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We develop a power series representation and estimates for an effective action of
the form: In[fe/(@1-ase"Ag (2 2)/ [l 09" Ddu(z* 2)]. Here, flay,...,a,;
Z4»,2) s an analytic function of the complex fields «a;(x),...,a,(x), z,.(x), z(x)
indexed by x in a finite set X, and du(z*,z) is a compactly supported product
measure. Such effective actions occur in the small field region for a renormalization
group analysis. Using methods similar to a polymer expansion, we estimate the

power series of the effective action. © 2010 American Institute of Physics.
[doi:10.1063/1.3329425]

I. INTRODUCTION

Let X be a finite set and CX the space of complex valued bosonic fields (i.e., functions) on X.
Furthermore, let du(z*,z) be a product measure on CX of the form

dp(z*,2) = T dpo((x),2(x)), (1.1)

xeX

where du({*,{) is a normalized measure on C that is supported in |{|<r for some constant r.
That is,

f|§|kdﬂo(g*,g) <7 forall k e N. (1.2)

For an analytic function f(a, ..., a,;z,,z) of fields «/, ..., a,z,,z, we develop criteria under
which

flay,.. .,aS;z*,z)d *
Gar ) =In L TARELD (13)
fef(o,. 503z ’Z>d,u(z*,z)

exists. This is done using norms for f which are defined in terms of the expansion of f in powers
of the fields. The construction also gives estimates on the corresponding norms of g.

In Ref 2, we described the analogous construction for real valued fields, which is technically
simpler. As pointed out there, expression like (1.3) occur during the course of each iteration step
in a Wilson style renormalization group flow. Here (z,.,z) are the fluctuation fields integrated out
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at the current scale, while ¢, ..., @, can be fields that are to be integrated out in future scales or
can be source fields that are used to generate and control correlation functions and are never
integrated out. We shall use the methods developed here to control the ultraviolet limit in the
coherent state functional integral representation for many boson systems described in Ref. 1
(Theorems 2.2 and 3.7).

To give an example of the norms used to control, (1.3), assume for simplicity that s=1 and
write a;=a. Then, f has a power series expansion

f(a;Z*,Z) = E E a(i;y*’y)a(xl) e a(xnl)z*(y*l) e Z*(Y*nz)Z(YI) e Z(Yn3)

npngn3=0 g o xm
.

y.eX2

yeXx™

with coefficients a(X;y,,y) that are symmetric under permutations of the components of the
vectors X, ¥, and ¥y, respectively.
Assume that X is a metric space with metric d. Fix a parameter k. An example of a norm that

we use is
IAl=170:0,00[+ > sup  max > W& ¥ Pax:3..9)],
nytnginy=1 XEXISESnpdngtng o o 5y xmsxxns
(X.¥,.9)¢=x
where the weight system w is defined as
Ww(X;¥,.¥) = K"1(4r)2 e %509 for (,¥,.5) € X" X X"2 X X3 (1.4)

and 74X,¥,.y) is the minimal length of a tree whose set of vertices contains the set
{xq,... X Yats oo Yanys Yo oo ,yng}. For this norm, our main result, Theorem 3.4, states that

fef(“;z*'”d,u(z*,z)

=1
gla)=In [l 0D q (% 2)

1

exists provided that [|f{| <, and that, in this case,

71

1-16||A]

Theorem 3.4 applies to more general norms than those described above (see Definitions 2.3,
2.6, and 3.1.) To reflect the geometry and scale structure of a “large field/small field” decompo-
sition of X, one can replace the constant x by a “weight factor” x:X— (0,%] and the factor «"! in
(1.4) by «(x)---k(x, ) [see Example 2.4, part (i)]. Another variation in the norms comes from the
fact that one is often led to bound source fields by their sup norm rather than by their L' norm (see
Definition 2.6).

If the measure duy({*,{) is rotation invariant and there are no nontrivial monomials of the
form a(X;y,y)e(x,) - a(x,, )(z,(y1)z(y1)) -+ (2,(¥,,)z(y,,,)) in the power series of f, then (1.5) can
be improved to a quadratic bound (see Corollary 3.5). This situation occurs in our analysis of
many boson systems. There we also need information on how the g of (1.3) varies with f. This is
provided by Corollary 3.6.

In the analysis of an infrared limit, one often has an increasing sequence

lell =< (1.5)
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X, CX,C -+ CX,C-+-

of subsets of a lattice in R¢ that exhausts the lattice. For each index n, there will be a function f,
that is (close to) the restriction of a function on the whole lattice to X,,. Theorem 3.4 can possibly
be used to construct

. f@f”(al""’as;z*'Z)dﬂ(Z*,Z)
fefn(O,- . "O;Z*’Z)d,u«(z*,z)
To take the limit n— o of the functions g,, we need to compare g, and the “restriction” of g,, to

X,, when n<<m. In the context of this paper, think of X=X,, and of X, as a subset X’ of X.
The problem described above amounts to the following: with the notation of (1.3), set

g.=lo

a(X)=z*(x)=2(x)=0

flag, . a0z,02) = flay, ... ,as;z,k,z)Ifor R

Then, we want to compare

. fef(al""’as;z*’Z)d,U«(z*,Z) . fef,(alw~"1’J§Z*,Z)dl_b(z*’z)
fef(o,. . .,O;z*,z)d#(z*’z) fef’ (,.. "O;Z*’Z)dM(Z*,Z)

Actually, in the multiscale analysis even more complicated comparisons arise.
To facilitate such comparisons, we introduce an auxiliary real valued “history field” h on X. It
will only be evaluated with h(x) € {0, 1} so that h>=Hh. Set

g=lo and g'=lo

f(al’ ,CYJ;Z*,Z;K)) =f(alh’ ,a’sh;Z*h,Zh).

That is, we replace «;(x) by ;(x)h(x) everywhere in the power series expansion for f, and the
same for z*(x) and z(x). Clearly,

= A e - 1 h(x)=1 for all xeX’ .
f f|h(X)_1 for all xeX> f f|h(x):0 for all xeX\X’

Theorem 3.4 can be applied to construct

fef(al,...,as;z*,z;b)dﬂ(z*,z)
fef<0" . .,0;z*,z;b)d,u(z>k’z)

Clearly,

g’ - g~| h(x)=1 for all xeX’

8= g|h(x)=1 for all xeX> BH(x)=0 for all xeX\X’

The measures that typically arise in renormalization group steps are rarely product measures.
To apply the results of this paper, one must first perform a change in variables so as to diagonalize
the (essential part) of the covariance of the measure. Linear changes in variables, as well as
substitutions that typically occur in renormalization group steps, are controlled in Sec. IV and
Appendix A.

Il. NORMS

To get a general setup for the norms that we shall use, we need a number of definitions.
Definition 2.1: (n-tuples)

(1) Let ne 7 with n=0 and X=(x,,...,X,) € X" be an ordered n-tuple of points of X. We
denote by n(X)=n the number of components of X. Set
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H(X) = p(x) - P(x,,).
If n(X)=0, then ¢(X)=1. The support of X is defined to be

supp X ={x, ...,Xx,} C X.
(i)  For each s € N, we denote

XW= U XMX - XX,

np,..ng=0

[We distinguish between X"1 X - -+ X X" and X"1* s, We use X"1 X - -+ X X"s as the set of
possible arguments for ;(X;)- - ¢,(X,), while X"1*"*"s is the set of possible arguments for
(X0 - oX,), where © is the concatenation operator of part (iii). ]

The support of (X;,...,%,) € X is

N
supp(Xy, ...,X,) = Ulsupp(ij).
=

If (%,...,%, ;) € X6V, then (X,,...,%,_;,—) denotes the element of X having n(x,)=0.
In particular, X°={-} and ¢(-)=1.
(ili)  We define the concatenation of X=(x,...,x,) € X" and y=(y,,...,y,,) € X" to be

= = +
Xoy=(Xp, oo, X Y15 oY) € X

For (%;,....%,), (¥,...,¥,) € X¥

>

(521, ’is) ° (S)’l, ,S)’S) = (il Oyl, ’SisOYs)
Definition 2.2: (Coefficient systems)

(1) A coefficient system of length s is a function a(X,, ...,X,) that assigns a complex number
to each (X,...,%,) e X, It is called symmetric if, for each 1<j<s, a(%;,...,X,) is
invariant under permutations of the components of X;.

