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Abstract The Renormalization Group is the name given to a technique for analyzing
the qualitative behaviour of a class of physical systems by iterating a map on the vector
space of interactions for the class. In a typical non-rigorous application of this technique
one assumes, based on one’s physical intuition, that only a certain finite dimensional
subspace (usually of dimension three or less) is important. These notes concern a technique
for justifying this approximation in a broad class of Fermionic models used in condensed

matter and high energy physics.

These notes expand upon the Aisenstadt Lectures given by J. F. at the Centre de
Recherches Mathématiques, Université de Montréal in August, 1999.
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Preface

The Renormalization Group is the name given to a technique for analyzing the
qualitative behaviour of a class of physical systems by iterating a map on the vector space
of interactions for the class. In a typical non-rigorous application of this technique one
assumes, based on one’s physical intuition, that only a certain finite dimensional subspace
(usually of dimension three or less) is important. These notes concern a technique for
justifying this approximation in a broad class of fermionic models used in condensed matter
and high energy physics.

The first chapter provides the necessary mathematical background. Most of it is
easy algebra — primarily the definition of Grassmann algebra and the definition and basic
properties of a family of linear functionals on Grassmann algebras known as Grassmann
Gaussian integrals. To make §I really trivial, we consider only finite dimensional Grass-
mann algebras. A simple-minded method for handling the infinite dimensional case is
presented in Appendix A. There is also one piece of analysis in §I — the Gram bound on
Grassmann Gaussian integrals — and a brief discussion of how Grassmann integrals arise
in quantum field theories.

The second chapter introduces an expansion that can be used to establish ana-
lytic control over the Grassmann integrals used in fermionic quantum field theory models,
when the covariance (propagator) is “really nice”. It is also used as one ingredient in a
renormalization group procedure that controls the Grassmann integrals when the covari-
ance is not so nice. To illustrate the latter, we look at the Gross—Neveus model and at

many-fermion models in two space dimensions.



I. Fermionic Functional Integrals

This chapter just provides some mathematical background. Most of it is easy
algebra — primarily the definition of Grassmann algebra and the definition and basic prop-
erties of a class of linear functionals on Grassmann algebras known as Grassmann Gaussian
integrals. There is also one piece of analysis — the Gram bound on Grassmann Gaussian
integrals — and a brief discussion of how Grassmann integrals arise in quantum field the-
ories. To make this chapter really trivial, we consider only finite dimensional Grassmann
algebras. A simple-minded method for handling the infinite dimensional case is presented

in Appendix A.

I.1 Grassmann Algebras

Definition I.1 (Grassmann algebra with coefficients in C) Let V be a finite di-

mensional vector space over C. The Grassmann algebra generated by V is
=@ A
n=0

where /\O VY = C and A"V is the n—fold antisymmetric tensor product of V with itself.

Thus, if {a1,...,ap} is a basis for V, then /\ V is a vector space with elements of the form

D
fla)y=>" D Biini e ai,

n=0 1<i;<-<ipn<D

with the coefficients 3, ...;, € C. (In differential geometry, the traditional notation uses
ai;, N\ ---Aa;, in place of a;, ---a;,.) Addition and scalar multiplication is done compo-

nentwise. That is,

D D
CJ:(Z Z ﬁ¢17...7inail CLZn> +”)’<Z Z (51‘17...’1‘”&11 ---ain)

n=0 1<i;<-<in<D n=0 1<i;< <in<D

D
=Y > (QBiyooein, +V0iy i )iy - - i,

n=0 1<i;< <in<D
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The multiplication in AV is determined by distributivity and

. 0 {21777'm}ﬂ{.7177jn}7£®
(all ... alm) (ah .. .a]n) - { sgn(k’) Ay =+ Ay, otherwise
where (ki,- -+, kman) is the permutation of (iq,- -, i, 1, Jn) With k1 < ky < --+ <

km+n and sgn(k) is the sign of that permutation. In particular
CLZ'CLJ' = —ajai

and a;a; = 0 for all 7. For example

[CLQ + 3CL3] [CLl + 2CL16L2] = a90a1 + 3&3@1 + 2&2@1@2 + 6&3@1@2
= —ajag — 3a1a3 — 2&1&2&2 — 6a1a3a2

= —ajas — 3ajas + 6ajasas
Remark 1.2 If {a1,...,ap} is a basis for V, then AV has basis
{ai1~-~ain ‘nZO, 1§i1<~-~<in§D}
The dimension of A"V is (g) and the dimension of AV is 2520 (g) =2P. Let

Mn = { (21:77%) } ]-SZl:?ZnSD}

be the set of all multi-indices of degree n > 0. Note that 71,5 - - - does not have to be in
increasing order. For each I € M,, set a;, = a;, ---a;, . Also set ayp = 1. Every element

f(a) € AV has a unique representation
D
f(a') = Z Z B ay

with the coefficients §; € C antisymmetric under permutations of the elements of I. For

example, a1az = 5 [a1a2 — aza1] = B 2)a02) + Bz With Bz = —Ben = 3.



Problem I.1 Let V be a complex vector space of dimension D. Let s € AV. Then s
has a unique decomposition s = sg + s; with sg € C and s; € @521 A"V. Prove that, if
sop # 0, then there is a unique s’ € AV with ss’ = 1 and a unique s € AV with s”s =1

and furthermore

D
/ " 1 n sy
§ =S5 254‘5 (1" =t
So
n=1

It will be convenient to generalise the concept of Grassmann algebra to allow for
coefficients in more general algebras than €. We shall allow the space of coefficients to be

any superalgebra [BS]. Here are the definitions that do it.

Definition 1.3 (Superalgebra)

(i) A superalgebra is an associative algebra $ with unit, denoted 1, together with a de-

composition $ = 5 & 5_ such that 1 € §,

S+'S+CS+ S_'S_CS+
S, 5_cCS_ S_ .5, cCS_
and
ss' = s's if s€8, or s eS8,
ss' = —s's if s,8€$_

The elements of S are called even, the elements of $_ odd.

(ii) A graded superalgebra is an associative algebra $ with unit, together with a decompo-

sition $ = @.°_, 9, such that 1 € Sy, $,,, - $,, C $,,4p, for all m,n > 0, and such that the

m=0
decomposition $ = $4 @& 5_ with

S.= P Sm S_= P Sm

m even m odd

gives $ the structure of a superalgebra.

Example 1.4 Let V be a complex vector space. The Grassmann algebra $ = AV =
@ A" VoverVisagraded superalgebra. In this case, $,, = A"V, %, = @ A" Vand

m>0 m even

$_ = @ A"V. In these notes, all of the superalgebras that we use will be Grassmann
m odd

algebras.



Definition 1.5 (Tensor product of two superalgebras)

(i) Recall that the tensor product of two finite dimensional vector spaces $ and T is the
vector space $ ® T constructed as follows. Consider the set of all formal sums > " | s, ®@¢;
with all of the s;’s in § and all of the ¢;’s in T. Let = be the smallest equivalence relation

on this set with
sRt+s Rt =t +s5t

(s+s)t=s®t+s Dt
s+t =st+st’
(28) @t =s® (2t)

for all s,s’ € $,¢,t' € T and z € C. Then $ ® T is the set of all equivalence classes under

this relation. Addition and scalar multiplication are defined in the obvious way.

(ii) Let $ and T be superalgebras. We define multiplication in the tensor product $ ® T by
[s@ (t4 +t)] [(s4+s-)@t] =ss; @tit+ss, @t_t+ss_ @yt —ss_ @t_t

forse$, teT, s € 54, t+ € T4. This multiplication defines an algebra structure on
S®T. Setting (SRT); =B+ 9TL)@(B-®T-), BT)- =B+ @T_)® (5-T4) we
get a superalgebra. If $ and T are graded superalgebras then the decomposition $ ® T =
D, (5 ®T),, with

BOTm= P $m @Tp,

mi+mo=m

gives 5 ® T the structure of a graded superalgebra.

Definition 1.6 (Grassmann algebra with coefficients in a superalgebra) Let V
be a complex vector space and $ be a superalgebra, the Grassmann algebra over VV with

coefficients in $ is the superalgebra

/\szm/\v

If $ is a graded superalgebra, so is Ag V.



Remark I.7 It is natural to identify s € $ with the element s®1 of AgV = S®/\ V and to
identify a;, - - - a;, € AV with the element 1 ®a;, - - - a;, of AgV. Under this identification

Sail"'az’nZ(S®1)(1®ai1-~-ain):s®ai1-~-ain

Every element of /\¢ V has a unique representation

D
> > Siv,eenyin Gy " Qi

n=0 1<iy<--<in <D
with the coeflicients s;, ... ;, € $. Every element of gV also has a unique representation

D

> Y e

n=0 IeM,,
with the coefficients s; € $ antisymmetric under permutation of the elements of I. If
$ = AV, with V' the complex vector space with basis {b1,---,bp}, then every element of

Ag V has a unique representation

D
Z Z BI,J b; a,

n,m=0 IeMn
JeEMm

with the coefficients 3, ; € C separately antisymmetric under permutation of the elements

of I and under permutation of the elements of J.

Problem 1.2 Let V be a complex vector space of dimension D. Every element s of AV

has a unique decomposition s = sg + s1 with so € C and s; € @521 A"V. Define

Prove that if s,t € AV with st = ts, then, for all n € IN,

n

(8+t)n _ Z (;)Smtn—m

m=0

and



Problem 1.3 Use the notation of Problem I1.2. Let, for each a € IR, s(a) € AV.
Assume that s(«) is differentiable with respect to a (meaning that if we write s(a) =
D

> > Siy iy ()i, - - - a;, , every coefficient s;, ..., («) is differentiable with
n=0 1<i1<-—<ip<D

respect to ) and that s(«a)s(f) = s(8)s(a) for all @ and 5. Prove that

ds(a)” = ns(a)" s ()

and

g_aes(a) — es(a)sl(a)

Problem 1.4 Use the notation of Problem I1.2. If sy > 0, define

D
Ins = Insy+ Y S0 (21"

S0
n=1

with In sy € IR.

a) Let, for each a € R, s(a) € A V. Assume that s(«) is differentiable with respect to «,
that s(a)s(8) = s(8)s(a) for all @ and § and that so(«) > 0 for all . Prove that

b) Prove that if s € AV with so € IR, then
Ine®* =s

Prove that if s € A\ V with sop > 0, then

Problem I.5 Use the notation of Problems 1.2 and 1.4. Prove that if s,t € AV with
st =ts and sg,tg > 0, then
In(st) =Ilns+Int



Problem 1.6 Generalise Problems I.1-1.5 to /\gV with $ a finite dimensional graded
superalgebra having Sy = C.

