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Abstract

We consider many–fermion systems with singular Fermi surfaces, which
contain Van Hove points where the gradient of the band function k 7→ e(k)
vanishes. In a previous paper, we have treated the case of spatial dimen-
sion d ≥ 3. In this paper, we focus on the more singular case d = 2 and
establish properties of the fermionic self–energy to all orders in perturba-
tion theory. We show that there is an asymmetry between the spatial and
frequency derivatives of the self–energy. The derivative with respect to the
Matsubara frequency diverges at the Van Hove points, but, surprisingly, the
self–energy is C1 in the spatial momentum to all orders in perturbation the-
ory, provided the Fermi surface is curved away from the Van Hove points.
In a prototypical example, the second spatial derivative behaves similarly to
the first frequency derivative. We discuss the physical significance of these
findings.
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1 Introduction

In this paper, we continue our analysis of (all–order) perturbative properties of
the self–energy and the correlation functions in fermionic systems with a fixed
non–nested singular Fermi surface. That is, the Fermi surface contains Van Hove
points, where the gradient of the dispersion function vanishes, but satisfies a no–
nesting condition away from these points. In a previous paper [1], we treated the
case of spatial dimensions d ≥ 3. Here we focus on the two–dimensional case,
where the effects of the Van Hove points are strongest.

We have given a general introduction to the problem and some of the main
questions in [1]. As discussed in [1], the no–nesting hypothesis is natural from
a theoretical point of view, because it separates effects coming from the saddle
points and nesting effects. Moreover, generically, nesting and Van Hove effects
do not occur at the same Fermi level. In the following, we discuss those aspects
of the problem that are specific to two dimensions. As already discussed in [1],
the effects caused by saddle points of the dispersion function lying on the Fermi
surface are believed to be strongest in two dimensions (we follow the usual jargon
of calling the level set the Fermi “surface” even though it is a curve in d = 2).
Certainly, the Van Hove singularities in the density of states of the noninteracting
system are strongest in d = 2. As concerns many–body properties, we have shown
in [1] that for d ≥ 3, the overlapping loop estimates of [13] carry over essentially
unchanged, which implies differentiability of the self–energy and hence a quasi-
particle weight (Z–factor) close to 1 to all orders in renormalized perturbation
theory.

In this paper, we show that for d = 2, there are more drastic changes. Namely,
there is an asymmetry between the derivatives of the self–energy Σ(q0,q) with
respect to the frequency variable q0 and the spatial momentum q. We prove that
the spatial gradient ∇Σ is a bounded function to all orders in perturbation theory
if the Fermi surface satisfies a no–nesting condition. By explicit calculation, we
show that for a standard saddle point singularity, even the second–order contribu-
tion ∂0Σ2(q0,qs) diverges as (log |q0|)

2 at any Van Hove point qs (if that point is
on the Fermi surface).

This asymmetric behaviour is unlike the behaviour in all other cases that are
under mathematical control: in one dimension, both ∂0Σ2 and ∂1Σ2 diverge like
log |q0| at the Fermi point. This is the first indication for vanishing of the Z–
factor and the occurrence of anomalous decay exponents in this model. The point
is, however, that once a suitable Z–factor is extracted, Z∂1Σ2 remains of order
1 in one dimension, while for two–dimensional singular Fermi surfaces, the p–
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dependent function Z(p)∇Σ(p) vanishes at the Van Hove points. In higher di-
mensions d ≥ 2, and with a regular Fermi surface fulfilling a no-nesting condition
very similar to that required here, Σ is continuously differentiable both in q0 and
in q. Thus it is really the Van Hove points on the Fermi surface that are responsi-
ble for the asymmetry. In the last section of this paper, we point out some possible
(but as yet unproven) consequences of this behaviour.

Our analysis is partly motivated by the two–dimensional Hubbard model, a
lattice fermion model with a local interaction and a dispersion relation k 7→ e(k)
which, in suitable energy units, reads

e(k) = − cos k1 − cos k2 + θ(1 + cos k1 cos k2) − µ. (1)

The parameter µ is the chemical potential, used to adjust the particle density, and
θ is a ratio of hopping parameters. As we shall explain now, the most interesting
parameter range is µ ≈ 0 and

0 < θ < 1.

The zeroes of the gradient of e are at (0, 0), (π, π) and at (π, 0), (0, π). The first
two are extrema, and the last two are the saddle points relevant for van Hove
singularities (VHS). For µ = 0, both saddle points are on the Fermi surface. For
θ = 1 the Fermi surface degenerates to the pair of lines {k1 = 0} ∪ {k2 = 0},
so we assume that θ < 1. For θ = 0 and µ = 0, the Fermi surface becomes
the so–called Umklapp surface U = {k : k1 ± k2 = ±π}, which is nested since
it has flat sides. This case has been studied in [2, 3, 4]. There, it was shown
that for a local Hubbard interaction of strength λ, perturbation theory converges
in the region of (β, λ) where |λ| is small and |λ|(log β)2 � 1. We shall discuss
this result further in Section 6. For 0 < θ < 1 the Fermi surface at µ = 0 has
nonzero curvature away from the Van Hove points (π, 0) and (0, π). Viewed from
the point (π, π), it encloses a strictly convex region (as a subset of R2). There
is ample evidence that in the Hubbard model, it is the parameter range θ > 0
and electron density near to the van Hove density (µ ≈ 0) that is relevant for
high–Tc superconductivity (see, e.g. [5, 6, 7, 8, 9]). In this parameter region, an
important kinematic property is that the two saddle points at (π, 0) and (0, π) are
connected by the vector Q = (π, π), which has the property that 2Q = 0 mod
2πZ

2. This modifies the leading order flow of the four–point function strongly
(Umklapp scattering, [7, 8, 9]). The bounds we discuss here hold both in presence
and absence of Umklapp scattering.

The interaction of the fermions is given by λv̂, where λ is the coupling constant
and v̂ is the Fourier transform of the two–body potential defining a density–density

4



interaction. For the special case of the Hubbard model, two fermions interact only
if they are at the same lattice point, so that v̂(k) = 1. Despite the simplicity of the
Hamiltonian, little is known rigorously about the low–temperature phase diagram
of the Hubbard model, even for small |λ|. In this paper, we do perturbation theory
to all orders, i.e. we treat λ as a formal expansion parameter. For a discussion
of the relation of perturbation theory to all orders to renormalization group flows
obtained from truncations of the RG hierarchies, see the Introduction of [1].

Although our analysis is motivated by the Hubbard model, it applies to a much
more general class of models. In this paper, we shall need only that the band
function e has enough derivatives, as stated below, and a similar condition on
the interaction. In fact, the interaction is allowed to be more general than just a
density–density interaction: it may depend on frequencies, as well as the spin of
the particles. See [13, 14, 15, 16] for details. As far as the singular points of e are
concerned, we require that they are nondegenerate. The precise assumptions on e
will be stated in detail below.

We add a few remarks to put these assumptions into perspective. No matter if
we start with a lattice model or a periodic Schrödinger operator describing Bloch
electrons in a crystal potential, the band function given by the Hamiltonian for
the one–body problem is, under very mild conditions, a smooth, even analytic
function. In such a class of functions, the occurrence of degenerate critical points
is nongeneric, i.e. measure zero. In other words, if

e(ks +Rk) = −ε1k
2
1 + ε2k

2
2 + . . .

around a Van Hove point ks (here R is a rotation that diagonalizes the Hessian
at ks), getting even one of the two prefactors εi to vanish in a Taylor expansion
requires a fine–tuning of the hopping parameters, in addition to the condition that
the VH points are on S. Thus, in a one–body theory, an extended VHS, where the
critical point becomes degenerate because, say, ε1 vanishes, is nongeneric. On the
other hand, experiments suggest [6] that ε1 is very small in some materials, which
seem to be modeled well by Hubbard–type band functions. On the theoretical side,
in a renormalized expansion with counterterms, it is not the dispersion relation of
the noninteracting system, but that of the interacting system, which appears in all
fermionic covariances. It is thus an important theoretical question to decide what
effects the interaction has on the dispersion relation and in particular whether an
extended VHS can be caused by the interaction. We shall discuss this question
further in Section 6.
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2 Main Results

In this section we state our hypotheses on the dispersion function and the Fermi
surface, and then state our main result.

2.1 Hypotheses on the dispersion relation

We make the following hypotheses on the dispersion relation e and its Fermi sur-
face F = { k | e(k) = 0 } in d = 2.

H1 { k | |e(k)| ≤ 1 } is compact.

H2 e(k) is Cr with r ≥ 7.

H3 e(k̃) = 0 and ∇e(k̃) = 0 simultaneously only for finitely manyk̃’s, called
Van Hove points or singular points.

H4 If k̃ is a singular point then [∂
2

∂ki∂kj
e(k̃)]1≤i,j≤d is nonsingular and has one

positive eigenvalue and one negative eigenvalue.

H5 There is at worst polynomial flatness. This means the following. Let k̃ ∈ F .
Suppose that k2 − k̃2 = f(k1 − k̃1) is a Cr−2 curve contained in F in a
neighbourhood of k̃. (If k̃ is a singular point, there can be two such curves.)
Then some derivative of f(x) at x = 0 of order at least two and at most r−2
does not vanish. Similarly if the roles of the first and second coordinates are
exchanged.

H6 There is at worst polynomial nesting. This means the following. Let k̃ ∈ F
and p̃ ∈ F with k̃ 6= p̃. Suppose that k2 − k̃2 = f(k1 − k̃1) is a Cr−2 curve
contained in F in a neighbourhood of k̃ and k2 − p̃2 = g(k1 − p̃1) is a Cr−2

curve contained in F in a neighbourhood of p̃. Then some derivative of
f(x)−g(x) at x = 0 of order at most r−2 does not vanish. Similarly if the
roles of the first and second coordinates are exchanged. If e(k) is not even,
we further assume a similar nonvanishing when f gives a curve in F in a
neighbourhood of any k̃ ∈ F and g gives a curve in −F in a neighbourhood
of any p̃ ∈ −F .

We denote by n0 the largest nonflatness or nonnesting order plus one, and assume
that

r ≥ 2n0 + 1
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The Fermi surface for the Hubbard model with 0 < θ < 1 and µ = 0, when
viewed from (π, π), encloses a convex region. See the figure below. It has nonzero
curvature except at the singular points. If one writes the equation of (one branch
of) the Fermi surface near the singular point (0, π) in the form k2 − π = f(k1),
then f (3)(0) 6= 0. So this Fermi surface satisfies the nonflatness and no–nesting
conditions with n0 = 4.

−π 0 π 2π
0

π

2π

2.2 Main theorem

In the following, we state our main results about the fermionic self–energy. A
discussion will be given at the end of the paper, in Section 6.

Theorem 2.1 Let B = R2/2πZ2 and e ∈ C7(B,R). Assume that the Fermi
surface S = {k ∈ B : e(k) = 0} contains points where ∇e(k) = 0, and that
the Hessian of e at these points is nonsingular. Moreover, assume that away from
these points, the Fermi surface can have at most finite–order tangencies with its
(possibly reflected) translates and is at most polynomially flat. [These hypotheses
have been spelled out in detail in H1–H6 above.] As well, the interaction v is
assumed to be short–range, so that its Fourier transform v̂ is C2.

Then there is a counterterm function K ∈ C1(B,R), given as a formal power
series K =

∑

r≥1Krλ
r in the coupling constant λ, such that the renormalized

expansion for all Green functions, at temperature zero, is finite to all orders in λ.

1. The self–energy is given as a formal power series Σ =
∑

r≥1 Σrλ
r, where

for all r ∈ N and all ω ∈ R, the function k 7→ Σr(ω,k) ∈ C1(B,C).
Specifically, we have

‖Σr‖∞ ≤ const

‖∇Σr‖∞ ≤ const
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with the constants depending on r. Moreover, the function ω 7→ Σr(ω,k) is
C1 in ω for all k ∈ B \ V , where V denotes the integer lattice generated by
all van Hove points, and the bar means the closure in B.

2. For e given by the normal form e(k) = k1k2, which has a van Hove point at
k = 0, the second order contribution Σ2 to the self–energy obeys

Im ∂ωΣ2(ω, 0) = −a1 (log |ω|)2 +O(| log |ω||)

Re ∂k1∂k2Σ2(ω, 0) = a2 (log |ω|)2 +O(| log |ω||)

∂2
k1

Σ2(ω, 0) and ∂2
k2

Σ2(ω, 0) grow at most linearly in log |ω|. The explicit
values of a1 > 0 and a2 > 0 are given in Lemmas 5.1 and 5.2, below.

Theorem 2.1 is a statement about the zero temperature limit of Σ. That is, Σr(ω,k)
and its derivatives are computed at a positive temperature T = β−1, where they
are C2 in ω and q, and then the limit β → ∞ is taken. (Because only one–
particle–irreducible graphs contribute to Σr, it is indeed a regular function of ω
for all ω ∈ R at any inverse temperature β <∞.)

The bounds to all orders stated in item 1 of Theorem 2.1 generalize to low
positive temperatures in an obvious way: the length–of–overlap estimates and the
singularity analysis done below only use the spatial geometry of the Fermi surface
for e, which is unaffected by the temperature. The other changes are merely to
replace some derivatives with respect to frequency by finite differences, which
only leads to trivial changes.

Our explicit computation of the asymptotics in the model case of item 2 of
Theorem 2.1 uses that several contributions to these derivatives vanish in the limit
β → ∞, and that certain cancellations occur in the remaining terms. For this
reason, the result stated in item 2 is a result at zero temperature. (In particular, the
coefficients in the O(log |ω|) terms are just numbers.) However, we do not expect
any significant change in the asymptotics at low temperature and small ω to occur.
That is, we expect the low–temperature asymptotics to contain only terms whose
supremum over |ω| ≥ π/β is at most of order (log β)2, and the square of the
logarithm to be present.

2.3 Heuristic explanation of the asymmetry

We refer to the different behaviour of ∇Σ (which is bounded to all orders) and
∂ωΣ (which is log2–divergent in second order) as the asymmetry in the derivatives

8



of Σ. In the case of a regular Fermi surface, no–nesting implies that Σr is in C1+δ

with a Hölder exponent δ that depends on the no–nesting assumption. A similar
bound was shown in [1] for Fermi surfaces with singularities in d ≥ 3 dimen-
sions. In [1], we formulated a slight generalization of the no-nesting hypothe-
sis of [13], and again proved a volume improvement estimate, which implies the
above–mentioned Hölder continuity of the first derivatives.

In the more special case of a regular Fermi surface with strictly positive cur-
vature, we have given, in [14, 15], bounds on certain second derivatives of the
self–energy with respect to momentum. We briefly review that discussion for the
second–order contribution, to motivate why there is a difference between the spa-
tial and the frequency derivatives.

For simplicity, we assume a local interaction, and consider the infrared part of
the two–loop contribution

I(q0,q) = 〈C(ω1, e(p1))C(ω2, e(p2))C(ω, ẽ)〉

where ω = q0 + v1ω1 + v2ω2, vi = ±1 and

ẽ = e(q + v1p1 + v2p2)

The angular brackets denote integration of p1 and p2 over the two-dimensional
Brillouin zone and Matsubara summation of ω1 and ω2, over the set π

β
(2Z + 1).

By infrared part we mean that the fermion propagators are of the form

C(ω,E) =
U(ω2 + E2)

iω − E

where U is a suitable cutoff function that is supported in a small, fixed neighbour-
hood of zero.

The third denominator depends on the external momentum (q0,q) and deriva-
tives with respect to the external momentum increase the power of that denomi-
nator, which may lead to bad behaviour as β → ∞. The main idea why some
derivatives behave better than expected by simple counting of powers (see [14])
is that in dimension two and higher, there are, in principle, enough integrations
to make a change of variables so that ẽ, e(p1) and e(p2) all become integration
variables. This puts all dependence on the external variable q into the Jacobian
J of this change of variables. If J were Ck with uniform bounds, I(q0,q) would
be Ck in the spatial momentum q, and (by integration by parts) also in q0. How-
ever, J always has singularities, and the leading contributions to the derivatives
of I(q0,q) come from the vicinity of these singularities. It was proven in [14, 15]
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that if the Fermi surface is regular and has strictly positive curvature, these singu-
larities of the Jacobian are harmless, provided derivatives are taken tangential to
the Fermi surface.

To explain the change of variables, we first show it for the case without van
Hove singularities and then discuss the changes required when van Hove singu-
larities are present.

In a neighborhood of the Fermi surface, we introduce coordinates ρ and θ,
so that p = P (ρ, θ). The coordinates are chosen such that ρ = e(p) and that
P (ρ, θ+ π) is the antipode of P (ρ, θ). (We are assuming that the Fermi surface is
strictly convex – see [14].) Doing this for p1 and p2, with corresponding Jacobian
J = detP ′, we have

I(q0,q) =

[
∫

dθ1 dθ2 J(ρ1, θ1)J(ρ2, θ2) C(ω, ẽ)

]

1,2

where [F ]1,2 now denotes multiplying F by C(ω1, ρ1)C(ω2, ρ2) and integrating
over ρ1 and ρ2 and summing over the frequencies. To remove the q–dependence
from C(ω, ẽ), one now wants to change variables from θ1 or θ2 to ẽ. This works
except near points where

∂ẽ

∂θ1
=

∂ẽ

∂θ2
= 0.