(ii))  Let f(e,...,a,) be a function, which is defined and analytic on a neighborhood of the
origin in Cs¥I. Then, f has a unique expansion of the form

f(al’ ""as): 2 a(il’ ""is)al(il)'“as(is)

(%) %) XV

with a(X;, ...,X,) as a symmetric coefficient system. This coefficient system is called the
symmetric coefficient system of f.

Definition 2.3: (Weight systems) A weight system of length s is a function that assigns a
positive extended number w(X;, ...,X,) € (0,%] to each (X, ...,%,) € X¥) and satisfies the follow-
ing conditions.

(a) Foreach 1<j=s, w(X;,...,X,) is invariant under permutations of the components of X;.

(b)

W((il, ais) ° (yl’ ays)) = W(il’ ,iS)W(S)Il, 75’.?)

for all (Xy,....%,), (¥,....¥,) € X¥ with supp(X,, ...,%,) Nsupp(¥;,....¥,) # D.

Example 2.4: (Weight systems)

(1) If ky, ...,k are functions from X to (0, «] (called weight factors), then
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s

=

(%))
w(xy, ...x) = [T IT xi(x;0)

j=1 t=1

)

is a weight system of length s.

(ii))  Let d be a metric on X. The length of a tree T with vertices in X is simply the sum of the
lengths of all edges of T (where the length of an edge is the distance between its vertices).
For a subset S C X, denote by 7,(S) the length of the shortest tree in X whose set of vertices
contains S. Then,

WK, ... K,) = O0RPER)

is a weight system of length s.
(iii)  Assume again that d is a metric on X. Let {0 C X. The “maximum distance” of any subset
S of X to Q° is D(S,Q°) =supy .5 d(x,0Q°). Then,

> > 3 X X C
WXy, ... &) = PEPPEL%).09

is a weight system of length s.

(iv) Let k=1, NelN, I<sy=<s, and YCX. Denote by vy(X,...,X; ) the number of compo-
nents of Xy, ... ’ifo that are in Y. Then,
WX, ..., X,) = k"N % ) 0)

is a weight system of length s. The verification of condition (b) of Definition 2.3 follows
from

Kmax{N—m—n,O} < Kmax{N—m,O} Kmax{N—n,O} for all m,n = 0.
v)  Ifwi(Xy,...,%,) and wy(X;,...,X,) are two weight systems of length s, then

W3(f(], ’XS) ZWI(XI, ,f(QWz(i], ,is)

is also a weight systems of length s.

Definition 2.5: Let d be a metric on X. Given weight factors «;: X — (0,%] for j=1,...,s, we
call
s n(i(j)
w(X,...,X,) = er(S“pp(il"”’ﬁx))H H Ki(X; )
j=1 =1

the weight system with metric d that associates the weight factor ; with the field «;. It follows
from parts (i), (ii), and (v) of Example 2.4 that this is indeed a weight system.

Using weight systems as defined above, we define norms for functions that depend analyti-
cally on the complex fields ay, ..., a, and the additional “history” field §.

Definition 2.6: (Norms) Let w be a weight system of length s+1. Let 0=<s' <s. We think of
the fields a; with 1 <j<s’ as being sources (that is, we differentiate with respect to these fields to
generate correlation functions), the fields a; with s" <j<s as being internal fields (that is, they
will be integrated out) and the field a,,; as the history field.

(1) For any n;,...,ng ;=0 and any function b(X, ...,X,,X,, ;) on X" X --- X X"s+1_ we define
the norm [bl,, ..., as follows:

e If there are external fields, that is, if E‘;;ln 7 0, then
”b”nl,‘..,nﬁ = max E |b(§l’ ,is,f(5+])|.

1
XpeX' g ex™

Ist=s" o' <p<g+1
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o If there are no external fields but there are internal fields, that is, if Ej;lnj:O, but
25 n;# 0, then

[Blla,... ., =max max max X [b(Ey .. KoK
xeX s <j<s I<isn; Roexie
nj#O s/ <O<s+1
(}T{/-),:x

Here (X)), is the ith component of the n;-tuple X;.
e If there are no external or internal fields but there are history fields, that is, if E;:Inj:O,
but n,,; #0, then we take the pure L' norm

Bl = 2 b= R

n
XH] e X'l

* Finally, for the constant term, that is, if E]S:{n =0,

1Bl ., = 0= oo

(ii))  We define the norm, with weight w, of a coefficient system a of length s+1 to be

|a|w= E ||W(il’ ’is’is+1)a(§l7 ?i_v?iwl)”nl,...,an_l'
s g 1 =0

In some applications, it will be more convenient to turn this norm into a seminorm by
ignoring the constant term a(—). The results of this paper apply equally well to such

seminorms.
(iii) Let f(ey,...,a,,ay;) be a function that is defined and analytic on a neighborhood of the
origin in C*VI The norm ||f],, of f with weight w is defined to be |a|,,, where a is the
symmetric coefficient system of f. (This definition also applies when f depends only on a

subset of the variables a, ..., .)
Remark 2.7:
(1) Let a be a (not necessarily symmetric) coefficient system of length s+1 and
f(al? "'sax+l)= 2 a(il’ ""X\'H)al(il).“a’s(isﬂ)'
Ry Ryy ) €X6HD

Then ||f]|,,<|al,, for any weight system w. We call a a not necessarily symmetric coefficient
system for f.
(ii))  In Lemma B.1 we show how to convert a norm bound on f into a supremum bound.

lll. THE MAIN THEOREM

In (1.3), we integrate out the last two internal fields z,, z using the measure du(z*,z) of (1.1).
Recall that this measure is supported in [|z]l..<r. The weight systems that are adapted to this
situation fulfil the Definition 3.1, below, with p=4r.

Definition 3.1: A weight system of length s+3 “gives weight at least p to the last two internal
fields” if

W(ils e ’iv;y*’y;i) = pn(y*)+n(y)w(i]9 R ,ix;_ s ;i)

for all (X,,...,%,,X) € X**Y and (,,y) € X?.
Example 3.2: Assume that d is a metric on X and KjZX—>(0,°O:|, j=1,...,s are weight func-
tions. The weight system with metric d that associates the weight factor «; with the field a;, j
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=1,...,s, the constant weight factor p to the fields «,,; and «,,, and constant weight factor 1 to
the history field b, fulfills Definition 3.1.

We fix, for the rest of this section, a weight system w of length s+3 that gives weight at least
4r to the last two internal fields. Furthermore, we fix the number 0<s’ <s of source fields for
Definition 2.6 of |-,

Remark 3.3:

(1) If 4 is an analytic function for which £(0,...,0;z,,z;h) is independent of z, and z, then

‘f h(al? s ,aS;Z*,Z;b)d,U«(Z*,Z)

= ||h(a/1, sax;z*’z;h)”w'
w

(i)  Assume that the measure du(z*,z) on C is rotation invariant. For each j=1,2, let
hiey, ..., a,:z,,2;h) be an analytic function with /;0, ...,0;z,,z;H)=0. Further, assume
that the symmetric coefficient system a/(Xi,....X,;¥,.¥;X) of h; obeys
aixy,....X,:¥,.¥:X)=0 whenever y=¥,. Then,

f hiay, ..., a;2%2:0)du(z",2) =0 for j=1,2
and

< [mllullAall-

Hf hl(ala 7as;Z*7Z;h)h2(al7 ,as;Z*,Z;b)dM(Z*,Z)

Proof:

(1) This follows from the observation that

< PE)E)

‘ f 2(¥.)*2(¥)dulz*,2)

for all y,.,y e X?.
(i)  Write

ﬁ(al, ca5h) :fhl(al, casz nh(a, ... a7 2 0)du(z,2)

= 2 A&, .. X X)) a(®)h(E)
(%) %) XV
zex

with, for each { e X9 and % e X,

as= 2> Y aEYLTXay €y X)) f 2§, 0¥, 2(§ 0§ )du(z*,2).
£ X (,yex@
&e'=( (y;’yr)ex(z)
'z exV)
%%/ =%

!

We claim that only terms with supp(y..,¥) N supp(y.,¥') # @ can be nonzero. By hypothesis,
a,(§;9,.,.y:X")=0if y,=y. So we may assume that there is a y € supp(y..,y) with the multiplicities

of y, and y at y being different. Since [z(¥.°¥.)*z(¥oy')du(z*,z) vanishes unless y .oy, =y°y’,
the multiplicities of ¥/, and §' at y must also be different. [To see this, let y € X and suppose that

> o

the multiplicity, say p,, of y,.°y, at y is different from the multiplicity, say p, of yoy' at y.
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Because du is  invariant under  z(y)—z(y)=e'%(y), while  [z(y)*Pz4(y)?
=/ PP T 7(y)*P=z(y)?, the integral [[z(y)*]7+z(y)Pdu(z*,z) must vanish.]