Problem 1.7 Let V be a complex vector space of dimension D. Let s = sg+s1 € AV
with sp € C and s; € @7?:1 A"V. Let f(z) be a complex valued function that is analytic

o 1

in |z| < r. Prove that if |so| <, then >~ n!f(”)(O) s™ converges and

o) D

> L) s = L (so) st

1.2 Grassmann Integrals

Let V be a finite dimensional complex vector space and $ a superalgebra. Given
any ordered basis {ay,...,ap} for V, the Grassmann integral f - dap ---daq is defined to

be the unique linear map from AgV to $ which is zero on @,?:_01 A"V and obeys

/al---ap daD---da1:1

Problem 1.8 Let ay,---,ap be an ordered basis for V. Let b; = ZJD:l M; ja;,1 <t <D,

be another ordered basis for V. Prove that

/~ daD~-~da1:detM/~ dbp - - - dby

In particular, if b; = a4 (;) for some permutation o € Sp

/- daD~-~da1:sgna/ - dbp ---db;

Example 1.8 Let V be a two dimensional vector space with basis {a1,as} and V' be a
second two dimensional vector space with basis {b1,b2}. Set $ = AV'. Let A € C\ {0}

and let S be the 2 x 2 skew symmetric matrix



Use Sigl to denote the matrix element of

o [0 A
=000

in row ¢ and column j. Then, using the definition of the exponential of Problem 1.2 and
recalling that a3 = a3 = 0,

1 -1
e—EEijaiSij a; — e—%)\[alaz—agal] — e—>\a1a2 — 1 _ )\alaQ

and

eEibiaie—%ZijaiS;jlaj — eb1a1—|—b2a26—>\a1a2
= {1 + (blal + bg&g) + %(blal + bga2>2}{1 — )\alag}
= {1 —+ b1a1 + b2a2 — blbgalag}{l — )\alag}

=1+ biay + beas — ()\ + blb2>a1a2

Consequently, the integrals
/6_%2”6”'51‘3‘1“3’ dasda; = —\
-1
/ eZibiai e~ 3RS0 dayday = —(A 4 bybs)

and their ratio is

-1
fezibiaie_%zijais” Y dazda;  —(X\+biby) 1 15 b:iSsib
iy 0.8 as = b\ :1+Xb1b2:e 2 244ij 004505
[ e 2275 % dagday -
Example 1.9 Let V be a D = 2r dimensional vector space with basis {a1,---,ap} and

V' be a second 2r dimensional vector space with basis {b1,---,bp}. Set $ = AV’. Let

A1, +, A be nonzero complex numbers and let S be the D x D skew symmetric matrix
T 0 _L
S = Am
S ]
m=1 >\'m

All matrix elements of S are zero, except for r 2 x 2 blocks running down the diagonal.

For example, if r = 2,

_ 1
A1
0
0
0

n
I
o oX~ o

0
0
1
A2
0

I o o o
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Then, by the computations of Example 1.8,

r
Ez ) 7 m m— m
e~ 3 Tig S H e md2m—142m H {1 —)\magm_lagm}
m=1

and

T
—1
ezibiaie_%xijaisij a; _ | | {eb27n71a2'm71+b27na2'me_)\'ma2'mfla27n}

m=1
r

= H {14 bom—1a2m-1 + bamazm — (A + bam—1b2m ) a2m—1a2m }

m=1

This time, the integrals
—1 r
/e—%zijaisij % dap ---day = H (=Am)

R B N
/exzbzaze 221]G1Sij a; dCLD"'da'l = H(—)\m _b2m—1b2m)

m=1
and their ratio is
fezibiaie_%zijais-_-l r

il Y dap - -day n 1N bSibs
. T 1+ $ou) =it
fe 15045 fa; dap ---day m=1

Lemma 1.10 LetV be a D = 2r dimensional vector space with basis {ay,---,ap} and V'
be a second D dimensional vector space with basis {b1,---,bp}. Set $ = AV'. Let S be a
D x D invertible skew symmetric matriz. Then
ibia; ,—5SijaiS;; aj
fez ipT 2 JAio; Aj da,D"'dal _%Eijb'sijbg’

fe Elﬂa’l i aj daD...dal

Proof: Both sides of the claimed equation are rational, and hence meromorphic, functions
of the matrix elements of S. So, by analytic continuation, it suffices to consider matrices S
with real matrix elements. Because S is skew symmetric, S;, = —Si; for all 1 < j,k < D.
Consequently, @S is self-adjoint so that

e )V has an orthonormal basis of eigenvectors of S

e all eigenvalues of S are pure imaginary

9



Because S is invertible, it cannot have zero as an eigenvalue. Because S has real matrix
elements, ST = u@ implies ST = i’ (with ~ designating “complex conjugate”) so that

e the eigenvalues and eigenvectors of S come in complex conjugate pairs.

Call the eigenvalues of S, j:z%l, i—z/\—12, R z/\% and set
T O - 1
@l T

By Problem 1.9, below, there exists a real orthogonal D x D matrix R such that RISR =T .
Define

D D

r_ t r_ t

a; =y, Rijaj by = >, Riij
j=1

Then, as R is orthogonal, RR! = 1 so that S = RTR', S~' = RT-'R! . Consequently,

Zzb;a; = Z jobijkak Z b; R]Zleak Zb 5J kA = Ezbzaz

i3,k 1,9,k Jsk

where d; 1, is one if j = k and zero otherwise. Similarly,

%ijaiS;; aj = SijalT; %ijbiSib; = SibiTisb,

zzy

Hence, by Problem 1.8 and Example 1.9

o _lzi. iSfl ‘ ’r E i
fezzbza'be 5 ja ij a; daD"dal feE b-L ze ia; ij -7 daD dal
35S a; N 2Rl
fe jaiS i CLJ daD"'dal fe 3% zJ 3 da:D"'da'l
b; ; Elja Tz / .« o /
_ fe e~ itij J daD dal _ _lzwblwa; — e 15;;b:Si;b;

EmaZTZ / /
[e 2 % daly, - - - da),

Problem 1.9 Let
o S be a matrix

o A be a real number

o

v1 and v be two mutually perpendicular, complex conjugate unit vectors

5'171 = Z)\’Ul and 5’172 = —Z)\’UQ.

e}

10



Set

By = (T —B2) = (01 + )

a) Prove that

e w; and Wy are two mutually perpendicular, real unit vectors

[ ] Slﬁl = )\1172 and SQEQ = —)\1171.

b) Suppose, in addition, that S is a 2 x 2 matrix. Let R be the 2 x 2 matrix whose first
column is w; and whose second column is ws. Prove that R is a real orthogonal matrix
0 =X

t _
and that R'SR = [)\ 0 }

c¢) Generalise to the case in which S is a 2r x 2r matrix.

1.3 Differentiation and Integration by Parts

Definition I.11 (Left Derivative) Left derivatives are the linear maps from AV to
/\V that are determined as follows. For each ¢ = 1,---, D, and 1T € Uf:o M., the left

derivative g—ae a, of the Grassmann monomial a; is

o . _ 0 if ¢ ¢1
da, T T (_1)‘J|aJaK ifaI:CLJCLeCLK

In the case of /\g V), the left derivative is determined by linearity and

if ¢l
—1)|J|saJaK ifa, =a,apax and s € 54
—(—1)‘J|saJaK ifa; =a;apax and s € $_

/\O

9
da; S41 =

Example 1.12 For each I = {iy, --- i,} in M,,

0 o) —

8ain e aail aI - 1

0 ...90__ , —(_1)zlUd=1)
8047;1 8ain aI - ( 1)2

11



Proposition I.13 (Product Rule, Leibniz’s Rule)
Forall k,4=1,---,D, all 1,J Uf:oMn and any f € Ng V.,

(a) S ak = Ok
el _
(c) f(a_agf) dap---da; = 0
(d) The linear operators g— and g— anticommute. That is,
ag Qy
9 0 9 9 —
(5 dar + dar aar) £ = 0
Proof: Obvious, by direct calculation. [ |
Problem 1.10 Let P(z) = > ¢;2' be a power series with complex coefficients and

i>0
infinite radius of convergence and let f(a) be an even element of /g V. Show that

- P(f(@) = P'(f(@) (% (o)

Example 1.14 Let V be a D dimensional vector space with basis {a1,---,ap} and V' a
second D dimensional vector space with basis {b1,---,bp}. Think of e¥i% as an element
of either A,, V" or A(W ®V’). (Remark 1.7 provides a natural identification between
Ay V' Apyp YV and A(V @ V').) By the last problem, with a; replaced by b;, P(z) = €
and f(b) = >_, bia;,

0 eEibiaz— — eEibiaiag

by
Iterating
81)1‘1 8bin € - 81)1‘1 8bin_1 € azn
_ 0 . o Yibiag .
= o © a;,
— eEibz‘az‘aI
where I = (i1, --,i,) € M,,. In particular,
aI — : “ .. : e
dbi, dbs,, R
where, as you no doubt guessed, >, ﬁlbl‘ byeebp—o €ANS [

12



Definition 1.15 Let V be a D dimensional vector space and $ a superalgebra. Let
S = (Si ) be a skew symmetric matrix of order D. The Grassmann Gaussian integral

with covariance S is the linear map from Ag )V to $ determined by

/eEibz—ai dﬂs(a> — e—%EijbiSijbj

Remark 1.16 If the dimension D of V is even and if S is invertible, then, by Lemma
1.10,

-1
[ fla) e 2E955 N dap - day

10,8 a;
fe 2 JaSzJ aj dCLD"'dCll

[ #@) dns(@

The Gaussian measure on IR~ with covariance S (this time an invertible symmetric matrix)

is
-1
e—%zijxisij i A7

dug(r) =
NS( ) fe—%zijmisfjlmj A7

This is the motivation for the name “Grassmann Gaussian integral”. Definition 1.15,

however, makes sense even if D is odd, or S fails to be invertible. In particular, if S is the

zero matrix, [ f(a)dus(a) = £(0).

Proposition 1.17 (Integration by Parts) Let S = (Si ) be a skew symmetric matriz
of order D . Then, for each k=1,---, D,

D
/ak fla) dps(a) = e; Skefg—wf(a) dps(a)

Proof 1: This first argument, while instructive, is not complete. For it, we make the
additional assumption that D is even. Since both sides are continuous in S, it suffices to
consider S invertible. Furthermore, by linearity in f, it suffices to consider f(a) = a;, with

I € M,,. Then, by Proposition 1.13.c,
D —
0=>" Skz/ (g—w a e_%zaisijl‘”> dap ---day
9 1] D a1 —1%a;8  a,
- Z Ske (8_ag al) - (_1) ay Z ng Qm | € 277 Y dap - - -day
m=1

13



D 1 —1 1 —1
1% S Ya, I _lvy,. 971,
Z / 22(11'3” @ dap---day — / (—1)' |a1 a e 320:5;; a; dap ---day
D _ _
Z / —3BaiS, ay dap---day — [ apa; e” 3DaiS; a; dap - --day
Consequently,
n
(o)
/ak a; dug(a) = > S /a—aeal dus(a)
=1
Proof 2: By linearity, it suffices to consider f(a) = a; with I = {iy,---,i,} € M,
Then
_ o 0 el Yibia;
/ak a; dug(a) = S g o € @ dus(a)
"1 tn by,---,bp=0
_ 90 0 ... 0 Yibia;
= Bby, 0b;, b, /e dps(a) L bp=0
=9 9 .0 o3 ZicbiSiebe
Oby, abi1 Ob,, by, ,bp=0
_ nd_ .0 9  _—313b;Siebe
=(-1) b, ob;, 9bx © ° T S
el o —15,b:5:;b;
:_(_1)nzsk€8b- B 3 2ij 30j
1 ¢ bi,-+,bp=0
¢
o) o) Yibia;
==(=D"Y_ Sulpr o 5 e~ dug(a)
1 ‘ by,--,bp=0
¢
n o) eZibiai
Z b b
_ .0 Yibia;
ZSM/ dag am1 a6, ¢ by by 0 dps(a)
= Zskz/ 5, @ dps(a)
I.4 Grassmann Gaussian Integrals
We now look more closely at the values of
) 0 —L15b;Sib
[, dnsta) = G oo G|
1,0D=



Obviously,

/1 dps(a) =1

a__ ... 9 — 15068
> Dby, ob;, ¢ T

in

and, as ZZ 2 biSigby is even itbe has the same parity as n and

/ail -va;, dus(a) =0 if n is odd

To get a little practice with integration by parts (Proposition 1.17) we use it to evaluate

[ ai, -+ ai, dps(a) when n =2

/&11 a;, dus =

= 52112

=
3

d#s

(5

61’)1 1,2

[y

Szlm

|
/

" iMs M

—_

and n =4

/ail a/iz aig ai4 d/’LS = Z Sllm/ aa a'LZ a/l3 a/l4) dIU/S

= / (Si1i2 Qi3 iy — Si1i3 iy Ay + Si1i4 aizai3) d:U'S
— 51,11,232314 5211332214 + 5211432213
S.

i (3)in(a) for some permutation 7 of

Observe that each term is a sign times Sim)in(z)

(1,2,3,4). The sign is always the sign of the permutation. Furthermore, for each odd
j, m(j) is smaller than all of 7w(j + 1), w(j + 2),--- (because each time we applied
[ai, - dps = >, Siym [ 2(17 -+ dpg, we always used the smallest available ¢). From
this you would probably guess that

/ail TGy, d“S ngnﬁ S%ru)%r(z) ’ Si‘/r(n—l)i‘/r(n) (I'l)

where the sum is over all permutations 7 of 1,2, ---,n that obey
m(l)<7m3)<---<m(n—1) and w(k)<w(k+1)forallk=1,3,5---,n—-1
Another way to write the same thing, while avoiding the ugly constraints, is
/ail -, dus(a) = m ngnﬁ Sin(ryin@ " Sim(n-1yin(n)

15



where now the sum is over all permutations 7 of 1,2, - -+, n. The right hand side is precisely
the definition of the Pfaffian of the n x n matrix whose (¢, m) matrix element is S;,;,, .
Pfaffians are closely related to determinants. The following Proposition gives

their main properties. This Proposition is proven in Appendix B.

