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In a previous paper, we developed a power series representation and estimates for
an effective action of the form ln��ef��1,. . .,�s;z

�,z�d��z� ,z� /�ef�0,. . .,0;z�,z�d��z� ,z��.
Here, f��1 , . . . ,�s ;z� ,z� is an analytic function of the complex fields
�1�x� , . . . ,�s�x� ,z��x� ,z�x� indexed by x in a finite set X and d��z� ,z� is a com-
pactly supported product measure. Such effective actions occur in the small field
region for a renormalization group analysis. We illustrate the technique by a model
renormalization group flow motivated by the ultraviolet regime in many boson
systems. © 2010 American Institute of Physics. �doi:10.1063/1.3329938�

I. INTRODUCTION

Consider the grand canonical partition function, at temperature T and chemical potential �, for
a many boson system moving in a metric space X with a finite number of points and metric d.
Suppose that the Hamiltonian H is the sum of a single particle operator �for example, the discrete
Laplacian� with kernel h�x ,y� and a two body operator given by a real, symmetric, repulsive pair
potential 2v�x ,y�.

In Ref. 2 �Theorem 2.2�, we proved the functional integral representation

Tr e−�1/kT��H−�N� = lim
�→0
� �

���Z��0,1/kT�
�d�̃R�

���
�,�t������−�,���e���−�

� ,j�����	−����−�
� ��v��−�

� ��	�

�1.1�

for the partition function, under the convention that �0=�1/kT and the limit �→0 is restricted to
�’s dividing 1 /kT �that is, 1 /�� �kT�N�. Here, N is the number operator and, for any r�0,

d�̃r���,�� = �
x�X

d���x� ∧ d��x�
2�ı

e−���x���x���
��x�
 	 r�

denotes the unnormalized Gaussian measure, cutoff at radius r, and ���� ,
� is the characteristic
function of
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��,
:X → C
 �� − 
�� 	 p0���
 .

The cutoffs R� and p0��� grow at an appropriate rate as �→0. �One can think of R� as growing a
bit faster than 1 /�4 � and of p0��� as a power of ln�1 /�� or a very small power of 1 /�.� Further-
more, for any ��0, the operator j���=e−��h−��. We write the �R-style� scalar product, �f ,g	
=�x�Xf�x�g�x� for any two fields f ,g :X→C. �Thus, the usual scalar product over C
X
 is �f� ,g	.�

The representation �1.1� is the first part of a program to resolve the mathematical difficulties
inherent in the time-ultraviolet limit of the formal, coherent state functional integral representation
for the partition function and correlation functions of many boson systems �see Ref. 5, �2.66� and
the discussion in the introduction to Ref. 1�. In Ref. 4 this program is completed using techniques
of renormalization group analysis. This paper is a description of the “small field part” of that
construction.

In Ref. 4 we obtain a representation of the functional integral of �1.1� which can be used to
analyze infrared problems. We do so by applying a simple version of a renormalization group
procedure, namely, “decimation.” In each decimation step we integrate out every “second” vari-
able. In the first step, we integrate out ��� with ��=� ,3� ,5� , . . .. The integral with respect to these
variables factorizes into the product, over �=2� ,4� ,6� , . . ., of the independent integrals

� d�̃R�
���−�

� ,��−�������−2�,��−��e���−2�
� ,j�����−�	−����−2�

� ��−�v��−2�
� ��−�	

�e���−�
� ,j�����	−����−�

� ��,v��−�
� ��	�����−�,��� .

That is, assuming that 1 /kT�2�N,

� �
���Z��0,1/kT�

�d�̃R�
���

�,��������−�,���e���−�
� ,j�����	−����−�

� ��v��−�
� ��	�

=� �
��2�Z��0,1/kT�

d�̃R�
���

�,���I1��;��−2�
� ,��� ,

where

I1��;��,
� =� d�̃R�
�
�,
�����,
�e���,j���
	+�
�,j���
	e−�����
,v��
	+�
�
,v
�
	����
,
� .

�1.2�

After n−1 additional decimation steps we will have integrated out those ��’s with
�� ��Z \ �2n��Z�� �0,1 /kT� leaving an integrand which is a function of the ��’s with
�� �2n��Z��0, 1

kT
�. Thus, for 1

kT �2n�N, we write

� �
���Z��0,1/kT�

�d�̃R�
���

�,��������−�,���e���−�
� ,j�����	−����−�

� ��v��−�
� ��	�

=� �
���2n��Z��0,1/kT�

d�̃R�
���

�,���In��,��−2n�
� ,��� , �1.3�

where the functions In�� ;�� ,
� are recursively defined by �1.2� and

In+1��;��,
� =� d�̃R�
�
�,
�In��;��,
�In��;
�,
� . �1.4�

The main result of Ref. 4 is the construction and description of a functional I���� ,
�, defined
for �� �0,�� �where �=O�1�, independent of v� such that
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I����,
� = lim
m→�

Im�2−m�;��,
� .

Then, for any p such that 1 / pkT� �0,��,

Tr e−�1/kT��H−�N� =� �
n=1

p ��
x�X

d
n�x��
n�x�
2�ı

e−
n�x��
n�x��I�1/pkT��
n−1
� ,
n� �1.5�

with the convention 
0=
p. �1.5� can be the starting point for an infrared analysis.
In Ref. 4 we describe the functions In�� ;�� ,
� and I���� ,
� as sums over “large/small field

decompositions” of X. The dominant part in the large/small field decomposition is called the “pure
small field part” and is obtained by replacing the full integrals �1.4� with integrals over appropriate
neighborhoods of stationary points �see Sec. II�.

In this note, we discuss a toy model, which we call the “stationary phase �SP� approximation,”
in which all domains of integration are restricted, simply by fiat, to neighborhoods of stationary
points. These neighborhoods will be measured by radii r���, where ��r��� is a positive and
monotonically decreasing function. We now give a description of the SP approximation and derive
estimates for it. To do this, introduce the notation �n=2n� and

V���;��,
� = − � �
���Z��0,��

��j�������j�� − � − ��
�,v�j�������j�� − � − ��
�	 . �1.6�

It will turn out that there is a function E��� ;�� ,
� of the fields �� ,
 with the property

In
�SP���;��,
� = Z�n

���
X
e���,j��n�
	+V�n
��;��,
�+E�n

��;��,
�. �1.7�

The function E��� ;�� ,
� is defined for real numbers 0	����� such that �=2n� for some
integer n�0. The normalization constant Z���� is defined in Appendix C. It is chosen so that
E��� ;0 ,0�=0. It is extremely close to 1. The “irrelevant” contributions E��� ;�� ,
� to the effective
action are characterized by the recursion relation