In particular, y € supp(y..y').

Consequently, by (1.2),

axl= X > jay (& miX)ay(E s 7 1% |0,
£¢ ex® ' eX®
&g'=¢ supp(7) Nsupp(n')#D
&% ex(
%% =x

Since w gives weight at least 2r to the last two fields,

wGRlasRl< X > w(gme 7' i%)|ay (& X" lay(€' s 7 X |27 =)
&E ex® nn ex®?
&g'=¢  supp(m)Nsupp(y')#D
% exV)
Kox’ =%
< X > w(& mX"|ay (G X" w(E' s 7' i X)|ay(E s %270
£& Ex(é') ' ex®@
&g'=¢ supp()Nsupp(n')#D
"z exV)
X%/ =%

If é=(X,,...,%,) € X, we write £ e X for (X,°---°X,);. By hypothesis, a@({;X)=0 if {=—. So, if
there are no source fields,

2= % max max 2 wemags)|
My 20 WEX ISISHER g oy
np+4ng>0 <o Xt
&=u
= 2 max  max > > w(& 7;%)
Npoiig =0 UEX lsiSEjsS(nﬁn;) £e XXX X"s ne XX X"
’ ’
n|,...,ns+120 g’EX"{X"'Xan’ n/eXm;XXm,
m,,m=0 N N ’
) XeX"srl, XeX"s+1 supp(y)Nsupp(n') #@
ml.m'=0 (€ &)=u
!
Ejgs(nﬁnj)zl

Xlay(& mR|w(E 375X )ay(€' ;73X )[2-memcemen’)

Fix, temporarily, n, ..., ng,n], ... ,n;H,m*,m,m,’k,m’ =(). If there are no source fields, also fix,
temporarily, 1 <i<ZX;_((n;+n;). There are source fields if s’>0 (s" was specified in Definition
2.6) and E‘;:l(nj+n]")2 1. In this case,
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max E

ueX Ee XXX X"s
g’ex”fx---xx".ﬁ

’
= <!
X EX”HI, %" e X"s+1

(60 &)=u
is replaced by
max max E
uie€X i jex Ee XX XXM
. !
Isj<s lSj<s' f’ eX"iX"'XX".x(
lsésnj ,
1sl=n

KeXs+, %' Xt
! !
®))e=uj ¢ &;)er=u;

Isjss’, 1=t

<n, 1<st'<n|
nj,1€ n;

If we translate the (%), (X;)¢ notation into the corresponding components of ¢, €', we may write
both of these max/sums in the form

max max >
UpEX wleX  gexMix. XXM
PEA A ’ ’
peA’ g o xmix...xxm

X e X5+, f('eX"x,»fl

&, ped

r_ ’
&=u,, peA

for some subsets AC{p e N|I<p<Z;_n} and A'C{peN|I<p<Z;_;n/} with AUA" non-
empty.

Fix u, € X for each p € A and ul’, e X for each p € A’. For notational simplicity, suppose that
p=1e€A. Then,

> >

e XXX X"s

w(&mX)|a) (& mx)w(E s i X)|ay(&' 5 7 x| 2 marmiemen’)

neX X X"
‘f,EXn{X-”XX"; ﬂ’EXm;XXm’
xeX"i1, %' X541 supp() Nsupp(n') £ 0
&=u,, peA
r_ ’
§=u,, peA

= 2 > >

£e XX X X"s

w(& mi%)|a (& 7);xw(é';7';%)

Isksm+m neX":xX"
’ ’
’ Nien s Y ’ ’
£ XX XX I<t=<m+m' 7" eX"xX"
’
geX s+, %' e X+

m=ny
&=u,, peA

E=u, ped’

X |a2(§/ . 7]/ ;§/)|2—(m*+m>’:<+m+m') = max E 2

Isksmg+m  gexMix---xX"s

w(&; 7;%)
ne XX XM
1<t<m/+m’ ¢ XX XX 7 e XM xxm'

KXol & Xt ey
&=u,, peA

§;:up', peA’
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Xay(&mX)|w(E 7' ;X )ay(&s 7% < > w(é m:X)|a, (& m:X)|
Ee XXX X"s
ﬂEXm*XXm
% e X s+l
&=u,, peA

X max  max > w(& ;7' X)|ay) (& ;7' ;%)

<t<m'+m' YEX ’ '
I<t<mi+m £ XX XXM

&= pea’
7' exMixxm'
’
7=y

’
%" eX"s+1

If A’ is empty (i.e., there are no source fields in &), the second large bracket is

max — max 2 W(f/;ﬁ/;§')|az(§';7]/;§')|
, yeX

1=t=m/+m & e XX XX

7 e XX xm'
U
N¢=y

’
x" e X"s+1

If A’ is not empty (i.e., there are source fields in &), we bound the second large bracket by

> w(€'sn' X )ay (€57 3%'))|
¢ XX XX
§;,=u[',, peA’
7]7 EX”‘I;XX’H,

/
%" e X541

Taking the maximum over u,’s and u;’s, and possibly over i, and the remaining sums gives the
desired bound. Recall that a(&; 7;%)=0 if é&=— and a,(&'; 7' ;x")=0 if &'=-. |
Recall that we have fixed a weight system w of length s+3 that gives weight at least 4r to the
last two internal fields and that we have fixed the number 0 <s’<s of source fields.
Theorem 3.4: If f(ay,...,a,;2,,2;h) obeys |fll,, < ﬁ, then there is an analytic function
glay, ..., a5 h) such that

fef(al’“"aﬁ‘;z*’z;h)du(z*,z) ~

. eg(al,...,ax;h) (31)
J-ef(oy .03z ’Z;b)d,u(z*,z)

and

(a1
1- 16“f||w '
Proof: The proof of this theorem is virtually identical to the proof of Ref. 2 (Theorem 3.4). Let

a(Xy,...,X,;¥.,Y;X) be the symmetric coefficient system for f. We first introduce some shorthand
notation.

gl <

* For 7=(§,.5) € X7, we write z(7)=2(3,)*z(§) and
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a(n) = > a(%y, ... XY ¥i %) (X) - ay(%)h(X).

(&) %, X) e XD

With this notation

f(al""’as;z*’z;b): 2 a(ﬂ)Z(ﬂ)

neX(z)

-a0.0:0) out of the integral in the numerator of (3.1), we may assume that

By factoring e/(@1-
a(-,-)=0.

e LetX,,...,X, be subsets of X. The incidence graph G(X,,...,X,) of X;,...,X, is the labeled
graph with the set of vertices (1, ...,£) and edges between i # j whenever X;NX; # @.

* For a subset of ZC X, we denote by C(Z) the set of all ordered tuples (7,,...,7,) for which
the incidence graph G(supp 7,...,supp 7,) is connected and for which Z

=supp 7; U - Usupp 7,.

Expanding the exponential

. o1
et 3 S S alm)atmzn) 2.

. {!
=1 7ZCX 7/lv-~-»7/€€X(2>
2#D Z=supp nyU---Usupp 7

As in Ref. 2 [(3.5)],

n

PP & . 1
f el s g (% =14+ o > d(Z)),
n=1""" Z,,...2,CX j=1

pairwise disjoint

where for @ # ZC X, the function ®(Z)(«;, ...,a,) is defined by

®(Z)=2l > a(m)"'a(ﬂk)fz(m)'“z(m)du(z*,z)

k=1 K gy, mpec@)

and ®(P)=0. Again as in Ref. 2 [(3.7)],

In | efdu=2,

n=1

Jj=1

1
n!
Zy o Z,CX

where

o'(Zy, ... Z)= > (=1l
gecn
8CG(Zy,...Z,)

and C,, is the set of all connected graphs on the set of vertices (1, ...,n) that have at most one edge
joining each pair of distinct vertices and no edges joining a vertex to itself. [In particular,
o' (Z,,...,2,)=0if G(Z,,...,Z,) is not connected.]