Proposition 1.18 Let S = (S;;) be a skew symmetric matriz of even order n = 2m.

a) Forall 1 <k #/¢<mn, let My, be the matriz obtained from S by deleting rows k and
¢ and columns k and ¢. Then,

n

Pf(S) = é; sgn(k — €) (—1)**¢ Sy P (Myy)

In particular,

b) If

0o C
= (e 0)

where C' is a compler m X m matrixz. Then,

Pf(S) = (=1)2""D det(C)

c) For any n x n matriz B,

Pf(B'SB) = det(B) Pf(S)

d) P£(S)? = det(S)

Using these properties of Pfaffians (in particular the “expansion along the first

row” of Proposition 1.18.a) we can easily verify that our conjecture (I.1) was correct.

Proposition 1.19 For all evenn > 2 and all 1 < iy, ---,1, < D,

/ail---ain dps(a) = Pt [Sz‘kz‘e]

1<k,l<n
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Proof: The proof is by induction on n. The statement of the proposition has already

been verified for n = 2. Integrating by parts,

[aneai, dus@) = % Sue [ (G 0, dusta)
- Z (-1) Sivi; / g+ iy, Wiy, o G, dis(a)

Our induction hypothesis and Proposition 1.18.a now imply

/ail---ain dps(a) = Pf [Sz‘kz‘e]

1<k,l<n

Hence we may use the following as an alternative to Definition 1.15.

Definition 1.20 Let $ be a superalgebra, V be a finite dimensional complex vector space
and S a skew symmetric bilinear form on V. Then the Grassmann Gaussian integral on

Ag V with covariance S is the S-linear map

G/\SVH/f(a)d,us(a)eS

that is determined as follows. Choose a basis { a; ‘ 1<i<D } for V. Then

/ailaiz cerag, dpus(a) = Pf [Sikie} 1<k.l<n

where S;; = S(a;, a;).

Proposition 1.21 Let S and T be skew symmetric matrices of order D . Then

[ f@dusirt@ = [ | [ fa+0) dus(@)] dur®)

Proof: Let V be a D dimensional vector space with basis {a1,...,ap}. Let V' and V"
be two more copies of V with bases {b1,...,bp} and {c1,...,cp} respectively. It suffices

to consider f(a) = e*i%% . Viewing f(a) as an element of AV
/f(a) dusyr(a) = /eziciai dusir(a) = e~ 3%ij¢i(Sij+Tij)e;s
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Viewing f(a + b) = e>:¢(@+b) a5 an element of NArsvr4vm Vs

/f(&-i—b) dMS(a):/eEiCi(ai-i-bi) dus(a):exicibi/ezici“i dﬂs(&)

— eEiCibi —%EijCiSijcj

e

Eicibie—%zijcisij /

Now viewing e “ as an element of A\, _,,, V

J 1] Has vns(@] dur ) = 42050 [ et dun)

EHCZS” YijciTsjc;

=e 2 Cjez

—e 2 EZJ ci(Sij+Tij)c;

as desired. m

Problem I.11 Let V and V' be vector spaces with bases {a1,...,ap} and {b1,...,bp/}

respectively. Let S and T"'be D x D and D’ x D’ skew symmetric matrices. Prove that

J1 ] stadus@)] aur®) = [ ] [ 5600 dur(®)] austa)

Problem 1.12 Let V be a D dimensional vector space with basis {a1,...,ap} and V' be
a second copy of V with basis {c1,...,cp}. Let S be a D x D skew symmetric matrix.
Prove that

/ezici‘”’f(a) dps(a) = e~ 32i5¢iSi;¢5 /f(a — Sc) dug(a)

Here (Sc), = > Sijcj-

I.5 Grassmann Integrals and Fermionic Quantum Field Theories

In a quantum mechanical model, the set of possible states of the system form
(the rays in) a Hilbert space H and the time evolution of the system is determined by a

self-adjoint operator H on H, called the Hamiltonian. We shall denote by (2 a ground
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state of H (eigenvector of H of lowest eigenvalue). In a quantum field theory, there is
additional structure. There is a special family, { o(x,0) ‘ xeRY 0€6 } of operators
on H, called annihilation operators. Here d is the dimension of space and & is a finite
set. You should think of ¢(x,0) as destroying a particle of spin ¢ at x. The adjoints,
{ ol (x,0) ‘ X € ]Rd, ceB }, of these operators are called creation operators. You should
think of T (x, o) as creating a particle of spin o at x. All states in H can be expressed as
linear combinations of products of annihilation and creation operators applied to 2. The
time evolved annihilation and creation operators are

iHt

e (p(X, O_)e—th eth

Pl (x,0)e” M
If you are primarily interested in thermodynamic quantities, you should analytically con-

tinue these operators to imaginary ¢t = —i7

HTt

e Tp(x,0)e —Hr

—Hr eHTgoT(X, o)e
because the density matrix for temperature 7' is e ~?H where 3 = % The imaginary time
operators (or rather, various inner products constructed from them) are also easier to deal
with mathematically rigorously than the corresponding real time inner products. It has
turned out tactically advantageous to attack the real time operators by first concentrating
on imaginary time and then analytically continuing back.

If you are interested in grand canonical ensembles (thermodynamics in which you
adjust the average energy of the system through 4 and the average density of the system
through the chemical potential ©) you replace the Hamiltonian H by K = H — uN, where

N is the number operator and p is the chemical potential. This brings us to

6K7' —KT

o(r,x,0) = o(x,0)e

o(r,x,0) = eKTng(x, O‘)e_KT

Note that ¢(7,x, o) is neither the complex conjugate, nor adjoint, of ¢(7,x, ).
In any quantum mechanical model, the quantities you measure (called observ-

ables) are represented by operators on H. The expected value of the observable O when
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the system is in state Q is (2, OQ2), where ( -, -) is the inner product on H. In a quantum

field theory, all expected values are determined by inner products of the form
p
<Qa T H @(Tﬁv Xy, O-Z)Q>
(=1

Here the @ signifies that both ¢ and ¢ may appear in the product. The symbol T designates

the “time ordering” operator, defined (for fermionic models) by

T@(11,%1,01) - B(7p, Xp, 0p) = 80T B (T (1) X (1), T (1)) -+ B(Tr(p)s X (p) > O (p))

where 7 is a permutation that obeys 7r(;) > Tr(i11) for all 1 < ¢ < p. There is also a tie
breaking rule to deal with the case when 7; = 7; for some ¢ # j, but it doesn’t interest us

here. Observe that
@(Twu)’xw(l)v%(l)) T @(Tﬂp)’xw(mﬂw(m)
—KTr(p)

_ eKTﬂu)(p(T)( K(Tw(Z)_Tﬂ(l))gp(T) .. .eK(Tw(p)—Tﬂ(p_n)(p(T)(

Xr(1):0x(1))€ X ()10 () )€

The time ordering is chosen so that, when you sub in (1.2), and exploit the fact that €2 is
an eigenvector of K, every e (7= ~7=(i-1)) that appears in <Q, TTIo_, B(7e, %o, O'g)Q> has
Tr(i) — Tn(i—1) < 0. Time ordering is introduced to ensure that the inner product is well-
defined: the operator K is bounded from below, but not from above. Thanks to the sgnm
in the definition of T, <Q, TTIo_, B(7e, %o, O'g)Q> is antisymmetric under permutations of
the B(1¢, %, 00)’s

Now comes the connection to Grassmann integrals. Let z = (7,x). Please forget,
for the time being, that  does not run over a finite set. Let )V be a vector space with
basis {¢z o, @xg} Note, once again, that @x,g is NOT the complex conjugate of ¢, . It
is just another vector that is totally independent of 1, ,. Then, formally, it turns out that
ST Vo, ) Ty Ao At

J AW ], o s o dips g

The exponent A(1), ) is called the action and is determined by the Hamiltonian

(—1)p<9,1re1f[1 Blar,00)0) =

H. A typical action of interest is that corresponding to a gas of fermions (e.g. electrons),

of strictly positive density, interacting through a two—-body potential u(x —y). It is

( Z /(gerr:-i—l ZkO ( M))ij,a/‘vbk,a

d+1 _ . _
B % Z H (én dlj-l (2W)d+15<k1+k2_k3_k4)¢k1,ka&gu(kl - k3)wk2,0’wk4,0’
o,0'€6
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Here 9y, , is the Fourier transform of 1, , and a(k) is the Fourier transform of u(x). The
zero component kg of k is the dual variable to 7 and is thought of as an energy; the final
d components k are the dual variables to x and are thought of as momenta. So, in A,
% is the kinetic energy of a particle and the delta function d(ky + ko — k3 — k4) enforces
conservation of energy /momentum. As above, p is the chemical potential, which controls
the density of the gas, and u is the Fourier transform of the two-body potential. More
generally, when the fermion gas is subject to a periodic potential due to a crystal lattice,

the quadratic term in the action is replaced by

Z (gjr;_;]fl (2]{70 o e(k))&k,awk,a

ceS

where e(k) is the dispersion relation minus the chemical potential pu.
I know that quite a few people are squeamish about dealing with infinite dimen-
sional Grassmann algebras and integrals. Infinite dimensional Grassmann algebras, per
se, are no big deal. See Appendix A. It is true that the Grassmann “Cartesian measure”
Hm,U Ay o dzﬁx,g does not make much sense when the dimension is infinite. But this prob-
lem is easily dealt with: combine the quadratic part of the action A with Hm,U Ay o dzﬁx,g
to form a Gaussian integral. Formally,
STy By, D T, oo AW
JeAw O I, , d%,a Ay o

o f H?:l ({[J)mg,o'g eW(¢7J]) d#S(dja Jj)
- J eV @) dpug (1, 4))

(-17(2.T [T (e 002) =

where

— Jr — N —
W(¢»¢> = _% Z H (Cé )d}i1 (27T)d+16(k1+k2_k3_k4)¢k1,a¢k3,au(kl - k3)¢k2,a’¢k4,a’

G'CT

and [ - dus(v, 1) is the Grassmann Gaussian integral with covariance determined by

/ ¢k,a¢p,a’ dﬂS(@D»@Z) =0

/ /‘Ek,a/‘;p,a’ dﬂS(@Dv@Z) =0
(1.4)

/ ko Vpor dis(P,1)) = m(%)d“(;(k —p)

0,

/ koo dps(,¥) = — o22qs @m*+13(k — p)
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Problem 1.13 Let V be a complex vector space with even dimension D = 2r and basis
{41, -+, ¥y, b1, -+, 1, }. Again, ¥; need not be the complex conjugate of v;. Let A be an

r x r matrix and [ - dpa(e, 1)) the Grassmann Gaussian integral obeying

/¢i¢j dpa(, ) = /@Dz‘%‘ dpa(y,9) =0 /@Dz‘%‘ dpa(,9) = A
a) Prove

/win o -%% "'@jm dpa(i, )

= gi(_l)m_lAilje /@/h iy P by, dpa(y, )
Here, the 7;, signifies that the factor ¢);, is omitted from the integrand.
b) Prove that, if n # m,
/@Din iy g, dpa(ih, ) =0

c) Prove that

[ i i, dua, ) = det [

1<k,l<n

d) Let V' be a second copy of V with basis {¢1,---,(r, (i, -, (). View i (Gt ili) gg

an element of A ,,, V. Prove that

/ezi(&-wiwig) dpia(th, ) = Z0sGiAiCs

To save writing, lets rename the generators of the Grassmann algebra from

{%k.oy k.o } to {a;}. In this new notation, the right hand side of (I.3) becomes

p
Giv, -, ip) = % / el:[1 ai, V'@ dug(a) where / W) dug(a

These are called the Euclidean Green’s functions or Schwinger functions. They determine
all expectation values in the model. Let {c¢;} be the basis of a second copy of the vector

space with basis {a;}. Then all expectation values in the model are also determined by
S(ec) = %/ eZici WD) g6 (a) (1.5)
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(called the generator of the Euclidean Green’s functions) or equivalently, by

C(c) =log % / eZiciai WD) 1 5(a) (1.6)

(called the generator of the connected Green’s functions) or equivalently (see Problem 1.14,

below), by
9(c) =log § [ ") ds(a) (L.7)

(called the generator of the connected, freely amputated Green’s functions).