E���;��,
� = 0,

E2���;��,
� = E���;��, j���
� + E���; j�����,
� + log
�d�̃r����z�,z�e�A���;��,
;z�,z�

�d�̃r����z�,z�
, �1.8�

where

�A���;��,
;z�,z� = �V���;��, j���
 + z� − V���;��, j���
��

+ �V���; j����� + z�,
� − V���; j�����,
��

+ �E���;��, j���
 + z� − E���;��, j���
��

+ �E���; j����� + z�,
� − E���; j�����,
�� . �1.9�

The motivation for this recursion relation comes from a SP construction and is given in Sec. II.
We estimate E��� ;�� ,
� in terms of norms as in Ref. 3 �Definition 2.6 and, more specifically,

�A1��. Assume that X is a metric space. Choose a constant m�0 as a spatial exponential decay
rate and a positive monotonically decreasing function ������ to measure the radius of conver-
gence of the expansion of E��� ;�� ,
� in powers of the fields �� and 
.

We define the norm of the power series

053306-3 Complex bosonic effective actions. II J. Math. Phys. 51, 053306 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



f���,
� = �
k,��0

�
x1,. . .,xk�X

y1,. . .,y��X

a�x1, . . . ,xk;y1, . . . ,y����x1��
¯ ��xk��
�y1� ¯ 
�y��

�with the coefficients a�x1 , . . . ,xk ;y1 , . . . ,y�� invariant under permutations of x1 , . . . ,xk and of
y1 , . . . ,y�� to be

�f���,
��� = �
k,��0

max
x�X

max
1�i�k+�

�
�x� ,y���Xk�X�

�x� ,y��i=x

w��x� ;y��
a�x� ;y��


with the weight system

w��x� ;y�� = ����k+�em��x� ,y�� for �x� ,y�� � Xk � X�,

where ��x� ,y�� is the minimal length of a tree whose set of vertices contains the points of the set
�x1 , . . . ,xk ,y1 , . . . ,y�
. In the language of Ref. 3 �Definitions 2.5 and 2.6�, w� is the weight system
with metric md that associates the constant weight factor ���� to the fields �� and 
, and the norm
�f��� ,
��� is denoted �f��� ,
��w�

. For any operator A on CX, with kernel A�x ,y�, we define the
weighted L1−L� operator norm


�A�
 = max�sup
x�X

�
y�X

emd�x,y�
A�x,y�
,sup
y�X

�
x�X

emd�x,y�
A�x,y�
� , �1.10�

as in Ref. 3 �Definition A.1�.
The quantities relevant for the estimates of E��� ;�� ,
�, in addition to the radii r��� and ����,

are the norm 
�v�
 of the interaction, a constant Kj such


�j����
 � eKj� and 
�j��� − 1�
 � Kj�eKj� for � � 0 �1.11�

�see Corollary B.2�, and a constant 0	��1 that bounds the range for which the constructions
work. On these quantities we make the following.

Hypothesis 1.1: We assume that the monotonically decreasing functions r�t� and ��t� do not
decrease too quickly. Precisely,

�i� 1�r�t��2r�2t� and 1���t��2��2t�, for all 0� t�� /2.
On the other hand, r�t� and ��t� must decrease quickly enough and r�t� must be sufficiently
small compared to ��t� that

�ii� etKj���2t� /��t��+4�r�t� /��t���1 for all 0� t�� /2 and
�iii� r�t��r�t�−r�2t���2 for all 0� t�� /2.

We also assume that there are constants KE and q�1 such that
�iv� t
�v�
r�t���t�3�1 /KE for all 0� t��;
�v� �1 /C�� ,KE���2 /q�� ���t� /��2t��4�C�� ,KE�4�r�2t� /r�t��4 for all 0� t�� /2, where

C�� ,KE�=e−4�Kj�1−233e14Kj /KE�; and
�vi� t2�k=0

� �q /4�kr�t /2k�2��t /2k�6 converges uniformly in 0� t��.

Example 1.2: Let v�0.

�i� Suppose that

��t� =
1

�4 
�v�

�1

t
�a�

and r�t� =
1

�4 
�v�

�1

t
�ar

for some constants 0	ar	a� obeying 3a�+ar	1. We prove in Appendix D that there are
constants KE, �, and q such that Hypothesis 1.1 is fulfilled for all nonzero v with 
�v�

�v.

�ii� Suppose that

053306-4 Balaban et al. J. Math. Phys. 51, 053306 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



��t� =
1

�4 t
�v�

�ln

1

t
�v�
�
b

and r�t� = �ln
1

t
�v�
�
b

for some b�1. Again, we prove in Appendix D that there are constants KE, �, and q such
that Hypothesis 1.1 is fulfilled for all nonzero v with 
�v�
�v.

We choose p0��� of the functional integral representation �1.1� to be r���.
Theorem 1.3: Under Hypothesis 1.1

�E���;��,
��� � KE�2
�v�
2r���2����6

for all 0������ for which � /� is a power of 2. The function E��� ;�� ,
� has degree at least
two both in �� and 
. [By this we mean that every monomial appearing in its power series
expansion contains a factor of the form ���x1����x2�
�x3�
�x4�.]

Theorem 1.3 is proven after Proposition 3.3. The theorem is proven by induction on n, where
�=2n�. The induction step is prepared by Proposition 3.3, which is proven using the results in Ref.
3. After the proof of Theorem 1.3, we give the following proof.

Theorem 1.4: The limit

E����,
� = lim
m→�

E��2−m�;��,
�

exists uniformly in 0����. It fulfills the estimate

�E����,
��� � KE�2
�v�
2r���2����6

and has degree of at least 2 in both �� and 
.
To take the limit �→0 in �1.7� observe that, for any fixed �,

lim
n→�

V��2−n�;��,
� = V����,
� ,

where

V����,
� = − �
0

�

��j�t�����j�� − t�
�,v�j�t�����j�� − t�
�	dt .

The SP approximation to the I���� ,
� constructed in Ref. 4 then is

I�
�SP����,
� = lim

m→�
Im

�SP��2−m�;��,
� = Z�

X
e���,j���
	+V����,
�+E����,
�.

The existence of Z�= lim
m→�

Z��� /2m� is proven in Lemma C.1.

