o= Xnaw—2))| < € Fllgra 1L 1 p—g-
qer YK xilitk
i), ip

The case that k > n follows by interchanging the roles of f and f”.
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For the second contraction estimate of Def. VI.13 it suffices to consider, by the sym-

Conc Cong Conc (fef )|| . Set
l-n+1 2—-n+2 3—n+

7; ((C4ax4)»"'(cn y%l)*(dp%@)s "'(C;l/ ,X,/l,)) = Z

c1 ’C/l ,52,5/2,53,z‘éE.7:
X1 xi ,xz,xé,x_g,xée?c'

(p((C| ,X1),0 ‘(C”’X"))SCI,C/I C(JC| ’x{)gcz,cé

X C(xz,xé)B63 L}C(}q x;)go ((CI,X ), (C;,,X;,)).
Then

Conc Conc Conc (f® f)
1-n+1 2—»n+2 3—-n+3

= E , Y (er,x1), ’("n+n’—6’xn+n/—6)) ECLXl X gC)H»n 6°*n4n’—6
cpa ,L'n+n/_66.7:
x1,~~.xn+n/76€X

Fixany 1 <ij <--- <i, <n+n'—6andcoloursc;,, - -

-, ¢i,.Setqg =max {v i, <
n—3}.Setji =ii+3,

e Jg =g +3y i =igri—n+6, o L =ip—n+6
and
deZC[U, v=1,~-~,q,
&)y =cipeys v=1-,p—q
Alsofix1 < k < n+n’—6.Firstassume thatk < n—3.Wehave, forallc;, s Cntn'—6 €
F,
sup Z (Cl 2 X1), - (Cngn'—6s xn+n’—6))|
Xk
Xi,i#k
2
< Z Ppr1(dr,do,d3 c1s- ey en=3) 84y a8uy.aSas.ayc[ sup 1C (v, ¥)]
dy,dy.dyeF i yvy/EX
dy.dydyeF
X CD/l (div dé, dé? Cn—2,""", Cn+n’76)
4
S b ¢ Z ch—Fl(dlvdz» d37 Cly -+ 7Cn—3)q)/1(d17d21d39cn 25 1Cn+n/—6)
dy,dy,dzeF
by (X.3). Now assume that g is odd. Then
D sup Y [P (e X)) Catn—6s Xnsw—6))]
cer Yk xictk
ii] e ip
4
< b Z Qppi(dr, - dy)  sup Y i, db, - d))
djeF dy.dy.dj djeF
/#/1

EAL23 ]y

4
=b'clflg ”f/”pfq+3'

The remaining cases are similar. O



312 J. Feldman, H. Knorrer, E. Trubowitz

Theorem X.2. Let W be a colour preserving function on (F x X)* and

W= Z W((C],Xl),"'(C4,X4)) WCl,xl "'wC4,X4

c1, e €F
Xp, X €X

be the associated interaction. Let
W () = Qc(W:) =log 5 / eV dpc(E) where Z = / eV ®dpc &)

and C is the covariance of Prop. X.1. Since C and W are colour preserving, we can
write

W= Z Z W,;((Cl,xl),"'(cns xn)) wcl,m "'wc,,,x,,

ne2N ¢, .cn€F
X],Xp€X
with colour preserving coeffcients W, If IIWII = iz, then

o0
> g O Wl < 2% | F P I
n=6
with apy = 3+, and
V2862 |FIWI
W3l < 2°"b*c |F| W12,
o0
Wi =W+ 2 (=12 W o (Co W) || < 270 IW I,
r=1

where W o (C o W)" is the ladder

-~ v
r+1W’s

with r + 1 rungs W and propagator C, defined in Appendix C.

Proof. Set J = IIT\ For f € V&, set

LA =11+ 1A+ IFPLA s,
I f limpe = 11/ 1t + [FTILA 3.