Problem 1.14 Prove that
C(C) = —%Eijcisijcj + g( — SC)
where (Sc), = > Sijc-

If S were really nice, the Grassmann Gaussian integrals of (I.5-1.7) would be very
easy to define rigorously, even though the Grassmann algebra AV is infinite dimensional.
The real problem is that S is not really nice. However, one can write S as the limit of
really nice covariances. So the problem of making sense of the right hand side of, say,
(I.7) may be expressed as the problem of controlling the limit of a sequence of well-defined

quantities. The renormalization group is a tool that is used to control that limit. In the

version of the renormalization group that I will use, the covariance S is written as a sum
oo
S = Z S
Jj=1

with each SU) really nice. Let
J
§(SJ) — Z S
j=1

and

Gs(c) =log %/ e+ dig< (a) where Z; = / e @ g« (a)
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(The normalization constant Z; is chosen so that G;(0) = 0.) We have to control the limit
of Gy(c) as J — oco. We have rigged the definitions so that it is very easy to exhibit the

relationship between G;(c) and Gj11(c):

Grt1(c) = log #ﬂ/ Ot dpugcsin (D)

= log ﬁ / BW(b—H}) d,LLS(gJ)+S(J+1)(b)

Zj+1

= log s /ng(C+a) duS(J-H) (a)

= log =+ / [/ WV latbte) dus(gJ)(b)] dirgr+1) (a) by Proposition 1.21

Problem I.15 We have normalized G 41 so that G;11(0) = 0. So the ratio %il in

Gyt1(c) = log %il /ng(CM) dpger+ (a)
had better obey
G = [ dusn (@

Verify by direct computation that this is the case.

1.6 The Renormalization Group

By Problem I.15,
Gri1(c) = Qg (G5) () (1.8)

where the “renormalization group map” €2 is defined in

Definition I.22 Let V be a vector space with basis {¢;}. Choose a second copy V' of V and
denote by a; the basis element of V' corresponding to the element ¢; € V. Let S be a skew

symmetric bilinear form on V’. The renormalization group map Qg : AgV — AgV is

defined by
Qs(W)(c) zlogﬁﬂ/ew(0+“)du3(a) where Zy g = /eW(“)dug(a)
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for all W € AgV for which [ eV (@ dug(a) is invertible in $.

Problem 1.16 Prove that
Gr = Qg0 0Qgu-10---00gm) (W)

= QS(U o Qs(z) ©---0 QS(J)(W)

For the rest of this section we restrict to $ = €. Observe that we have normalized

the renormalization group map so that Qg(W)(0) = 0. Define the subspaces
/\(>O)V _ @ /\nv
n=1

AV= @ A

n even

of AV and the projection

p>0) . AV — /\(>O)V
W (a) — W(a) — W(0)

Then

Lemma 1.23

i) If Zw,s # 0, then Zpow.s # 0 and

QS(W) = Qs(P(>O)W> c /\(>O)V
i) If Zw,s #0 and W € /\(e)v, then Qs(W) € /\(E)V.

Proof: i) is an immediate consequence of

Zpcow,s = e~ W) /eW(“)duS(a)

/e(P(>O)W)(C+a)d,uS(CE) _ e—W(O) /eW(c—l-a)dluS(a)
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ii) Observe that W € AV is in /\(E)V if and only if W(0) = 0 and W(—a) = W(a).
Suppose that Zy, s # 0 and set W’ = Qg(W). We already know that W’(0) = 0. Suppose
also that W(—a) = W(a). Then
[ dps(a) [ M dus(a)
=1In
J 7@ dps(a) J @ dps(a)

As [a;dus(a) =0 for all |I| odd we have

W'(—c) =1In

[ #-a) dusta) = [ 1(a) dus(a)

for all f(a) € AV and

0 J eV D dug(a) N J eVt Ddpug(a)
J e @dpg(a) eV @dpus(a)

Hence W' (—c) = W'(e).

=W'(c)

Example 1.24 If S =0, then Qg_o(W) =W for all W € /\(>0) V. To see this, observe
that W(c+ a) = W(c) + W(c,a) with W(c,a) a polynomial in ¢ and a with every term
having degree at least one in a. When S =0, [a,dus(a) =0 for all [I| > 1 so that

/W(c +a)" dup(a) = / (W (e) + Wie, a)]"dpo(a) = W(c)"

and
/GW(C+a)d[L0(CL> _ eW(c)

In particular
/eW(“)duo(a) =V =1

Combining the last two equations

J eVt dpg(a)

=lneV© =W
1 feW(“)dlLO(a) ne <C)

We conclude that
S=0, W0)=0= Qg(W)=W
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Example 1.25 Fix any 1 <4,j < D and A € C and let W(a) = Aa;a;. Then

/ek(ci—i—ai)(cj'—l—aj) dlu/s(a) — /e)\CiCje)\aiCjeACiaje)\aiaj dus(a)
)\czcj

[ + )\aicj} [1 + )\ciaj} [1 + )\aiaj] dug(a)

AchJ

\\

[1 + Aajcj + Acjaj + daaj + A alc]cza]} dus(a)

— e)xcicj

L—

1 )\SZJ + )\QCjCiSZ'j]
Hence, if \ #£ —%j, Zw,s = 1+ AS;; is nonzero and

feW(c—l—a)d#S(a) B eNCiCj [1 —+ )\Sij —+ )\chcisij}
[eV@dug(a) 1+ AS;;

AS”}

Acies
= e CiCy |:]‘+C]C’L].+>\S

2

2253,
o J oo
ACiCj— Txg;7 CiC

by
ciCj
= e iJ = e A5,

We conclude that

A

W( ) )\CLZCL], >\§é :>QS(W)( ) 1+)‘S1]

———=—CiCj
In particular Zp ¢ =1 and
Qs(0)=0

for all S.

Definition 1.26 Let £ be any finite dimensional vector space and let f : £ — C and
F : & — &£ For each ordered basis B = (ey,---,ep) of £ define fB . P — € and
Fpi:CP - C,1<i<Dhby

f(her+---+Apep) = fa(A1, -+, Ap)
F(Mey + -+ Apep) = Fpa(M, -, Ap)er + -+ Fp.p(A1,-- -, Ap)ep

We say that f is polynomial (rational) if there exists a basis B for which fB(/\l, “o,AD)
is a polynomial (ratio of two polynomials). We say that F' is polynomial (rational) if there
exists a basis B for which Fp.;(A1,---,Ap) is a polynomial (ratio of two polynomials) for

all 1 <3< D.
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Remark 1.27 If f is polynomial (rational) then fz(A1,---,Ap) is a polynomial (ratio of
two polynomials) for all bases B. If F is polynomial (rational) then Fg.;(\1,---,Ap) is a

polynomial (ratio of two polynomials) for all 1 < i < D and all bases B.

Proposition 1.28 Let V be a finite dimensional vector space and fix any skew symmetric
bilinear form S on V. Then

i)
Zws . A% — ¢

W(a) — / V@ dpig(a)

18 polynomial.

ii)
Qs(W) = APV — ACOY
J eVt dug(e)

W(a) — In f eW(C)dug(c)

18 rational.

Proof: i) Let D be the dimension of V. If W(0) = 0, V@ = P Ly ()P is

n=0 n!

polynomial in W. Hence, so is Zys.

ii) As in part (i), [e"V(@+9dug(c) and [eW(9dug(c) are both polynomial. By example
1.25, [ e"(©)dug(c) is not identically zero. Hence

B feW(a—kc)d# (C)
Wi(a) = few(c)dﬂsid

is rational and obeys W (0) = 1. Hence

n

D
mW =Y Gy - )"
n=1

is polynomial in W and rational in W. [ |
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Theorem 1.29 LetV be a finite dimensional vector space.

i) If S and T are any two skew symmetric bilinear forms on V, then Qg o Qr is defined as
a rational function and

QS e} QT = QS+T

i) { Qs( ) | S a skew symmetric bilinear form onV } is an abelian group under compo-

sition and is isomorphic to RPP~Y/2 where D is the dimension of V.

Proof: i) To verify that Qg o Qr is defined as a rational function, we just need to check
that the range of Q27 is not contained in the zero set of Zy,g. This is the case because
Qr(0) =0, so that 0 is in the range of Qp, and Zy ¢ = 1.

As Zwr, Zao,w),s and Zy st are all rational functions of W that are not

identically zero

{WeAV| Zwr#0, Zawys #0, Zw,s¢r #0 }

is an open dense subset of A\V. On this subset

feW(C+“) dusyr(a)
eV dugyr(a)
f [f eW (atb+e) duT(b)] dus(a)
I 1S eV @t dug(b)] dus(a)
[ erMWlate) [ W) gy (b) dpg(a)
[erM@ [ eW®) dup(b) dus(a)
[ S (W)ate) gy¢(a)
[ e2r(W)(@) dpg(a)
= QS (QT(W>)

Qsr(W) =

=In

=In

=1In

ii) The additive group of D x D skew symmetric matrices is isomorphic to RP(P-1/2,
By part (i), S +— Qg( - ) is a homomorphism from the additive group of D x D skew
symmetric matrices onto { Qg( - ) } S a D x D skew symmetric matrix }. To verify that

it is an isomorphism, we just need to verify that the map is one-to—one. Suppose that
Qs(W) = Qr(W)
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for all W with Zyw ¢ # 0 and Zw, 1 # 0. Then, by Example 1.25, for each 1 <+¢,5 < D,

A B A
14+ AS;; 1+ ATy
for all A # —%j, _Tlij' But this implies that S;; = T5;. [ |

1.7 Wick Ordering

Let V be a D—dimensional vector space over C and let $ be a superalgebra. Let
S be a D x D skew symmetric matrix. We now introduce a new basis for Ag )V that is
adapted for use with the Grassmann Gaussian integral with covariance S. To this point,
we have always selected some basis {a1,...,ap} for V and used { @iy -y, ‘ n>0,1<

<o <i, <D } as a basis for \g V. The new basis will be denoted
{:ai-a,:|n>0,1<i;<---<i, <D}

n*

The basis element :a;, - - - a;, : will be called the Wick ordered product of a;, - - - a;

Let V' be a second copy of V with basis {b,...,bp}. Then :a;, ---a;,: is deter-

mined by applying gT e gb, to both sides of
i1 in

eszaz. — G%EbiSijbj eZbiai

and setting all of the b;’s to zero. This determines Wick ordering as a linear map on g V.
Clearly, the map depends on S, even though we have not included any S in the notation.
It is easy to see that :1: = 1 and that :a;, ---a;, : is

e a polynomial in a;,,---,a;, of degree n with degree n term precisely a;, - - -a;,

e an even, resp. odd, element of ¢}V when n is even, resp. odd.

e antisymmetric under permutations of i1, - - -, i, (because gb—il e gb—in is antisym-

metric under permutations of iy, -, ,).