II. SP AND STOKES’ THEOREM

To motivate the recursive definition �1.8� of E��� ;�� ,
�, we replace In by In
�SP� in the recursion

relation �1.4�. Inserting �1.7�, the resulting integral
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� d�̃R�
�
�,
�In

�SP���;��,
�In
�SP���;
�,
�

= Zn

2X
� d�̃R�

�
�,
�e���,j��n�
	+�
�,j��n�
	eV�n
��;��,
�+V�n

��;
�,
�eE�n
��;��,
�+E�n

��;
�,
�

= Zn
2
X
� ��

x�X

d
��x� ∧ d
�x�
2�ı

��

�x�
 	 R���eA���,
;
�,
� �2.1�

with Zn=Z�n
��� and

A���,
;
�,
� = − �
�,
	 + ���, j��n�
	 + �
�, j��n�
	 + V�n
��;��,
� + V�n

��;
�,
�

+ E�n
��;��,
� + E�n

��;
�,
� .

Here we have written A as a function of four independent complex fields ��, 
, 
�, and 
. The
activity in �2.1� is obtained by evaluating A��� ,
 ;
� ,
� with 
�=
�, the complex conjugate of

. The reason for introducing independent complex fields 
� and 
 lies in the fact that the critical
point �with respect to the variables 
� and 
� of the quadratic part

− �
�,
	 + �j��n���,
	 + �
�, j��n�
	 = − �
� − j��n���,
 − j��n�
	 + ���, j��n+1�
	

of A is “not real.” Precisely, the critical point is


�
crit = j��n���, 
crit = j��n�


and, in general �
�
crit���
crit. To do stationary phase, we make the substitution


� = 
�
crit + z�, 
 = 
crit + z �2.2�

with “fluctuation fields” z� and z. With this substitution, the quadratic part of A is equal to
−�z� ,z	+ ��� , j��n+1�
	. So �2.1� becomes

Zn
2
X
e���,j��n+1�
	� �

x�X
�

M�x�

dz��x� ∧ dz�x�
2�ı

e−z��x�z�x��eÃ���,
;z�,z�, �2.3�

where

Ã���,
;z�,z� = V�n
��;��,
crit + z� + V�n

��;
�
crit + z�,
� + E�n

��;��,
crit + z� + E�n
��;
�

crit + z�,
� ,

M�x� = ��z��x�,z�x��
�
�
crit�x� + z��x��� = 
crit�x� + z�x� and 

crit�x� + z�x�
 	 R�
 .

�2.3� is the integral over a real 2
X
 dimensional subset in the complex 2
X
 dimensional space of
fields z� and z.

The first step in the SP approximation is to replace, for each x�X, the set M�x� in �2.3� by the
neighborhood

D�x� = ��z��x�,z�x�� � C2

z��x�
 � r��n�, 
z�x�
 � r��n�, �z��x� + 
�
crit�x��� = z�x� + 
crit�x�


of the critical point. In Ref. 4 �Sec. VI� we show that the error introduced by this approximation
is extremely small �even when D�x� is empty�. There, we provide detailed bounds on a “large
field–small field” expansion for which the above approximation is the leading term. In Remark 2.1
�part �a�, below�, we illustrate the sources of the smallness for n=0.

By Stokes’ theorem �Lemma A.1 with r=r��n�, �=��=0, and �= �
�
crit��−
crit�, one can write
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Zn
2
X
e���,j��n+1�
	� �

x�X
�

D�x�

dz��x� ∧ dz�x�
2�ı

e−z��x�z�x��eÃ���,
;z�,z� �2.4�

as the sum of

Zn
2
X
e���,j��n+1�
	� �

x�X
�


z�x�
�r��n�

dz��x� ∧ dz�x�
2�ı

e−
z�x�
2�eÃ���,
;z�,z� �2.5�

and Zn
2
X
e���,j��n+1�
	 times

�
R�X

R�0”

�
x�R

��
C�x�

dz��x� ∧ dz�x�
2�i

e−z��x�z�x��
� �

x�X\R
��


z�x�
�r��n�

dz�x�� ∧ dz�x�
2�i

e−z��x�z�x��eÃ���,
;z�,z�
z��x�=z�x��

for x�X\R
,

where, for each x�X, C�x� is a two real dimensional submanifold of C2 whose boundary is the
union of “circles” �D�x� and ��z��x� ,z�x���C2 
z�

��x�=z�x� , 
z�x�
=r��n�
. In Ref. 4 we argue that
−z��x�z�x� has an extremely large negative real part whenever �z��x� ,z�x���C�x�. �Also see
Remark 2.1, part �b�, below.� The second step in the SP approximation is to ignore these terms.
That is, to replace �2.4� with �2.5�.

Thus, the SP approximation for

� d�̃R�
�
�,
�In

�SP���;��,
�In
�SP���;
�,
�

is

�2.5� = Zn
2
X
e���,j��n+1�
	� d�̃r��n��z�,z�eÃ���,
;z�,z�.

By construction

V�n
��;��,
crit� + V�n

��;
�
crit,
� = V�n

��;��, j��n�
� + V�n
��; j��n���,
� = V�n+1

��;��,
�

so that

V�n
��;��,
crit + z� + V�n

��;
�
crit + z�,
� = V�n+1

��;��,
� + �V�n
��;��, j��n�
 + z�

− V�n
��;��, j��n�,
�� + �V�n

��; j��n��� + z�,
�

− V�n
��; j��n���,
�� .

Consequently, the SP approximation for

� d�̃R�
�
�,
�In

�SP���;��,
�In
�SP���;
�,
�

can also be written as

Zn
2
X
e���,j��n+1�
	+V�n+1

��;��,
�eE�n
��;��,j��n�
�E�n

��;j��n���,
�� d�̃r��n��z�,z�e�A�n
��;��,
;z�,z�.

This is compatible with �1.7� and �1.8� since, by the definition of Appendix C,
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Z2�n
��n� = Z�n

���2�

z
	r��n�

dz� ∧ dz

2�i
e−
z
2.

Remark 2.1:

�a� We now illustrate why the error introduced by the SP approximation is extremely small by
considering the case n=0. The initial functional integral representation �1.1� may be written
as

Tr e−�1/kT��H−�N� = lim
�→0
� �

���Z��0,1/kT�
���

x�X

d��
��x� ∧ d���x�

2�ı
��
���x�
 	 R��������−�,���

�e−�1/2����−�
� ,��−�	I0��;��−�

� ,���e−�1/2����
�,��	� ,

where

I0��;��,
� = e���,j���
	e−����
,v��
�.