From (3.2) one determines, as in Ref. 2 [(3.10)], a not necessarily symmetric coefficient
system for g. Namely,

g(al’ "'as;h): 2 a,(il’ ""i‘v;i)al(il).“ax(iv)h(i)’
(X, . %y, %) e XUHD

(Xp Xy # (= 0)

where for £ X and x e XV,
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@ n

1
dEN=2 2 > p'(supp . ....supp )l g mmy)  (3.3)
n=1 1t §1,..4,§neX(S) 7]],...,7]”EX(2) J=1
ook =€
a....0,exV
ool =X

with for each £ e X and 7 e X,

1
67(6;71;3?):2; > > a(§1;n1;ﬁ1)'“a(§k;m;ﬁk)fz(n)du(z*,z)
k=1 "% (5y,....m) eClsupp ) &), .8
7O OMEN g og=€
iy, i

(3.4)

By Remark 2.7, part (i), ||gl,,<|a'|,. The bounds on |a’|,, that are necessary for the proof of the
theorem are derived as in Ref. 2 [(3.12)—(3.16)]. [ |

Corollary 3.5: Let f(ay, ..., a,;2,,2:h) obey ||fl,, < 3% and define, for each complex number {
with |Z||Ifll, < %, the function G({)=G({;ay, ..., a,:h) by the condition

J‘egf(al,. . 4,aS;z*,Z§fJ)dM(Z*,Z) ~

— eG({;al,...,as;h) (35)
feéf(O,...,O,z ’z’h)d,lL(Z*,Z)

as in Theorem 3.4. Then, G({) is a (Banach space valued) analytic function of { and, for each
nel, the g(ay,...,a;0)=G(1) of Theorem 3.4 obeys

146
n! dl"

AL ™

1
25—l

(0)

dG
-t

w

We have G(0)=0,

dG
d—§(0)=fb‘(a1, cag 2z h) = £0, ... ,052%,2:6)du(z*,2)

and

d*G
d2—§2(0)=ff(a1, --.,as;z*,z;b)zd,u(z*,z)—ff(O, ,052%,2:0)2du(z*,2)

2

2
- {ff(al, ,as;z*,z;h)d,u(z*,z)] + {ff(O, 50525z h)d(z D) | .

If, in addition, the measure du(z*,z) on C is rotation invariant, f(0,...,0;z%,2;5)=0 and the
symmetric coefficient system a(Xi,...,X,;¥,.¥:X) of f obeys a(X,,...,X;;¥.,¥:;X)=0 whenever
y=V.,. then (dG/d{)(0)=0 and
d’G
d—gz(O) =ff(a1, a7tz h) dp(E, ).

Proof: The analyticity of G({) is obvious since the series (3.3) and (3.4), with a replaced by
La converge in the norm |-||,, uniformly in ¢ for |Z]||f],, bounded by any constant strictly less than
11—6. That G(0)=0 and G(1)=g is also obvious. So by Taylor’s formula with remainder,
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1 d'G 1 a*'G
' O e ar ™

dG
8O-

for some 0 <u<1. By the Cauchy integral formula,

1 da*'G 1 G(9)
== — it
(I’l+ 1)' dgn 2771 |g]=U (f— Lt)
for any u<U<1/16||f],. Hence,
dG 1d'G 1 IG(QIl., UlIAl 1
-—0)= == 0)| =—27wU <U
$= 2 v ar Lo 2a R w- T Y1 16U, (U - 1)

iy
A, - [ 116017,

Choosing U so that U|f],=5; gives

dG 1d'G

g=—(0)==——2(0)

n+l
1 _ AR
di n! d

W\80<

n+l
_[ A

1 n+2 1
S B P

since [|fll,, < 35
To get the formulas for (dG/d¢)(0) and (d*G/d{*)(0), differentiate (3.5) to give

d_G(g)EG(fzal,...,aslh) = ff(a'l’ cee as;z*’z;b)eff(al,-.-,LYS;Z*,Z;I’))dM(Z*’Z)

df feéf(o""’O;Z*’Z;h)d,u(z*,z)

_JfO, . ,052%,250)ed 00T (¥, 2) [ a5 S d (2, 2)
R C)

and hence

dG Jf(ay, ... a7, 23 h)ed @ ~aszblg (75 7)
d_g(g) B {flay....opiz*z:h) *
Jet/ e shg (7%, 7)

[, ...,0,z%,z; f))eéf(o" . "O;Z*'Z;b)dﬂ(Z*,Z)
femo"“’O;Z*’Z;h)d,(,l.(z*,z) ’

Setting {=0 gives the formula for (dG/d{)(0). Differentiating again with respect to ¢ and then
setting {=0 gives the formula for (d>G/d*)(0). When the measure du(z*,z) is rotation invariant
and the symmetric coefficient system a(X,...,X,;y.,y;X) of f obeys a(X,,...,X,;¥.,y;X)=0,
whenever y=y,, we have

ff(al, a3 h)du(z*,2) =0,

as in Remark 3.3, part (ii), and the remaining formulas follow. |
Corollary 3.6: Denote by F the Banach space of functions f(a,,...,a,;z,,2;h) with |,
<. Let f,f" € F with

ff(ab ,as;z*,z;h)dﬂ(z*,z)—ff’(au coanzt i h)du(zt ) =0

and ||l +|lf' =Ail, < 75. Define g,g' € F by the conditions
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fef(al,...,ax;z*,z;b)dﬂ(z*’z) —— fef’(al,...,as§z*,z;b)dM(Z*’Z)
=e e By
fef(o*'"*O;Z*’z‘h)d,u(z*,z) fef'(o,...,O;z*,z;b)dlu(z*’z)

as in Theorem 3.4. Then,

’
ay,...ag
= o8 (@ sh),

[ P VA )
(57 = WAl =" = £1.)?

Proof Define for all ¢, € C with |[{|<U'= ﬁ—“f“w Hf f“ 12|l =Al, and [g<U'!

=( 17 M|w Hf ﬁ|w/(2llﬂlw)

F({.{5ay, . a02%230) = O flay, o as2%,250) + L(F = Olay, ... a32%,23h)
and define G({) by

lg’ —gll, <4

P8 i) g7 )
P68 008 gy 2 )

as in Theorem 3.4. Then, G(,{’) is an F-valued analytic function of {,{’ since the series (3.4)
and (3.3) with a replaced by the appropriate a({,{’) converge in the norm |-||,, uniformly in Z, ¢’
for [Z'||Ifll+1Zlllf” = A, bounded by any constant strictly less than 11—6. Furthermore, G(0,1)=g and
G(1,1)=g’ so that

1 rl
g —-g- f—(s l)ds—f —(s 0)ds + fofo (;ZG?(s,s’)dsds’.

@(s 0)= JE= )y, ... apz*,z;h)e V@0 ass 30 gy (2 7
' fes(f_f/)(al’"“as;z*’z;h)dﬂ(z*yz)

~ T =)0, ... ,O;Z*,Z;h)es(f_f')(o""O;Z*’Z;h)d,uf(z*,Z)
J‘eS(f—f')(O,- . ‘O;Z*’Z;h)d,u(z*,z)

— eG(L{';al,...as;h)’

By hypothesis,

vanishes when s=0 so that

- ds| ds"—(s",0 s,s")dsds’
Y

and
I ~gh<t sup |ZS6.0) + sup |20 (5,0
g —glly== sup |[— (s, sup S,S
" 2 se[0,1] (94/2 w  ss' €[0,1] ag&é’ w
By the Cauchy integral formula,
e 1 G(s +£,0)
~—5(5,0)= —f di——> .
2 (9( 2 m U—l §
FG o5y =1 1 ,G(s+{s'+{)
3§(9§ 2t = Ul 277 \g’\:U”l {25’2

By hypothesis, for all 0<s,s'<1,{,{" with |[{|<

<1/U',
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1
G+ Lo+ Ll =G5+ £+ (s + D = Db = T+ DIfL + U+ 12D = AL = 1=

and hence
1
GG+ 25"+ )y = IO EX+ O _ 17
’ Y1 =16|F(s + &s" + O | 16
17
So

” ! ” <L2 U_1L+L2 U—liz U,_ILL_U2+UU'
S T i Tk Vi :

|

IV. THE HISTORY FIELD AND LINEAR TRANSFORMATIONS
In this section, we assume that we are given a metric d and weight factors «i, ...,«, on X. We
consider analytic functions f(a,,...,a;h) of the complex fields «;,...,a, and the additional

history field b, which takes values in {0,1}. Denote by w the weight system with metric d that
associates the weight factor «; to the field «;, and the constant weight factor 1 to the history field
b (see Definition 2.6). Also fix the number 0 <s'<s of source fields.