So the linear map f(a) — :f(a): is bijective. The easiest way to express a;, - - - a;, in terms

of the basis of Wick ordered monomials is to apply gT e gT to both sides of
i1 in

62 biai — e—%E sz”bj :62 biai .
and set all of the b;’s to zero.
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Example 1.30
‘i = Ay a; = :a;:
;050 = Qi — Sij aia; = :Q;Q;: + Sij
:aiajak: = aiajak — Sijak — Skiaj — Sjkai aiajak = :aiajak: + Sij:akl =+ Ski:aj: + Sjk:ai:

By the antisymmetry property mentioned above, :a;, ---a; : vanishes if any two of the

n

indices i; are the same. However :a;, ---a;,: :aj, - - -a;, : need not vanish if one of the i;’s

is the same as one of the j,’s. For example

iyl iy = (aiaj — SU) (CLZ'CL]' — SZ) = —ZSijaiaj + SZQJ

Problem 1.17 Prove that
fla): = / f(a+b) du_s(b)
fla) = / F(a+b) dus(b)

Problem I.18 Prove that

Problem I.19 Prove that

[atares @) dusta) = 32 i [igta): 5 ) dusta)

Problem I.20 Prove that
fila+b)=:f(a+b):qg=:f(a+ )y

Here : - :, means Wick ordering of the a;’s and : - :; means Wick ordering of the b;’s.

Precisely, if {a;}, {b;}, {A;}, {Bi} are bases of four vector spaces, all of the same dimension,

.eEiAiai—i—EiBibi . — eEszbz .eEiAiai . — 621A1a1—|—21B1b1e%EZJAstJAJ
. ‘a . ‘a
:eEzAzaz—l—Eszbz . — eEiAiai :eEszbz . — eEiAiaz——l—EiBibie%EijBiSz—ij

b b
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Problem 1I.21 Prove that
fiser(a+b) = fla+b)ias

Here S and T are skew symmetric matrices, : - :g47 means Wick ordering with respect to

S+T and ; - | .s means Wick ordering of the a;’s with respect to S and of the b;’s with

b, T

respect to T

Proposition 1.31 (Orthogonality of Wick Monomials)

a) If m >0
/:ai1 ceeay dpg(a) =0

b) If m#n
/3&11 ceeay,, g eag s dps(a) =0

/:ai1 ceeag,, g, - ag,c dpg(a) = det [Sik je} L<kL<m

Note the order of the indices in :a;,, - - - aj,:.

Proof: a)b) Let V" be a third copy of V with basis {c1,...,¢p}. Then

/:eEbzaz :eEciai: dlu/s(a/) :/e%EbZSme eZbiai e%EciSijcj eZciai dlu/s(a)

— 6%2 biSijbje%ECiSijcj/ 62 (bi+ci)a; dlLS(a)

— 3XbiSijbj 53X ciSijcj o~ 53 (bitci)Sij(bj+e;s)

Now apply gb—il . and set all of the b;’s to zero.

by,
) ) — % b Sije _ _—SbiSije
o6y T o © o ch(_%: Siggei) o (—% SimitCil, ) b —o
= (=D)"(X Sigeir) -+ (2 Sinscin)
J1 Im
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Now apply gcjl gc, and set all of the ¢;’s to zero. To get a nonzero answer, it is

In

necessary that m = n.
c) We shall prove that

/:aim ceaiiag, e ag, dpg(a) = det [Sik jf}lgk,@gm

This is equivalent to the claimed result. By Problems 1.19 and 1.18,

/:aim ceagiiag, e ag, dpg(a) = Z(—l)“’lSilj[ /:aim a1 ag s dps(a)
=1 e
The proof will be by induction on m. If m = 1, we have
/:ail: ROTR d,us(a) = Siljl /1 dus(a) = Siljl
as desired. In general, by the inductive hypothesis,
/:aim E L7 PN 7 PR ¢ 7 dus(a) = Z(_1)£+15i1j5 det [Sip jk] ;iglg,kkg;zz
=1 ’

= det [Sip jk}

1<k,p<m

Problem 1.22 Prove that

/ F(a): dus(a) = £(0)

Problem 1.23 Prove that
/ I I : Hl ag, .. dps(y) = Pf (T(i,u),(i’,u’))
i=1 H=

where
- {0 ifi =14
(4,1), (3" ") = Sgingi,#, ifi £

Here T is a skew symmetric matrix with 2?21 e; rows and columns, numbered, in order
(1,1),---,(1,e1),(2,1),---(2,€32), -+, (n,e,). The product in the integrand is also in this
order. Hint: Use Problems 1.19 and 1.18 and Proposition 1.18.
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I.8 Bounds on Grassmann Gaussian Integrals

We now prove some bounds on Grassmann Gaussian integrals. While it is not
really necessary to do so, I will make some simplifying assumptions that are satisfied in
applications to quantum field theories. I will assume that the vector space V generating
the Grassmann algebra has basis { V(LK) ‘ te X,k €{0,1} }, where X is some finite
set. Here, ¥(¢,0) plays the réle of v, , of §1.5 and (¢, 1) plays the role of 9, , of §1.5. T
will also assume that, as in (I.4), the covariance only couples K = 0 generators to kK = 1
generators. In other words, we let A be a function on X x X and consider the Grassmann
Gaussian integral [ - dpa(y) on AV with

0 ifk=r"=0
J ey dpaty = A =0 =
0 ifk=r"=1
We start off with the simple bound

Proposition 1.32 Assume that there is a Hilbert space H and vectors fs,qge, £ € X in H
such that
AW = (fo,g0)y,  forall 6,0 € X

Then
[ Totm) dua) < TT s T ol

1=1 1<i<n 1<i<n
k; =0 k=1

Proof: Define
F={1<i<n|k =0}

F={1<i<n|r =1}
By Problem 1.13, if the integral does not vanish, the cardinality of F' and F coincide and
there is a sign 4 such that
/ ﬁ V(li, ki) dpa(y) = +det [A&wfg} icF
i=1 JEF
The proposition is thus an immediate consequence of Gram’s inequality. For the conve-

nience of the reader, we include a proof of this classical inequality below. [ |
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Lemma 1.33 (Gram’s inequality) Let H be a Hilbert space and uy, -+, Up,

vy, -, Uy € H. Then
detftwsod] [ < Tl o
Here, (-, - ) and || - || are the inner product and norm in H, respectively.
Proof: We start with three reductions. First, we may assume that the wuy, ---, u,

are linearly independent. Otherwise the determinant vanishes, because its rows are not
independent, and the inequality is trivially satisfied. Second, we may also assume that

each v; is in the span of the u;’s, because, if P is the orthogonal projection onto that span,

det[(uiv5)| = det[(us, Pup)| _ while TTimy 1Pull fleill < Ty Il sl
1<i,j<n 1<i,j<n

Third, we may assume that vy, ---, v, are linearly independent. Otherwise the de-
terminant vanishes, because its columns are not independent. Denote by U the span of
ui, -+, U, . We have just shown that we may assume that wy, ---, u, and vy, ---, v,

are two bases for U.

Let «; be the projection of w; on the orthogonal complement of the subspace

spanned by wui, ---, u;—1 . Then a; = u; + Z;;i iijuj for some complex numbers lN)ij
and q; is orthogonal to uq,---,u;—1 and hence to aq,---,a;_1. Set
[levi |~ ifi=j
Lij=<0 ifi<y

||ai’|_1iij if 4 > 7

Then L is a lower triangular matrix with diagonal entries
-1
Lii = |las]]

such that the linear combinations
i
U;:Z Lijuj N 7 = 1, R
Jj=1

are orthonormal. This is just the Gram-Schmidt orthogonalization algorithm. Similarly,

let (; be the projection of wv; on the orthogonal complement of the subspace spanned by
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v1, -+, Vi1 . By Gram-Schmidt, there is a lower triangular matrix M with diagonal
entries

My = 87"

such that the linear combinations
i
U;:Z Mijvjy 7 = 1, e, N
j=1

are orthonormal. Since the v]’s are orthonormal and have the same span as the v;’s, they

form an orthonormal basis for U. As a result, uj = 3_; (uj, ;) v so that

Z (ug, v5) (V5 up,) = (ug, up) = Oix

J

and the matrix [(ug, véﬂ is unitary and consequently has determinant of modulus one. As

L [t ] M =[Gt 0f)]

we have
n n
| det[(u;, v;)]| = |det™'L det™'M| = H || 118:]l < H i [ [ vz]]
i=1 i=1
since ) ) ) ) )
uil|* = llaj + (u; —ap)||* = llog||” + [Ju; —a;l|* > oy
oI = 118; + (v; = BHIP = 1817 +1lv; = B;11* > 11617

Here, we have used that o; and u; — «; are orthogonal, because «; is the orthogonal

projection of u; on some subspace. Similarly, 3; and v; — 3; are orthogonal. [ |

Problem 1.24 Let a;;, 1 <4,57 <n becomplex numbers. Prove Hadamard’s inequality

n n 1/2
det[a || < T (X lawl?)
i=1 \j=1
from Gram’s inequality. (Hint: Express a;; = (a;,e;) where e; = (0,---,1,---,0) , j =

1,--+,n is the standard basis for C" .)
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Problem 1.25 Let V be a vector space with basis {a1,---,ap}. Let Sy¢ be a skew

symmetric D X D matrix with
S, = (fe,90) forall 1 < ¢,0' <D
for some Hilbert space H and vectors fo, g € H. Set Fy = /|| fell#||gel|7. Prove that

) eﬁ ai, dps(a)| <

We shall need a similar bound involving a Wick monomial. Let : - : denote

Wick ordering with respect to dp .

Proposition 1.34 Assume that there is a Hilbert space H and vectors fs,qge, £ € X in H
such that

AWU) = (fo,g0)y,  forall 6,0 € X

Then

e [T l1ger Il

1<i<m 1<i<m 1<j<n 1<j<n

Ky =0 ri=1 N;:o N;:1

‘/ﬁlw(&’“i) 31_[11?(537 Kj) dﬂA(¢)‘ <2 [T,

1=

Proof: By Problem I.17,

J T wteew) < 10 (6 %): duate)

n

-/ ﬁ 0t T [0(6,05) + 66 57)] dua(v) dua(6)

Jj=1

= /H Y (i, ki) H (05, K5) dpa(y) [T (¢, k) du—a()

Jc{l Jg€J

There are 2™ terms in this sum. For each term, the first factor is, by Proposition 1.32, no

larger than

[Tl el TTgellze TTI e 12 T Mg I

1<i<m 1<:i<m jEJ jEJ
"“z_o "“z_l w! =0 k! =1
J J
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and the second factor is, again by Proposition 1.32 (since —A(¢,¢) = (fs, —ge)4,), DO

larger than

TT07e s TTlge: I

JQJ jQJ
w! =0 w! =1
J J

Problem 1.26 Prove, under the hypotheses of Proposition 1.34, that

‘/H Hw zw/iz,u) dNA(w)‘S H \/§erz,u||H H \/§Hg€i,uHH

1 k=1 1<i<n 1<i<n
1<p<e; 1<p<e;
"i,u:O “i,u:l

Finally, we specialise to almost the full structure of (I.4). We only replace kéie(k)
by a general matrix valued function of the (momentum) k. This is the typical structure in
quantum field theories. Let & be a finite set. Let E, (k) € L! (IRCH'l, (2:)7’3“), for each
0,0’ € 6, and set

Coo(x,y) = / (gjr)% k=2 B (k)
Let [ - dupc() be the Grassmann Gaussian integral determined by

0 ifk=rk"=0
Coo(x,y) ifr=0 k=1
—Cy o(y,x) fr=1, k=0
0 ifk=r"=1

/¢U<x7 ’i)wﬁ’(y? ’1’) dﬂc(@ =
for all z,y € R and 0,0’ € &.