These equations determine the singularities of the Jacobian. The detailed analysis
of their solutions is in [14]. Essentially, if one requires that the momenta p1 and
p2 are on the FS, i.e. ρ1 = ρ2 = 0, that q = P (0, θq) is on the FS and that
the sum q + v1P (0, θ1) + v2P (0, θ2) is on the FS, then the only solutions are
θ1 ∈ {θq, θq + π} and θ2 ∈ {θq, θq + π}. (The general case of momenta near to
the Fermi surface is then treated by a deformation argument which requires that
∇e 6= 0 and that the curvature be nonzero.) A detailed analysis of the singularity
in J , in which strict convexity enters again, then implies that the self–energy is
regular.

The conditions needed for the above argument fail at the Van Hove points. But,
introducing a partition of unity on the Fermi surface, they still hold away from
the singular points. So the only contributions that may fail to have derivatives
come from q + v1p1 + v2p2 in a small neighbourhood of the singular points.
When a derivative with respect to q0 is taken, the integrand contains a factor of
−i(iω− ẽ)−2. When a derivative with respect to q is taken, the integrand contains
a factor ∇e(q+v1p1+v2p2)(iω− ẽ)

−2. Because we are in a small neighbourhood
of the singular point, the numerator, ∇e(q+v1p1 +v2p2), in the latter expression
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is small, and vanishes at the singular point. This suggests that the first derivative
with respect to q may be better behaved than the first derivative with respect to
q0, as is indeed the case – see item 1 of Theorem 2.1. A second derivative with
respect to q may act on the numerator, ∇e(q + v1p1 + v2p2), and eliminate its
zero. This suggests that the second derivative with respect to q behaves like the
first derivative with respect to q0, as is indeed the case – see item 2 of Theorem
2.1.

The above heuristic discussion is only to provide a motivation as to why the
asymmetry in the derivatives of Σ2 occurs. The proof does not make use of the
idea of the change of variables to ẽ, but rather of length–of–overlap estimates,
which partially replace the overlapping loop estimates, away from the singular
points. This allows us to show the convergence of the first q–derivative under
conditions H1–H6, which are significantly weaker than strict convexity, and it
also allows us to treat the situation with Umklapp scattering, which had to be
excluded in second order in [14], and which is the reason for the restriction on the
density in [14].

3 Fermi Surface

In this section we prove bounds on the size of the overlap of the Fermi surface
with translates of a tubular neighbourhood of the Fermi surface. These bounds
make precise the geometrical idea that for non–nested surfaces (here: curves), the
non–flatness condition H5 strongly restricts such lengths of overlap.

3.1 Normal form for e(k) near a singular point

Lemma 3.1 Let d = 2 and assume H2–H5 with r ≥ n0 + 1. Assume that k̃ = 0

is a singular point of e. Then there are

◦ integers 2 ≤ ν1, ν2 < n0,

◦ a constant, nonsingular matrix A and

◦ Cr−2−max{ν1,ν2} functions a(k), b(k) and c(k) that are bounded and bounded
away from zero

such that in a neighbourhood of the origin

e(Ak) = a(k)(k1 − kν12 b(k))(k2 − kν21 c(k)). (2)
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Proof: Let λ1 and λ2 be the eigenvalues of [∂
2

∂ki∂kj
e(0)]1≤i,j≤2 and set λ̃ =

√

|λ2/λ1|. By the Morse lemma [17, Lemma 1.1 of Chapter 6], there is a C r−2

diffeomorphism x(k) with x(0) = 0 such that

e(k) = λ1x1(k)2 + λ2x2(k)2

= λ1(x1(k)2 − λ̃2x2(k)2 )

= λ1(x1(k) − λ̃x2(k) ) ( x1(k) + λ̃x2(k) )

= λ1( a1k1 + a2k2 − x̃1(k) ) ( b1k1 + b2k2 − x̃2(k) )

with x̃1(k) and x̃2(k) vanishing to at least order two at k = 0. Here a1k1 + a2k2

and b1k1 + b2k2 are the degree one parts of the Taylor expansions of x1(k) −
λ̃x2(k) and x1(k) + λ̃x2(k) respectively. Since the Jacobian detDx(0) of the

diffeomorphism at the origin is nonzero and det

[

1 −λ̃

1 λ̃

]

= 2λ̃ 6= 0, we have

det

[

a1 a2

b1 b2

]

= det

{[

1 −λ̃

1 λ̃

]

Dx(0)

}

6= 0

Setting

A =

[

a1 a2

b1 b2

]−1

we have
e(Ak) = λ1(k1 − x̃1(Ak))(k2 − x̃2(Ak))

Write
k1 − x̃1(Ak) = k1 − k1f1(k) − kν12 g1(k2)

with

k1f1(k) = x̃1(Ak) − x̃1(Ak)|k1=0

kν12 g1(k2) = x̃1(Ak)|k1=0

Since x̃1(Ak) vanishes to order at least two at k = 0,

f1(k) =

∫ 1

0

[∂
∂k1
x̃1(Ak)]k=(tk1 ,k2)

dt

is Cr−3 and vanishes to order at least one at k = 0 and, in particular, |f1(k)| ≤ 1
2

for all k in a neighbourhood of the origin. We choose ν1 to be the power of
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the first nonvanishing term in the Taylor expansion of x̃1(Ak)|k1=0. Since this
function must vanish to order at least two in k2, we have that ν1 ≥ 2. By the
nonflatness condition, applied to the curve implicitly determined by k1 = x̃1(Ak),
ν1 ≤ r − 2. So g1(k2) is Cr−2−ν1 and is bounded and bounded away from zero in
a neighbourhood of k2 = 0.

In a similar fashion, write

k2 − x̃2(Ak) = k2 − k2f2(k) − kν21 g2(k1)

with

k2f2(k) = x̃2(Ak) − x̃2(Ak)|k2=0

kν21 g2(k1) = x̃2(Ak)|k2=0

Then we have the desired decomposition (2) with

a(k) = λ1(1 − f1(k))(1 − f2(k))

b(k) =
g1(k2)

1 − f1(k)
, c(k) =

g2(k1)

1 − f2(k)
.

We remark that it is possible to impose weaker regularity hypotheses by ex-
ploiting that kν12 b(k), resp. kν21 c(k), is a Cr−3 function whose k2, resp. k1, deriva-
tives of order strictly less than ν1, resp. ν2, vanish at k2 = 0, resp. k1 = 0.

3.2 Length of overlap estimates

It follows from the normal form derived in Lemma 3.1 that under the hypotheses
H2–H5 the curvature of the Fermi surface may vanish as one approaches the sin-
gular points. Thus, even if the Fermi surface is curved away from these points,
there is no uniform lower bound on the curvature. Curvature effects are very im-
portant in the analysis of regularity estimates, and in a situation without uniform
bounds these curvature effects improve power counting only at scales lower than
a scale set by the rate at which the curvature vanishes. Thus it becomes natural to
define, at a given scale, scale–dependent neighbourhoods of the singular points,
outside of which curvature improvements hold. The estimates for the length of
overlaps that we prove in this section allow us to make this idea precise. They
hold under much more general conditions than a nonvanishing curvature, namely
the nonnesting and nonflatness assumptions H5 and H6 suffice. We first discuss
the special case corresponding to the normal form in the vicinity of a singular
point, and then deal with the general case.
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3.2.1 Length of overlap – special case

Lemma 3.2 Let ν1 ≥ 2 and ν2 ≥ 2 be integers and

e(x, y) = (x− yν1b(x, y))(y − xν2c(x, y))

with b and c bounded and bounded away from zero and with b, c ∈ Cν2+1. Let
u(x) obey

u(x) = xν2c(x, u(x))

for all x in a neighbourhood of 0. That is, y = u(x) lies on the Fermi curve
e(x, y) = 0. There are constants C and D > 0 such that for all ε > 0 and
0 < δ ≤ |(X, Y )| ≤ D

Vol { x ∈ R | |x| ≤ D, |e(X + x, Y + u(x))| ≤ ε } ≤ C( ε
δ
)1/ν2

Proof: Write

e(X + x, Y + u(x)) = F (x,X, Y )G(x,X, Y ) (3)

with

F (x,X, Y ) = X + x− (Y + u(x))ν1b(X + x, Y + u(x))

G(x,X, Y ) = Y + u(x) − (X + x)ν2c(X + x, Y + u(x))

= Y − {(X + x)ν2 − xν2}c(X + x, Y + u(x))

−xν2{c(X + x, Y + u(x)) − c(x, u(x))}

Observe that, for all allowed x, X and Y ,

|F (x,X, Y )| ≤ 1
100

|∂
∂x
F (x,X, Y )| ≥ 99

100

since x, X , Y and u(x) all have to be O(D) small. For our analysis of G(x,X, Y )
we consider two separate cases.
Case 1: |Y | ≥ κ|X| with κ a constant to be chosen shortly. Since c(X + x, Y +
u(x)) − c(x, u(x)) vanishes to first order in (X, Y ), for all x

|xν2{c(X + x, Y + u(x)) − c(x, u(x))}| ≤ 1
100

[|X| + |Y |]

|∂
∂x

[xν2{c(X + x, Y + u(x)) − c(x, u(x))}]| ≤ 1
100

[|X| + |Y |]

Since (X + x)ν2 − xν2 vanishes to first order in X , for all x

|{(X + x)ν2 − xν2}c(X + x, Y + u(x))| ≤ κ̃|X|

|∂
∂x

[{(X + x)ν2 − xν2}c(X + x, Y + u(x))]| ≤ κ̃|X|

14



We choose κ = max{2, 200κ̃}. Then

|G(x,X, Y )| ≥ 98
100

|Y | |∂
∂x
G(x,X, Y )| ≤ 2

100
|Y |

Thus, by (3) and the product rule,

|∂
∂x
e(X + x, Y + u(x))| ≥ ( 99

100
98
100

− 1
100

2
100

)|Y | ≥ 1
2
|Y |

and, by Lemma A.1,

Vol { x ∈ R | |x| ≤ D, |e(X + x, Y + u(x))| ≤ ε } ≤ 4 ε
|Y |/2 ≤ 16 ε

δ
.

Case 2: |Y | ≤ κ|X|. In this case we bound the νth
2 x–derivative away from zero.

We claim that the dominant term comes from one derivative acting on F and ν2−1
derivatives acting on G. Observe that for |X|, |Y |, |x| ≤ D with D sufficiently
small

∣

∣

dm

dxmu(x)
∣

∣ ≤ O(D) for 0 ≤ m < ν2

since u(x) = xν2c(x, u(x)) and consequently

|F (x,X, Y )| ≤ O(D)

|∂
∂x
F (x,X, Y )| ≥ 1 − O(D)

|∂
m

∂xmF (x,X, Y )| ≤ O(D) for 1 < m ≤ ν2

Furthermore, since c(X + x, Y + u(x)) − c(x, u(x)) vanishes to first order in
(X, Y ), for all x,

|∂
m

∂xm [xν2{c(X + x, Y + u(x)) − c(x, u(x))}]| ≤ O(D)[|X| + |Y |]

for 0 ≤ m < ν2 and

|∂
m

∂xm [xν2{c(X + x, Y + u(x)) − c(x, u(x))}]| ≤ O(1)[|X| + |Y |]

for m = ν2. Since (X + x)ν2 − ν2Xx
ν2−1 − xν2 vanishes to second order in X ,

for all x,

|∂
m

∂xm [{(X + x)ν2 − ν2Xx
ν2−1 − xν2}c(X + x, Y + u(x))]| ≤ O(|X|2)

≤ O(D)|X|
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for all 0 ≤ m ≤ ν2. Finally

|∂
m

∂xm [ν2Xx
ν2−1c(X + x, Y + u(x))]| ≤ O(D)|X| for 0 ≤ m < ν2 − 1

|∂
m

∂xm [ν2Xx
ν2−1c(X + x, Y + u(x))]| ≥ κ′|X| −O(D)|X| for m = ν2 − 1

|∂
m

∂xm [ν2Xx
ν2−1c(X + x, Y + u(x))]| ≤ O(1)|X| for m = ν2

with κ′ = ν2! inf |c(x, y)| > 0. Consequently,

|∂
ν2

∂xν2
e(X + x, Y + u(x))|

= |ν2
∂F
∂x

∂ν2−1G
∂xν2−1 +

ν2
∑

m=0
m6=1

(

ν2
m

)

∂mF
∂xm

∂ν2−mG
∂xν2−m |

≥ (1 − O(D))(κ′ − O(D))|X| − O(D)[|X| + |Y |]

≥ (1 − O(D))(κ′ − O(D))|X| − O(D)(1 + κ)|X|

≥ κ′

2
|X|

if D is small enough. Hence, by Lemma A.1,

Vol { x ∈ R | |x| ≤ D, |e(X + x, Y + u(x))| ≤ ε }

≤ 2ν2+1( ε
κ′|X|/2)

1/ν2 ≤ 2ν2+1(2
√

1+κ2

κ′
ε
δ
)1/ν2

3.2.2 Length of overlap – general case

Proposition 3.3 Assume H1–H6 with r ≥ 2n0 + 1. There is a constant D > 0
such that for all 0 < δ < 1 and each sign ± the measure of the set of p ∈ R

2 such
that

`
(

{ k ∈ F | |e(p ± k)| ≤ M j }
)

≥ (M
j

δ
)1/n0 for some j < 0

is at most Dδ2. Here ` is the Euclidean measure (length) on F . Recall that n0 is
the largest nonflatness or nonnesting order plus one.

Lemma 3.4 Let r ≥ 2n0 + 1. For each p̃ ∈ R2 and k̃ ∈ F , there are constants
d,D′ > 0 (possibly depending on p̃ and k̃) such that for each sign ±, all j < 0,
and all p ∈ R2 obeying |p − p̃| ≤ d

`
(

{ k ∈ F | |k − k̃| ≤ d, |e(p ± k)| ≤M j }
)

≤ D′( Mj

|p−p̃|)
1/n0

16



Proof of Proposition 3.3, assuming Lemma 3.4. For each p̃ ∈ R2 and k̃ ∈ F , let
dp̃,k̃, D

′
p̃,k̃

be the constants of the Lemma and set

Op̃,k̃ = { (p,k) ∈ R
2 × F | |p − p̃| < dp̃,k̃, |k − k̃| < dp̃,k̃ }

Since F = { k | e(k) = 0 } and { k | |e(k)| ≤ 1 } are compact, there is an R > 0
such that if |p| > R, then { k ∈ F | |e(p ± k)| ≤ M j } is empty for all j < 0.
Since { p ∈ R2 | |p| ≤ R }×F is compact, there are (p̃1, k̃1), . . ., (p̃N , k̃N) such
that

{ p ∈ R
2 | |p| ≤ R } × F ⊂

N
⋃

i=1

Op̃i,k̃i

Fix any 0 < δ < 1 and set, for each 1 ≤ i ≤ N , δi = (ND′
p̃i,k̃i

)n0δ. If |p− p̃i| >

δi for all 1 ≤ i ≤ N , then for all j < 0

`({ k ∈ F | |e(p ± k)| ≤M j })

≤ `
(

⋃

1≤i≤n
|p−p̃i|≤d

p̃i,k̃i

{ k ∈ F | |k − k̃p̃i,k̃i
| ≤ dp̃i,k̃i

, |e(p ± k)| ≤M j }
)

≤
N
∑

i=1

D′
p̃i,k̃i

(

Mj

|p−p̃i|

)1/n0

<
N
∑

i=1

D′
p̃i,k̃i

(

Mj

δi

)1/n0

≤

N
∑

i=1

1
N

(

Mj

δ

)1/n0

=
(

Mj

δ

)1/n0

Consequently the measure of the set of p ∈ R2 for which

`
(

{ k ∈ F | |e(p ± k)| ≤M j }
)

≥ (M
j

δ
)1/n0 for some j < 0

is at most

N
∑

i=1

πδ2
i ≤ Dδ2 where D =

N
∑

i=1

π(ND′
p̃i,k̃i

)2n0 .

Proof of Lemma 3.4. We give the proof for p + k. The other case is similar.
In the event that p̃ + k̃ /∈ F , there is a d > 0 and an integer j0 < 0 such that

17



{ k ∈ F | |k − k̃| ≤ d, |e(p + k)| ≤ M j } is empty for all |p − p̃| ≤ d and
j < j0. So we may assume that p̃ + k̃ ∈ F .
Case 1: p̃ + k̃ is not a singular point. By a rotation and translation of the k

plane, we may assume that p̃ + k̃ = 0 and that the tangent line to F at p̃ + k̃ is
k2 = 0. Then, as in Section 3.1, there are

◦ ν ∈ N with 2 ≤ ν < n0 and

◦ Cr−ν functions a(q) and b(q) that are bounded and bounded away from
zero

such that
e(q) = a(q)(q2 − qν1b(q))

in a neighbourhood of 0. (Choose q2a(q) = e(q) − e(q)|q2=0 and qν1a(q)b(q) =

e(q)|kq=0.) If the tangent line to F at k̃ (when k̃ is a singular point the tangent
line of one branch) is not parallel to k1 = 0 and if d is small enough, we can write
the equation of F for k within a distance d of k̃ (when k̃ is a singular point, the
equation of the branch under consideration) as k2 − k̃2 = (k1 − k̃1)

ν′c(k1 − k̃1)
for some 1 ≤ ν ′ < n0 and some Cr−n0−1 function c that is bounded and bounded
away from zero (when k̃ is a singular point, by Lemma 3.1). Then, for k ∈ F , we
have, writing p − p̃ = (X, Y ) and k1 − k̃1 = x,

e(p + k) = e(p − p̃ + k − k̃) = e((X, Y ) + (x, xν
′

c(x)))

= A(x,X, Y )(Y + xν
′

c(x) − (X + x)νB(x,X, Y ))

where

A(x,X, Y ) = a(X + x, Y + xν
′

c(x))

B(x,X, Y ) = b(X + x, Y + xν
′

c(x))

and c(x) are bounded and bounded away from zero.
Observe that y = xν

′
c(x) is the equation of a fragment of F translated so as

to move k̃ to 0 and y = xνb(x, y) is the equation of a fragment of F translated
so as to move p̃ + k̃ to 0. If p̃ = 0 these two fragments may be identical. That
is xν

′
c(x) ≡ xνb(x, xν

′
c(x)). (Of course, in this case ν = ν ′.) If p̃ 6= 0, the

nonnesting condition says that there is an n ∈ N such that if y = xνb(x, y) is
rewritten in the form y = xνC(x), then the nth derivative of xνC(x) − xν

′
c(x)

must not vanish at x = 0. Let n < n0 be the smallest such natural number. Since
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derivatives of xνC(x) at x = 0 of order strictly lower than n agree with the cor-
responding derivatives of xν

′
c(x), the nth derivatives at x = 0 of xνb(x, xνC(x))

and xνb(x, xν
′
c(x)) coincide. Since xνC(x) ≡ xνb(x, xνC(x)), the nth derivative

of xν
′
c(x) − xνb(x, xν

′
c(x)) = xν

′
c(x) − xνB(x, 0, 0) must not vanish at x = 0.