Dropping one of the “time derivative small field characteristic functions” �����−� ,��� would
introduce only a very small error. This is because writing ��−�=� and ��=
, the quadratic
part of the exponent of e−�1/2����,�	I0�� ;�� ,
�e−�1/2��
�,
	 obeys

Re�− 1
2 ���,�	 + ���, j���
	 − 1

2 �
�,
	
 � Re�− 1
2 ���,�	 + ���,
	 − 1

2 �
�,
	
 = − 1
2 �� − 
�L2

2 ,

which generates a factor on the order of e−�1/2�p0���2
=e−�1/2�r���2

when �� ,
� is not in support
of ���� ,
�. The quartic part −����
 ,v��
	 of the exponent is roughly −����� ,v���	�0
and so cannot generate a large factor. A similar mechanism generates small factors for the
right hand side of �1.3� whenever the difference ��−�n

−�� between the two arguments of In

is larger than roughly r��n�.
Consequently, we apply the SP approximation to the integral

I1��;��,
� =� d�̃R�
�
�,
�����,
�I0��;��,
�I0��;
�,
�����
���,
�

of �1.2� only when the “time derivative small field condition” ��−
���r�2�� is satisfied.
The change in variables �2.2� expresses I1 as

I1��;��,
� = e���,j�2��
	� �
x�X

�
M�x�

dz��x� ∧ dz�x�
2�ı

e−z��x�z�x��eÃ���,
;z�,z�

�����, j���
 + z�����j����� + z���,
� .

The characteristic function ���� , j���
+z� limits the domain of integration to z’s, obeying

�z + j���
 − ��� 	 r��� .

Since ��−
���r�2���
1
2r��� and �j���
−
���const �R��r���, this condition is roughly

equivalent to �z��	r���. On the difference between these two domains of integration,
the integrand is extremely small, for reasons like those given above. Similarly, the
condition imposed by the second �� is roughly equivalent to �z���	r���. The two con-
ditions �z���r��� and �z����r��� are built into the domains of integration D�x� in �2.4�.

�b� The “time derivative small field condition” ��−
���r�2���
1
2r��� is also used to ensure

that −z��x�z�x� has an extremely large negative real part whenever �z��x� ,z�x�� lies on C�x�,
the side of the Stokes’ “cylinder.” This may be seen from Remark A.3 with r=r���, �
=��=0, and �= �
�

crit��−
crit= j�����−
�.
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III. THE INDUCTION STEP

In preparation for the proof of Proposition 3.3 below, as well as of the proofs of Theorems 1.3
and 1.4, we collect consequences of Hypotheses 1.1 in the form in which they are actually used in
these proofs.

Remark 3.1: Hypothesis 1.1 implies that for all 0���� /2,

KE � 219e9Kj , �3.1a�

�231e14�Kj

KE
+ e2�Kj� k���

k�2���
2�� r���

r�2���
2

� 2, �3.1b�

2e2�Kj� k�2��
k���

�4

+ 226e9Kj�
�v�
r�����2��3 � q . �3.1c�

Proof: Hypothesis 1.1 �part �v�� forces C�� ,KE��0 and hence KE�233e14Kj, which implies
�3.1a�. Hypothesis 1.1 �part �v�� also forces

� k���
��2���

2

� 2e−2�Kj�1 −
233e14Kj

KE
� r�2��

r���
�2

� 2e−2�Kj�1 −
232e14Kj

KE
�� r�2��

r���
�2

and hence

4
231e14�Kj

KE
+ e2�Kj� ����

��2���
2� r���

r�2���
2

� 2.

So �3.1b� now follows from Hypothesis 1.1 �part �i��, which ensures that �r��� /r�2���2�4. Fi-
nally, by Hypothesis 1.1 �parts �iv� and �v��,

2e2�Kj���2��
����

�4

+ 226e9Kj�
�v�
r�����2��3 � e2�KjqC��,KE� +
226e9Kj

KE

= qe−2�Kj − q
233e−2�Kje14Kj

KE
+

226e9Kj

KE

� q −
233e12Kj

KE
+

226e9Kj

KE

� q

since q�1 and 0	��1. �

We formulate the recursion relation �1.8� that defines E�n
�� ;�� ,
� more abstractly.

Definition 3.2: Let 0����. For an action E��� ,
�, we set

R�,��E����,
� = E���, j���
� + E�j�����,
� + log
�d�̃r����z�,z�e�A�,��E;��,
;z�,z�

�d�̃r����z�,z�

whenever the logarithm is defined. Here,

�A�,��E;��,
;z�,z� = �V���;��, j���
 + z� − V���;��, j���
��

+ �V���; j����� + z�,
� − V���; j�����,
��

+ �E���, j���
 + z� − E���, j���
��

+ �E�j����� + z�,
� − E�j�����,
�� .

The recursion relation �1.8� is equivalent to
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E���;��,
� = 0,

E�n+1
��;��,
� = R�n,��E�n

��;��,
�� . �3.2�

To prove Theorem 1.3, we perform induction on n to successively bound E�n
�� ; ·� for n

=0, . . . , log2�� /��. For the induction step, we use the following.
Proposition 3.3: Assume that r�t� and ��t� fulfill Hypothesis 1.1. Then, for all 0����

�� /2, with � an integer multiple of �, the following holds.
Let E��� ,
� be an analytic function which has degree of at least 2 both in �� and 
 and which

obeys �E��� ,
����29e7�Kj�
�v�
r�����2��3. Then R�,��E���� ,
� is well defined, has degree at
least two both in �� and 
, and satisfies the estimate

�R�,��E��2� � 232e14�Kj�2
�v�
2r���2��2��6 + 2e2�Kj���2��
����

�4

�E��.

Proof: Observe that the functions V��� ;�� , j���
+z�−V��� ;�� , j���
� and E��� , j���
+z�
−E��� , j���
� both have degree of at least 2 in ��, degree of at least 1 in z, and do not depend on
z�. Similarly, both V��� ; j�����+z� ,
�−V��� ; j����� ,
� and E�j�����+z� ,
�−E�j����� ,
� have
degree of at least 2 in 
, degree of at least 1 in z�, and do not depend on z. Since the integral of
any monomial against d�̃r����z� ,z� is zero unless there are the same number of z’s and z�’s,

� d�̃r����z�,z� � A�,��E;��,
;z�,z� = 0 �3.3�

and

log
�d�̃r����z�,z�e�A�,��E;��,
;z�,z�

�d�̃r����z�,z�

has degree of at least 2 both in �� and 
. This implies that R�,��E���� ,
� has degree of at least 2
both in �� and 
.