Corollary 1.35

m n n (m+n)/2
sup, | [ T v wiono): 11 s )2 dictw)| < 2 fIE0)] i)
a:/i,o'};,nz/- 1:1 le
T3
sup /H itbai,l(fﬁi,l, Ki1) " '@Zio—i,ei (Tisesr Kiye;) - dpc (P /HE )|l (27) d+1>
Tiw i, 1=1
i,

as an operator on {2 ((D|G|).

Here |E(k)|| denotes the norm of the matriz (Eg,g/(k:)) o
o,0'€
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Proof: Define
X={(p|[1<i<n 1<pu<e}

A((Z7 M)? (i/7 /J’/)) = Cai,#,cri/’u/ (xi,;u xi’,u’)

Let W((i,p), k), (i,n) € X, v € {0,1} be generators of a Grassmann algebra and let
dpua (V) be the Grassmann Gaussian measure on that algebra with covariance A. This

construction has been arranged so that
/%i,u(f’?i,ua Kiop) oy 0 (Tit s Kir ) dpc(P) = /‘I’((i,#)» Ki) O((7, 1), Kir pr)) dppa (W)
and consequently
/i]illilbai,l(xi,l, i) Vou o (Tisess Kive) - dpe (1)
- /f{l:xy(u, 1), i) - W((i, €3), Kie,)  dpia ()

Let H = L? (IRd+1, (%d)’fjﬂ) ® C'®! and
ok, 0) =+ JTE M by, Gilh, ) = i Eria)
If |E(k)|| =0, set g; u(k,0) = 0. Then
Ay ), (' 1)) = (fipr Gir g

and, since ) & ‘Ea,ai,u(k)‘z < [[E(K)|I?,

1/2
\MMEW%AH:HHMMMHZ(ﬂwwm@%ﬂ
The Corollary now follows from Proposition 1.34 and Problem 1.26. m
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I1I. Fermionic Expansions

This chapter concerns an expansion that can be used to exhibit analytic control
over the right hand side of (I.7) in fermionic quantum field theory models, when the
covariance S is “really nice”. It is also used as one ingredient in a renormalization group

procedure that controls the right hand side of (I.8) when the covariance S is not so nice.

I1.1 Notation and Definitions

Here are the main notations that we shall use throughout this chapter. Let
e A be the Grassmann algebra generated by {ai,---,ap}. Think of {ay,---,ap}
as some finite approximation to the set { ¥, », ¥y o ‘ re R oe {1, 1} } of

fields integrated out in a renormalization group transformation like
W (¥, 9) — W(¥,¥) = log 5 / M dpg (4, )

e C be the Grassmann algebra generated by {c1,---,¢p}. Think of {¢1,---,¢p} as
some finite approximation to the set { ¥, o, ¥y o | 2 € R oe{1, |} }
of fields that are arguments of the output of the renormalization group transfor-
mation.

e AC be the Grassmann algebra generated by {ai,---,ap,c1, - ,¢cp}.

e S = (5i;) be a skew symmetric matrix of order D. Think of S as the “sin-
gle scale” covariance SU) of the Gaussian measure that is integrated out in the
renormalization group step. See (1.8).

e [ - dus(a) be the Grassmann, Gaussian integral with covariance S. It is the
unique linear map from AC to C satisfying

1

/ eZciai dﬂs(&) — e—EECiSijcj
In particular
/aiaj dﬂs(CL) = Si,j
o M, = { (ir,--+,ip) | 1 <iy,---,i, < D } be the set of all multi indices of

degree » > 0. For each I € M, set a; = a;, ---a;, . By convention, ag = 1.
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e the space (AC)? of “interactions” is the linear subspace of AC of even Grassmann

polynomials with no constant term. That is, polynomials of the form

Wi(c,a) = > > wi (L, J) crag

I,relN LeM;
1<I4+r€2Z  JeM,

Usually, in the renormalization group map, the interaction is of the form W (c+a).

(See Definition 1.22.) We do not require this.
Here are the main objects that shall concern us in this chapter.

Definition II.1

a) The renormalization group map Q: (AC)? — C° is

Q(W)(c) =log ﬁ /eW(C’“) dus(a) where Zy g = /eW(O’“) dug(a)

It is defined for all W’s obeying feW(O’“) dus(a) # 0. The factor ﬁ ensures that

Q(W)(0) =0, i.e. that Q(WW)(c) contains no constant term. Since Q(W) =0 for W =0

QW) (c) = /O 4O (W) (c) de

M W(e,a) e @D dpg(a) e L [W(0,a) eV (09 dpig(a) de
Jo [eW D dus(a) o JeWODdus(a)

Thus to get bounds on the renormalization group map, it suffices to get bounds on

(IL1)

b) the Schwinger functional S : AC — C, defined by

S(h) = =y / f(e;a) "€ dps(a)

where Z(c) = [e"(©) dug(a) . Despite our notation, S(f) is a function of W and S

as well as f.

c¢) Define the linear map R: AC — AC by
R(f)(c.a) = / W)W 1 p (e ) dyus(b)
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where : -, denotes Wick ordering of the b-field (see §1.6) and is determined by

:eZAiai‘l‘EBibi“‘ZCiCi :b — e%EBiSiij eZAiai“‘ZBibi"‘ZCz‘Ci

where {a;}, {4;}, {b:}, {Bi}, {ci}, {Ci} are bases of six isomorphic vector spaces.

If you don’t know what a Feynman diagram is, skip this paragraph. Diagram-
matically, % [ eV f(c,a) dus(a) is the sum of all connected (f is viewed as a single,
connected, vertex) Feynman diagrams with one f—vertex and arbitrary numbers of W—
vertices and S-lines. The operation R(f) builds parts of those diagrams. It introduces
those W—vertices that are connected directly to the f—vertex (i.e that share a common S—

line with f) and it introduces those lines that connect f either to itself or to a W-vertex.

Problem II.1 Let

D
F(a) = Z fUn,92) ajy a4,
jl’j2:1
D

W(a) = Z w(j1, j2, Js, Ja) aj, aj,a;,a;,
J1,J2,J3,§a=1

with f(j1,72) and w(j1, j2, J3, j4) antisymmetric under permutation of their arguments.
a) Set
S(A) = %/ F(a) MW@ dug(a) where Z, = /eAW(“) dus(a)

Comput iSA‘ for £ =0, 1, 2.
ompute F37S( ))\:0 or

b) Set

Compute %R(A)‘/\io for all ¢ € IN.

I1.2 The Expansion — Algebra

To obtain the expansion that will be discussed in this chapter, expand the

(1 — R)™! of the following Theorem, which shall be proven shortly, in a power series

in R.
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Theorem I1.2 Suppose that W € ACP is such that the kernel of 1—R s trivial. Then,
for all f in AC,

S(f) = / (1—R)"M(f) dps(a)

Proposition I1.3 For all f in AC and W € ACPO,

/ F(era) D dpug(a) = / F(e.b) dps(b) / D dyug(a) + / R(f) (e a) " @ dys(a)

Proof: Subbing in the definition of R(f),
e dns®) [ dusta) + RO @) O dusa
_ /[/:GW(c,a+b)—W(c,a):bf(c, b) dus(®) | VD dug(a)
= [ [ eea fed) dust) dusta)

since jeW(c’“+b)_W(c’a);b = :eWlcath) " e~"W(ea)  Continuing,

/f(c, b) dus(b) [ eV dug(a) + /R(f)(c, a) eV (D dpg(a)
= / - (e,ath) L, f(e,b) dus(b) dus(a) by Problem 1.20
= / f(e,b) e dpg(b) by Problems 1.11, 1.22

= [ Fe.0) " dus(a)

Proof of Theorem I1.2: For all g(c,a) € AC

/ (1— R)(g) ") dug(a) = Z(c) / 9(c, a) dps(a)

by Proposition I1.3. If the kernel of 1 — R is trivial, then we may choose g = (1— R)~L(f).
So

/f(c, a) eV dug(a) = Z(c) /(]1— R)™!(f)(c,a) dus(a)
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The left hand side does not vanish for all f € AC (for example, for f = e=") so Z(c) is

nonzero and

2t [ He@ e dusta) = [ (1= R)(F)(e.0) dus(a)

|

I1.3 The Expansion — Bounds
Definition II1.4 (Norms) For any function f: M, — C, define

I = 1121?5 1I<I}€a<XD J.§4 ‘f(J)‘

Jji=k
Al = \f )|
JeM

The norm || - ||, which is an “L! norm with one argument held fixed”, is appropriate for

kernels, like those appearing in interactions, that become translation invariant when the
cutoffs are removed. Any f(c,a) € AC has a unique representation
f(C,CE) = 2 Z fl,?"(k:l:"'7kl7j17”'7j1“)ck1"'Ckl Qjy 00 Ay,

1,r>0 k1.ky
J1s sdr

with each kernel f;,(k1,---, ki, j1, -+, Jjr) antisymmetric under separate permutation of

its k arguments and its j arguments. Define

Ifea)a=3 a

l,r>0

If(e;a)lla= " a

l,r>0

Ml—l—r to (D

Problem II.2 Define, for all f: M, — C and g : My — C with r;s > 1 and r + s > 2,
f*g:Mr-l-s—Q — C by

D
FrgUn e dras—2) = Y FU1 e dr1, K)g(k s, Grss—2)
k=1
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Prove that

1f =gl < IfIHlgl and [lLf*glll < min {1 lgll . 11901}

Definition II.5 (Hypotheses) We denote by
(HG) ‘ J b bz dps(B) | < FEHIL forall H,J € U,u0 M,

(HS) IS < F2D

the main hypotheses on S that we shall use. Here ||S| is the norm of Definition II.4
applied to the function S : (i,j) € Mgy — S;;. So F is a measure of the “typical size of
fields b in the support of the measure dug(b)” and D is a measure of the decay rate of S.
Hypothesis (HG) is typically verified using Proposition 1.34 or Corollary 1.35. Hypothesis
(HS) is typically verified using the techniques of Appendix C.

Problem I1.3 Let : - :g denote Wick ordering with respect to the covariance S.

a) Prove that if
‘ / by :by:s dug(b) ‘ <FMFIT - forall H,Je | M,
r>0

then
) / b :by:i.s du.s(b) ‘ < (MF)'HHU' for all H,J € U M,

r>0

Hint: first prove that [ by :by:.s du,s(b) = 2UHHIN/2 [ by ibyig dus(b).

b) Prove that if
‘ / bu :by:s dps (D) ‘ < FIHHPE - and ’ / bu by dpp(b) ‘ < GIHIFI

for all H,J € Urzo M., then

[H[+]J]

‘ / b :byisir dpisir(b) ) < (F+G) forall H,J€ | JM,

r>0

Hint: Proposition 1.21 and Problem 1.21.
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Theorem I1.6 Assume Hypotheses (HG) and (HS). Let a > 2 and W € AC® obey
D(|W(a+nyr < 1/3. Then, for all f € AC,

IR(Hllar < 2 DIWlla+ne | fllar

IR(Allar < 2 DIWla+nyr Ifllar

The proof of this Theorem follows that of Lemma II.11.