As pointed out in Sec. I, the purpose of the history field is to keep track of all the points that
have ever been used in the construction of a particular function or monomial. We will deal with
linear changes in the a-fields which may be compositions of several such changes of variables. In
each composition it may be relevant which points where involved. This is the motivation for the
following

Definition 4.1:

(i) An h-operator or h-linear map A on C¥ is a linear operator on CX whose kernel is of the
form

Axy) =2 X AKX, .. XsY)hXBX) - hx)b(Y).

€=0 (Xq,....X¢p) ext

(i)  The composition A°B of two h-operators A, B on CX is by definition the h-operator with
kernel

(A°B)(x,y)= X AX2)B(zY)= 2, 2 2 AKXy, ....X:2)BZY), ....¥eY)

zeX zeX €,0'=0 Xpo---Xg
Yio- ¥

b(x)h(x)) -+ b(x)h(2)h(y1) -~ bye)h(y).

Here, we used that h2=b.
(iii)  For an “ordinary” linear operator J on CX with kernel J(x,y), we define the associated
h-operators by

J(x,y) = h(x)J(x,y)h(y)

and the associated h-exponential as

o 1 B
exph(J)=h + > Zﬂ'
=1 b
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(iv) If ¢ is any field on X and A an h-operator, we set

AP)(x)= 2 AxYAY) =2 2 AKX, ... . X)) - hx)h(Y) b(y).

yeX €=0 x|,...Xpy

Definition 4.2: (Weighted L' —L* operator norms) Let k, k' :X— (0,%] be weight factors and
& an arbitrary metric and let A be an h-linear map on CX. We define the operator norm

NAsiok') = 2 AK:X:y)hBHEHYBWY)|

x,yeX

xex( @

where w is the weight system with metric 6 that associates the weight 1/« to 3, the weight «’ to
B, and the weight 1 to h, and where B, and 3, are thought of as internal fields. For an ordinary
operator J on CX, we set N§(J; k,k')=NsJ; k,&").

Remark 4.3:
(1) Definition 4.2 may be equivalently formulated as follows. For each integer € =0, set

y q y g
L(A;k,k")=sup 2 2 |A(x % y)|K’(y)eTé(§UPP(XXY))

xeXyeX g EXf
Ry(A;k,k") =sup E 2 |A(x X;y)|«’ (y)efs(supp(xiy)

yeX xeX g Xf

Then,

NsA;k, k') = E max{L¢(A;k,k"),R(A; Kk, k")}.
=0

(ii)  Clearly,
Ns(A°B;k, k") < Ns(A;k,k")Ns(B; k, ") 4.1)
for any two h-operators A, B and any three weight factors «, «’, and «”.

Proposition 4.4: Let A;, 1 < j<s, be h-operators on CX, and let f(ay, ..., a,;h) be an analytic
function on a neighborhood of the origin in Cl+DIX], Define f by

f(al’ 7as;h) =f(A1a17 ’Asas;h)-

Let Ky, ... K, Ky, ...,K, be weight factors. Denote by w and w the weight systems with metric d
that associate to the field a; the weight factors k; and K;, respectively, and the constant weight
factor 1 to the history field b (see Definition 2.5).

If NJA;sk;, K) <1 for 1<j<s, then

1Az < Al

Proof: Let a(X,,...,X;X,,) be a symmetric coefficient system for f. Define, for each n(X;)
=nj20, lngS+1,

N l'lj
a(ib »is;iwl): 2 2 E 0(5’1, ---,ys§§’s+1)H [HAj(yj,f;ij,f;Xj,f)]7
¥ X e X's Yor1°21,1° Zg y =Xgi J=1 L =1

where X;=(x; ;... ). Then, a(X;, .. :X,,,) is a coefficient system for f. Since

7Jn
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Td(supp(ils 9§s7ys+l ° 2],] oo 2S’ns)) = Td(supp(yl’ ,ys,ywl))

+ 2 Tsupp(y;0iZi X)),

Isjss
1$€$nj
we have
(5(7_21, e ’is;§s+l)|ﬁ(§l’ e ’is;is+l)|
= 2 E w(yl’ ""ys5yv+1)|a(yl’ "'9ys’ys+l)|
ijX”j Vor1°Z1,1° '°is,nx=’9‘s+1
Isj<s
. - (supp(y; o:Z: p3X: ¢)) o Ki(X;0)
XTI | IT emdsureieicxi|A (supply; :2;,63%;,0)) | =525
j=1 | €=1 ' Kj(yj',e)
We first observe that when X, =---=X,=—, we have

o=, ...,— X )lal=, ....— X ) =wl=, ....— X Dlal=, ....— ;%)

so that the corresponding contributions to |fl and ||f],, are identical. Therefore, we may assume,
without loss of generality, that f(0,...,0;H)=0.

If there are no source fields, we are to bound

Ifls= >  max max max > WXy,

p e ,§S;§S+1)|c7(fi1, ’is;is+l)|‘
ny,..olg 1 =0 X€

L=y=s 1<i=n) (%), %y ) €XMX XXMl
npts '+ns>l n;#o (ip;:x

If there are source fields, that is, if s’">0 (s’ was specified in Definition 2.6) and E;;ln =1

max max max >
X <<y 1S1=n) (R, Rypp) € XXX XMt
n#0 (%)=x

is replaced by

max >

XjeeX (R o Xgp ) EXIX - X X 541
<j<s’ ) —%

1</ %)%

={=n.

Ist=n; Isj<s’, 1<t<n;

J

Choose any n, ... ,n,,; =0. If there are no source fields also choose a 1 <J<s with n;# 0 and an

1$1_Snj. This is equivalent to choosing the singleton subset I={(j,1)} of {(j,€)|1<j<s,1=<¢
<n j}. If there are source fields, set

I={(,0ll=j=s", 1<{=<n}

Choose an X; ¢ € X for each (j,{) e .

To get |m 7 we are to bound the sum, over the choices of n,
choices of I and the X; ;’s, of

.. g, of the max, over the
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by > >

(Rpo Xy ) EXTIX XXl §ie X, 1<j<s 2; XD, 15j<s, 1<t<
(ii)€=ij,€ for (j,€)el

W(Yl’ oo ’ys+1)
nj
Vil ex(D Vos1°%1 1 '°i5,nl\_=i‘s+l
j

X |(1(S)’1, s 7ys+1)|1_[

-Aj (Yj,€§2j,€§xj,€)| >
j=1 | =1

4.2)
where, for each 1 <j=<g3,

Aj(y’i ;X) = er(SuPP(y;i;X))|Aj(y;i ’X)lﬂ

Kj(Y) .
Observe that

(42)= > > > >
(Rpsn oKy ) EXMX X X541 Mg =0 yieX, 1Sj<s &; peX"it, 1<j<s, 1=<(=<n;
1 s+1 J j.€ J
(ij)ez)j,(’ for (j.b)el mj’eBO for 1<j<s, ]S(’Snj Vout XMl ?s+1°21,1°”'°iws=is+1
ms+l+z_/',fmj,(=ns+l
s nj
W(Yl’ cee ’yx+l)|a(yl’ s ’ys+l)|H Aj (yj,€;zj,€;xj,€)| .
j=1 [ ¢=1
In taking the sum, over the choices of n,, ...,n,,, of the max, over the choices of / and the X; ¢’s,
of (4.2), we apply “max 2 <2 max” to give

s= = > max max > > >

e =0 mgy1=0 I Xjeex (Xp &) EX"IX XX §,eX', ISjss 7 X"t
mjv(BO for 1<j<s, 1S€Snj (.0 el (ij)€=ij,€ for (j,€)el Fyup €X M5t 1<j<s, 1<{=<n;

J

s n;
Xw(Fis - Fedla@rs - Fen) T TT

Aj (Yj,€§zj,€§xj,€)| ,
j=1 | =1
where I is chosen as above.

For each (j,€) ¢ I and y; ; € X, we have, in the notation of Remark 4.3, part (i),

Ex Aj(y]‘,eéij,(,;Xj,e) = Lmj,(,(Aj;KJij)'
queE

5 R

Zj X"y

Thus,

(X1, %) € XX XX s yjeX"/, I1<j<s

ZjgeX"it
(Xj)fzij,f for (1,(5) el

ys_'_lexmﬁl 1sj=ss, lS(Snj

N nj
w1 o Fa)la@r o) T TT A (3652 5% )]
j=1 | e=1
<> (2 X2 wG..