◦ If ν ′ < ν,

dν′

dxν′ (Y +xν
′

c(x)−(X+x)νB(x,X, Y )) = ν ′! c(x)+O(d) = ν ′! c(0)+O(d)

is uniformly bounded away from zero, if d is small enough.

◦ If ν ′ > ν,

dν

dxν (Y + xν
′

c(x) − (X + x)νB(x,X, Y )) = −ν!B(0, 0, 0) +O(d)

is uniformly bounded away from zero, if d is small enough.

◦ If ν ′ = ν and xν
′
c(x) 6≡ xνB(x, 0, 0), then, as the function xνB(x, 0, 0) −

(X + x)νB(x,X, Y ) vanishes for all x if X = Y = 0,

dn

dxn

[

Y + xν
′

c(x) − (X + x)νB(x,X, Y )
]

= dn

dxn

[

Y + xν
′

c(x) − xνB(x, 0, 0)

+[xνB(x, 0, 0) − (X + x)νB(x,X, Y )]
]

= dn

dxn (xν
′

c(x) − xνB(x, 0, 0)) + O(|X|+ |Y |)

= dn

dxn (xν
′

c(x) − xνB(x, 0, 0))|x=0 +O(d) +O(|X| + |Y |)

is uniformly bounded away from zero, if d is small enough.

◦ If ν ′ = ν and xν
′
c(x) ≡ xνB(x, 0, 0) and |Y | ≤ |X|

Y + xν
′

c(x) − (X + x)νB(x,X, Y )

= Y − νXxν−1B(x,X, Y )

−{(X + x)ν − νXxν−1 − xν}B(x,X, Y )

−xν{B(x,X, Y ) − B(x, 0, 0)}

so that

dν−1

dxν−1 (Y + xν
′

c(x) − (X + x)νB(x,X, Y ))

= −ν!X[B(0, 0, 0) +O(d)] +O(d)O(|X| + |Y |)

is bounded away from zero by 1
2
ν! |XB(0, 0, 0)|, if d is small enough.
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In all of the above cases, by Lemma A.1,

`
(

{ k ∈ F | |k − k̃| ≤ d, |e(p + k)| ≤M j }
)

≤
√

1 + c21 2ν0+1( c0M
j

ρ
)1/ν0

where ν0 is one of ν ′, ν, n or ν − 1, the constant c0 is the inverse of the infimum
of a(k), the constant c1 is the maximum slope of F within a distance d of k̃ and ρ
is either a constant or a constant times X with X at least a constant times |p− p̃|.
There are two remaining possibilities. One is that the tangent line to F at k̃ (when
k̃ is a singular point the tangent line of one branch) is parallel to k1 = 0. This
case is easy to handle because the two fragments of F are almost perpendicular,
so that

`
(

{ k ∈ F | |k − k̃| ≤ d, |e(p + k)| ≤ M j }
)

≤ const M j

The final possibility is

◦ If ν ′ = ν and xν
′
c(x) ≡ xνB(x, 0, 0) and |Y | ≥ |X|

Y + xν
′

c(x) − (X + x)νB(x,X, Y )

= Y − {(X + x)ν − xν}B(x,X, Y ) − xν{B(x,X, Y ) −B(x, 0, 0)}

so that

|Y + xν
′

c(x) − (X + x)νB(x,X, Y )| ≥ |Y | − O(d)O(|X|+ |Y |) ≥ 1
2
|Y |

if d is small enough. As a result { k ∈ F | |k− k̃| ≤ d, |e(p + k)| ≤M j }
is empty if |Y | is larger than some constant times M j . On the other hand,
if |Y | is smaller than a constant times M j , then Mj

|p−p̃| is larger than some
constant.

Case 2: p̃ + k̃ is a singular point. By Lemma 3.1,

e(p̃ + k̃ + Mq) = a(q)(q1 − qν12 b(q))(q2 − qν21 c(q))

where 2 ≤ ν1, ν2 < n0 are integers, M is a constant, nonsingular matrix and a(k),
b(k) and c(k) are Cr−2−max{ν1,ν2} functions that are bounded and bounded away
from zero.

Suppose that the tangent line to M−1F at k̃ (when k̃ is a singular point, the
tangent line of one branch) makes an angle of at most 45◦ with the x–axis. Other-
wise exchange the roles of the q1 and q2 coordinates. If d is small enough, we can
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write the equation of F for k within a distance d of k̃ (when k̃ is a singular point,
the equation of the branch under consideration) as

(M−1(k − k̃))2 = (M−1(k − k̃))ν
′

1 v((M
−1(k − k̃))1)

for some 1 ≤ ν ′ < n0 and some Cr−n0−1 function v that is bounded and bounded
away from zero. Then, writing M−1(p − p̃) = (X, Y ) and (M−1(k − k̃))1 = x
and assuming that k ∈ F ,

e(p + k) = e(p̃ + k̃ + MM
−1(p − p̃ + k − k̃))

= e(p̃ + k̃ + M(X + x, Y + xν
′

v(x)))

= A(x,X, Y )F (x,X, Y )G(x,X, Y )

where

A(x,X, Y ) = a(X + x, Y + xν
′

v(x))

F (x,X, Y ) = X + x− (Y + xν
′

v(x))ν1B(x,X, Y )

G(x,X, Y ) = Y + xν
′

v(x) − (X + x)ν2C(x,X, Y )

B(x,X, Y ) = b(X + x, Y + xν
′

v(x))

C(x,X, Y ) = c(X + x, Y + xν
′

v(x))

The functions A(x,X, Y ), B(x,X, Y ), C(x,X, Y ) and v(x) are all Cr−n0−1 and
bounded and bounded away from zero.

As in case 1, y = xν
′
v(x) is the equation of a fragment of M−1F translated

so as to move k̃ to 0 and y = xν2c(x, y) is the equation of a fragment of M−1F
translated so as to move p̃+k̃ to 0. If p̃ = 0, these two fragments may be identical
in which case xν

′
v(x) ≡ xν2c(x, xν

′
v(x)) and ν2 = ν ′. This case has already been

dealt with in Lemma 3.2. Otherwise, the nonnesting condition says that there is
an n ∈ N such that if y = xν2c(x, y) is rewritten in the form y = xν2V (x), then
the nth derivative of xν2V (x) − xν

′
v(x) must not vanish at x = 0. Let n < n0 be

the smallest such natural number. Since xν2V (x) ≡ xν2c(x, xν2V (x)) and since
derivatives at 0 of xν2V (x) of order lower than n agree with the corresponding
derivatives of xν

′
v(x), the nth derivative of xν

′
v(x)−xν2c(x, xν

′
v(x)) = xν

′
v(x)−

xν2C(x, 0, 0) must not vanish at x = 0. So the remaining cases are:

◦ If ν ′ < ν2, then
dν′

dxν′G(x,X, Y ) = ν ′! v(0) +O(d)

Since
F (x,X, Y ) = O(d) d

dx
F (x,X, Y ) = 1 +O(d)
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and applying zero to ν ′−1 x–derivatives toG(x,X, Y ) givesO(d), we have

dν′+1

dxν′+1F (x,X, Y )G(x,X, Y ) = (ν ′ + 1)! v(0) +O(d)

uniformly bounded away from zero, if d is small enough.

◦ If ν ′ > ν2,
dν2

dxν2
G(x,X, Y ) = −ν2!C(0, 0, 0) +O(d)

Again
F (x,X, Y ) = O(d) d

dx
F (x,X, Y ) = 1 +O(d)

and applying zero to ν2 − 1 x–derivatives to G(x,X, Y ) gives O(d), so that

dν2+1

dxν2+1F (x,X, Y )G(x,X, Y ) = −(ν2 + 1)!C(0, 0, 0) +O(d)

is uniformly bounded away from zero, if d is small enough.

◦ If ν ′ = ν2 and xν
′
v(x) 6≡ xν2C(x, 0, 0)

dn

dxnG(x,X, Y ) = dn

dxn

[

Y + xν
′

v(x) − xν2C(x, 0, 0)

+[xν2C(x, 0, 0) − (X + x)ν2C(x,X, Y )]
]

= dn

dxn (xν
′

v(x) − xν2C(x, 0, 0))|x=0 +O(d) +O(|X| + |Y |)

and applying strictly fewer than n derivatives givesO(d). As in the last two
cases

dn+1

dxn+1F (x,X, Y )G(x,X, Y ) = nd
n

dxn (xν
′

v(x) − xν2C(x, 0, 0))|x=0 +O(d)

is uniformly bounded away from zero, if d is small enough.

The lemma now follows by Lemma A.1, as in Case 1.
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4 Regularity

4.1 The gradient of the self–energy

4.1.1 The second order contribution

Let
C(k) = U(k)

ik0−e(k)

where the ultraviolet cutoff U(k) is a smooth compactly supported function that
is identically one for all k with |ik0 − e(k)| sufficiently small. We consider the
value

F (q) =

∫

d3k(1)d3k(2)d3k(3) δ(k(1) + k(2) − k(3) − q) C(k(1))C(k(2))C(k(3))

V (k(1), k(2), k(3), q)

of the diagram

q

k(1)

k(2)

k(3)

The function V is a second order polynomial in the interaction function v̂. For de-
tails, as well as the generalization to frequency–dependent interactions, see [14].
For the purposes of the present discussion, all we need is a simple regularity as-
sumption on V .

Lemma 4.1 Assume H1–H6. If V (k(1), k(2), k(3), q) is C1, then F (q) is C1 in the
spatial coordinates q.

Proof: Introduce our standard partition of unity of a neighbourhood of the Fermi
surface [13, §2.1]

U(k) =
∑

j<0

f(M−2j|ik0 − e(k)|2)

where f(M−2j|ik0 − e(k)|2) vanishes unless M j−2 ≤ |ik0 − e(k)| ≤ M j . We
have

C(k) =
∑

j<0

Cj(k) where Cj(k) = f(M−2j |ik0−e(k)|2)
ik0−e(k)
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and

F (q) =
∑

j1,j2,j3<0

∫

d3k(1)d3k(2)d3k(3) δ(k(1) + k(2) − k(3) − q)

Cj1(k
(1))Cj2(k

(2))Cj3(k
(3))V

Route the external momentum q through the line with smallest |ji| (i.e. use the
delta function to evaluate the integral over the k(i) corresponding to the smallest
|ji|) and apply ∇q. Rename the remaining integration variables k(i) to k and p.
Permute the indices so that j1 ≤ j2 ≤ j3. If the ∇q acts on V , the estimate is easy.
For each fixed j1, j2 and j3,

◦ the volume of the domain of integration is bounded by a constant times
|j1|M

2j1 |j2|M
2j2 , by Lemma 2.3 of [1]. (The k0 and p0 components con-

tribute M j1M j2 to this bound.)

◦ and the integrand is bounded by const M−j1M−j2M−j3 .

so that
∑

j1≤j2≤j3<0

∫

d3kd3p |Cj1(k)Cj2(p)Cj3(±k ± p± q) ∇qV |

≤ const
∑

j1≤j2≤j3<0

|j1|M
j1|j2|M

j2M−j3 ≤ const
∑

j1≤j2<0

|j1|M
j1 |j2|

≤ const
∑

j1<0

|j1|
3M j1

is uniformly bounded. So assume that the ∇q acts on Cj3(±k± p± q). The terms
of interest are now of the form

∫

d3kd3p V Cj1(k)Cj2(p)∇qCj3(±k ± p± q)

with j1 ≤ j2 ≤ j3 < 0 and

∇qCj3(±k ± p± q) = ±
[

∇e(k̃)

[ik̃0−e(k̃)]2
f(M−2j3 |ik̃0−e(k̃)|2)

+2M−2j3e(k̃)∇e(k̃)

ik̃0−e(k̃)
f ′(M−2j3 |ik̃0−e(k̃)|2)

]

k̃=±k±p±q
(4)

Observe that |∇qCj3(±k±p±q)| ≤ const M−2j3 since |ik̃0−e(k̃)| ≥ const M j3

and |e(k̃)| ≤ const′ M j3 on the support of f(M−2j3 |ik̃0 − e(k̃)|2). Choose three
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small constants η, η̃, ε > 0 such that 0 < ε ≤ 1
2n0

, 0 < η < 2n0−1
2n0+2

ε and η̃ ≤
2η+ε

2n0+2η+ε
. Here n0 is the integer in Proposition 3.3. For example, if n0 = 3, we

can choose ε = 1
6
, η = 1

10
< 5

48
and η̃ = 1

20
.

Reduction 1: For any η̃ > 0, it suffices to consider j1 ≤ j2 ≤ j3 ≤ (1− η̃)j1. For
the remaining terms, we simply bound

∣

∣

∣

∫

d3kd3p V Cj1(k)Cj2(p)∇qCj3(±k ± p± q)
∣

∣

∣

≤ const
∫

d3kd3p f( |ik0−e(k)|2
M2j1

)M−j1 f( |ip0−e(p)|2
M2j2

)M−j2 M−2j3

≤ const |j1|M
j1 |j2|M

j2 M−2j3

and
∑

j1≤j2≤j3<0
j3≥(1−η̃)j1

|j1|M
j1 |j2|M

j2 M−2j3

≤ const
∑

j1≤j2≤j3<0

|j1|M
j1 |j2|M

j2 M−j3−(1−η̃)j1

≤ const
∑

j1≤j2<0

|j1| |j2|M
j1 M−(1−η̃)j1

= const
∑

j1<0

|j1|
3M η̃j1 <∞

Reduction 2: For any η > 0, it suffices to consider (k,p) with |±k±p±q−q̃| ≥
Mηj3 for all singular points q̃. Let Ξj3(k) be the characteristic function of the set

{ k ∈ R
2 | |k− q̃| ≥Mηj3 for all singular points q̃ }

If |±k±p±q− q̃| ≤Mηj3 for some singular point q̃, then |∇e(±k±p±q)| ≤
const Mηj3 and we may bound
∣

∣

∣

∫

d3kd3p V Cj1(k)Cj2(p)∇qCj3(±k ± p± q) (1 − Ξj3(±k ± p ± q))
∣

∣

∣

≤ const
∫

d3kd3p f( |ik0−e(k)|2
M2j1

)M−j1 f( |ip0−e(p)|2
M2j2

)M−j2 M−(2−η)j3

≤ const |j1|M
j1 |j2|M

j2 M−(2−η)j3

and
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∑

j1≤j2≤j3<0

|j1|M
j1 |j2|M

j2 M−(2−η)j3

≤ const
∑

j1≤j2<0

|j1|M
j1 |j2|M

j2 M−(2−η)j2

≤ const
∑

j1≤j2<0

|j1|
2M j1 M−j2+ηj2

≤ const
∑

j1<0

|j1|
2M j1 M−j1+ηj1

= const
∑

j1<0

|j1|
2Mηj1 <∞

Current status: It remains to bound

∑

j1≤j2≤j3<0
j3≤(1−η̃)j1

∣

∣

∣

∫

d3kd3p V Cj1(k)Cj2(p)∇qCj3(±k ± p± q) Ξj3(±k ± p ± q)
∣

∣

∣

≤ const
∑

j1≤j2≤j3<0
j3≤(1−η̃)j1

∫

d3kd3p f( |ik0−e(k)|2
M2j1

)M−j1 f( |ip0−e(p)|2
M2j2

)M−j2

M−2j3 Ξj3(±k ± p ± q)χj3(±k ± p ± q)

≤ const
∑

j1≤j2≤j3<0
j3≤(1−η̃)j1

M−2j3

∫

d2kd2p χj1(k) χj2(p) (χj3Ξj3) (±k ± p ± q)

≤ const
∑

j1,j2,j3<0
j3

1−η̃
≤j1,j2≤j3

M−2j3

∫

d2kd2p χj1(k) χj2(p) (χj3Ξj3) (±k ± p ± q)

where χj(k) is the characteristic function of the set of k’s with |e(k)| ≤ M j .
Make a change of variables with ±k± p± q becoming the new k integration

variable. This gives

const
∑

j1,j2,j3<0
j3

1−η̃
≤j1,j2≤j3

M−2j3

∫

d2kd2p χj1(±k ± p ± q) χj2(p) χj3(k) Ξj3(k)
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Reduction 3: It suffices to show that, for each fixedk̃, p̃ and q̃ in R2, there are
(possibly k̃, p̃, q̃ dependent, but ji independent) constants c and C such that
∫

|k−k̃|≤c
d2k

∫

|p−p̃|≤c
d2p χj1(±k ± p ± q) χj2(p) χj3(k) Ξj3(k)

≤ C|j2|M
j2M (1−η)j3M εj3−η′j3 (5)

for all q obeying |q − q̃| ≤ c. The constant η′ will be chosen later and will obey
ε− η − η′ > 0. Since

{ (k,p,q) ∈ R
6 | |e(k)| ≤ 1, |e(p)| ≤ 1, |e(±k ± p ± q)| ≤ 1 }

is compact, once this is proven we will have the bound

const
∑

j1,j2,j3<0
j3

1−η̃
≤j1,j2≤j3

M−2j3

∫

d2kd2p χj1(±k ± p ± q) χj2(p) χj3(k) Ξj3(k)

≤ const
∑

j1,j2,j3<0
j3

1−η̃
≤j1,j2≤j3

M−2j3 |j2|M
j2M (1−η)j3M εj3−η′j3

≤ const
∑

j3<0

( |j3|
1−η̃ )

3M (ε−η−η′)j3

≤ const

since ε > η+ η′. Furthermore, if k̃ or p̃ or ±k̃± p̃± q̃ does not lie on F , we can
choose c sufficiently small that the integral of (5) vanishes whenever |q −q̃| ≤ c
and |j1|, |j2|, |j3| are large enough. So it suffices to require thatk̃, p̃ and ±k̃±p̃±q̃

all lie on F .