Corollary I1.7 Assume Hypotheses (HG) and (HS). Let « > 2 and W € AC? obey
D(|W(a+nyr < 1/3. Then, for all f € AC,

IA

IS(F)(e) = S(F)O0)]lax
ISHllar < Z25 1f1llar
12 )llar < 3255 (W llar

ﬁ ||f”aF

The proof of this Corollary follows that of Lemma I1.12.
Let
Wi(c,a) = > > w,(L,J)cray

l,reIN LeM,
JeMyp

where w; (L, J) is a function which is separately antisymmetric under permutations of
its L and J arguments and that vanishes identically when [ + r is zero or odd. With this

antisymmetry

W(ec,a+b) —Wi(c,a) = Z Z (") wi s (L, I K)eragbi
l 0

, > LeM;
s>1  JeEM,
KeMs

where J.K = (j1, -+, jr, k1, -, ks) when J = (j1,--+,j,) and K = (ky,---,ks). That is,

J.K is the concatenation of J and K. So

Y4
. W (c,a+b)—W (e, ._E:l E § . Tit S8 :
e (c,a+b) (c,a) _ 1'b_ Vil . H ( 181' 1)wli,ri—|—si (LiyJi'Ki)cLiaJibKi b
>0 ljmi>0 LiE€M;, i=1
szl JeMypy,
KiEMsi
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with the index 7 in the second and third sums running from 1 to . Hence

l
R(N=D > #I1(EIRL)
€>0 r,ss,‘lgli\le i=1

where

Y4
ls,r(f) = Z /H Wi; ri+s; (LZ7 Ji-Ki)cLiaJibKi:b f(cv b) dﬂs(b)
LieMy, i=1

J; €My,
K, EMsg,

Problem I1.4 Let W(a) = > ., ;<pw(i,J) a;a; with w(i, j) = —w(j, ). Verify that

W(a+b)—=W(a) = > wi,j)bibj+2 >  w(ij) ab;
1<ij<D 1<ij<D

Problem IL.5 Assume Hypothesis (HG). Let s,s’,m > 1 and

fO)= % fu@ba W)= 3 w(K)bx WO)= > w,(K)bk

HeM,, KeM, KeM,

s

a) Prove that
| [ W), 10 dus )] < mE™ 2 1S o]

b) Prove that [ W (b)W'(b):, f(b) dus(b) =0 if m = 1 and

| [ Wewe):, 70) dus®)] < mim = DE™ gl ISP ) )]

if m > 2.
Proposition I1.8 Assume Hypothesis (HG). Let
f(p,m) (C, a) = Z fp,m(L H) cilan

Let r,s,1€ IN* with each s; > 1. If m < £, Rir(f(p’m)) vanishes. If m >/

)
)

HRir(f(p’m))Hl < () E™ | fpml

l
T (ISPl
J4
IRE 7O < O™ Wyl T (ISTF™ fvr s,
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Proof: We have

ir(f(p,m)> = =x Z Z fl,r,S(L17'"7LA€7LJ17”'7J£) L, -C,Cray, - -ay,

IEMp Ji €My,
LieMy,
1<i<e

with

J4
fl,r,s<L17"'7L€7I7 Jl?"'7J€) = Z /H wli,ri—i—si(Li?Ji?Ki)bKi:b fp,m(L H) bH d,uS(b)
HeMpm =1

KieMSi

The integral over b is bounded in Lemma I1.9 below. It shows that

Sres(Lay o Loy LJa, -+, Jo)
vanishes if m < ¢ and is, for m > ¢, bounded by
| fiesLi, o Lo, LIr, - Jo)| < 0(7) T(La, -, L, LIy, oo, Jg) Bt ei—2t
where

¢ D
T(Llf":LZ?LJl?"'vJﬁ) = Z H Z |u1(L17J27k1>||Skuhz|>|fp7m(LH)|
HeM,, i=1"k;=1

and, for each i =1,---,/¢

wi (L, Jiy k) = > w1, ryvss (Liy Ji, (ki) Ko
KiEMsifl

Recall that (k1).K = (k1, ko, -, ks) when K = (kg,---, k). By construction, |u;|]| =

|lwi; r;+s,||- By Lemma I1.10, below
0 1 0 1
1Tl < N fpmll S]] 1:[1 Juill <[ fp,mll 1511 1:[1 [wi; it |
and hence
¢
I fresll < () F =720 fo | 1S1 l:[1 [KA—
Similarly, the second bound follows from ||T|| < || fp.mll [1S]¢ Hle ||ui]|- |
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Lemma I1.9 Assume Hypothesis (HG). Then

£ £
[T b b dus(e) | < SR s
= Sl

Proof: For convenience, set j; = k;1 and K; = K; \ {ki1} for each i =1
antisymmetry,

14
/11:[1 bKZ bH dus / H b j1 :

Recall the integration by parts formula (Problem 1.19)

.+ by dus(b)

D
/ tbib; o f(b) dus(b) = 21 Sj7m/ b gb—m f(b) dus(b)
and the definition (Definition 1.11)

0 g — 0 e 1f m §Z H

of left partial derivative. Integrate by parts successively with respect to b;,
¢

/:H bKiZ bH dug
i=1

and then apply Leibniz’s rule

i) b

- by,
= [l b [ T1( 2 i ) ] st

4

(S Sim

=1 “m=1

‘Q)

Q)

S b ,
15#1’-Z;MSIHI ( H v ) F\{Popuy e P ¥

all different

and Hypothesis (HG).

Lemma I1.10 Let

D D1 (o AT

HeM,, i=1

) fpan (L H)|

with £ < m. Then
¢
T < | fp.mll I1S]I° 1:[1 ]

L
T < M fpmll 1S11° 1:[1 i |
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Proof: For the triple norm,

ITh= > TOUu-- 300

Ji €My, 1<i<e

IEMyp
14 D
= Y IL(3 I klISk il ) fpm (11D
JieMpy, 1<i<e =1 N ki=1
IEMp, HEMm,
l
= > (X S k) Skmi] ) oo (L H)|

TeM,p =1 k; JZ‘GM”
HeMqpm,

= 3 (11000 (1)

HeMm
where
k; JiEM'ri
Since
sup v;(h;) = sup Y ( > ‘ui(Jiaki)‘>|Ski,hi
h; hi ki NJieEM,,
< sup ( > Jui(Js, k1)|> sup > [ Sk, ,n, |
ki NJ,EM,, hi ks
< Jwil [IS]]
we have

i< Y- (f{ et IS1) o (1 D] = 1l f{ (il I51)

IeMyp
HeMqm,

The proof for the double norm, i.e. the norm with one external argument sup’d over rather
than summed over, is similar. There are two cases. Either the external argument that is
being sup’d over is a component of I or it is a component of one of the J;’s. In the former
case,

ap Y TS k1S ) (i) D)

LSUSD e Theice =1 Vkim1
ieMp_ly HeMm

= sup Z(

1< <D (0

HeMq,

0i(ha) ) | fn ()1, H)|

=1

< sup Y (f{luuiu ||S||)|fp,m<<i1>i,H>|spr,muif[l(||ui||||su)

1<a<D (0

HeMqm,
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In the latter case, if a component of, for example, Jq, is to be sup’d over

D
sup E (
1<ji<D

~ 4 D

5 fun(Gn)-Ja kolSkans|) T (X s k)l Skon,
JieEM,., _ k1=1

1 r1—1

Ji €My, 2<i<e

i=2 N=1
IEMp, HEM

) fpm (L H)|

D - J4
= s S (8 Jur(GoTu k) lSk ) (T1 vk )| (1 1)
1§]1§D31€MT171 k=1 i=2

IeMp

HeMq,

¢ D .
< (T Il ISH) sup 3" 5 fun(Gia)-Tu, k)l Sk s Ly (1 D)
i=2 1<j1<D

. ki1=1
JpemMp 1 M1
IeM)p
HEMpm,

J4
< pomll 1 (il 151)

by Problem I1.2, twice.

Lemma I1.11 Assume Hypotheses (HG) and (HS). Let

f(p,m) (Cv a) = Z fp,m(I, H) crag
HeMm
1EM,

Forall o >2 and £ > 1

J4
> IT IR (S ar <
r,s,lelNe =1

m J4
212 ar [DIW [l (a4 1)F]
s;>1

¢
ri+s; s ,m ,m ¢
> I CEIIRE P lar < 2P [lar [DIW [l at1r]
r,s,lE]Ne =1
s;>1
Proof: We prove the bound with the | - || norm. The proof for ||| - ||| is identical. We

may assume, without loss of generality, that m > ¢. By Proposition I1.8, since (TZ’) <2
%HRir(f(p’m)HaF _ %aEli—l—Em-i-pFEli-l—Em—l—p||Rir(f(1°,m))”1

< aZli—i-ZTH-PFElH-ZH"‘P mypm f m : S Fs¢—2 W, pr.ds,
g p, : 19 Z+ 1

=1

)

4
< 2mame+p||fp’m|| H (Dalz‘-l-TiFlH-m-l-Si ||wli,1“i—|—si ||)
i=1

4
(2)" ol IT (Dt 7B 575 i ])
1=
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Asa>2and m>/{¢>1,

4
2. %‘Hl(”;"fi)HRir(f(p’m))HaF

r,s,le]Ne 1=
s;>1

14
< 2N lar S TL[(75Dal TR
r,s,le 1=
s;>1

r 4
= 250D S (F)aralF ]

r,5,l€IN
s>1

_ q J4
= 2|fP e D X3P (DB |

lEIN ¢g>1s5=1

]

_ ¢
< 21O e[S (1) E

r )4
< 201%™ Jlar [DIW [+

Proof of Theorem I1.6:

IR(f)llar < Z Z glf[ ki)

£>0 r,s,1eIN?
sizl

S5 20 o DIW | arye]

£>0 m,p

Lr(f)llar

IA

2 DHWH(a )
= slfllor =BT s

31 fllar DI W]l (at1yr

IA

The proof for the other norm is similar.

Lemma I1.12 Assume Hypothesis (HG). If o > 1 then, for all g(a,c) € AC

| / g(a,0) dps(@)]| < llg(a.)llar
| [ista.c) - gta0ndnsta)] < lgta o)
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Proof: Let
gla,c)= > > gr(L,J)cLa;

I,r>0 LeM,
JeM

with g;,(L, J) antisymmetric under separate permutations of its L and J arguments. Then

H‘ /g(a, c)dus(a)

S g (L, ) o / ay dus(a)
lr>0 LEM;
JeM,

aF H aF

—SaF S | Y S g, 0) [adista)
1>0 LEM,; ' +>0 JEM.

< X o'FTT Y g (L J)

1,r>0 LeM,;
JeEM,

< llg(a, O)lllar

Similarly,

H/ a,c) — g(a,0)dus(a )H =

aF

S (L) e / ay dus(a)
1>1 LeM;
r>0 JEM,

=S oF sup 3 )Z > gl,,«((k)i,J)/aJduS(a))

>1 1§k§"f‘€Ml,1 r>0 JeM,.

< Y oFT sup Y (g ((B)L, )]

1>1 1<k<n fem,_,
r>0

aF

JeM,

< [lg(a, o)l|lar

Proof of Corollary I1.7: Set g = (1 —R)~!f. Then

IS(f)(c) — 0)||ar = H/ (a,c) — g(a,0)] dus(a) (Theorem II.2)
<| R) ™ (f)llar (Lemma I1.12)
< 1—3D|\Wﬁ(a+1)F/a [ fllar < ﬁ | fllar (Theorem II.6)

The argument for ||S(f)||ar is identical.

With the more detailed notation

J fla,c) V@) dps(a)
J V@) dus(a)
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we have, by (II.1) followed by the first bound of this Corollary, with the replacements
W —eW and f — W,

1

190V ow = | [ TS0V 2W)(0) = SW.ew)(0)] e

aF

1
< / & | Wap de = =2 [[W]lap

We end this subsection with a proof of the continuity of the Schwinger functional

SUW.S) = zihrs [ e e dus(a) where Z(eW,S) = [V dug(a)

and the renormalization group map

Q(W, S)(c) :logﬁﬂ/ew(c’“) dus(a) where Zy g = /eW(O’“) dus(a)

with respect to the interaction W and covariance S.