To estimate �A�,� we introduce a second auxiliary weight system wfluct. It has a metric md and
associates the constant weight factor ��2�� to the fields �� and 
 and the constant weight factor
4r��� to the fluctuation fields z� and z. We abbreviate

�f��� ,
 ;z� ,z��fluct= �f��� ,
 ;z� ,z��wfluct
. Clearly, �f��� ,
��2�= �f��� ,
��fluct for functions that

are independent of the fluctuation fields.
Observe that

V���;��, j���
 + z� − V���;��, j���
� = � �
���Z��0,��

�����−�g�,v���−�g�	 − ����−�ĝ�,v���−�ĝ�	�

with

��� = j�����, g� = j�2� − ��
, ĝ� = j�� − ���j���
 + z� = j�2� − ��
 + j�� − ��z . �3.4�

We apply Proposition A.3 �part �ii�� of Ref. 3, with d replaced by md, r=4, s=3, h��1 , . . . ,�4�
= ��1�2 ,v�3�4�, �1=��, �2=
, �3=z, weights �1= ¯ =�4=1, and

�1
1 = �3

1 = j�� − ��, �2
2 = �4

2 = j�2� − ��, �2
3 = �4

3 = 0,

�̃1
1 = �̃3

1 = j�� − ��, �̃2
2 = �̃4

2 = j�2� − ��, �̃2
3 = �̃4

3 = j�� − �� �3.5�

with all other �i
j’s and �̃i

j’s being zero. Then
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� = ��2��max�
�j�� − ���
, 
�j�2� − ���
, 
�j�2� − ���
 + 4
r���

��2��

�j�� − ���
�

� �1 + 4
r���

��2���e2Kj���2�� ,

�� = 4r���
�j�� − ���
 � 4eKj�r��� . �3.6�

So, for each ���Z� �0,��,

�����−�g�,v���−�g�	 − ����−�ĝ�,v���−�ĝ�	�fluct � 4�h�w�
���3 � 29e7Kj�
�v�
r�����2��3.

Here, we used that r����
1
4�����

1
2��2�� by Hypothesis 1.1 �parts �i� and �ii��. Summing over �

gives

�V���;��, j���
 + z� − V���;��, j���
��fluct � 29e7Kj��
�v�
r�����2��3.

Similarly,

�V���; j����� + z�,
� − V���; j����� + z�,
��fluct � 29e7Kj��
�v�
r�����2��3.

Next, by Corollary A.2 of Ref. 3 for any analytic function f��� ,
�,

�f���, j���
 + z� − f���, j���
��fluct � �f���, j���
 + z��fluct � �f���,
��� �3.7�

since

��2��
����


�j����
 +
4�r��
����


�1�
 � e�Kj
��2��
����

+
4r���
����

� 1

by Hypothesis 1.1 �part �ii��. In particular �E��� , j���
+z�−E��� , j���
��fluct� �E��. Similarly
�E�j�����+z� ,
�−E�j����� ,
��fluct� �E��.

Combining the bounds of the previous two paragraphs with the assumption on �E��, we get

��A�,��E; ·��fluct � 210e7�Kj�
�v�
r�����2��3 + 2�E�� � 211e7�Kj�
�v�
r�����2��3 �
1
64 �3.8�

by Hypothesis 1.1 �part �iv�� and �3.1a�. By �3.3� and Corollary 3.5 �Ref. 3� with n=1,

�log
�d�̃r����z�,z�e�A�,��E;��,
;z�,z�

�d�̃r����z�,z�
�

2�

�
��A�,��E; ·��fluct

2

� 1

20
− ��A�,��E; ·��fluct�2 � 232e14�Kj�2
�v�
2r���2��2��6.

Combining this estimate and the estimate of Lemma 3.4, below, with f =E, we get the desired
bound on �R�,��E��2�. �

Lemma 3.4: Let f��� ,
� be an analytic function that has degree of at least 2 both in �� and

. Then,

�f���, j���
��2�, �f�j�����,
��2� � e2�Kj���2��
����

�4

�f��.

Proof: Introduce the auxiliary weight system waux with, in the language of Ref. 3 �Definitions
2.5 and 2.6 and, more specifically, �A.1��, metric md that associates the constant weight factor to
the field �� and the constant weight factor e−�Kj���� to the field 
. Since, by �1.11�,
�e−�Kj���� /�����
�j����
�1, Corollary A.2 of Ref. 3 gives
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�f���, j���
��waux
� �f��.

As f��� , j���
� has degree of at least 2 both in �� and 
 and e−�Kj�������2��, by Hypothesis 1.1
�part �ii��,

�f���, j���
��2� � ���2��
����

�2� ��2��
e−�Kj����

�2

�f���, j���
��waux
� e2�Kj���2��

����
�4

�f��.

The estimate on �f�j����� ,
��2� is similar. �

Proof of Theorem 1.3: We write �=�n=2n� and prove the statement by induction on n. In the
case n=0, there is nothing to prove. For the induction step from n to n+1, set �=�n. The
hypothesis of Proposition 3.3, with E=E�, is satisfied since,

�E��� � KE�2
�v�
2r���2����6 � 8�
�v�
r�����2��3 �3.9�

by the inductive hypothesis and Hypothesis 1.1 �parts �i� and �iv��. Using �3.2�, Proposition 3.3,
and �3.1a� we see that

�E�n+1
��n+1

� 232e14�Kj�2
�v�
2r���2��2��6 + 2e2�Kj���2��
����

�4

KE�2
�v�
2r���2����6

� �232e14�Kj + 2e2�Kj� ����
��2���

2

KE��2
�v�
2r���2��2��6

=
1

2
�231e14�Kj

KE
+ e2�Kj� ����

��2���
2�� r���

r�2���
2

KE�2��2
�v�
2r�2��2��2��6

� KE�2��2
�v�
2r�2��2��2��6

= KE�n+1
2 
�v�
2r��n+1�2���n+1�6.

�

In the proof of Theorem 1.4, we shall compare E��2−m−1� ;�� ,
� and E��2−m� ;�� ,
� to prove
that the sequence E��2−m� ; ·� is Cauchy with respect to our norm. To do so, we shall compare
E�n

�� /2; ·� and E�n
�� ; ·� for each n=0, . . . , log2�� /��. This is done by induction on n. For the

induction step, we use Proposition 3.6, below. To prepare for it, we have as follows.
Lemma 3.5: Set

W���,
� = V���;��,
� − V���

2
;��,
� .

Then

�W���,z + j���
� − W���, j���
��fluct � 210e9Kj��
�v�
r�����2��3,

�W�z� + j�����,
� − W�j�����,
��fluct � 210e9Kj��
�v�
r�����2��3.

Proof: We prove the first inequality. By definition

W���,
� = W1���,
� + W2���,
�

with
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W1���,
� = −
�

2 �
���Z��0,��

�����−���,v���−���	 − ����−���−�/2,v���−���−�/2	� ,

W2���,
� = −
�

2 �
���Z��0,��

�����−���,v���−���	 − ����−�/2��,v���−�/2��	� ,

where

��� = j�����, �� = j�� − �� .