Reduction 4: If k̃ is not a singular point, make a change of variables to ρ = e(k)
and an “angular” variable θ. So the condition χj3(k) 6= 0 forces |ρ| ≤ const M j3 .
If k̃ is a singular point, the condition Ξj3(k) 6= 0 forces |k− k̃| ≥ const Mηj3 and
this, in conjunction with the condition that χj3(k) 6= 0, forces k to lie fairly near
one of the two branches of F at k̃ at least a distance const M ηj3 from k̃. Using
Lemma 3.1, we can make a change of variables such that e(k(ρ, θ)) = ρθ and
either |θ| ≥ const M ηj3 or |ρ| ≥ const M ηj3 . Possibly exchanging the roles of ρ
and θ, we may, without loss of generality assume the former. Then the condition
χj3(k) 6= 0 forces |ρ| ≤ const M (1−η)j3 . Thus, regardless of whether k̃ is singular
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or not,
∫

|k−k̃|≤c
d2k

∫

|p−p̃|≤c
d2p χj1(±k ± p ± q) χj2(p) χj3(k) Ξj3(k)

≤ const
∫

|θ|≤1

|ρ|≤const M(1−η)j3

dρdθ

∫

|p−p̃|≤c
d2p χj1(±k(ρ, θ) ± p ± q) χj2(p)

≤ const
∫

|θ|≤1

|ρ|≤const M(1−η)j3

dρdθ

∫

|p−p̃|≤c
d2p χj′(±k(0, θ) ± p ± q) χj2(p)

≤ const M (1−η)j3
∫

|θ|≤1

dθ

∫

|p−p̃|≤c
d2p χj′(±k(0, θ) ± p ± q) χj2(p)

where M j′ = M j1 + const M (1−η)j3 ≤ const M (1−η)j3 . Thus it suffices to prove
that
∫

|p−p̃|≤c
d2p

∫

|θ|≤1

dθ χj′(±k(0, θ) ± p ± q) χj2(p) ≤ C|j2|M
j2M εj3−η′j3

for all q obeying |q − q̃| ≤ c.

The Final Step: We apply Proposition 3.3 with j = j ′ and δ = M (1+ε)j3/2.
Denote by χ̃(p) the characteristic function of the set of p’s with

µ
(

{ − 1 ≤ θ ≤ 1 | |e( ± p ± q ± k(0, θ))| ≤ M j′ }
)

≥ c1(
Mj′

M(1+ε)j3/2 )
1/n0

where c1 is the supremum of dθ
ds

(s is arc length). If ±p ± q is not in the set of
measure Dδ2 specified in Proposition 3.3, then

`
(

{ k ∈ F | |e( ± p ± q ± k))| ≤M j′ }
)

< (M
j′

δ
)1/n0

and hence

µ
(

{ − 1 ≤ θ ≤ 1 | |e( ± p ± q ± k(0, θ))| ≤ M j′ }
)

=

∫ 1

−1

dθ χ
(

|e( ± p ± q ± k(0, θ))| ≤M j′
)

=

∫

dsdθ
ds
χ
(

|e( ± p ± q ± k)| ≤ M j′
)

≤ c1`
(

{ k ∈ F | |e( ± p ± q ± k))| ≤M j′ }
)

< c1(
Mj′

M(1+ε)j3/2 )
1/n0
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so that χ̃(p) = 0. Thus χ̃(p) vanishes except on a set of measure DM (1+ε)j3 and
∫

d2p

∫

|θ|≤1

dθ χj′(±k(0, θ) ± p ± q) χj2(p)

≤

∫

d2p χ̃(p)χj2(p)

∫

|θ|≤1

dθ χj′(±k(0, θ) ± p ± q)

+

∫

d2p (1 − χ̃(p))χj2(p)

∫

|θ|≤1

dθ χj′(±k(0, θ) ± p ± q)

≤ 2

∫

d2p χ̃(p) + const
∫

d2p χj2(p)( Mj′

M(1+ε)j3/2 )
1/n0

≤ const M (1+ε)j3 + const |j2|M
j2( Mj′

M(1+ε)j3/2 )
1/n0

≤ const M j3M εj3 + const |j2|M
j2(M (1−η)j3− 1+ε

2
j3)1/n0

≤ const M j2M (ε− η̃
1−η̃

)j3 + const |j2|M
j2(M ( 1

2
−η− ε

2
)j3)1/n0

since j3 ≤ (1 − η̃)j2 ≤ j2 −
η̃

1−η̃ j3

≤ const |j2|M
j2M εj3−η′j3

provided ε ≤ 1
2n0

, η′ ≥ η̃
1−η̃ and η′ ≥ η

n0
+ ε

2n0
.

We choose η′ = η
n0

+ ε
2n0

. Then the remaining conditions

ε > η+η′ ⇐⇒ ε > η+ η
n0

+ ε
2n0

⇐⇒ 2n0−1
2n0

ε > n0+1
n0

η ⇐⇒ η < 2n0−1
2n0+2

ε (6)

and
η′ ≥ η̃

1−η̃ ⇐⇒ η̃ ≤ η′

1+η′
= 2η+ε

2n0+2η+ε

are satisfied because of the conditions we imposed when we chose η, η̃ and ε just
before Reduction 1.

We have now verified that ∇qF (q) is a uniformly convergent sum (over j1, j2,
and j3) of the continuous functions ∇q

∫

d3kd3p V Cj1(k)Cj2(p)Cj3(±k±p±q).
Hence F (q) is C1 in q.

4.1.2 The general diagram

The argument of the last section applies equally well to general diagrams.

Lemma 4.2 Let G(q) be the value of any two–legged 1PI graph with external
momentum q. Then G(q) is C1 with respect to the spatial components q.
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Proof: We shall simply merge the argument of the last section with the general
bounding argument of [1, Appendix A]. This is a good time to read that Appendix,
since we shall just explain the modifications to be made to it. In addition to the
small constants η, η′, η̃, ε > 0 of Lemma 4.1, we choose a small constant ε̄ > 0
and require1 that

0 < ε ≤ 1
2n0
, 0 < η < 2n0−1

2n0+2
ε, η′ = η

n0
+ ε

2n0
and η̃

1−η̃ < min {η′, ε− η − η′}

and
ε̄ ≤ min{η , η̃ , (1 + ε− η − η′)(1 − η̃) − 1}

with n0 being the integer in Proposition 3.3. All of these conditions may be satis-
fied by

◦ choosing 0 < ε ≤ 1
2n0

and then

◦ choosing 0 < η < 2n0−1
2n0+2

ε (by (6), this ensures that ε− η− η′ > 0) and then

◦ choosing 0 < η̃ < 1 so that η̃
1−η̃ < min {η′, ε − η − η′} (this ensures that

the expression (1 + ε− η − η′)(1 − η̃) − 1 > 0) and then

◦ choosing ε̄ > 0 so that ε̄ ≤ min{η , η̃ , (1 + ε− η − η ′)(1 − η̃) − 1}

As in [1, Appendix A], use [1, (22)] to introduce a scale expansion for each
propagator and express G(q) in terms of a renormalized tree expansion [1, (24)].
We shall prove, by induction on the depth, D, of GJ , the bound

∑

J∈J (j,t,R,G)

sup
q

|∂s0q0 ∂
s1
q G

J(q)| ≤ constn|j|
3n−2M jM−s0jM−s1(1−ε̄)j (7)

for s0, s1 ∈ {0, 1}. The notation is as in [1, Appendix A]: n is the number of
vertices in G and J (j, t, R,G) is the set of all assignments J of scales to the
lines of G that have root scale j, that give forest t and that are compatible with
the assignment R of renormalization labels to the two–legged forks of t. (This is
explained in more detail just before [1, (24)].) If s0 = 0 and s1 = 1, the right hand
side becomes constn|j|

3n−2M ε̄j, which is summable over j < 0, implying that
G(q) is C1 with respect to the spatial components q. If s1 = 0, (7) is contained in
[1, Proposition A.1], so it suffices to consider s1 = 1.

1The first three conditions as well as the condition that η̃

1−η̃
≤ η′ were already present in

Lemma 4.1. The other conditions are new.
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As in [1, Appendix A], if D > 0, decompose the tree t into a pruned tree t̃ and
insertion subtrees τ 1, · · · , τm by cutting the branches beneath all minimal Ef = 2
forks f1, · · · , fm. In other words each of the forks f1, · · · , fm is an Ef = 2 fork
having no Ef = 2 forks, except φ, below it in t. Each τi consists of the fork fi and
all of t that is above fi. It has depth at most D− 1 so the corresponding subgraph
Gfi

obeys (7). Think of each subgraph Gfi
as a generalized vertex in the graph

G̃ = G/{Gf1, · · · , Gfm}. Thus G̃ now has two as well as four–legged vertices.
These two–legged vertices have kernels of the form Ti(k) =

∑

jfi
≤jπ(fi)

`Gfi
(k)

when fi is a c–fork and of the form Ti(k) =
∑

jfi
>jπ(fi)

(1l − `)Gfi
(k) when fi is

an r–fork. At least one of the external lines of Gfi
must be of scale precisely jπ(fi)

so the momentum k passing through Gfi
lies in the support of Cjπ(fi)

. In the case
of a c–fork f = fi we have, as in [1, (27)] and using the same notation, by the
inductive hypothesis,

∑

jf≤jπ(f)

∑

Jf∈J (jf ,tf ,Rf ,Gf )

sup
k

∣

∣

∣
∂s1k `G

Jf

f (k)
∣

∣

∣
≤

∑

jf≤jπ(f)

constnf
|jf |

3nf−2M jfM−s1(1−ε̄)jf

≤ constnf
|jπ(f)|

3nf−2M jπ(f)M−s1(1−ε̄)jπ(f) (8)

for s1 = 0, 1. As `G
Jf

f (k) is independent of k0 derivatives with respect to k0 may
not act on it. In the case of an r–fork f = fi, we have, as in [1, (29)],

∑

jf>jπ(f)

∑

Jf∈J (jf ,tf ,Rf ,Gf )

sup
k

1l(Cjπ(f)
(k) 6= 0)

∣

∣

∣
∂s0k0∂

s1
k (1l − `)G

Jf

f (k)
∣

∣

∣

≤
∑

jf>jπ(f)

∑

Jf∈J (jf ,tf ,Rf ,Gf )

M (1−s0)jπ(f) sup
k

∣

∣

∣
∂k0∂

s1
k G

Jf

f (k)
∣

∣

∣

≤ constnf
M (1−s0)jπ(f)

∑

jf>jπ(f)

|jf |
3nf−2M−s1(1−ε̄)jf

≤ constnf
|jπ(f)|

3nf−1M jπ(f)M−s0jπ(f)M−s1(1−ε̄)jπ(f) (9)

Denote by J̃ the restriction to G̃ of the scale assignment J . We bound G̃J̃ ,
which again is of the form [1, (31)], by a variant of the six step procedure followed
in [1, Appendix A]. In fact the first four steps are identical.

1. Choose a spanning tree T̃ for G̃with the property that T̃ ∩G̃J̃
f is a connected

tree for every f ∈ t(G̃J̃).
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2. Apply any q–derivatives. By the product rule each derivative may act on
any line or vertex on the “external momentum path”. It suffices to consider
any one such action.

3. Bound each two–legged renormalized subgraph (i.e. r–fork) by (9) and
each two–legged counterterm (i.e. c–fork) by (8). Observe that when s′0
k0–derivatives and s′1 k–derivatives act on the vertex, the bound is no worse
thanM−s′0jM−s′1(1−ε̄)j times the bound with no derivatives, because we nec-
essarily have j ≤ jπ(f) < 0.

4. Bound all remaining vertex functions, uv, (suitably differentiated) by their
suprema in momentum space.

We have already observed that if s1 = 0, the bound (7) is contained in [1, Propo-
sition A.1], with s = 0. In the event that s1 = 1, but the spatial gradient acts on a
vertex, [1, Proposition A.1], again with s = 0 but with either one v replaced by its
gradient or with an extra factor of M−(1−ε̄)j coming from Step 3, again gives (7).

So it suffices to consider the case that s1 = 1 and the spatial gradient acts on
a propagator of the “external momentum path”. It is in this case that we apply the
arguments of Lemma 4.2. The heart of those arguments was the observation that,
when the gradient acted on a line `3 of scale j3, the line `3 also lay on distinct
momentum loops, Λ`1 and Λ`2 , generated by lines, `1 and `2 of scales j`1 and j`2
with j`1 , j`2 ≤ j`3 . This is still the case and is proven in Lemmas 4.3 and 4.4
below. So we may now apply the procedure of Lemma 4.1.

Reduction 1: It suffices to consider j ≤ j̀ 3 ≤ (1− η̃)j. For the remaining terms,
we simply bound the differentiated propagator, as in the argument following (4),
by

|∂s
′
0
q0
∂qCj`3 (k`3(q))| ≤ const M−2j`3M−s′0j`3

≤ const M−j`3M−s′0j`3M−(1−η̃)j

≤ const M−j`3M−s′0j`3M−(1−ε̄)j

So for the terms with j`3 > (1− η̃)j, the effect of the spatial gradient is to degrade
the s1 = 0 bound by at most a factor of const M−(1−ε̄)j and we may apply the
rest of [1, Proposition A.1], starting with step 5, without further modification.
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Reduction 2: It suffices to consider loop momenta (k̀ )`∈G̃\T̃ , in the domain of
integration of [1, (31)], for which the momentum k`3 flowing through `3 (which
is a linear combination of q and various loop momenta) remains a distance at
least Mηj`3 from all singular points. If k`3 is at most a distance M ηj`3 from some
singular point then |∂ke(k`3)| ≤ const Mηj`3 and we may use the ∇e in the
numerator of (4) to improve the bound on the `3 propagator to

|∂s
′
0
q0 ∂qCj`3 (k`3(q))| ≤ const M−2j`3M−s′0j`3Mηj`3

≤ const M−j`3M−s′0j`3M−(1−η)j

≤ const M−j`3M−s′0j`3M−(1−ε̄)j

Once again, in this case, the effect of the spatial gradient is to degrade the s1 = 0
bound by at most a factor of const M−(1−ε̄)j and we may apply the rest of the
proof [1, Proposition A.1], starting with step 5, without further modification.

Reduction 3: Now apply step 5, that is, bound every propagator. The extra ∂q

acting on Cj`3 gives a factor of M−s1j`3 ≤ M−s1j worse than the bound achieved
in step 5 of [1, Proposition A.1]. Prepare for the application of step 6, the inte-
gration over loop momenta, by ordering the integrals in such a way that the two
integrals executed first (that is the two innermost integrals) are those over k̀ 1 and
k`2 . The momentum flowing through `3 is of the form k`3 = ±k`1 ± k`2 + q′,
where q′ is some linear combination of the external momentum q and possibly
various other loop momenta. Make a change of variables from k`1 and k`2 to
k = k`3 = ±k`1 ± k`2 + q′ and p = k`2 . It now suffices to show that, for each
fixedk̃, p̃ and q̃′ in R2, there are (possibly k̃, p̃, q̃′ dependent, but j`i independent)
constants c and C such that
∫

|k−k̃|≤c
d2k

∫

|p−p̃|≤c
d2p χj`1 (±k ± p ± q′) χj`2 (p) χj`3 (k) Ξj`3 (k)

≤ C|j`2 |M
j`2M (1−η)j`3M εj`3−η

′j`3 (10)

for all q′ obeying |q′ − q̃′| ≤ c. Recall that χj(k) is the characteristic function of
the set of k’s with |e(k)| ≤M j and Ξj(k) is the characteristic function of the set

{ k ∈ R
2 | |k − q̃| ≥Mηj for all singular points q̃ }

Once proven, the bound (10) (together with the usual compactness argument)
replaces the bound

∫

d2k`1

∫

d2k`2 χj`1 (k`1) χj`2 (k`2) ≤ const |j`1|M
j`1 |j`2|M

j`2
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used in step 6 of [1, Proposition A.1]. Since j ≤ j`1 , j`2 ≤ j`3 ≤ (1 − η̃)j, the
bound (10) constitutes an improvement by a factor of

const M j`2M (1−η)j`3M εj`3−η
′j`3M−j`1 M−j`2 ≤ const M (1−η−η′+ε)j`3M−j`1

≤ const M [(1−η−η′+ε)(1−η̃)−1]j

≤ const M ε̄j

So once we proven the bound (10), we may continue with the rest of the proof
of [1, Proposition A.1], without further modification, and show that the inductive
hypothesis (7) is indeed preserved.