Yj.e Yj.e Vil e XMs+1
(G.O0el \(Oel

x 2 I AGezexdl I Ld4:x.5)

Zj ge X"t (.0 el (.0 &l
(.0 el

. ’ys+l)|a(ylv ’5)’&+1)|
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= max 2 2 W(ylv ’y3+1)|a(§’1, ’ys+1)|
yj,(’ y]‘,{ yS+15Xms+l
GOl (j0er

x 2 > 11 A (V0% .03%;0)] 11 L, (A Kk, K;)
Vie g pexmie GOel G0 el
(0 el G0 el

< [wall,,

H R (A1) Il L, (A;x.R)
(.0) &l

”s’ms+l

since, for each (j,€) €1,
E A(y](” /(’ ](’)\ me(A]’ K)

yjeeX
jjeX 7t

A< 2 X maxwal, . nmlﬂ Ry (AjR) 11 L, (Ajiw;,5)

ny,...ng=0 mg, 1 =0 (0 el
/.(20
< 2 2 lwd. am 1H max{R,, (A;:k; R, Ly, (A 5, 7))
ny,.. =0 mg, 1 =0
mj (=0
= E E ||Wa||n] nmsHHNd(Aj»Kk’K)/ “f“w

Ny, .. ng=0 mg =0

|
Proposition 4.4 treats substitutions “field by field.” Corollary 4.6, below generalizes Proposi-
tion 4.4 to allow substitutions that mix fields. In preparation for the corollary, we have the
following.
Lemma 4.5: Let f(ay,...,a,h) be an analytic function on a neighborhood of the origin in
CODIX yith 0<s’ <s source fields (see Definition 2.6).

(i)  Let reN and define f by

f(al? ’as—lsﬁl’ ’:Br;b) =f(al’ 9as—19181 + oo +:8r;h)
Let ki, ...,K, be weight factors and assume that

d X
E Sup _.M < 1
j=1 xeX K (X)

Denote by w the weight system with metric d that associates the weight factor «; to the field
a;, for 1 siss—1, the weight factor K; to the field B;, for 1 < j<r, and the constant weight
factor 1 to the history field by. Then,

Alls < 1Al

(ii)  Let{l,...,s}=I,U---UI, be a partition of {1, ... ,s} into disjoint nonempty subsets. If the
number of source fields s' =1, assume that [;={j} for all 1 <j<s'. Define f by

f(ﬁl’---sﬂr;b):f(al,,, ay,b)| —,3 lflel

l<z<s l<]<r

Let Ky, ..., K, be weight factors and assume that K;< k; for all 1 <i=<s and 1 <j=<r with
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i € 1;. Denote by W the weight system with metric d that associates the weight factor K; to
the field B;, for 1 <j<r, and the constant weight factor 1 to the history field Y. Then,

Alls =< 1Al

(iii) Let re N and let X=AU---UA, be a partition of X into disjoint subsets. Define f by

f(ah ’as—l’ﬁl’ HBr;h) =f(a1’ 7as—17A1:81 + +Arﬂr;h)'

Let Ky, ...,K, be weight factors and assume that there is a v>1 such that

Ki(x 1
max sup —&S—<1.
Isj=rxed; K(X) v

Denote by w the weight system with metric d that associates the weight factor «; to the field
a;, for 1 <i<s—1, the weight factor K; to the field B;, for 1 < j<r, and the constant weight
factor 1 to the history field by. Then,

r

’
v( ) if v<e

elnv
IAls =< C. Al with C.,=§ 2"

— ife?<p<2’
v
! if v=72".
Proof:
(1) Let a(X,,...,X;Z) be a symmetric coefficient system for f. Since a is invariant under

permutation of its X, components,

flay, ....ae 1By -, Brih)
=f(a1, ,as_l,ﬁH_ ...+Br;h)

s—1 r
> aXx,... ,m)<H ae(ie)) (E ﬁ,) (%,)h(2)
£=1 j=1

iiex(l), Isiss

zex)

2 2 a(il’ »is—liyl o oyr;i)

iiex(l), 1=<siss yiex(l), 1=sisr

zex(V) K=y 1o 1Y,

s—1 N . N r
><<H ae(fq)) (”(y” +oeenly) ) (H ﬂ,(y,))mz),
(=1

n(yl)’ 9n(5)’r) Jj=1

we have that

e o oL [+ ()
aXyy o X Y15 Y E) =aXy, XY 0 0V SE - .
n(y])’ 7n(Yr)

is a symmetric coefficient system for f.

When X,=---=X,_;=y,="'=y,=—, we have
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W=, ...,—:Bal=, ....—:B)|=w(-, ...,—:@)|a(-, ... ,— ;7|

so that the corresponding contributions to |fl|; and |fl|, are identical. Therefore, we may

assume, without loss of generality, that f(O, ...,0:H)=/(0,...,0;h)=0.
Set, for each 1<j<r, t;=supy x[K;(X)/ k(x)]. Thus, t;+---+1,<1 and &;(x) <t;x,(x) for
all 1=<j=<r and all x € X. If there are no source fields, we have

1Az = > max > WXy oo X,V s oY Z)
n;=0, 1<i<s—1 xeX zext
= <i< I<isSnA+3m;
" 0. 1=j=r ! Y % eX, 1<iss-1
=0
yieX", 1sj<r

R YY)
><|67()_21, ’is—l’yl’ ,yr,i)|

m m > > > > .3
S > max > et w(Xy, XY 0 . 0 ,5Z)
n;=0, 1<iss-1 xeX gext
= <i<, 1<isZnA3m;
m=0, 1sj<r ! / % eX, 1<iss-1
€=0
yieX"i, 1<j<r

(Rps oo Ry T oo T )iX

mi+cm\ L L
X la(Xy, ..., X, ¥1° ... °¥,:7)|

my, ...,m,
mp+ o +m,
m m,. > > > .=
< E ( A max 2 w(X, ..., X, 1,X3Z)
n=0, 1<iss—1 \ M5 ..., 1M, xeX zext
m;=0, 1<j<r I<i<Zn+Zm; %Xt 1=izs-]
=0 s
X e X"
(%1, X,);=X
X|Cl(§1, ’i‘v—lvis;iﬂ
" - o o (e o =
< > (t;+-+1)s max > wXy, ... X:7)|ax,, ... .X,:7)|
n;=0, 1<i<s xeX sext
=0 I<i<Zn;

xeX"i, 1<i<s

(%, ... ,%) =X

=< [Al-

The case when there are source fields is similar.
(ii) Tt suffices to consider the case that r=s—1, [,={s—1,s}, and [;={;} for all 1 <j<s-2. The
remaining cases follow by repeatedly reordering the field indices and applying the special
case. Let a(X;,...,X,_;,¥,¥2:X,.;) be a symmetric coefficient system for f. As

f(ﬁl’ ""ﬂr;b) =f(ﬁ1’ "'NBr—l’ﬂr»ﬁr;h): Z a(ih ~~~’§r—15’15’2§i)

f(,—ex(l), 1=sisr-1
5’15’215)(“)
r—1

x| I Bexo) | B.31)B.3,)b(z)
-1

= X > axy %o,y Ys )| T B |6(@),
-1

we have that
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A%y, .. %52 = X alXy, . %o, Y1,Y037)

is a, not necessarily symmetric, coefficient system forf. Again we may assume, without loss of

generality, that f(0,...,0:;5)=£(0, ...,0,0;5)=0.
If there are no source fields, we have, by Remark 2.7, part (i),

Ifl;=< >  max max max > WXy, .. XsD)dX, ... X, 7)]
npen, =1 XX, 1<i=<nj zex!
=0 ny#0 (R por. X)) € XPIX XX
Xy
< >  max max max > > wEy, e X, 1,5257)
nl+...nr>1 xeX 1<j=r lilinj iEXg ylyyzex(l)
=0 ny#0 x;eX, 1sjsr %7V1V2
(x)=x
Xla(xy, ... . %,1,¥1,¥2:2)|
= E max E E W(Xl’ 7Xr—1’YI’YZ;Z)
ny+4n, =1 xeX my,my=0 zext
> Isisn+-+n =
=0 1 R N A
ijex”_f, Isjsr-1
(X1, ... X,_1.¥1.¥2) =X
Xla(xy, ... . %,1,¥1,¥2:2)|
< > max > WX, X, Y1 8232)
nj=0, 1<j=r-1 xeX iex’
mymy =0 I<isny+ - +n,_j+m+my §1 XM, §yexms
=0

gjex'li, 1sj<r-1

[CTHIIS SR SR SYFN

XlaXy, ... %1, 1,Y2:2)| = ||l

The case when there are source fields is similar.