Using the notation of �3.4�,

W1���, j���
� − W1���,z + j���
� = −
�

2 �
���Z��0,��

�����−�g�,v���−�g�	 − ����−�g�−�/2,v���−�g�−�/2	

− ����−�ĝ�,v���−�ĝ�	 + ����−�ĝ�−�/2,v���−�ĝ�−�/2	�

= −
�

2 �
���Z��0,��

�����−�g�,v���−�g�	

− ����−�j��

2
�g�,v���−�j��

2
�g��

− ����−�ĝ�,v���−�ĝ�	 + ����−�j��

2
�ĝ�,v���−�j��

2
�ĝ��� .

This time, we apply Proposition A.3 �part �iii�� of Ref. 3 using the �i
j’s and �̃i

j’s of �3.5� and, in
addition,

A1 = Ã1 = A3 = Ã3 = 1, A2 = A4 = 1, Ã2 = Ã4 = j��

2
� .

The corollary bounds the � · �fluct norm of the � term by 42
�v�
��a���a�3 with � and �� of �3.6� and

a = max�
�1�
, �� j��

2
���� � eKj��/2�,

a� = �� j��

2
� − 1�� �

�

2
Kje

Kj��/2�

by �1.11�. Inserting and summing over �, we get

�W1���,z + j���
� − W1���, j���
��fluct

�
�

2

�

�
42
�v�
4eKj�r���

�

2
Kje

Kj��/2���1 + 4
r���

��2���e2Kj���2��eKj��/2��3

� 29e9Kj��
�v�
r�����2��3.

The same estimate holds for �W2��� ,z+ j���
�−W2��� , j���
��fluct. �

Proposition 3.6: Under the hypotheses of Proposition 3.3, assume that there is a second

analytic function Ẽ��� ,
�, which has similar properties to E and is close to E. Precisely,

we assume that Ẽ is of degree of at least 2 both in �� and 
 and obeys �Ẽ��

�29e7�Kj�
�v�
r�����2��3. Then

�R�,��E� − R�,�/2�Ẽ��2� � 236e18Kj��2
�v�
2r���2��2��6 + q�E − Ẽ��,
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where q is the constant in parts (v) and (vi) of Hypothesis 1.1.
Proof: By Definition 3.2,

R�,��E� − R�,�/2�Ẽ� = B���,
� + log
�d�̃r����z�,z�e�A�,��E;��,
;z�,z�

�d�̃r����z�,z�
− log

�d�̃r����z�,z�e�A�,�/2�Ẽ;��,
;z�,z�

�d�̃r����z�,z�
,

�3.10�

where B��� ,
�= �E− Ẽ���� , j���
�+ �E− Ẽ��j����� ,
�. By Lemma 3.4,

�B�2� � 2e2�Kj���2��
����

�4

�E − Ẽ�� �3.11�

With the notation of the previous lemma,

�A�,��E;��,
;z�,z� − �A�,�/2�Ẽ;��,
;z�,z�

= �W���,z + j���
� − W���, j���
�� + �W�z� + j�����,
� − W�j�����,
�� + C���,
;z�,z� ,

where

C���,
;z�,z� = ��E − Ẽ����, j���
 + z� − �E − Ẽ����, j���
�� + ��E − Ẽ��j����� + z�,
�

− �E − Ẽ��j�����,
�� .

By �3.7�, �C�fluct�2�E− Ẽ��. Combining this with Lemma 3.5, we get

��A�,��E; ·� − �A�,�/2�Ẽ; ·��fluct � 211e9Kj��
�v�
r�����2��3 + 2�E − Ẽ��

� �211e9Kj� + 211e7�Kj
�
�v�
r�����2��3. �3.12�

Consequently, by �3.8�,

��A�,��E; ·��fluct + ��A�,��E; ·� − �A�,�/2�Ẽ; ·��fluct � �211e9Kj� + 212e7�Kj
�
�v�
r�����2��3

� 213e9Kj�
�v�
r�����2��3 �
1

17
−

1

32

by �3.1a� and Hypothesis 1.1 �part �iv��. Therefore, the hypotheses of Ref. 3 �Corollary 3.6� are
satisfied and we have, using �3.3� and �3.12�,

�log
�d�̃r����z�,z�e�A�,��E;��,
;z�,z�

�d�̃r����z�,z�
− log

�d�̃r����z�,z�e�A�,�/2�Ẽ;��,
;z�,z�

�d�̃r����z�,z�
�

2�

� 212���A�,��E; ·��fluct + ��A�,��E; ·� − �A�,�/2�Ẽ; ·��fluct
��A�,��E; ·� − �A�,�/2�Ẽ; ·��fluct

� 225e9Kj�
�v�
r�����2��3�211e9Kj��
�v�
r�����2��3 + 2�E − Ẽ��
 .

Using this, �3.11� and �3.1c�, we bound �3.10� by

�R�,��E� − R�,�/2�Ẽ��2� � 236e18Kj��2
�v�
2r���2��2��6 + q�E − Ẽ��.

�

Corollary 3.7: For all sufficiently small ��0 and integers 0�n� log2�� /��, we have

�E�n
��;��,
� − E�n

��

2
;��,
��

�n

� KEqn�2
�v�
2r���2����6 + 236e18Kj�
�v�
2�
k=1

n

qn−k�k
2r��k�2���k�6.
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Proof: The proof is by induction on n. In the case n=0, E�n
�� ;�� ,
�=0 and

�E�n
��

2
;��,
��

�n

� KE�2
�v�
2r���2����6

by Theorem 1.3. For the induction step from n to n+1, apply Proposition 3.6, with �=�n, E
=E�n

���, and Ẽ=E�n
�� /2�. This gives, using Hypothesis 1.1 �part �i�� and the induction hypothesis

on �E�n
���−E�n

�� /2���n
,

�E�n+1
��� − E�n+1

��

2
��

�n+1

� 236e18Kj�
�v�
2�n
2r��n�2���n+1�6 + q�E�n

��� − E�n
��

2
��

�n

� KEqn+1�2
�v�
2r���2����6 + 236e18Kj�
�v�
2�
k=1

n+1

qn+1−k�k
2r��k�2���k�6.