By Lemma VI.15, (C, 0) have improved integration constants ¢, b, J for the families
I -lland || - [limpr of seminorms. By (X.2),

W < 2|F[IIWII.
Let oy = 8 and « € {wg, o1}. Then o > 8 and, using the notation of Def. 11.23,

N(W; 640) = 22" b*c| W] < 2%a’b?c | F| W] < fg
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since b2¢ | F| [|W]|| < % Therefore the hypotheses of Theorem V1.6 are fulfilled. By
part (i) of Theorem V1.6,

R 1 NOW;320)? 48 61,4 2| 2 2
NOV = Wia) < 73 TTE0ES < 2%abe 712 WP,

In particular
o
48 614 2 2 2
S " Wyl < 2% | P W
n=6

so that
o0

DO Wl < 2% | F WP
n=>6

By part (ii) of Theorem V1.6 and Prop. C.4, both Nimpr (W3; o) and Nimpr (W) — W +
120 (=12 1W o (C o W)"; ) are bounded by

2107 N(Wib4a)®  _ 561 214 2 2
T Tinawem = 20D EIFIWIE.

Using (X.2),
W3l < W3 llimpr = 3= Nimpr (Ws: @) < 2°'bc |7 |W|>
Similarly, setting F = W; — W + £ 32 (=12)"F!W o (Co W),
IFI < 31FIs < I Flimpr = oz Nimpe(F: ) < 2% b2 JIW]1%.

With ¢ = o) = 8, we get the desired bound. O

The j th ghell, Jj = 1, of the many fermion model of [FKTf1] behaves qualitatively
like the vector model that we have just discussed. The covariance for the j" shell of that
many fermion model is

i W (k
k) = zkvo—i(l)o’

where v(/) (k) is approximately the characteristic function with support

d| 1 1
Sj={k=(ko,k) e RxR"| =7 < ltko —e(®)| < 55 }-
To define seminorms in position space that mimic well, in our context, the supremum
in momentum space, we introduce sectorizations. We choose a projection k +— (k)
onto the Fermi curve F and a decomposition of the Fermi curve into disjoint intervals

I, ---, Iy each of length [ between # and W The sectorization X is the collection

of “sectors” s, = 7'[;1(1[) nSj,£=1,---,N.
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SN-2
s
sp °N
52
$3

-~

Let V be the complex vector space with basis { Vs xs ‘ﬁs,x | seEX, x € RxR? } and
define the covariance’

CWs, Uy x) = CWsx, Yy o) =0,  C(Wyx, Yy ) = 8550 / d’k eF* V) (k).

N

The norms on V®” are similar to those of the vector model. In this case

b = const%, ¢ = const Mj, J = ﬁ = const [,

and the conclusions of Theorem X.2 become
/ [ 2
W, Il = const -7 [IWIII,
o0
Wi =W +1 > 12'Wo(oW)|| < constl||W]|?
r=1

for all four—legged interactions YV whose norm ||| W ||| is bounded by a sufficiently small,
but j—independent, constant.

Appendix C. Ladders Expressed in Terms of Kernels

Let V be a complex vector space and {&;} a system of generators for V that is indexed
byiinaset X.

Definition C.1. i) Depending on the context, a complex valued function on X* is called
a four legged kernel over X or a bubble propagator over X.
ii) To a four legged kernel f over X we associate the Grassmann function

Gr&: = D [l & Eniky
i1,02,13,i4€X
in the complex Grassmann algebra \ V.

3 We are deliberately ignoring many technical fine points; in particular, we ignore spin, smoothness
of partitions of unity, factors of 2.
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iti) If A and B are covariances on V then the tensor product
A Q® B(i1, iz, i3, 14) = A&, &i3) By, &iy)
is a bubble propagator over X. In particular we shall consider the bubble propagator
C=C®C+CRD+DRC,

where C and D are the covariances of Sect. V.2.
iv) Let f and f> be functions on X*. The operator product of fi and f5 is

(fio )1, i, i3,i4) = Y. filin, iz, j1, j2) f2(jrs j2, i3, 4)

J1.2€X

whenever the sum is well-defined.
v) Let f be a four legged kernel over X . The antisymmetrization of f is the four legged
kernel

(Antf) (i1, iz, i3, i4) = 4% Z sgn(m) fixq1y, in). in(3), in))-

TESY

Clearly Gr(&; f) = Gr(&; Antf). The kernel f is called antisymmetric if f =
Antf.