(iii) Let a(X,,...,X,;Z) be a symmetric coefficient system for f. As in part (i), we have that

,
Zi()—zl’ »iv—l?yl’ 9yr;2) :(l(i], ’)—Zs—l’yl o oyr;i) H A](y])
Jj=1

y (n(f’l) + o+ n(y,) )
n(yl)7 e ?n’(yr)

is a symmetric coefficient system forf. Again, we may assume, without loss of generality,
that £(0,...,0:5)=£(0,...,0;H)=0.

By hypothesis, &;(x) < (1/v)«,(x) for all 1<j=<r and all x € A;. If there are no source fields,
we have

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



Complex bosonic effective actions. | J. Math. Phys. 51, 053305 (2010)

053305-23
“f“ﬁz E max E W(xlv X 1Y ""Yr;z)
n;=0, Isiss—1 xeX gex!
) i I<p<3n+3m;
m=0, 1<jsr  1=p=ZnqtZm; %eX, 1<i<s—1
=0
yieXx"i, 1sj<r
(il* X Y e ,i,),,=x
><|a'(ii1» s X Y e ’yr;z)|
1\t Em,
< > max > - w(Xy, X LY 0 0y ,sE)
n;=0, 1<i<s-1 xeX zext v
= <i<, 1<p<ZSn+3Zm;
m=0, ISjsr TEPEETEN g ext, 1=iss-1
=0 m
yjeAl 1sj<r
[CTNEES S SR ,y,),,=x
mp+ - t+m, - > > > >
X la(Xy, ..., X, ¥1 o o0 0 ¥,52)]. (4.3)
my, - ,m,
We claim that
my+ o +m, > > - - = > - -
max E W(Xh XYoot Oyr;z)|a(x1, s X 1Y
xeX sex! my, == ,m,
1<p<SnA+3m;
r 7 X e X, 1<i<s-1
yjeA;.”/, 1sjsr
(CSTRPRIS SIE SRS MRS S
ooy )| <(m+--+m,) max > w(Xy, .. X, X 7)
xeX = vl
s ZeX
1<p<3n+3m;
PR % e X, 1<i<s-1
XSEXEHII
(%1, ,fis)p:X
(4.4)

Xla(Xy, ... X1, X37)].
To see this, fix x to be element of X and p to be the integer between 1 and Zn;+2m; that give the
maximum for the left hand side. In the event that p>>"/n;, set p=p—=1_|n; and let 1 <j<r obey
x € Aj. Denote by n,(X) the number of components of X that are in A. Then,

> W&y, X XeD)|aXy, ... XX 7)) = > w(Xy, ... %, 1,%,:7)
iex’ iex’
% eX"i, 1<i<s-1 % eX", 1<i<s-1
XSeszj %, e X"
(Xqs - ,is)p:x (%ps .o ,is)p:x
nAj(i):mj, Isjsr

Xla(Xy, ..., %, 1.X,37)].
To each X, € X*"/ with n, (X,)=m; for each 1 <j=<r and with (X,);=x (if p is defined) we assign

the unique permutation 7 e Sy, with
J

e w(p)=p (if p is defined) and
 m(1) being the index of the first component of X, [other than (X,); if p is defined] with

(X9 m1) € Ay
* m(2) being the index of the second component of X, [other than (X,); if p is defined] with

(X)) € Ay,
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» m(Zm;) being the index of the last component of X, [other than (X,); if p is defined] with
(is)'rr(Emj) € Ar'

. . my+ - +m, e, — .
The set IT of such permutations contains exactly ( n;] o ) elements if p is not defined and
( my+ - +m.—1 ) m; <m1+-~-+m,> 1 <m1+---+m,)
- >
my, ...,m;=1,...,m, mp+ o+ m.\ my,...,m, mp+ o+ m.\ my, ...,m,

elements if p is defined. Hence, if we rename the components of X, (in order) that are in A ; to be
¥; so that X;=7""'(§°- - °F,),

> wXy, ... X XD |aXy, ... X, X07)|
zext

% eX"i, 1<i<s-1

X, € X
Xy ... %) =X
= 2 2 W(Xl, >Xs;z) |a(X1, s ’X‘Y;Z) X =7T_1(y1°" Oyr)
mell 7ext
X, e X, 1<iss-1
ijA}"j, Isj<r
&pp oo Xy, Fe o 0F,),mx
= > w(Xy, ... X 7) |a(X,, ... ,X:7Z) %290,
mell zext
iiEX’li, Is<iss-1
yjeA, 1sj=r
(X|, [P IS ST °§'r)p=x
=#(H) 2 W(Xl’ ’XS;Z) |Cl(X1, ’XS;Z) X =Yooy,
zex’
% eX"i, 1<i<s-1
yjeA;"/, 1sj=r
(CRS SR T IREED MY

since w(X,,...,X,;Z) and a(X,, ...,X,;Z) are invariant under permutations of the components of X,
and the condition (%;,...,%;, 7 '(§;°°--°¥,)),=x is equivalent to the condition
(K1 %o 1§15 .- ¥,),=X. This yields (4.4).

Substituting (4.4) into (4.3), we have

_ 1\t m,
IAls < > (—) (m;+ --++m,) max > w(X, ...,XZ)
n=0, 1siss-1 \V xeX sext
m=0, 1<j<r l<p<Zni+Zm;
7 % e X", 1<iss-1
=0
X, e X
T
a [ 1)”
- - 5| <= — 1 - - s
b
XlaX,, ... %:0)|< 2 (n,+1)'n, max > w(X, ....%X:Z)
n;=0, 1<iss v xeX gext
=0 1<p<3n;

%;eX"i, 1siss

(X, -o. X=X
1\7s
Xla(Xy, ... . %:2)| < ||l su[())(ns+ 1)’(;) =< C. .
nxz

where

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



053305-25 Complex bosonic effective actions. | J. Math. Phys. 51, 053305 (2010)

r r
v if v<el?
elnv

r

C,,=92
rw = if 61/2$ p<2r
14
\1 if v=2".

The case when there are source fields is similar, but easier since there is no condition

> > - > . —1

Xps XL ¥1s -0 ), =X with p >3 n,. |
Corollary 4.6: Let h(y,, ..., v,;h) be an analytic function on a neighborhood of the origin in

CrDX and let F} be h-operators on CX, 1 <i<s, 1<j<r. Set

ﬁ(al, .agh) =h<2 F’iai, ,E Fiai; )
i=1 i=1

Furthermore, let \;:X— (0,%] for 1<j<r be weight factors. Let wy be the weight system with
metric d that associates the weight factor\; and the constant weight factor 1 to the history field b.
Assume that

> NN k) <1

i=1,...,8

for each 1<j=<r. Then,

Wil < WAl -

Proof: We introduce auxiliary fields {a; ;} :ii'is and {3 j};giés and define
sjsr YUlsjsr
W {B N )= h(Z Bis s 2 ﬂ,-r;h),
i=1 i=1

h”({ai‘j}lsiss ;b)) = h'({r;ai i}lsiss :h).

Isj<=r’ Ssj=r

Then,

E(al, coagh)=h" (o prsiss )

Isj=r Isiss, 1sjsr

Set t; j=Nd(F;.;)\ ;»&;) and introduce the auxiliary weight system w' with metric d that associates
the weight factor one to the history field,

e the weight factor «; to the field «;; and

* the weight factor #; ;A; to the field 3; ;.

By part (ii) of Lemma 4.5,

||f7(a1, s ’as;b)”W = ”h”({ald}izjii ;b)”W’ :
By Proposition 4.4,
" Qe == sl < NI (B3 1= 50)]lur

Fl<j=sr I<j<r

since

Nd(rj,t,’ﬂ\], Ki) = [_Nd(l_‘;, s Ki) =1.
L]
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By part (i) of Lemma 4.5,

||h,({ﬁz,j}}§;§i ;h)”w’ = ”h(’)/l» ey ‘y}“;b)”W)\

since, for each | <j=<r,

S (X) S S l
21 sX —)\L(L) 2] ,J=§Nd(l“j,)\j,;<)sl.