�

Proof of Theorem 1.4: By Corollary 3.7, with �=2−m� and n=m, we have, for sufficiently
large m,

�E�� �

2m ;��,
� − E�� �

2m+1 ;��,
��
�

� KE�2
�v�
2�q

4
�m

r� �

2m�2

�� �

2m�6

+ 236e18Kj
�v�
2
�3

2m �
�=0

m−1 �q

4
��

r� �

2��2

�� �

2��6

and, consequently,

�
�=m

� �E�� �

2� ;��,
� − E�� �

2�+1 ;��,
��
�

� const �2
�v�
2��
�=m

� �q

4
��

r� �

2��2

�� �

2��6

+ �
�=m

�
�

2� �
�=0

�−1 �q

4
��

r� �

2��2

�� �

2��6�
� const �2
�v�
2��

k=m

� �q

4
�k

r� �

2k�2

�� �

2k�6

+
�

2m�
k=0

� �q

4
�k

r� �

2k�2

�� �

2k�6

�
�=0

�
1

2�� .

Hence, by Hypothesis 1.1 �part �vi�� and the Cauchy criterion, the sequence E��2−m� ;�� ,
� con-
verges uniformly in �. This gives Theorem 1.4. �

APPENDIX A: APPENDIX ON STOKES’ THEOREM

Lemma A.1: Let r�0 and � , �� , ��CX obey 
��x�+���x��−��x�
	2r for all x�X. Set

D��,�,��x� = ��z��x�,z�x�� � C2

z��x� − ���x�
 � r, 
z�x� − ��x�
 � r, z�x� − z��x�� = ��x�
 ,

D��,�,� = X
x�X

D��,�,��x� .

Let, for each x�X, C��,�,��x� be any two real dimensional submanifold of C2 whose boundary is
the union of the one real dimensional submanifolds �D��,�,��x� and the circle ��z��x� ,z�x��
�C2 
z�

��x�=z�x� , 
z�x�
=r
. [By submanifold, we really mean a submanifold with corners. The
orientation of C��,�,��x� must also be chosen appropriately.] Furthermore, let f��1 , . . . ,�s ;z� ,z�
be a function that is holomorphic in the variables �1 , . . . ,�s in a neighborhood of the origin in CsX

and in the variables �z� ,z��Xx�XP�x�, with, for each x�X, P�x� being an open poly disk in C2
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that contains C��,�,��x�. Then,

�
D��,�,�

�
x�X

�dz��x� ∧ dz�x�
2�i

e−z��x�z�x��ef��1,. . .,�s;z�,z�

= �
R�X

�
x�R

��
C��,�,��x�

dz��x� ∧ dz�x�
2�i

e−z��x�z�x��
� �

x�X\R
��


z�x�
�r

dz�x�� ∧ dz�x�
2�i

e−z��x�z�x��ef��1,. . .,�s;z�,z�
z��x�=z�x��

for x�X\R
.

Proof: In the proof we suppress the subscripts �� ,� ,�. For each x�X there is a three real
dimensional submanifold B�x��P�x� whose boundary is the union of D�x�, C�x� and

DIR�x� = ��z��x�,z�x�� � C2
z�
��x� = z�x�, 
z�x�
 � r
 .

We apply Stokes’ theorem once for each point x�X to the differential form

� = �
x�X

dz��x� ∧ dz�x�
2�i

exp�− �z�,z	 + f��1, . . . ,�s;z�,z�
 .

Since � is a holomorphic 2
X
 form in C2
X
, d�=0 and

�
D

� = �
R�X

�
MR

� , where MR = �
x�R

DIR�x� � �
x�R

C�x� .

�

Example A.2: In Lemma A.1, C�x�=C��,�,��x� must be a surface whose boundary coincides
with the union of the boundaries of DIR�x� and D��,�,��x�. A possible choice of such a surface is
constructed as follows. Interpolate between DIR�x� and D��,�,��x� by the three dimensional set
B�x�=�0�t�1Dt�x�, where

Dt�x� = ��z�,z� � C2

z� − t���x�
 � r, 
z − t��x�
 � r, z − z�
� = t��x�
 .

Then C�x�=�0	t	1�Dt�x� has the required boundary

C(x)C(x)

Dσ∗,σ,ρ(x)

DIR(x)

B(x)

Remark A.3: In the above example,

Re�z�z� �
1
2 �r2 − 
��x�
2� − r�
��x�
 + 
���x�
�

for all �z� ,z��C�x�. Furthermore, the area of C�x� is bounded by 8�r�
�
+ 
��
+ 
�
�.
Proof: Let �z� ,z��C�x�. We suppress the dependence on x. There is a 0� t�1 such that

max�
z�− t��
 , 
z− t�

=r and z�=z�− t��. So

z�z = 
z − t�
2 + 2 Re�z − t��t�� + 
t�
2 − t��z ,

z�z = 
z� − t��
2 + 2 Re�z� − t���t��
� + 
t��
2 + t�z� − 
t�
2.

Adding and taking the real part,
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2 Re�z�z� = 
z − t�
2 + 
z� − t��
2 + 2 Re�z − t��t�� + 2 Re�z� − t���t��
� + t2�
�
2 + 
��
2 − 
�
2�

� r2 − 2r�
�
 + 
��
� − 
�
2.

By construction, C�x� is contained in the union of the two cylinders

��r� + t�,r�� + t��� − ����

�
 = 1, t � �0,1�
 ,

��r�� + t���
� + ��,r� + t���

�
 = 1, t � �0,1�
 .

The area of the first is bounded by 2��2r�
�
2+ 
�−�
2 and the area of the second is bounded by
2��2r�
��
2+ 
��

�−�
2. �

APPENDIX B: PROPERTIES OF j„�…

We discuss the decay properties of the operator j���=e−��h−�� using the operator norm �1.10�.
Lemma B.1:

(a) For any two operators A ,B :L2�X�→L2�X�,


�AB�
 � 
�A�
 
�B�
 .

(b) For any operator A :L2�X�→L2�X� and any complex number �,


�e�A�
 � e
�

�A�
 
�e�A − 1�
 � 
�

�A�
e
�

�A�


Proof:

�a� By the triangle inequality, for each x�X,

�
y�X

emd�x,y�
�AB��x,y�
 � �
y,z�X

emd�x,z�
A�x,z�
emd�z,y�
B�z,y�


� �
z�X

emd�x,z�
A�x,z�

�B�


� 
�A�
 
�B�
 .

The other bound is similar.
�b� By part �a�,


�e�A�
 � �
n=0

�
1

n!

��nAn�
 � �

n=0

�
1

n!

�
n
�A�
n = e
�
 
�A�


and


�e�A − 1�
 � �
n=1

�
1

n!

��nAn�
 � �

n=1

�
1

n!

�
n
�A�
n � 
�
 
�A�
e
�
 
�A�
.

�

Corollary B.2: Let ��0,


�j����
 � e��
�h�
+��, 
�j��� − 1�
 � ��
�h�
 + 
�
�e��
�h�
+
�
�.