In fact the bound (10) has already been proven in Reduction 4 and The Final
Step of the proof of Lemma 4.1.

Lemma 4.3 Let G be any two–legged 1PI graph with each vertex having an even
number of legs. Let T be a spanning tree for G. Assume that the two external
legs of G are hooked to two distinct vertices and that `3 is a line of G that is in
the linear subtree of T joining the external legs. Recall that any line ` not in T
is associated with a loop Λ` that consists of ` and the linear subtree of T joining
the vertices at the ends of `. There exist two lines `1 and `2, not in T such that
`3 ∈ Λ`1 ∩ Λ`2 .

Proof: Since T is a tree, T \ {`3} necessarily contains exactly two connected
components T1 and T2 (though one could consist of just a single vertex). On the
other hand, since G is 1PI, G \ {`3} must be connected. So there must be a path
in G \ T that connects the two components of T \ {`3}. Since T is a spanning
tree, every line of G \ T joins two vertices of T , so we may alway choose the
connecting path to consist of a single line. Let `1 be any such line. Then `3 ∈ Λ`1 .
If G \ {`1, `3} is still connected, then there must be a second line `2 6= `1 of G \T
that connects the two components of T \ {`3}. Again `2 ∈ Λ`1 . If G \ {`1, `3}
is not connected, it consists of two connected components G1 and G2 with G1

containing T1 and G2 containing T2. Each of T1 and T2 must contain exactly one
external vertex of G. So each of G1 and G2 must have exactly one external leg
that is also an external leg of G. As `1 and `3 are the remaining external legs of
both G1 and G2, each has three external legs, which is impossible.

Lemma 4.4 Let G and T be as in Lemma 4.3. Let J be an assignment of scales
to the lines of G such that T ∩ GJ

f is a connected tree for every fork f ∈ t(GJ).
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(See step 1 of [1, Proposition A.1].) Let `3 ∈ T . Let ` ∈ G \ T connect the two
components of T \ {`3}, then j` ≤ j`3 .

Proof: Let G′ be the connected component containing ` of the subgraph of G
consisting of lines having scales j ≥ j`. By hypothesis, G′ ∩ T is a spanning tree
for G′. So the linear subtree of T joining the vertices of ` is completely contained
in G′. But `3 is a member of that line’s subtree and so has scale j`3 ≥ j`.

4.2 The frequency derivative of the self–energy

We show to all orders that singularities in this derivative can only occur at the
closure of the lattice generated by the Van Hove points. That the singularities
really occur is shown by explicit calculations in model cases in the following
sections.

Lemma 4.5 Let G(q) be the value of any two–legged 1PI graph with external
momentum q. Let B be the closure of the set of momenta of the form (0,q) with
q =

∑n
i=1(−1)siq̃i where n ∈ N and, for each 1 ≤ i ≤ n, si ∈ {0, 1} and q̃i is a

singular point. Then G(q) is C1 with respect to q0 on R
3 \B.

Proof: The proof is similar to that of Lemma 4.2. Introduce scales in the
standard way and denote the root scale j. Choose a spanning tree T in the standard
way. View c– and r–forks as vertices. The external momentum is always routed
through the spanning tree so the derivative may only act on vertices and on lines of
the spanning tree. The cases in which the derivative acts on an interaction vertex
or c–fork are trivial. If the derivative acts on an r–fork, the effect on the bound
[1, (29)], namely a factor of M−jπ(f) , is the same as the effect on the bound [1,
(32)] when the derivative acts on a propagator attached to the r–fork. So suppose
that the derivative acts on a line `3 of the spanning tree that has scale j3. We know
from Lemma 4.3 in the last section that there exist two different lines `1 and `2,
not in T such that `3 lies on the loops associated to `1 and `2. We also know, from
Lemma 4.4, that the scales j ′ of all loop momenta running through `3, including
the scales j1 and j2 of the two lines chosen, obey j ′ ≤ j3.

Reduction 1: It suffices to consider j ≤ j1, j2 ≤ j3 ≤ (1− η̃)j. For the remaining
terms, we simply bound

|d
dq0
Cj3(±q ± internal momenta)| ≤ const M−2j3 ≤ const M−j3M−(1−η̃)j
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After one sums over all scales except the root scale j, one ends up with

const |j|nM jM−(1−η̃)j = const |j|nM η̃j

which is still summable.

Reduction 2: Denote by k, p and ±k ± p + q ′ the momenta flowing in the lines
`1, `2 and `3, respectively. Here q′ is plus or minus the external momentum q
possibly plus or minus some some other loop momenta. In this reduction we
prove that it suffices to consider (k,p) with |k −k̃| ≤ Mηj and |p − p̃| ≤ Mηj

and | ± k ± p ± q′ − q̃| ≤Mηj for some singular points k̃, p̃ and q̃.
Suppose that at least one of k, p, ±k ± p ± q′ is farther than M ηj from

all singular points. We can make a change of variables (just for the purposes
of computing the volume of the domain of integration) such that k is at least a
distance Mηj from all singular points. After the change of variables, the indices
j1, j2 and j3 are no longer ordered, but all are still between j and (1 − η̃)j. Let
Ξj(k) be the characteristic function of the set

{ k ∈ R
2 | |k − k̃| ≥Mηj for all singular points k̃ }

We claim that

Vol { (k,p) ∈ R
4 | χj1(k)Ξj(k)χj2(p)χj3(±k ± p ± q′) 6= 0 }

≤ C|j2|M
j1−ηjM j2M εj−ηj

This would constitute a volume improvement of M (ε−2η)j and would provide
summability if 2η < ε. By the usual compactness arguments, it suffices to show
that, for each fixed k̃, p̃ and q̃ in R2, there are (possibly k̃, p̃, q̃ dependent, but
j, ji independent) constants c and C such that
∫

|k−k̃|≤c
d2k

∫

|p−p̃|≤c
d2p χj1(k)Ξj(k)χj2(p)χj3(±k±p±q′) ≤ C|j2|M

j1−ηjM j2M εj−ηj

for all q′ obeying |q′ − q̃| ≤ c. Furthermore, if k̃ or p̃ or ±k̃ ± p̃ ± q̃′ does not
lie on F , we can choose c sufficiently small that the integral vanishes whenever
|q′ − q̃| ≤ c and |j1|, |j2|, |j3| are large enough. So it suffices to require thatk̃, p̃
and ±k̃ ± p̃ ± q̃′ all lie on F .

If k̃ is not a singular point, make a change of variable to ρ = e(k) and an
“angular” variable θ. If k̃ is a singular point, the condition Ξj(k) 6= 0 forces
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|k− k̃| ≥Mηj . We can make a change of variables such that e(k(ρ, θ)) = ρθ and
either |θ| ≥ const M ηj or |ρ| ≥ const M ηj . Possibly exchanging the roles of ρ
and θ, we may, without loss of generality assume the former. In all of these cases,
the condition χj1(k) 6= 0 forces |ρ| ≤ const M j1−ηj . Thus
∫

|k−k̃|≤c
d2k

∫

|p−p̃|≤c
d2p χj1(k)Ξj(k)χj2(p)χj3(±k ± p ± q′)

≤ const
∫

|θ|≤1

|ρ|≤constMj1−ηj

dρdθ

∫

|p−p̃|≤c
d2p χj2(p)χj3(±k(ρ, θ) ± p ± q′)

≤ const
∫

|θ|≤1

|ρ|≤constMj1−ηj

dρdθ

∫

|p−p̃|≤c
d2p χj′(±k(0, θ) ± p ± q′) χj2(p)

≤ const M j1−ηj
∫

|θ|≤1

dθ

∫

|p−p̃|≤c
d2p χj′(±k(0, θ) ± p ± q′) χj2(p)

where M j′ = M j3 + const M j1−ηj ≤ const M (1−η−η̃)j . Thus it suffices to prove
that
∫

|p−p̃|≤c
d2p

∫

|θ|≤1

dθ χj′(±k(0, θ) ± p ± q′) χj2(p) ≤ C|j2|M
j2M εj−ηj

for all q′ obeying |q′ − q̃| ≤ c.
We again apply Proposition 3.3 with j = j ′ and δ = M (1+ε)j2/2. If we denote

by χ̃(p) the characteristic function of the set of p’s with

µ
(

{ − 1 ≤ θ ≤ 1 | |e( ± p ± q′ ± k(0, θ))| ≤M j′ }
)

≥ c1(
Mj′

M(1+ε)j2/2 )
1/n0

where c1 is the supremum of dθ
ds

(s is arc length), then χ̃(p) vanishes except on a
set of measure DM (1+ε)j2 and

∫

d2p

∫

|θ|≤1

dθ χj′(±p ± q′ ± k(0, θ)) χj2(p)

≤

∫

d2p χ̃(p)χj2(p)

∫

|θ|≤1

dθ χj′(±p ± q′ ± k(0, θ))

+

∫

d2p (1 − χ̃(p))χj2(p)

∫

|θ|≤1

dθ χj′(±p ± q′ ± k(0, θ))

≤ 2

∫

d2p χ̃(p) + const
∫

d2p χj2(p)( Mj′

M(1+ε)j2/2 )
1/n0
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≤ const M (1+ε)j2 + const |j2|M
j2( Mj′

M(1+ε)j2/2 )
1/n0

≤ const M j2M ε(1−η̃)j + const |j2|M
j2(M (1−η−η̃)j− 1+ε

2
j)1/n0

≤ const M j2M ε(1−η̃)j + const |j2|M
j2M

1
n0

( 1
3
−η)j

≤ const |j2|M
j2M εj−ηj

provided η̃ ≤ η ≤ 1
12

and ε ≤ min { 1
6
, 1

3n0
}.

End stage of proof The momentum flowing through the differentiated line is of
the form ±q±k1± . . .±kn where q is the external momentum and each of the ki’s
is a loop momentum of a line not in the spanning tree whose scale is no closer to
zero than the scale of the differentiated line. If q /∈ B, then either q0 is nonzero or
the infimum of |±q±k̃1±. . .±k̃n−k̃n+1|, with the k̃i’s running over all singular
points, is nonzero. So there exists a j0 such that when the root scale obeys j ≤ j0,
either the zero component of one of k1, . . ., kn, ±q± k1 ± . . .± kn has magnitude
larger than const M j , in which case the corresponding covariance vanishes, or
the distance of one of k1, . . ., kn, ±q±k1 ± . . .±kn to the nearest singular point
is at least Mηj , in which case we can apply the argument of reduction 2. (If it is
one of k1, . . ., kn whose distance to the nearest singular point is at least M ηj , we
may choose as the `1 of Lemma 4.3 the line initiating that loop momentum.)

5 Singularities

In this section, we do a two–loop calculation for a typical case to show that the
frequency derivative of the self–energy is indeed divergent in typical situations,
and to calculate the second spatial derivative at the singular points.

By the Morse lemma, there are coordinates (x, y) such that in a neighbourhood
of the Van Hove singularity, the dispersion relation becomes

e(k) = ẽ(x, y) = x y.

Here we consider the case of a Van Hove singularity at k = 0 with e(k) = k1k2
(2π)2

.
(In particular the Van Hove singularity is on the Fermi surface for µ = 0.) The
nonlinearities induced by the changes of variables are absent in this example, and
moreover, the curvature is zero on the Fermi surface. We rescale to x = k1

2π
,

y = k2
2π

and, for definiteness, take the integration region for each variable to be
[−1, 1].
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For this case, we determine the asymptotics of derivatives of the two–loop con-
tribution to the self–energy as a function of q0 for small q0. We find that again, the
gradient of the self–energy is bounded (in fact, the correction is zero in that case)
but that the q0–derivative is indeed divergent. Power counting by standard scales
suggests that this derivative diverges at zero temperature like |log q0|

3. However,
there is a cancellation of the leading singularity which is not seen when taking ab-
solute values, so that the true behaviour is only (log q0)

2. We then also calculate
the asymptotics of the second spatial derivative and find that it is of the same order
as the first frequency derivative. Finally, we do the calculation for the one–loop
contributions to the four–point function, to compare the coefficients of different
divergences in perturbation theory.

The physical significance of these results will be discussed in Section 6.

5.1 Preparations

We restrict to a local potential. Since we have only considered short–range inter-
actions, the potential is smooth in momentum space. For differentiability ques-
tions, a momentum dependence could only make a difference if the potential van-
ished at the singular points or other special points, so the restriction to a local
potential, which is constant in momentum space, is not a loss of generality.

There are two graphs contributing, one of vertex correction type and the other
of vacuum polarization type (the graphs with insertion of first–order self–energy
graphs have been eliminated by renormalization through a shift in µ).

q q

The latter gets a (−1) from the fermion loop and a 2 from the spin sum. Thus the
total contribution is

Σ2(q0, q) = − 1
β2

∑

ω1,ω2

1
(2π)4

∫

d2k1d
2k2d

2k3 δ(q − k1 + k2 − k3)

C(ω1, e(k1)) C(ω2, e(k2)) C(q0 − ω1 + ω2, e(k3))

with

C(ω,E) =
1

iω − E
.
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Call Ei = e(ki) and

〈F 〉q =

∫

dρq(k) F (k)

where k = (k1, k2, k3) and dρq(k) = 1
(2π)4

∫

d2k1d
2k2d

2k3 δ(q − k1 + k2 − k3).
The frequency summation gives

Σ2(q0, q) = −

〈

(fβ(E1) + bβ(E2 − E3)) (fβ(E2) − fβ(E3))

iq0 + (E2 − E3 − E1)

〉

q

(11)

where fβ(E) = (1+eβE)−1 is the Fermi function and bβ(E) = (eβE − 1)−1 is the
Bose function. Since

bβ(E2 − E3) [fβ(E2) − fβ(E3)] = fβ(E2)[fβ(E3) − 1]

the numerator is bounded in magnitude by 2. The denominator is bounded below
in magnitude by |q0|, so the integrand is C∞ in q0, for all q0 6= 0 and all β ≥ 0.
Because the integral is over a compact region of momenta, the same holds for
the integral. The limit β → ∞ exists and has the same property. The structure
of the denominator may suggest that for it to almost vanish requires only the
combinationE2−E3−E1 to get small, but a closer look reveals that eachEi has to
be small: at T = 0, the Fermi functions become step functions, fβ(E) → Θ(−E)
and bβ(E) → −Θ(−E), and then the factors in the numerator imply that all
summands in E2 − E3 − E1 really have the same sign, i.e. |E2 − E3 − E1| =
|E2|+ |E3|+ |E1|, so all |Ei| must be small for the energy difference to be small.
At finite β, when the Ei’s are “of the wrong sign” the exponential suppression
provided by the numerator compensates for the |q0| ≥

π
β

in the denominator.
Because

iq0−e(q)−λ
2Σ2(q0, q) = iq0(1+iλ2∂0Σ2(0, q))−(e(q)+λ2Σ2(0, q))+. . . (12)

and because ∂0Σ2(0, q) is purely imaginary, we are interested in

Z2(q) =
(

1 − λ2 Im ∂0Σ2(0, q)
)−1

. (13)

The value q0 = 0 is not an allowed fermionic Matsubara frequency at T > 0. We
shall keep q0 6= 0 in the calculations. In discussions about temperature depen-
dence, we shall replace |q0| by π/β.

The second order contribution to Im ∂0Σ is

Im ∂0Σ2(q0, q) =
〈

Φq0(E2 − E3 − E1)

[fβ(E1) + bβ(E2 − E3)] [fβ(E2) − fβ(E3)]
〉

q
(14)
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with

Φq0(ε) = Re
1

(iq0 + ε)2
=

ε2 − q2
0

(ε2 + q2
0)

2
. (15)

5.2 q0–derivative

The above expression (14) for Im ∂0Σ2(q0, q) shows that it is an even function of
q0 and that q0 serves as a regulator so that even at zero temperature, a singularity
can develop only in the limit q0 → 0. We therefore calculate it as a function of q0
at zero temperature. In the following, we take q0 > 0.

As β → ∞, the Fermi function fβ(E) → Θ(−E) and for E 6= 0, the Bose
function bβ(E) → −Θ(−E). In this limit, the integrand vanishes except when
E2E3 < 0 and E1(E2 − E3) < 0. This reduces to the two cases

E1 > 0, E2 < 0, E3 > 0 and E1 < 0, E2 > 0, E3 < 0. (16)

In both cases, the combination of fβ ,bβ’s in the numerator is −1. Thus

Im ∂0Σ2(q0, q) = −
〈

Φq0(E2 − E3 − E1)
[

1l (E1 > 0 ∧ E2 < 0 ∧ E3 > 0)

+ 1l (E1 < 0 ∧ E2 > 0 ∧ E3 < 0)
]〉

q

Recall that we are considering the case of a Van Hove point at k = (x, y) = 0
for the dispersion relation e(k) = xy with x = k1/2π and y = k2/2π, so that
d2k

(2π)2
= dx dy. Moreover we set q = 0, and use the delta function to fix E1 in

terms of E2 and E3, so that

E2 = xy E3 = x′y′ E1 = (x− x′)(y − y′)

and
ε = E2 − E3 − E1 = xy′ − 2x′y′ + x′y.