APPENDIX A: CHANGE OF VARIABLES FORMULAS IN A SIMPLE SETTING

The results of Secs. II-IV will be applied in their full generality to the construction of the
temporal ultraviolet limit of a many boson system in Ref. 4. In the second part of the paper,3 we
discuss the small field part of this construction. For it we need neither history nor source fields and
can do with constant weight factors as in (1.4). For this reason, we specialize our main change of
variables formulas, Corollary 4.6 to this setting (see Corollary A.2, below). We also provide
another change of variables formula, Proposition A.3, which is special for multilinear functions.

For an abstract framework, we consider analytic functions f(«;, ..., ;) of the complex fields
ay,...,a, none of which are history or source fields. We assume that we are given a metric d and
constant weight factors «, ..., k,. Denote by w the weight system with metric d that associates the
weight factor «; to the field a;.

In this environment, Definition 2.6, for the norm of the function

f(a]’ "-’as): E a(ih--"Xs)al(il).“a’s(is)

(Xq,....X;) €x(s)
with a(X;, ...,X,) a symmetric coefficient system, simplifies to
=la(=)|+ max max max a(Xy, ... X )| KM Ksemd®%) (A
w 1 S 1 s
Ny ig=0 xeX Isjss 1<l\nlx X"
ny,..ong=1 n;#0 1<f<s
(ij),:x

As well, for the change in variable formulas of Sec. IV, one only needs a special case of the
operator norm in Definition 4.2.
Definition A.1: Let A be a linear map on CX. We define the operator norm

Al =NA: 1, 1)= max{supz 3o w>|A<x,y>|}.

xeXyex yeXxex

Observe that for constant weight factors \ and «, N,(A;\, x)=(«/\)||A|||. Hence, Corollary 4.6 is
simplified as follows.

Corollary A.2: Let h(y,,...,v,) be an analytic function on a neighborhood of the origin in
C"Xl, and let 1—‘;» be linear operators on CX, 1 <i<s, 1 <j<r. Set

)
ey, ... a) = h(E Ma, ... > Fiai).
i=1
Furthermore, let N, ... ,\, be constant weight factors and let wy be the weight system with metric
d that associates the weight factor \; to the field ;. Assume that
s

K;
=Tl <1
> Sl <
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for each 1<j=<vr. Then,

WAl < [l

Proposition A.3: Let h(y,, ...,7,) be a multilinear form in the fields vy,, ... ,y,. Furthermore,
let

Iy, T4, A, and A;

(i=1,...,r; j=1,...,5) be linear operators on CX. Set
f](al, ...,as):h<2 Fjla], Err j)’
j=1

s

fz(al,...,ax)zh(szllaj,...,Eriaj>—h<2 ~{aj, ,EF, ]),
=1 j=1

j=1

f3(a’], ,ax) :h(z A]l_vla', ,E A,Fj,a]) _h(E A‘l].—vla’, ,2 A‘rl_‘jraj>
j=1 j=1

j=1 j=1
—h(EAlf{a-,.. EA Ffa>+h<EA [ a;, Eff,'aj).
j=1

Furthermore, let \y, ... ,\, be constant weight factors and let wy be the weight system with metric
d that associates the weight factor \; to the field ;. Then,

@)
Ifill = Ul T (E XIIIIF’HI)
i=1 \j=1
(ii)
Fally < Al o507
where
o= max max E S, E S ¢,
i=1,...,r =1 )\ Jj=1 )\
05= max 2 s - ).
=1 = )\
(iii)
I3l = Plllle, o5 as (0a)™",
where
a= ~i|}7 a5=‘_r?ax |||Ai_gi|”~
Proof:
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(i)  Define, for each 1<i=<r, tizijzl(;{j/)\i)|||F{f|||. Set

E(al,...,as)zh(z—rla E F )

Jll Jlr

By multilinearity, f;=(¢;" ",
(ii)  Write the telescoping sum

<[l
\hwA

folay, ..., a) =h<2 (I - f{)w,E Ma, ... 2 F]a ) +h(2 f{a-,E (I
j=1 j=1 =1 j=1

N s s
—fé)a-, .. 2 Fja> + - +h(2 ~jiaj,2 fjéaj’ D (f{—f{)cg)
_ ; j=1

and apply part (i) to each term.
(iii) ~ Write the telescoping sum

filay, ...,a,) =h<2A1(r{ ~-a;, ....> A,rf,'aj) - h(E Ay
=1 Jj=1 J=1

—ffi)a», .. EA F’a) + +h(2 Alf{a-, LD A,(I:’r'—ffr')aj>

j=1 j=1

—h(EZ [, ... 2 AT F')a>

j=1 =

We claim that the [|- [, norm of each of the r lines is bounded by |l osa5(ca)~". We

prove this for the first line. The proof for the other lines is similar. We again write a
telescoping sum

(EA (T -T)a EAF )-h(ZA}(r{-f{)a.,...,EA‘,r{aj>
J=1 j=1

j=1

N S
:h(E (A —A )Y - f{)a',E ADha, ..., >, A,rf,'aj)
J=1 J=1

J=1

+ h(E gl(r'{ - f’i)w,E (A, —A})Féw, ,EArF£C¥j)
j=1 j=1 j=1

--+h<2 A -T2 A, ..., >, (A,-A',)rf,'aj>.
j J=1

J=1 J=1
By the first bound, the ||-||,, norm of the first term is bounded by

IIhllwk<E A=A —f’i)lll)l—[ (E A, F’III)

J=1 12/1)\

- ’ K; L~
< [|A, 1A, —Allll(E L Fjl|||>H (IIIA IIIE |||F’|||)
1 l

j=1 =2
< |l osas(ga)!

by Remark 4.3, part (ii). The norm of the second term is bounded by

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



053305-29 Complex bosonic effective actions. | J. Math. Phys. 51, 053305 (2010)

s

K o ‘ _ . B ' r s . .
IIhllwx<E L F’1)|||) (E A, —Az)F’2|||> (E —LIIIA,T{HI)
j=1 )\1 )\2 i=3 \j=1 )\i

J=1 i
< |ll (o0 s50)(gas)(oa)>.

Similarly, one bounds the norms of each of the other r~2 terms by [l osa5(da)™". [ |

APPENDIX B: A SUPREMUM BOUND

Lemma B.1: Let f(ay,...,a,;h) be a function that is defined and analytic on a neighborhood
of the origin in CEOX Let w be the weight system with metric d that associates the weight factor
Kj to the field ;. Let SCX be nonempty and assume that flow=0  =0. Then,

for all xe$§

sup{lf(an, ... a:0)| [l < w;(x), [6(x)| < 1 for all x € X, 1 < j < s} < KIfll #S,

where K =supy xS, . ye "*).
Proof: Denote by a(X,...,X,;X,,;) the symmetric coefficient system for f. Then, if [a;(x)|
<k;(x) and [h(x)|<1 for all xe X and 1=<j<s, we have

lf(al» ?as;b)| = 2 2 |Cl(i1, ’i‘v;isﬂ)al(il) e a’x(is)h(ixﬂ)l

npaigyy (X oXgy)

eX" X X X"s+1

= E E |(l(i1, ’is;is+l)|K1(il) T Ks(is)‘

nyoeeotgry (R oXopp)

eXMX: X X541

It suffices to prove that, for each ny,...,n. =0,

E |a(i1’ 7§s;§s+1)|K1(§1) Ks(is)
(XpeXgi )

e XX X X"s+1
= Kd#S”a(Xls e ’XS;XS+1)W(X1’ e ’xs;xs+l)||n1,...,ns+l .
The cases with n;+---+n,=0 are trivial, so fix any ny, ...,n,,;=0 with n,+---+n,>0. For nota-
tional convenience, suppose that n;>0. By hypothesis a(X,, ...,X,;X,,;)=0 unless at least one

component of X, is in S, in which case 74X, ...,X,,;) is greater than the distance from the first
component of X, to S. So, suppressing from the notation that (X, ...,X, ) € X"1 X « -+ X X"s+1,

2 |Cl(i1, ""iv;is+l)|Kl(il)'“Ks(iv)

(CSTINS S
=2 2 e XKk &) k(&)
XeX (X %opp)
(%))1=x
= E e—d(x,S) 2 |a(il’ ’ix;is+l)|w(il? sis;isﬂ)
xeX (G )

(¥1)1=x

= ||a(il’ ’is;isﬂ)w(il’ 9§.v;§‘s+l)||n1,.. 2 e_d(X’S)'
xeX

U]

The lemma now follows from
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St < >N V) < gt

xeX xeXyeS
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