Lemma C.2. Let
L. ! &/ Lo ! &/
E= Y (exnluinivi) Wiy Vink)&, + 221 Grizisia) Wiy Vis 61,8/, )
i1,i2,i3,i4eX

be an end as in Def. VI.5, where ey and ez11 are four legged kernels over X that are
antisymmetric under permutations of their four arguments.

i If
E' = Z (e/zoz(il,iz,isyizt) Vi Win &1, &7, + 2€51 (ninisia) Vi, Vi §i/3$i/4)
i1,02,i3,i4€X
is another end with antisymmetric four legged kernels €5, and e}, then
EoE ==-2Gr(y; exp0(C®C)oehy+erio(CROD+DRC)oey).
i) If
p = Z (pozoz(il,iz,is,u)éi]Sizé,-/ﬁ,-; + 2 pr102Gininsis.ia) Gy §in 61L&/,

i1,i2,i3,i4€X

+2 po211 (ii.i3.ia)Eiy Eiy 667, 44 o111 (o ,iz,iz,i4)§i1§i2§{3§,ﬁ>

is a rung with antisymmetric kernels po202, £1102, L0211, L1111, then
L. / / Ce . / U
Eocp=-2 Z <€202(11,12,13J4) Wz‘l 1//1'2";‘351‘4 +2 €211 (i1,i2,i3.i4) Wil 1/fi2§i3§i4)
i1,i2,i3,i4€X
with

€202 =202 0 (C ®C)opgo2+e1o(C®D+D®C)o piioe,
€11 =e2020(C®C)oppi1+en1o(COD+DQC)oprn.
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Proof. 1)
EoE = Z // [6202(1’1»1’2@3,!'4) Vi, Viy Eiz&ig e+ 2e011(ininsi3.i4) Yiy Vi, §i3$i4]
i1,i9,i3,i4
£1,89,03,84
X [6'202(511213,34) Vo, Ve, Eey6eyic +2€h11(61.6.63.8) Ve, Ve, 423&4}
xduc(E)dup(¢)
=- Z Vi, Vi Ve, e, [46211(i1~,i2»i3,i4) €511 (€1,02,63.64) D(Giy.203)C (&34 81,
i],09,03,i4
£1,0,43,4

+e202(i1,i2.73,i4) €5 (€1 ,52v€3~@4)(c(5i3,§z3) C &y 8y) — ClEi5.80,) C(Ei4»Ez3)):|
== Z Viy ViyWe, Ye, [48211(i1-,i2,j|,j2) €11 (Lr.62.k1 k) D&y 6k ) C (& iy
i1:02.J1.2
£y,€9,k1 .,k
+e202(i1.2. 1, 12) €300 (€1, 62.k1,k2) C (8, 1) C (& iy
—e202(i1,i2,/1-72) €50 (L1.L2.k2, k1) C (&, 61, ) C €y 61y)

=- Z Vi, Via Yo, Ve, [(46211 0 (C® D)oehy)irirt1.62)

i1,i2,01,62
+2(6202 o (C®C)o 6/202)(i1,i2,l1,52):|

=2 3 WUV (2110 (C®D+D®C) o ehy)inizinia)
i1,i2,i3,i4
+(e202 0 (C ® C) 0 ehyy) i ,iz,i3,i4)].

For the last two equalities we used the antisymmetry of the kernels.
ii) Similarly,

Eop= Z iy ¥y // [ezoz(il,iz,iz,m) Eis6i 0 + 2e011(ininaiz,ia) Ci3€i4]

i1.ip,i3,i4
£1,8p,63,L4

X [( 00202 (01.2,83,€4) &0, 8052 + 2 p1102(£1,€2,63,€4) Qléez) £0,60,
+(2 po211(6.62.63.64) 80,8052 + 4 prin(€r.62.63.64) Ql&z) Céﬁ(&]

xduc(§)dup(§)
=2 Y vk, [(6211 0 (C® D+ D ®C) o pr102) (iniaiisis)
i1,02,03,i4
+(e2020(C®C) o0 pozoz)(iu,iz,ia,u)]
—4 Z Vi, Vi 61, [(6211 0o (C®D+D®C)o piii1)(irizisis)
i1,02,3,i4