Recall also that, for definiteness, we are taking the integration region for each
variable to be [−1, 1]. The sign conditions on the Ei impose conditions on the
variables x, . . ., which are listed in Appendix B, and which we use to transform
the integration region to [0, 1]4.

At T = 0, only n ∈ M = {1, 2, 3, 4, 9, 10, 11, 12} from the table in Appendix
B contribute. Thus

Im ∂0Σ2(q0, 0) = −

∫

[0,1]4
dxdydx′dy′

∑

n∈M
1l (ρn) Φq0(εn(x, y, x

′, y′))
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with εn and ρn given in the table in Appendix B. By (31), (32) and (33), and
because Φq0 is even in ε, all eight terms give the same contribution. Hence

Im ∂0Σ2(q0, 0) = −2I(q0) (17)

where

I(q0) = 4

∫ 1

0

dy

∫ 1

0

dy′
∫ 1

0

dx′
∫ x′

0

dx Φq0 ((2x′ − x)y′ + yx′) . (18)

Lemma 5.1 Let I be defined as in (18) and 0 < q0 <
1
2
. Then

Im ∂0Σ2(q0, 0) = −4 log 2 |log q0|
2 − 2C1 |log q0| +B(q0)

where B is a bounded function of q0, and

C1 = 2(log 2)2 − 4

∫ 1

0

dx

x
log

(

1 + 2x

1 + x

)

Proof: By (17), it suffices to show that

I(q0) = 2 log 2 |log q0|
2 + C1 |log q0| + B̃(q0)

with bounded B̃0. We rewrite the argument ε of Φq0 as ε = x′(2y′ + y)− xy′. We
first bound the contribution of y′ ≤ q0. To do this, bound

|Φq0(ε)| ≤
1

q2
0 + ε2

Use that this bound is decreasing in ε and that ε ≥ x′y. Therefore

4

∫ 1

0

dy

∫ q0

0

dy′
∫ 1

0

dx′
∫ x′

0

dx Φq0 ((2x′ − x)y′ + yx′)

≤ 4

∫ 1

0

dy

∫ q0

0

dy′
∫ 1

0

dx′
∫ x′

0

dx
1

q2
0 + (x′y)2

= 4q0

∫ 1

0

dx′
∫ 1

0

dy
x′

q2
0 + (x′y)2

= 4q0

∫ 1

0

dx′
1

q0
arctan

x′

q0
≤ 2π.
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Thus it suffices to calculate the asymptotic behaviour of

Ĩ(q0) = 4

∫ 1

0

dy

∫ 1

q0

dy′
∫ 1

0

dx′
∫ x′

0

dx Φq0 (x′(2y′ + y) − xy′)

for small q0 > 0. By (15)

Φq0(ε) = −
∂

∂ε

ε

q2
0 + ε2

. (19)

Because ∂ε
∂x

= −y′,

∫ x′

0

dx Φq0(ε(x)) =
1

y′

[

ε

ε2 + q2
0

](y′+y)x′

(2y′+y)x′
.

The integral over x′ can now be done, using
∫ 1

0

dx′
αx′

(αx′)2 + q2
0

=
1

2α
log

(

1 +
α2

q2
0

)

.

Thus
Ĩ(q0) = Ĩ1 − Ĩ2

with

Ĩj = 4

∫ 1

q0

dy′

y′

∫ 1

0

dy
1

2(jy′ + y)
log

(

1 +
(jy′ + y)2

q2
0

)

= 2

∫ 1
q0

1

dη

η

∫ 1
q0

+jη

jη

dξ

ξ
log
(

1 + ξ2
)

where we have made the change of variables ξ = jy′+y
q0

, dξ = 1
q0
dy followed by

the change of variables η = y′

q0
, dη = 1

q0
dy′. Thus

Ĩ(q0) =

∫ q−1
0

1

dη

η

(

J[η,q−1
0 +η] − J[2η,q−1

0 +2η]

)

=

∫ q−1
0

1

dη

η

(

J[η,2η] − J[q−1
0 +η,q−1

0 +2η]

)

with

JA = 2

∫

A

dξ

ξ
log
(

1 + ξ2
)

≥ 0 for A ⊂ [0,∞)

43



We have

J[a,b] = 2

∫ b

a

dξ

ξ
log
(

1 + ξ2
)

=

∫ b2

a2

dt

t
log(1 + t). (20)

In our case both integration intervals for J are subsets of [1,∞), so we can expand
the logarithm, to get

J[a,b] =

∫ b2

a2

dt

t

[

log(t) + log
(

1 +
1

t

)]

=
1

2

[

(log b2)2 − (log a2)2
]

−
∑

n≥1

(−1)n

n2
(a−2n − b−2n)

= 2
[

(log b)2 − (log a)2
]

−
∑

n≥1

(−1)n

n2
(a−2n − b−2n)

= 2 log(ab) log
b

a
−
∑

n≥1

(−1)n

n2
(a−2n − b−2n) (21)

The final integral over η gives, for the first term,

∫ q−1
0

1

dη

η
J[η,2η] = 2 log 2 | log q0|

2 + 2(log 2)2 | log q0|

−
1

2

∑

n≥1

(−1)n

n3
(1 − 4−n)(1 − q2n

0 )

with the last term analytic, and hence bounded, for |q0| < 1. The second term
gives two contributions:

∫ q−1
0

1

dη

η
J[q−1

0 +η,q−1
0 +2η] = W −R

with (here M = q−1
0 )

R =

∫ M

1

dη

η
X(η), X(η) =

∑

n≥1

(−1)n

n2

[

(M + η)−2n − (M + 2η)−2n
]

and

W = 2

∫ M

1

dη

η

[

(log(M + αη))2]α=2

α=1
.
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For |q0| ≤ 1 the series for X converges absolutely and gives

X =
∑

n≥1

(−1)n

n2
q2n
0

[

(1 + ηq0)
−2n − (1 + 2ηq0)

−2n
]

so |X| ≤
∑

n≥1 q
2n
0 /n2 ≤ 2q2

0 , hence for |q0| ≤ 1,

R ≤ 2q2
0| ln q0| ≤ q0.

In W , scaling back to x = q0η gives

W = 2

∫ 1

q0

dx

x

[

(

log q−1
0 + log(1 + αx)

)2
]α=2

α=1

= 2

∫ 1

q0

dx

x

[

2 log q−1
0 log(1 + αx) + (log(1 + αx))2]α=2

α=1
.

Because αx ≥ 0, 0 ≤ log(1 + αx) ≤ αx, so W is bounded by a constant times
log q−1

0 . The integral of the same function from 0 to q0 is of order q0| log q0|,
therefore

W = 4 log q−1
0

∫ 1

0

dx

x
log

(

1 + 2x

1 + x

)

+ B̃(q0)

where B̃ is a bounded function.

5.3 First spatial derivatives

In our model case, we haveE2 = xy andE3 = x′y′. Moreover we take q

2π
= (ξ, η)

so that, fixing k1 by momentum conservation, E1 = (ξ+ x− x′)(η+ y− y′). It is
clear from (11) that the spatial derivatives also act on the Fermi function fβ(E1),
so we get two terms. The derivative of the Fermi function fβ(x) is minus the
approximate delta δβ(x) = β/(4 cosh2(βx/2)) so that

−∂iΣ2(q0, q) =

〈

(∂ie)

[

−δβ(E1)
f2 − f3

iq0 + ε
+

(f1 + b23)(f2 − f3)

(iq0 + ε)2

]〉

q

(22)

where ∂ie has argument q + k2 − k3, fi = fβ(Ei), b23 = bβ(E2 − E3) and, as
before, ε = E2 − E3 − E1. At q = 0

−
∂

∂ξ
Σ2(q0, 0) = S1(β, q0) + S2(β, q0)
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with

S1(β, q0) =

∫

[−1,1]4
dxdydx′dy′ (y − y′)

fβ(xy) − fβ(x
′y′)

iq0 + ε

(−δβ)((x− x′)(y − y′))

S2(β, q0) =

∫

[−1,1]4
dxdydx′dy′ (y − y′)

fβ(xy) − fβ(x
′y′)

(iq0 + ε)2

[fβ((x− x′)(y − y′)) + bβ(xy − x′y′)]

Here ε = xy − x′y′ − (x− x′)(y − y′) = xy′ + x′y − 2x′y′.
Now consider S1 and apply the reflection (x, y, x′, y′) → (−x,−y,−x′,−y′)

to the integration variables. The domain of integration is invariant. The only
noninvariant factor is y − y′ and it changes its sign. Thus S1 vanishes. By the
same argument, S2 vanishes as well. By symmetry, the same holds for the η–
derivative. Thus

∇Σ2(q0, 0) = 0.

5.4 The second spatial derivatives

Let q

2π
= (ξ, η). The real part of Σ2(ξ, η) is a correction to e(ξ, η) = ξη. Since

∂ξ∂ηe(ξ, η) = 1, we calculate the correction that Σ2 gives to that quantity.

Lemma 5.2 For small q0 6= 0

lim
β→∞

Re
∂2

∂ξ∂η
Σ2(q0, 0) = (2 + 4 log 2) (log |q0|)

2 +O(| log |q0||) (23)

Proof: By symmetry it suffices to consider q0 > 0. In general, the second order
spatial derivatives are

−∂i∂jΣ2(q0, q) = Z
(i,j)
1 + Z

(i,j)
2 + Z

(i,j)
3

where

Z
(i,j)
1 =

〈(

(∂i∂je) + 2
(∂ie)(∂je)

iq0 + ε

)

(f1 + b23)(f2 − f3)

(iq0 + ε)2

〉

q

Z
(i,j)
2 =

〈

(

(∂ie)(∂je) (−δ′β)(E1) + (∂i∂je)(−δβ)(E1)
) f2 − f3

iq0 + ε

〉

q

Z
(i,j)
3 =

〈

2(∂ie)(∂je)(−δβ)(E1)
f2 − f3

(iq0 + ε)2

〉

q
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Here e = e(k2 − k3 + q) = E1 and ε = E2 − E3 − E1. Denote

ζ(q0) = −
∂2

∂ξ∂η
Σ2(q0, 0, 0)

In the xy case, the two integration momenta are denoted by (x, y) and (x′, y′), and
E2 = xy, E3 = x′y′, and E1 = e(k2 − k3 + q) = (ξ + x− x′)(η + y − y′). Since
∂ξe |ξ=η=0= (y − y′), ∂ηe |ξ=η=0= (x− x′), and ∂2

ξηe = 1,

ζ = ζ1 + ζ2 + ζ3

with

ζ1 =

∫

[−1,1]4
d4X

(

1 + 2 (x−x′)(y−y′)
iq0+ε(x,y,x′,y′)

)

(f1+b23)(f2−f3)
(iq0+ε(x,y,x′,y′))2

ζ2 =

∫

[−1,1]4
d4X

(

−E1δ
′
β(E1) − δβ(E1)

)

f2−f3
iq0+ε(x,y,x′,y′)

ζ3 =

∫

[−1,1]4
d4X 2(−E1)δβ(E1)

f2−f3
(iq0+ε(x,y,x′,y′))2

Here X = (x, y, x′, y′) and d4X = dx dy dx′ dy′, and

ε(x, y, x′, y′) = xy − x′y′ − E1 = xy − x′y′ − (x− x′)(y − y′).

Using the decomposition given in Appendix B,

ζ1 −→
β→∞

− 2

∫

[0,1]4
dxdydx′dy′

4
∑

j=1

(

1 + 2
Fj

iq0 + εj

)

1

(iq0 + εj)2
1l (ρj)

(The limit can be taken under the integral. Decomposing according to the signs
of x, x′ . . ., only j ∈ {1, 2, 3, 4, 9, 10, 11, 12} can contribute. Using the symmetry
(31), one obtains the above. The minus sign arises from the combination of Fermi
functions fβ , as discussed around (16).) We write ζ1 = −(ζ11 + ζ12). The term
involving the 1 is

ζ11 = 2

∫

[0,1]4
dxdydx′dy′

4
∑

i=1

1

(iq0 + εi)2
1l (ρi)

By (32) and (33),

ζ11 = 8

∫

[0,1]4
dxdydx′dy′ Re

1

(iq0 + ε1)2
1l (ρ1) .

47



This is the same (up to a sign) as (17), (18), hence ζ11 = 4 log 2 (log |q0|)
2 +

O(|log |q0||).
The term ζ12 involving the Fj gives another contribution,

ζ12 = 2

∫

[0,1]4
dxdydx′dy′

4
∑

j=1

2
Fj

(iq0 + εj)3
1l (ρj)

The summand for j = 2 gives the same integral as that for j = 1 because the
integrand is related by the exchange x ↔ y and x′ ↔ y′. Ditto for j = 4 and
j = 3. Thus

ζ12 = 8

∫

[0,1]4
dxdydx′dy′

∑

j=1,3

Fj
(iq0 + εj)3

1l (ρj)

Because F1 = −F3 and ε1 = −ε3, and because ρ1 ⇔ ρ3,

∑

j=1,3

Fj
(iq0 + εj)3

1l (ρj) = 1l (ρ1) F1 2 Re
1

(iq0 + ε1)3
.

Thus

ζ12 = 16 Re
∫ 1

0

dy

∫ 1

0

dy′
∫ 1

0

dx′
∫ x′

0

dx
(x − x′)(y + y′)

(iq0 + x′(y + y′) + y′(x′ − x))3

Let b = x′(y + y′), change integration variables from x to u = x′ − x ∈ [0, x′],
and use

∫ x′

0

du
u

(iq0 + b+ y′u)3
=

(x′)2

2(iq0 + b + x′y′)2(iq0 + b)

Renaming to z = x′, we have

ζ12 = −8

∫ 1

0

dy

∫ 1

0

dy′
∫ 1

0

dz Re
(y + y′) z2

(iq0 + z(y + y′)) (iq0 + z(y + 2y′))2

The bound
∣

∣

∣

∣

(y + y′) z2

(iq0 + z(y + y′)) (iq0 + z(y + 2y′))2

∣

∣

∣

∣

≤
z

q2
0 + z2(y + 2y′)2

for the integrand implies that

|ζ12| ≤ 4

∫ 1

0

dy

∫ 1

0

dy′ 1

(y + 2y′)2
ln

(

1 +
(y + 2y′)2

q2
0

)
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which shows that |ζ12| ≤ const [log |q0|]
2 for small |q0|.

We now calculate the coefficient of the log2. First rewrite

(y + y′) z2

(iq0 + z(y + y′)) (iq0 + z(y + 2y′))2
=

1

(y + 2y′)2

z2

(z + iA)(z + iB)2

with
A =

q0
y + y′ B =

q0
y + 2y′ .

Partial fractions give

z2

(z + iA)(z + iB)2
=

α

z + iA
+

β

z + iB
+ i

b2
(z + iB)2

with

α =
A2

(B − A)2
=

(

y + 2y′

y′

)2

β =
B(B − 2A)

(B − A)2
= 1 −

(

y + 2y′

y′

)2

b2 =
B2

A− B
= B

y + y′

y′ .

α, β and b2 are real, so we need

Re
∫ 1

0

dz

z + iA
=

1

2
ln(1 + A−2)

and

Re ib2

∫ 1

0

dz

(z + iB)2
=

b2
B(1 +B2)

.

With this, we have

ζ12 = −4

∫ 1

0

dy

∫ 1

0

dy′ 1

(y + 2y′)2

[

α ln(1 + A−2) + β ln(1 +B−2) +
2b2

B(1 +B2)

]

.
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Collecting terms and renaming y′ = η gives

ζ12 = −4

∫ 1

0

dy

∫ 1

0

dη
[ 1

η2
ln

q2
0 + (y + η)2

q2
0 + (y + 2η)2

+2
y + η

η

1

q2
0 + (y + 2η)2

+
1

(y + 2η)2
ln

(

1 +
(y + 2η)2

q2
0

)

]

Although the first summands individually contain nonintegrable singularities at
η = 0, these singularities cancel in the sum. A convenient way to implement this
is to use that

1

η2
ln

q2
0 + (y + η)2

q2
0 + (y + 2η)2

+ 2
y

η

1

q2
0 + (y + 2η)2

=
∂

∂η

[

−
1

η
ln

q2
0 + (y + η)2

q2
0 + (y + 2η)2

]

+
1

η

[

2(y + η)

q2
0 + (y + η)2

−
2(y + 4η)

q2
0 + (y + 2η)2

]

. (24)

Moreover

1

(y + 2η)2
ln

(

1 +
(y + 2η)2

q2
0

)

=
1

2

∂

∂η

[

−
1

y + 2η
ln

(

1 +
(y + 2η)2

q2
0

)]

+
2

q2
0 + (y + 2η)2

Thus

ζ12 = −4

∫ 1

0

dy

[

−
1

η
ln

q2
0 + (y + η)2

q2
0 + (y + 2η)2

−
1

2

1

y + 2η
ln

(

1 +
(y + 2η)2

q2
0

)]η=1

η=0

−4

∫ 1

0

dy

∫ 1

0

dη
2

η

[

y + η

q2
0 + (y + η)2

−
y + 2η

q2
0 + (y + 2η)2

]

Evaluation at η = 1 gives one bounded term and one term of order log |q0|. The
terms at η = 0 give

−4

∫ 1

0

dy

[

2y

q2
0 + y2

−
1

2y
ln

(

1 +
y2

q2
0

)]
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The first summand integrates to O(ln |q0|). By (21), the second term gives

2(ln |q0|)
2 + bounded

The remaining integrals are

−8

∫ 1

0

dy

∫ 1

0

dη

[

1

q2
0 + (y + η)2

−
2

q2
0 + (y + 2η)2

]

= 8

∫ 1

0

dy

∫ 2

1

dη
1

q2
0 + (y + η)2

≤ 8

since the integrand is bounded by 1, and

−4

∫ 1

0

dy

∫ 1

0

dη
2

η

[

y

q2
0 + (y + η)2

−
y

q2
0 + (y + 2η)2

]

The integrand is bounded by a constant times 1
q20+y2+η2

so the integral is of order

log |q0|. Thus ζ12 = 2(log |q0|)
2+ bounded terms, so that ζ1 = −(ζ11 + ζ12) =

−(4 log 2 + 2)(log |q0|)
2+ less singular terms.