Proof: Write j���=e��e−�h and j���−1=e���e−�h−1�+e��−1. By the previous lemma
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�j����
 = e��
�e−�h�
 � e��e�
�h�


and


�j��� − 1�
 � e��
�e−�h − 1�
 + 
�e�� − 1�
 � �
�h�
e��e�
�h�
 + 
e�� − 1
 .

�

APPENDIX C: THE NORMALIZATION CONSTANT

We define the normalization constant Z���� by the recursion relations

Z���� = 1, Z2���� = Z����2�

z
�r���

dz� ∧ dz

2�i
e−
z
2.

Lemma C.1: For all 0	�	� with � /� a positive integer power of 2, we have 0	Z����
	1 and


ln Z����
 � e−r���2
.

Furthermore, the limit Z�=limn→� Z��� /2n� exists and also obeys 
ln Z�
�e−r���2
.

Proof: Start by fixing any ��0 and writing �n=2n�. From the inductive definition,

ln Z�n+1
��� = 2 ln Z�n

��� + ln Z�n
� , where Z�n

� = �

z
�r��n�

dz� ∧ dz

2�i
e−z�z 	 1

so that 0	Z�n
���	1 for all n� IN and

2−n−1
ln Z�n+1
���
 = 2−n
ln Z�n

���
 + 2−n−1
ln Z�n
� 


which implies that

2−n
ln Z�n
���
 = �

k=0

n−1

2−k−1
ln Z�k
� 
 . �C1�

Since

1 − Z�k
� = �


�x,y�
�r��k�

dxdy

�
e−�x2+y2� =

1

�
�

r��k�

�

dr�
0

2�

d�re−r2
= �

r��k�2

�

dse−s = e−r��k�2

and 
ln�1−x�
� 
x
 / �1− 
x
��2
x
 for all 
x
� 1
2 ,

er��n�2

ln Z�n

���
 = �
k=0

n−1

2n−k−1er��n�2

ln�1 − e−r��k�2

�
 � �
k=0

n−1

2n−ke−�r��k�2−r��n�2�.

By Hypothesis 1.1 �part �iii��,

r��k�2 − r��n�2 = �
p=k

n−1

�r��p�2 − r��p+1�2� � �
p=k

n−1

r��p��r��p� − r��p+1�� � �
p=k

n−1

2 = 2�n − k�

so that

er��n�2

ln Z�n

���
 � �
k=0

n−1

2n−ke−2�n−k� � �
�=1

� � 2

e2��

=
2/e2

1 – 2/e2 � 1.

For the limit, we rewrite �C1�
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ln Z�n
���
 = �

k=0

n−1

2n−k−1
ln Z�k
� 
 = �

�=1

n

2�−1
ln Z�n−�
� 
 ,

which implies that

�ln Z�� 1

2n��� = �
�=1

n

2�−1
ln Z2−��
� 
 �C2�

and hence

lim
n→�

�ln Z�� 1

2n��� = �
�=1

�

2�−1
ln Z2−��
� 


= �
�=1

�

2�−1
ln�1 − e−r�2−���2
�


� e−r���2�
�=1

�

2�e−�r�2−���2−r���2� � e−r���2�
�=1

�

2�e−2�

� e−r���2
.

APPENDIX D: THE PROOF OF EXAMPLE 1.2

Example 1.2: Let v�0.

�i� Suppose that

��t� =
1

�4 
�v�

�1

t
�a�

and r�t� =
1

�4 
�v�

�1

t
�ar

for some constants 0	ar	a� obeying 3a�+ar	1. Then there are constants KE, �, and q
such that Hypothesis 1.1 is fulfilled for all nonzero v with 
�v�
�v.

�ii� Suppose that

��t� =
1

�4 t
�v�

�ln

1

t
�v�
�
b

and r�t� = �ln
1

t
�v�
�
b

for some b�1. Then there are constants KE, �, and q such that Hypothesis 1.1 is fulfilled
for all nonzero v with 
�v�
�v.

Proof:

�i� We have

��2t�
��t�

=
1

2a�
,

r�2t�
r�t�

=
1

2ar
, t
�v�
r�t���t�3 = t1−ar−3a�,

r�t�
��t�

= ta�−ar.

So part �i� of the hypothesis is trivially fulfilled if �1 /�4v�min�1 /�ar ,1 /�ak
�1. Part �ii�
of the hypothesis, namely, etKj�1 /2a��+4ta�−ar �1, is satisfied provided e�Kj�1 /2a��
+4�a�−ar �1, which is the case if � is small enough. Part �iii� of the hypothesis,
namely,
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r�t��r�t� − r�2t�� =
1

�
�v�

1

t2ar
�1 −

1

2ar
� � 2

is satisfied if �1 /�2ar��1−1 /2ar��2�v. Part �iv� of the hypothesis, namely, t1−ar−3a�

�1 /KE, is satisfied provided that �1−ar−3a� �1 /KE. The uniform convergence �for each
fixed nonzero v� of

t2�
k=0

� �q

4
�k

r� t

2k�2

�� t

2k�6

= t2−2ar−6a�
�v�
−2�
k=0

� �q

4
22ar+6a��k

is achieved whenever q	22�1−ar−3a��. Finally, to satisfy part �v�, we need

1

C��,KE�
2

q
� 24a� � C��,KE�

4

24ar

or

q �
21–4a�

C��,KE�
and 24a�+4ar−2 � C��,KE� .

Since a�+ar	a�+ 1
2a�+ 1

2ar= 1
2 �3a�+ar�	

1
2 , we have 1–4a�	2�1−ar−3a�� and hence

max�1,21–4a�
	22�1−ar−3a��. Fix any q obeying max�1,21–4a�
	q	22�1−ar−3a��. Then,
pick a C	1 sufficiently close to 1 that q�21–4a� /C and 24a�+4ar−2�C. Then, pick a KE
large enough that 1− �233e14Kj /KE��C. Finally, choose 0	�	1 that is small enough
that �1 /�4v�min�1 /�ar ,1 /�ak
�1, e�Kj�1 /2a��+4�a�−ar �1, �1−ar−3a� �1 /KE, 1 /�2ar�1
−1 /2ar��2�v, and C�� ,KE��C.

�ii� Set

C� = �1 −
ln 2

ln
2

�v
�

b

.

Then, for all 0� t�� /2 and v with 
�v�
�v,

r�2t�
r�t�

= �1 −
ln 2

ln
1

t
�v�

�

b

� �C�,1�

so that

��2t�
��t�

�
1
�4 2

�C�,1�, t
�v�
r�t���t�3 = �4 t
�v�
�ln
1

t
�v�
�
4b

,
r�t�
��t�

= �4 t
�v�
 .

The proof now continues as in part �i�. �
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