+(e2020(C®C) o pozll)(il,iz,iz,m)]-
O

Lemma C.3. Let f be an antisymmetric four legged kernelandn > 0.Set F = Gr(f; &)
and

E (F) = E(F)op(F)op(F)---p(F)
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with n copies of p(F), where E(F) and p(F) were defined in Def. VI.5.iii. Then
E«F)= Y fu (n,iz,is,m)( Vis Vil &L, + 290 Vi Ci;%l)
i1,02,i3,i4€X
with
fo="550" foCo ).
Proof. Observe that

4
E(F) = (2) Z [ Grinisi) (Vi Vi L&, + 2 Wi vin &8,

i1,02,13,i4

4
'O(F):(Z) Z Sirin.iz.ia)

i1,02,13,i4

x (& EnkLEl + 200 EnELEl, + 260800 8, + 40180008, ] (CD)

Since E(F) = Eo(F), this proves the case n = 0. We now perform induction on n. By
Lemma C.2 and the induction hypothesis

E 1 (F) = Z (Gzoz(il,iz,iz,m) Viy Uiy &1, &/, + 2 €11 (iin i3,ia) 1#11%25{35{4>
i1,02,i3,i4€X

with

4
6202=6211=—2<2>[fnO(C®C)Of+an(C®D+D®C)Of]
=—12f,0Co f = fut1.

O

Proposition C.4. Let [ be an antisymmetric four legged kernel. Set F = Gr(f; ) and
let L,(F) = E(F)op(F)o---0p(F)o E(F) the ladder of lengthr > 1 withr — 1
rungs p(F). Then

L (F) =502 Gr(y; fo(Cof)).
Proof. By Lemma C.2, Lemma C.3 and (C.1),
L.(F)= Er—14(F) o E(F)
= —2<2> Gr(w; fre10(CQ®C)o f+ fro o(C®D—|—D®C)of)

= —12Gr(¥; fr—10Co f)
= E 12+ Gr(ys; fo(Cof)).
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Notation
Not’n Description Reference
Z(f) degree zero component of f Definition II.1.iii
AV Grassmann algebra over V Example 11.2
AaV Grassmann algebra over V with coefficients in A Example I1.2
Aplny, -+, n,l partially antisymmetric elements of A,, ® V®1++nr) Definition I1.21
//\ E, //\A E enlarged algebra Definition VIIL5
Ev evaluation map Definition VIIL.5

[ebibi duc () = ¢ 22%iCij%j Grassmann Gaussian integral before Definition I1.3
QcW) () =log % f eW(‘/’+5)d;LC (&) renormalization group map Definitions I1.3, 11.27
S = % [ £ eV duc (&) Schwinger functional before Remark I11.1
R R—operator before Theorem II1.2
Rc(Ky, -, Kyp) gth Taylor coefficient of R (IIL.2)
. ’ .
R.c(f) e EEE 1 fydpc @) ducm’, Definition 1.4
¢
Re(Kz, -+ Ko)(f) [ ( _l_[ZIKi(? g +&, 7)')15//) Yy f+n)ducEduc’) (VILI)
i=
e Eilicg o = e!/24Cij4j o6t Wick ordering after Remark I1.4
Con¢e, Cong contractions Definitions I1.5, I1.9
i) eE
d norm domain Definition II.14
c contraction bound Definition I1.25.1
b integral bound Definition I1.25.ii
c,b, J improved integration constants Definition VI.1
N(f;a) b% =0 @O foniy oy | Definition 11.23
p(F) rung Definition VI.5
E(F) end Definition VI.5
L,(F) ladder of length r Definition VI.5
I 1lp configuration of seminorms Definition VI.13
P projects : f (¥; €):¢ to fa oY, 0) + f2,0(1, 0) Definition VIL.8
0Ky, -, Kyp) enlarged algebra analog of Rc (K71, - - , K¢) Definition VIII. 1
Gr; f) Grassmann function Definition C.1.ii
o convolution Definition C.1.iv
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