We now show that ζ2 and ζ3 vanish in the limit β → ∞. Consider ζ2 first. Let
Gβ(E1) = −E1δ

′
β(E1) − δβ(E1). (Note that Gβ(E) = βG1(βE).) At ξ = η = 0,

E1 = (x− x′)(y − y′) is invariant under the exchange (x, y) ↔ (x′, y′), so

ζ2 =

∫

[−1,1]4
d4X Gβ(E1)fβ(xy)

(

1

iq0 + ε(x, y, x′, y′)
−

1

iq0 + ε(x′, y′, x, y)

)

Because ε(x, y, x′, y′) = xy′ + x′y − 2x′y′,

ε(x′, y′, x, y) − ε(x, y, x′, y′) = 2(x′y′ − xy) = 2[x(y′ − y) + (x′ − x)y′]

Hence

ζ2 = 2

∫

[−1,1]4
d4X Gβ(E1) fβ(xy)

x(y′ − y) + (x′ − x)y′

(iq0 + ε(x, y, x′, y′)) (iq0 + ε(x′, y′, x, y))

Consider first

T1 = 2

∫

[−1,1]4
d4X Gβ(E1) fβ(xy)

x(y′ − y)

(iq0 + ε(x, y, x′, y′)) (iq0 + ε(x′, y′, x, y))
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Because [−1, 1]4 and the integrand are invariant under the reflectionRwhich maps
(x, y, x′, y′) to (−x,−y,−x′,−y′) and

R{(x, y, x′, y′) | y ≥ y′} = {(x, y, x′, y′) | y ≤ y′},

we can put in a factor 2 1l (y > y′) . Changing variables from x′ to E1, so that

x′ = x−
E1

y − y′
,

gives

T1 = 4

∫

[−1,1]3
dxdydy′ 1l (y − y′ > 0) (−x) fβ(xy)

∫ (x+1)(y−y′)

(x−1)(y−y′)
dE1

Gβ(E1)

(iq0 + ε(x, y, x′, y′)) (iq0 + ε(x′, y′, x, y))

Change variables one last time, from E1 to u = βE1, to get

T1 = 4

∫

[−1,1]3
dxdydy′

∫

R

du

1l (y − y′ > 0) 1l (β(x− 1)(y − y′) ≤ u ≤ β(x+ 1)(y − y′))

(−x)fβ(xy)
G1(u)

(iq0 + ε(x, y, x′, y′)) (iq0 + ε(x′, y′, x, y))

where x′ = x − u
β(y−y′) → x as β → ∞. The integrand is bounded in magnitude

by the L1 function

(x, y, y′, u) 7→ G1(u)
1

q2
0

and it converges almost everywhere (namely, for x 6= ±1, xy 6= 0) to

1l (y − y′ > 0) x Θ(−xy)
1

q2
0 + x2(y − y′)2

[(−u)δ′1(u) − δ1(u)].

By dominated convergence, the limit β → ∞ can be taken under the integral. The
limiting range of integration for u is R. By the fundamental theorem of calculus

∫

R

du G1(u) =

∫

R

du d
du

[ − uδ1(u)] = 0,
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so T1 vanishes as β → ∞. The calculation of the limit β → ∞ of

T2 = 2

∫

[−1,1]4
d4X Gβ(E1) fβ(xy)

(x′ − x)y′

(iq0 + ε(x, y, x′, y′)) (iq0 + ε(x′, y′, x, y))

is similar and gives 0 as well. Thus ζ2 → 0 as β → ∞. By the same arguments

ζ3 =

∫

[−1,1]4
d4X 2(−E1)δβ(E1) fβ(xy)

2iq0(ε̃− ε) + (ε̃− ε)(ε̃+ ε)

(iq0 + ε)2 (iq0 + ε̃)2

where ε = ε(x, y, x′, y′) and ε̃ = ε(x′, y′, x, y). After the same limiting argument
as before, the u–integral is now

∫

R

uδ1(u) du = 0

because the integrand is odd. Thus ζ3 → 0 as β → ∞, too.

Lemma 5.3 The real part of the second derivative of the self–energy with respect
to ξ grows at most logarithmically as q0 → 0: there are constants A and B such
that for all |q0| < 1

∣

∣

∣

∣

Re
∂2

∂ξ2
Σ2(q0, 0)

∣

∣

∣

∣

≤ A +B log
1

|q0|

The same holds by symmetry for the second derivative with respect to η.

Proof: We need to bound

∂2
ξ

〈

(fβ(E1) + bβ(E2 − E3)) (fβ(E2) − fβ(E3))

iq0 + ε

〉

at ξ = η = 0 where all ξ–dependence is in E1 = (ξ + x− x′)(η + y − y′) and in
ε = E2 − E3 − E1 = xy′ + x′y − 2x′y′. We proceed as for the mixed derivative
∂2/∂ξ∂η, but now some terms are different because ∂2

ξE1 = 0. We obtain

∂2Σ2

∂ξ2
(q0, 0, 0) = X1 + X2 + X3
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with

X1 = 2

〈

(y − y′)2 (fβ(E1) + bβ(E2 − E3)) (fβ(E2) − fβ(E3))

(iq0 + ε)3

〉

X2 =

〈

δ′β(E1) (y − y′)2

iq0 + ε
(fβ(E2) − fβ(E3))

〉

X3 = 2

〈

−δβ(E1) (y − y′)2

(iq0 + ε)2
(fβ(E2) − fβ(E3))

〉

We first calculate the zero–temperature limit of X1. Using the notations of Ap-
pendix B,

X
(0)
1 = lim

β→∞
X1 = −4

∫

[0,1]4
dxdx′dydy′

4
∑

n=1

D2
n

(iq0 + εn)3
1l (ρn)

We use that D2
1 = D2

3 and ε3 = −ε1, to combine n = 1 and n = 3 in one term,
and n = 2 and n = 4 in another, so that X

(0)
1 = X

(0)
1,1 + X

(0)
1,2 with

X
(0)
1,1 = −8i

∫ 1

0

dy

∫ 1

0

dy′ (y′ + y)2

∫ 1

0

dx′
∫ x′

0

dx Im 1
(iq0+x′y+y′(2x′−x))3

X
(0)
1,2 = −8i

∫ 1

0

dy′
∫ y′

0

dy (y′ − y)2

∫ 1

0

dx′
∫ 1

0

dx Im 1
(iq0+xy′+x′(2y′−y))3

Thus X1 does not contribute to Re ∂2
ξΣ2.

We now show that X3 is imaginary in the limit β → ∞, because after a rewrit-
ing of terms, the difference fβ(E2) − fβ(E3) effectively implies taking the imag-
inary part. Because (y − y′)2δβ(E1) is invariant under (x, y) ↔ (x′, y′) (and
denoting ε̃(x, y, x′, y′) = ε(x′, y′, x, y))

X3 = −2

∫

d4X (y − y′)2 δβ(E1) fβ(xy)

[

1

(iq0 + ε)2
−

1

(iq0 + ε̃)2

]

= −4

∫

dy

∫

dy′ 1l (y − y′ > 0)

∫

dx fβ(xy) (y − y′)

∫

dx′ (y − y′)δβ(E1)

[

1

(iq0 + ε)2
−

1

(iq0 + ε̃)2

]

For the second equality, we used invariance under the reflection (x, y, x′, y′) →
(−x,−y,−x′,−y′). The convergence argument used in the analysis of the T1

contribution to ∂2
ξηΣ2 can be summarized in the following Lemma.

54



Lemma 5.4 Let β0 ≥ 0 and F : [β0,∞) × [−1, 1]4 → C be bounded, and

lim
β→∞

F (β, x, y, x− u
β(y−y′) , y

′) = f(x, y, y′)

a.e. in (x, y, u, y′). Let E1 = (x− x′)(y − y′). Then

lim
β→∞

∫

F (β,X) δβ(E1) (y − y′) 1l (y > y′) d4X

=

∫

dy

∫

dy′ 1l (y > y′)

∫

dx f(x, y, y′)

Applying Lemma 5.4, and using that ε(x, y, x, y ′) = x(y − y′) = −ε̃(x, y, x′y′),
we get

lim
β→∞

X3 = −4

1
∫

−1

dy

y
∫

−1

dy′ (y − y′)

1
∫

−1

dx Θ 1
2
(−xy) I(x, y, y′)

where Θ 1
2
(x) = lim

β→∞
fβ(−x) is the Heaviside function, except that Θ 1

2
(0) = 1/2,

I(x, y, y′) =

[

1

(iq0 + x(y − y′))2
−

1

(iq0 − x(y − y′))2

]

= 2i Im
1

(iq0 + x(y − y′))2
.

Thus, in the limit β → ∞, X3 does not contribute to the real part of ∂2
ξΣ2 either.

It remains to bound X2. Here we integrate by parts, to remove the derivative from
the approximate delta function, and then take β → ∞.

We first do the standard rewriting

X2 = 2

∫

d4X 1l (y − y′ > 0) (y − y′)2

fβ(xy) δ
′
β((x− x′)(y − y′))

[

1

iq0 + ε
−

1

iq0 + ε̃

]

We integrate by parts in x, using that (y − y ′)δ′β((x − x′)(y − y′)) = ∂
∂x
δβ((x −

x′)(y − y′)). This gives the boundary term

B1/β = 2
∑

x=±1

x

∫

dy

∫

dy′ 1l (y − y′ > 0)

∫

dx′ fβ(xy)

(y − y′)δβ((x− x′)(y − y′))

[

1

iq0 + ε
−

1

iq0 + ε̃

]
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and two integral terms, namely

I1 = 2

∫

dy

∫

dy′ 1l (y − y′ > 0)

∫

dx

∫

dx′ yδβ(xy)

(y − y′)δβ((x− x′)(y − y′))

[

1

iq0 + ε
−

1

iq0 + ε̃

]

and

I2 = 2

∫

dy

∫

dy′ 1l (y − y′ > 0)

∫

dx

∫

dx′ fβ(xy)

(y − y′)δβ((x− x′)(y − y′))

[

y′

(iq0 + ε)2
−

y′ − 2y

(iq0 + ε̃)2

]

An obvious variant of Lemma 5.4, where x is summed over ±1 instead of inte-
grated, applies to the boundary term and gives

B0 = lim
β→∞

B1/β = 2
∑

x=±1

x

1
∫

−1

dy

y
∫

−1

dy′ Θ 1
2
(−xy)

[

1

iq0 + x(y − y′)
−

1

iq0 − x(y − y′)

]

Thus B0 is real. Because Θ 1
2
(y) + Θ 1

2
(−y) = 1, we get

B0 = 4

1
∫

−1

dy

y
∫

−1

dy′
y − y′

q2
0 + (y − y′)2

With z = y − y′, we have

B0 = 4

1
∫

−1

dy

1+y
∫

0

dz
z

q2
0 + z2

= 4

1
∫

−1

dy
1

2
ln(q2

0 + z2)
∣

∣

∣

1+y

0

= 2

1
∫

−1

dy ln

(

1 +
(1 + y)2

q2
0

)

= 2

2
∫

0

dη ln

(

1 +
η2

q2
0

)

= O(log |q0|).
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In I1, we change variables from (x′, x) to (u, v) where u = β(x− x′)(y− y′) and
v = βx|y| and get

I1 = 2

1
∫

−1

dy

y
∫

−1

dy′ sgn(y)

β|y|
∫

−β|y|

dv δ1(v)

( v
|y|

+β)(y−y′)
∫

( v
|y|

−β)(y−y′)

du δ1(u)

[

1

iq0 + ε( v
β|y| , y,

v
β|y| −

u
β(y−y′) , y

′)
−

1

iq0 + ε( v
β|y| −

u
β(y−y′) , y

′, v
β|y| , y)

]

The integral converges in the limit β → ∞ by dominated convergence. The last
factor vanishes in that limit, so I1 → 0 as β → ∞.

Finally, Lemma 5.4 implies that I (0)
2 = limβ→∞ I2 exists and equals

I
(0)
2 = 2

1
∫

−1

dy

y
∫

−1

dy′
1
∫

−1

dx Θ 1
2
(−xy)

[

y′

(iq0 + x(y − y′))2
−

y′ − 2y

(iq0 − x(y − y′))2

]

In the real part, the terms with y′ in the numerator cancel, so that

Re I (0)
2 = 2

1
∫

−1

dy

y
∫

−1

dy′
1
∫

−1

dx Θ 1
2
(−xy) Re

2y

(iq0 − x(y − y′))2

= 2

1
∫

−1

dy

1
∫

−1

dx Θ 1
2
(−xy) Re

∫ 1+y

0

dz
2y

(iq0 − xz)2

= −4

1
∫

−1

y dy

1
∫

−1

dx Θ 1
2
(−xy)

1 + y

q2
0 + x2(1 + y)2

= −4

1
∫

−1

y dy

1+y
∫

−(1+y)

dv Θ 1
2

(

−
vy

1 + y

)

1

q2
0 + v2

= −4

1
∫

0

y dy

1+y
∫

1−y

dv

q2
0 + v2
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The contribution from the region v ≥ 1 is obviously bounded. The remaining
integral is

1
∫

0

y dy

1
∫

1−y

dv

q2
0 + v2

=

1
∫

0

dv

q2
0 + v2

1
∫

1−v

y dy

=

1
∫

0

dv

q2
0 + v2

(

v −
v2

2

)

= O(| log |q0| |)

5.5 One–loop integrals for the xy case

For the discussion in Section 6, it is useful to calculate the lowest order contribu-
tions to the four–point function, the so–called bubble integrals. Again we restrict
to the xy type singularity. Because the fermionic bubble integrals are not contin-
uous at zero temperature, it is best to calculate them by setting q0 = 0 first, then
letting the spatial part q tend to 0, all at a fixed inverse temperature β, and then
calculate the asymptotics as β → ∞.

s

s+ q

t

t+ q

particle–hole bubble

s

q − s

t

q − t

particle–particle bubble

5.5.1 The particle–hole bubble

Write x′ = x + ξ, y′ = y + η. The bubble is

Bph(q0, ξ, η) =

∫

[−1,1]2
dxdy

1

β

∑

ω

1

iω − xy

1

i(q0 + ω) − x′y′

=

∫

[−1,1]2
dxdy

fβ(xy) − fβ(x
′y′)

iq0 + xy − x′y′

=

∫ 1

0

dt

∫

[−1,1]2
dxdy

xy − x′y′

iq0 + xy − x′y′
(−δβ)(txy + (1 − t)x′y′)

(25)
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Obviously, at q0 6= 0, Bph(q0, ξ, η) → 0 as (ξ, η) → 0. So set q0 = 0, i.e. consider

B
(0)
ph = lim

(ξ,η)→0
Bph(0, ξ, η).

Lemma 5.5 The large β asymptotics of B(0)
ph is

B
(0)
ph = −2 ln β + 2K +O(e−β)

where K =
∫∞
0

du
2 cosh2 u

2

ln u.

Proof: By (25),

B
(0)
ph =

∫

[−1,1]2
dxdy (−δβ)(xy) = 4

∫

[0,1]2
dxdy (−δβ)(xy)

= −4

∫ 1

0

dx

x

∫ βx

0

du

4 cosh2 u
2

= −4

∫ β

0

du

4 cosh2 u
2

ln
β

u

= −2 lnβ

∫ ∞

0

du

2 cosh2 u
2

+ 2K −

∫ ∞

β

du

cosh2 u
2

ln
u

β
.

The last integral is exponentially small in β because of the decay of 1/ cosh2.

5.5.2 The particle–particle bubble

This time write x′ = x− ξ, y′ = y − η. The bubble is

Bpp(q0, ξ, η) =

∫

[−1,1]2
dxdy

1

β

∑

ω

1

iω − xy

1

i(q0 − ω) − x′y′

=

∫

[−1,1]2
dxdy

fβ(−xy) − fβ(x
′y′)

−iq0 + xy + x′y′

−→
(ξ,η)→0

∫

[−1,1]2
dxdy

1

−iq0 + 2xy
tanh

(

β

2
xy

)

Again, we set q0 = 0 and keep β <∞. Then

B(0)
pp = Bpp(0, 0, 0)

=

∫

[−1,1]2
dxdy

1

2xy
tanh

(

β

2
xy

)

= 2

∫

[0,1]2
dxdy

1

xy
tanh

(

β

2
xy

)
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= 2

∫ 1

0

dx

x

∫ x

0

dE

E
tanh

β

2
E = −2

∫ 1

0

dE
lnE

E
tanh

β

2
E

=

[

−(lnE)2 tanh
β

2
E

]1

0

+

∫ 1

0

dE (lnE)2 β

2 cosh2 β
2
E

=

∫ β/2

0

dv

(

ln
2v

β

)2
1

cosh2 v

=

∫ ∞

0

dv

(

ln
2v

β

)2
1

cosh2 v
−

∫ ∞

β/2

dv

(

ln
2v

β

)2
1

cosh2 v

Thus we have

Lemma 5.6
B(0)

pp = (ln β)2 − 2K ln β +K ′ +O
(

e−β
)

where K =
∫∞
0

ln(2v)

cosh2 v
dv and K ′ =

∫∞
0

(ln(2v))2

cosh2 v
dv.

6 Interpretation

Let us discuss these results a bit more informally. The above calculations for
the xy case can be summarized as follows. Evidently, the derivatives we were
looking at diverge in the limit q0 → 0 at zero temperature. To proceed, we discuss
positive temperatures and replace q0 by π/β, and thus translate everything into
β–dependent quantities. We have proven that to all orders r in λ,

|∇Σr| ≤ const (26)

(where the constant depends on the order r in λ). In the model computations of
the last section, we have seen that to second order in the coupling constant λ

Im ∂0Σ ∼ −4 ln 2 (λ lnβ)2

Re ∂2

∂ξ∂η
Σ ∼ (2 + 4 ln 2) (λ ln β)2

Re ∂2

∂ξ2
Σ ∼ O(λ2 ln β)

Bph(0) ∼ −2 λ lnβ

Bpp(0) ∼ λ (ln β)2 −
α

2
(λ ln β)2
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We have redefined Bph and Bpp to include the appropriate coupling constant de-
pendence. The line for Bpp includes second order corrections to the supercon-
ducting vertex, where the coefficient given by the loop integral is α. If λ is nega-
tive (attractive interaction), the superconducting instability driven by the λ(ln β)2

term is always strongest, but if λ > 0 (repulsive bare interaction), the λ(ln β)2

term suppresses the leading order Cooper pair interaction, and the higher order
term proportional to α is only of order (λ ln β)2. In this case, all terms that can
drive instabilities are linear or quadratic in λ lnβ. A first attempt to weigh the
relative strength of these divergences is to look at the prefactors. Here it seems
that the second derivative gets the largest contribution. The asymmetry between
this logarithmic divergence and the boundedness of the gradient is striking.

We now put the results of [2, 3, 4] for the half–filled, t′ = 0, Hubbard model
into context. It was proven there that perturbation theory in the coupling constant
λ converges in the regimeWβ,λ = {(λ, β) : |λ| � 1, |λ|(log β)2 � 1}. Our anal-
ysis, while presently restricted to all–order perturbation theory, is not restricted
to Wβ,λ. Indeed our results are most interesting at temperatures lower than those
given (at small fixed λ > 0) by Wβ,λ: in the regime Wβ,λ all the interesting effects
that we summarized at the beginning of this section are stillO(λ) and hence small.
As mentioned in [1], we expect that some of our results can be proven nonpertur-
batively, using sector techniques, provided the flow of the four–point function can
be tracked in enough detail to see the differences between the various attractive
and repulsive initial interactions in the bounds.

A nonperturbative treatment of the half–filled, t′ = 0, Hubbard model at tem-
peratures below those permitted by Wβ,λ will require great care. The restriction
|λ|(log β)2 � 1 of Wβ,λ eliminates the singularity that occurs for λ < 0 in the
sum over particle–particle ladders. The square of the logarithm arises from the
Van Hove singularity, as discussed in the Introduction of [1]. For λ > 0, how-
ever, there is no singularity in the flow of the four-point function when λ(log β)2

becomes of order one. (The coupling constant for s-wave superconductivity is
suppressed rather than enhanced by the flow.) The O(λ2) terms in Bpp discussed
above can generate singularities in the sum of particle–particle ladders, but this
happens only when λ log β becomes of order 1. In this regime, all the other ef-
fects we have studied here, as well as nesting effects, come into play and compete
with each other. In the exactly half-filled, t′ = 0 case, the singularities in the
particle–hole channel drive Néel antiferromagnetism. For t′ 6= 0, antiferromag-
netism is weakened because nesting is destroyed. In the exactly half-filled, t′ = 0,
λ > 0 case, Néel antiferromagnetism is believed to be the true ordering. However
this is unproven.
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Indeed, at the present time, even Fermi liquid behaviour has not been defini-
tively ruled out. The divergence of the second derivative of the selfenergy with
respect to the frequency ω was proven by a second–order calculation in [4]. While
the property that Σ is C2 appears in the sufficient condition for Fermi liquid be-
haviour of [22], and while the second spatial derivative enters in the curvature of
the Fermi surface and hence needs to be controlled carefully (unless the Fermi
surface is fixed by a symmetry), only a divergence in the first ω–derivative will
change the asymptotic behaviour at small frequency and result in a breakdown of
Fermi liquid behaviour. But the first ω–derivative still remains small in the regime
Wβ,λ, so that the Z factor stays close to 1 there.

In the following we further discuss the physical significance of our findings.
This discussion is not rigorous, but it reveals some interesting possibilities that
should be studied further.

We first note that the above results were achieved in renormalized perturbation
theory, that is, the above all–order results are in the context of an expansion where
a counterterm is used to fix the Fermi surface. (The second order explicit calcu-
lations assume only that the first order corrections can be taken into account by a
shift in µ, which is true because the interaction is local.) Using a counterterm is
the only way to get an all–order expansion that is well–defined in the limit of zero
temperature. A scheme where the scale decomposition adapts to the Fermi surface
movement was outlined in [18] and developed mathematically in [19] and [20];
but in any such scheme the expansions have to be done iteratively and cannot be
cast in the form of a single renormalized expansion, because the singularity moves
in every adjustment of the Fermi surface [18]. The meaning of the counterterm
was explained in detail in [13, 14, 15, 16]. In brief, the dispersion relation we
are using in our propagators is not the bare one, but the renormalized one, whose
zero level set is the Fermi surface of the interacting system. Thus, we have in fact
made the assumption that

the Fermi surface of the interacting system has the properties H1–H6.
In particular it contains singular points and these singular points are
nondegenerate.

We shall first discuss our results under this assumption and then speculate about
how commonly it will be valid. In the case of a nonsingular, strictly convex,
curved Fermi surface, there was a similar assumption, which was, however, math-
ematically justified by our proof of an inversion theorem [16] that gives a bijective
relation between the free and interacting dispersion relation.
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6.1 Asymmetry and Fermi velocity suppression

First note that the regularized (discrete–time) functional integral for many–body
systems has a symmetry that allows one to make an arbitrary nonzero rescaling of
the field variables. This is based on the behaviour of the measure under ψi → giψi
and ψ̄i → g̃iψ̄i. The result is

∫

∏

i

dψ̄idψi e−A(ψ̄,ψ) =

(

∏

i

gig̃i

)−1
∏

i

dψ̄idψi e−A(g̃−1ψ̄,g−1ψ) (27)

Source terms get a similar rescaling. This can, of course, be used to remove
a factor Z−1 from the quadratic term in the fields, but the factor Z (see (13))
will then reappear in the interaction and source terms. Note that Z depends on
momentum. In the limit of very small Z, some terms may get greatly enhanced or
suppressed.

The Fermi velocity is defined as vF (p) = Z∇Σ on the Fermi surface. If one
extrapolates the above formula for ∂0Σ2 to β → ∞, the Z factor, defined in (13),
becomes zero at the Van Hove points.

There is a crucial difference between the one– and two–dimensional cases. In
dimension one, both ∂0Σ2 and ∇Σ2 behave like λ2 log β, so that, after extract-
ing the field strength renormalization, the Fermi velocity retains its original value.
In our two–dimensional situation, however, ∇Σ remains bounded, and thus the
Fermi velocity gets suppressed in a neighbourhood of the Van Hove singularity
because it contains a factor of Z. Because the time derivative term in the action is
Z−1ψ̄ik0ψ and k0 is an odd multiple of the temperature T = β−1, one can also in-
terpret Z(k)−1T = T (k) heuristically as a “momentum–dependent temperature”
that varies over the Fermi surface and that increases as one approaches the Van
Hove points (“hot spots”). This behaviour is illustrated in Figure 1.

6.2 Inversion problem

There is, however, also a more basic problem that is exhibited by these results.
It arises when one starts questioning the assumption that the interacting Fermi
surface contains singularities. The second derivative of the self–energy in spatial
directions is divergent at zero temperature. Thus even the lowest nontrivial cor-
rection may change the structure of e significantly. This is related to the inversion
problem, which was solved for strictly convex Fermi surfaces in [16].
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Figure 1: Comparison of the derivative of the Fermi function, where on the right,
the inverse temperature β is scaled by an angle–dependent factor that vanishes
near the points (π, 0) and (0, π). The dark regions correspond to small derivatives,
the bright ones to large derivatives.

In all of the following discussion, we concentrate on two dimensions and as-
sume that by adjusting µ, we can arrange things such that the interacting Fermi
surface still contains a point where the gradient of the dispersion relation vanishes.

In the general theory of expansions for many–fermion systems, the most sin-
gular terms are those created by the movement of the Fermi surface. Counterterms
need to be used to make perturbation theory well-defined, or an adaptive scale
decomposition has to be chosen. To show that the model with counterterms cor-
responds to a bare model in some desired class, one needs to prove an inversion
theorem, which requires regularity estimates. To get an idea, it is instructive to
consider a neighbourhood of a regular point on the Fermi surface. By an affine
transformation to coordinates (u, v) in momentum space, i.e. shifting the origin
to that point and rotating so that the tangent plane to the Fermi surface is given by
u = 0, the function e can be transformed to a function ẽ(u, v) = u + κ

2
v2 + . . .,

where κ denotes the curvature and . . . the higher order terms. (By an additional
change of coordinates, the error terms can be made to vanish, but this is not im-
portant here.) Let Σ0(p) be the self–energy at frequency zero (or ±π/β). Then

(e+ Σ0)
∼(u, v) = u+

κ

2
v2 + λσ(u, v).

In order for the correction λσ not to overwhelm the zeroth order contribution e,
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we need ∂uσ to be bounded and ∂2
vσ to be bounded. Then the correction is small

when λ is small. Note that different regularity is needed in normal and tangential
directions. Indeed, even in the absence of Van Hove singularities, the function σ
is not twice differentiable in u at T = 0, but it is C2 in v if e has the same property
[14].

Thus, the mere divergence of a derivative does not tell us about a potential
problem with renormalization; the relevant question is whether the correction is
larger than the zeroth order term. In the strictly convex, curved case, there is
no problem. However, in two dimensions, the normal form for the Van Hove
singularity, ẽ(uv) = uv gets changed significantly because

ζ̃2 = ∂2

∂u∂v
[e(u, v) + σ̃(u, v)] |u=v=0 (28)

diverges at zero temperature. To leading order in q0, u and v, our result for the
inverse full propagator to second order takes the form ζ2 iq0 − ζ̃2 uv with

ζ2 = 1 + ϑ2(λ ln β)2

ζ̃2 = 1 + ϑ̃2(λ ln β)2.

Because ζ̃2 diverges in the zero–temperature limit, it is not even in second order
consistent to assume that the type of (u, v) = (0, 0) as a critical point of e and
E = e + σ̃ is the same. One can attempt to fix this problem by rescaling the
fields by ζ̃1/2 . Then the iq0 term gets rescaled similarly because ζ depends on
the same combination of λ and ln β as ζ̃. It should, however, be noted that, as in
the above–discussed suppression of the Fermi velocity, a corresponding rescaling
of all interaction and source terms also occurs. In particular, σ, which gives the
Fermi surface shift, itself gets replaced by σζ̃−1. Because σ remains bounded
(only its derivatives diverge), this would imply that the Fermi surface shift gets
scaled down in the rescaling transformation, indicating a “pinning” of the Fermi
surface at the Van Hove points.

In our case, ϑ2 = 4 ln 2 and ϑ̃2 = 2 + 4 ln 2. With these numerical values,
ζ̃2 is larger than ζ2, so ζ̃2 appears as the natural factor for the rescaling. In the
Hubbard model case, the transformations leading to the normal form depend on
the parameter θ in (1), so that one can expect ζ and ζ̃ to depend on θ. The study
of these dependencies, as well as the interplay between the two critical points that
contribute, is left to future work.

One point of criticism of the Van Hove scenario has always been that it ap-
pears nongeneric because the logarithmic singularity gets weakened very fast as
one moves away from the Van Hove densities. If the above speculations can be
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substantiated by careful studies, the singular Fermi surface scenario may turn out
to be much more natural than one would naively assume. Moreover, there is a nat-
ural way how extended Van Hove singularities may arise by interaction effects.

A Interval Lemma

The following standard result is included for the convenience of the reader.

Lemma A.1 Let ε, η be strictly positive real numbers and k be a strictly positive
integer. Let I ⊂ R be an interval (not necessarily compact) and f a Ck function
on I obeying

|f (k)(x)| ≥ η for all x ∈ I

Then
Vol{ x ∈ I | |f(x)| ≤ ε } ≤ 2k+1( ε

η
)1/k .

Proof: Denote α = ( ε
η
)1/k. In terms α, we must show

|f (k)(x)| ≥ ε
αk for all x ∈ I =⇒ Vol{ x ∈ I | |f(x)| ≤ ε } ≤ 2k+1α

Define ck inductively by c1 = 2 and ck = 2 + 2ck−1. Because bk = 2−kck obeys
b1 = 1 and bk = 2−k+1 + bk−1 we have bk ≤ 2 and hence ck ≤ 2k+1. We shall
prove

|f (k)(x)| ≥ ε
αk for all x ∈ I =⇒ Vol{ x ∈ I | |f(x)| ≤ ε } ≤ ckα

by induction on k.
Suppose that k = 1 and let x and y be any two points in { x ∈ I | |f(x)| ≤ ε }.

Then
|x− y| = |x−y|

|f(x)−f(y)| |f(x) − f(y)| = |f(x)−f(y)|
|f ′(ζ)| ≤ 2ε

|f ′(ζ)|

for some ζ ∈ I . As |f ′(ζ)| ≥ ε
α

we have |x−y| ≤ 2α. Thus { x ∈ I | |f(x)| ≤ ε }
is contained in an interval of length at most 2α as desired.

Now suppose that the induction hypothesis is satisfied for k − 1 and that
|f (k)(x)| ≥ ε

αk on I . As in the last paragraph the set { x ∈ I | |f (k−1)(x)| ≤ ε
αk−1 }

is contained in a subinterval I0 of I of length at most 2α. Then I is the union of
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I0 and at most two other intervals I+, I− on which |f (k−1)(x)| ≥ ε
αk−1 . By the

inductive hypothesis

Vol{ x ∈ I | |f(x)| ≤ ε } ≤ Vol(I0) +
∑

i=±
Vol{ x ∈ Ii | |f(x)| ≤ ε }

≤ 2α + 2ck−1α = ckα

B Signs etc.

The restrictions (16) are summarized in the following table

E2 = xy E3 = x′y′ E1 = (x− x′)(y − y′) sf
+ − − (−1)
− + + (−1)

(29)

In both cases, the product of indicator functions resulting from the limit of Fermi
functions is −1.

Let R be the reflection at zero,

R(x, y, x′, y′) = (−x,−y,−x′,−y′). (30)

The function
ε = ε(x, y, x′, y′) = xy′ + x′y − 2x′y′

satisfies
ε(x, y, x′, y′) = ε(−x,−y,−x′,−y′).

The function D(x, y, x′, y′) = y − y′ satisfies

D(R(x, y, x′, y′)) = −D(x, y, x′, y′)

The function F (x, y, x′, y′) = (x− x′)(y − y′) is invariant under R.
In the following we list all cases of signs for x, x′, y and y′, together with

ε,D, F written as functions of

x = |x|, y = |y|, x′ = |x′|, y′ = |y′|.

to be able to restrict the integrals to [0, 1] whenever this is convenient (by trans-
forming to x, . . . , y′ as integration variables), and to exhibit some important sign
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changes. In the last column, we list the condition ρn obtained from the restriction
on the sign of (x− x′)(y − y′) in (29).

n x y x′ y′ εn = xy′ + x′y − 2x′y′ Dn = y − y′ Fn ρn
1 + + +− ε1 = x′y + (2x′ − x)y′ D1 = y + y′ (x − x′)(y + y′) x < x′

2 + + −+ ε2 = xy′ + (2y′ − y)x′ D2 = y − y′ (x + x′)(y − y′) y < y′

3 + − ++ ε3 = xy′ − (2y′ + y)x′ D3 = −(y + y′) −(x − x′)(y + y′) x < x′

4 + −−− ε4 = x′y − (2x′ + x)y′ D4 = −(y − y′) −(x + x′)(y − y′) y < y′

5 + + ++ ε5 = xy′ − x′(2y′ − y)
6 + + −− ε6 = −(xy′ + x′(2y′ + y))
7 + − +− ε7 = −(xy′ − x′(2y′ − y))
8 + −−+ ε8 = xy′ + x′(2y′ + y)
9 −−−+ ε1 −D1 ρ1

10 −− +− ε2 −D2 ρ2

11 − + −− ε3 −D3 ρ3

12 − + ++ ε4 −D4 ρ4

13 −−−− ε5

14 −− ++ ε6

15 − + −+ ε7

16 − + +− ε8

Cases 1-4 and 9-12 obey the restrictions (29). Cases 5-8 and 13-16 do not because
there, the signs of xy and x′y′ are the same. They are used to discuss some terms
at finite β. Since the first two restrictions are not satisfied, the column for the last
restriction, ρ, is left empty in these cases. Case n + 8 is obtained from n by the
reflection R. Thus

εn+8 = εn, Dn+8 = −Dn, Fn+8 = Fn, ρn+8 = ρn (31)

Moreover,
ε1 = −ε3 and ε2 = −ε4 (32)

and

ε2(y, x, y
′, x′) = ε1(x, y, x

′, y′) and ρ2(y, x, y
′, x′) ⇔ ρ1(x, y, x

′, y′). (33)
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