Theorem I1.13 LetF, D > 0,0 < t,v < % and o > 4. Let W,V € (AC)°. If, for all

H,J € U, M-
‘ /bH byis dps(b) | < FIH+] ‘ /bH by dur(b) | < (\/%F)|H|+|J|
IS < F°D T <tF?D
D[Wll(atarr < 5 D[V(atr2)r < §

then

IS(sW+V,5+T) =S(fs W, S)llar < 8(t+0) [|flllar
IQW +V,8+T) = QW,S)lar < 5 (t+v)

Proof: First observe that, for all || < 1
‘ /bH byt dpr () } < R by Problem IL3.a

‘ /bH byist.r ditsy.1(b) ’ < (2F)|H|+|J| by Problem I1.3.b

|S + 2T < 2F?D < (2F)?D
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Also, for all |2/] < 1,

D|W + 2"V (as2)r < 5
Hence, by Corollary I1.7, with F replaced by 2F, a replaced by §, W replaced by W+ 2'V
and S replaced by S + 2T

IS W+ 2V, S+ 2D)llar < 3% I fllar

(11.2)
QW + 2'V, S+ 2T)|[ar < 225 W+ 2'V]ar < =% 55

2 3D
for all |z| < 1 and |2/| < 1.
The linear map R( - ;eW + 2'V, S + 2T) is, for each 0 < ¢ < 1, a polynomial in
z and 2’. By Theorem II.6, the kernel of 1 — R is trivial for all 0 < ¢ < 1. Hence, by
Theorem I1.2 and (I1.1), both S(f; W + 2'V, S + 2T) and Q(W + 2'V, S+ 2T) are analytic
functions of z and 2’ on |z| < 1, [2/| < 1.

By the Cauchy mtegral formula, if f(z) is analytic and bounded in absolute value

by M on |z| <, then

PO =gk [ A
and, for all |z| < 7,

1f'(2)| < 5= (T/2)227rr =4M1

Hence, for all |2| < &, |¢/| < &

|ES(fsW +2'V, 8+ 2T)|| g

IN

435 [ flllar

IS W + 2V, S+ 2T)|| o < 40725 Iflllar

IA

qp—o_ L

H%Q<W+Z,V7S+ZT)HQF a—2 3D

IA

o 1
4355 35

IN

|9-QW +2'V, 5+ 2T)||_,
By the chain rule, for all |z| <1,
180w + 2V, + 21|

IN

At +0) 35 I fllar
|LQW + 2V, 8+ 2T)|| . < 4(t+v)=25 &

Integrating z from 0 to 1 and
[S(FsW +V,S+T) = S(f;W,9)| \p < 4 +0)5%5 I flllar
|QW +V,S+T) = QW, 9|, < 4(t+v)3% 35

As a >4, 5 <2 and the Theorem follows. [ ]
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I1.4 Sample Applications

We now apply the expansion to a few examples. In these examples, the set of
Grassmann algebra generators {aq, - - -, a, } is replaced by { Ve o &x,g ‘ reR o6 }
with & being a finite set (of spin/colour values). See §1.5. To save writing, we introduce

the notation
¢ = (z,0,b) e R x & x {0,1}

[ac = > % [at

be{0,1} c€S
B @Z_Jm,g ifb=0
W—{%Jimz1

Now elements of the Grassmann algebra have the form

:Z/d£1d§r fr(&lv?gT) wflwér
r=0

the norms || || and || f(?)|lo become

1<i<

LF @)l = ZaerrH

When we need a second copy of the generators, we use { W¢ ‘ £ e R x 6% {0,1} } (in

1ol = max sup/ [T d& |f(6r 6]
DR

place of {c1,--,¢n}). Then elements of the Grassmann algebra have the form
f Z /dfl dgldgl dST flT(Slv" Slafl:" 767") \115/1\1152 ¢€1¢§r
l,r=0
and the norms (U, )| are

1<i<l+r

LT, ) = Z a

l,r=0

I+r
| fi,-|| =  max SUP/ [T d& [fir(€as-- &5 &0, &)
&

All of our Grassmann Gaussian integrals will obey
/wx,crwm’,a’ dﬂs(w) =0 /&x,aizx’,a’ dﬂs(w) =0
/d’m,a@bm’,a’ dﬂs(dj) = _/¢m’,a’¢m,a dﬂﬁ”(@@
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)

0 ifo=0 =0

gt e = d Coorl(z,2') ifb=0,0 =
(575) _ g’,cr(&)l,:ll) ifb:L b/:

0 ifb=0 =1

where
Coor (') = [ ot dps(¥)

That our Grassmann algebra is no longer finite dimensional is, in itself, not a
big deal. The Grassmann algebras are not the ultimate objects of interest. The ultimate
objects of interest are various expectation values. These expectation values are complex
numbers that we have chosen to express as the values of Grassmann Gaussian integrals.
See (I.3). If the covariances of interest were to satisfy the hypotheses (HG) and (HS),
we would be able to easily express the expectation values as limits of integrals over finite
dimensional Grassmann algebras using Corollary I1.7 and Theorem I1.13.

The real difficulty is that for many, perhaps most, models of interest, the covari-
ances (also called propagators) do not satisfy (HG) and (HS). So, as explained in §I.5,
we express the covariance as a sum of terms, each of which does satisfy the hypotheses.
These terms, called single scale covariances, will, in each example, be constructed by sub-
stituting a partition of unity of IR*** (momentum space) into the full covariance. The
partition of unity will be constructed using a fixed “scale parameter” M > 1 and a func-
tion v € C§°([M~2, M?]) that takes values in [0, 1], is identically 1 on [M /2 M'/?] and
obeys .

> v(M¥r) =1 (I1.3)
j=0
for0 <z <1.

Problem I1.6 Let M > 1. Construct a function v € C§°([M 2, M?]) that takes values
in [0, 1], is identically 1 on [M /2 M'/?] and obeys

V(Mij) =1
§=0
for0<x<1.
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Example (Gross—Neveus)

The propagator for the Gross-Neveu model in two space-time dimensions has

/) d2 et (x —x 0,0’ + méo‘ o!
Cor(@,2') = /w‘r’“%’ff’ dps () = / (27:)9 o p? + m?2

where
_ (o P
y <—P1 —ip0>
is a 2 X 2 matrix whose rows and columns are indexed by o € {,]}. This propagator
does not satisfy Hypothesis (HG) for any finite F. If it did satisfy (HG) for some finite F,
Coor(2,2") = [ 3,602 dus(1p) would be bounded by F? for all x and z’. This is not

the case — it blows up as 2’ — = — 0.

Set 5
V(AZZJ) if >0
vi(e) = w(2) if j=0, p| > 1
1 if j=0, [p| <1
Then
S(z,y) =Y 59 (z,y)
7=0
with
0 ) ifb=b =0
se e = ) Comlaa) ifb=0,1 =
—CY, (' x) ifb=1, ¥ =
0 b=V =
and
j d2p in-(z —x p+m
CY)(z,2') = / e v >p2+m2 vi(p) (I1.4)

We now check that, for each 0 < j < co, SU) does satisfy Hypotheses (HG) and
(HS). The integrand of C) is supported on M7~1 < |p| < MJ*! for j > 0 and |p| < M
for j = 0. This is a region of volume at most 7T(Mj+1)2 < const M%/. By Corollary 1.35

and Problem I1.7, below, the value of F for this propagator is bounded by

1/2 , .
Fj = /H 2+m2HVJ (31502) §CF(%M2‘7)1/2:CFM‘7/2
for some constant Cr. Here H Gy H is the matrix norm of pg‘jg;z.
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Problem I1.7 Prove that

I =

pZ+m? » _|_m2

By the following Lemma, the value of D for this propagator is bounded by

We have increased the value of Cr in F; in order to avoid having a const in D;.
Lemma 11.14

supZ/de |C'(‘7) (z,y)| < const 17

Proof: When j = 0, the Lemma reduces to sup, , >, [ d*y |C’§?3,(a:,y)| < o0o. This is

the case, because every matrix element of pgﬁ% vj(p) is C§°, so that C(E,Oz,,(a:, y) is a C*°

rapidly decaying function of x — y. Hence it suffices to consider j > 1. The integrand of
(I1.4) is supported on a region of volume at most 7r(M J +1)2 < const M?% and has every

matrix element bounded by

MJ+1

1\42372_1_2 < COHSt

since M7~ < |p| < M7+ on the support of v;(p). Hence

SIuIPICf,J,(),/(ZB,y)| S/ : () o |V
: (IL5)
< const 17 /Vj (p) d*p < const 577 LM% < const MY

To show that CC(TJ 3,, (z,y) decays sufficiently quickly in = — y, we play the usual

integration by parts game.

; d2p ]5+m 2 2 \2 ip(y—=x
(y—x)‘*OCS{f,/(w,y):/(%)z o 10 (G + 5) e

Ep ) o® o7 2 BT
= [ G G+ 50 (e 1)



) mo . . P . )
Each matrix element of z% is a ratio % of two polynomials in p = (pg, p1). For any

such rational function

o P(p) 9=(0Q(p)— P(p)g2(p)

Opi Qp) Q(p)*
o P(p)

The difference between the degrees of the numerator and denominator of 5. 0p) obeys

deg (g—;Q—Pg—g) —degQ* < degP+deg@ —1—2deg@ =deg P — deg@ — 1

Hence
o P;i);o/’al)(p)
— (p2+m2)1+a0+a1

50 91 ( v+m )
apgo 8p‘111 p2+m2 o,o’

with Pff,’al)(p) a polynomial of degree at most deg ((p? + m?)!T@oter) —1 — g — oy =

1+ ap+aq. In words, each g— acting on pEm

- S m? increases the difference between the degree

of the denominator and the degree of the numerator by one. So does each g—p acting on

vj(p), provided you count both M J and p as having degree one. For example,

O (M2 _ _ 2po pg2i,0 (MY
apOV( p2 )_ p4M V(pz )
92 M2y _ 2 | 8pg | ag24, 0 ( M% Apd a rdg 1 ( M
Zav(2t) = | = &+ By () + iy ()
In general,
92 92 \2(Vsortm _ Py ot me®) M*Qu0(p) . (£) ( M
(a—p(z) 8—p§) Ermz Vg(p) = (pZtm?2)1Fn pitTaa-—n-—0) Y ( P2 )
n,LeIN
1Snf2§4
. . . ool TM . . .
Here n is the number of derivatives that acted on % and ¢ is the number of derivatives

that acted on v. The remaining 4 —n — ¢ derivatives acted on the factors arising from the
argument of v upon application of the chain rule. The polynomials P,/ , ¢(p) and Qy, ¢(p)
have degrees at most 1+n and ¢+ (4—n—/), respectively. All together, when you count both
M and p as having degree one, the degree of the denominator (p? 4+ m?)t+nptf+2(4-—n=6)
namely 2(1 +n) +4¢ + 2(4 —n — £) = 10 + 2/, is at least five larger than the degree of
the numerator Py, 5/, ¢(p)M?7Q,, ¢(p), which is at most 1 +n + 20+ + (4 —n — () =
5+2¢. Recalling that |p| is bounded above and below by const M7 (of course with different

constants),

P, oime(®) M?1Q, +(p) ) ( M M+ N2 pp(a—n)i 1
(p2+m2)1+n p4e+2(4_n_2)V ( P2 ) < const M27(Fn) N7 (8—2nF28) — const 57
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and

2 2 (2
(G + 5 (52 vi(0))| < const

on the support of the integrand. The support of (gin + 2%2)2 (pljiigz vj (p)) is contained
0 1

in the support of v;(p). So the integrand is still supported in a region of volume const M2/

and
sup ‘M4j(y — m)4C§{3,(x, y)| < const M* = M? < const M’ (11.6)
Multiplying the % power of (IL.5) by the % power of (I1.6) gives
sup [ M |y — x|3C’§{(),,(x, y)| < const M? (I1.7)

o,0’

Adding (I1.5) to (I1.7) gives

sup [[1+ My — 2f*|CY), (2, )| < const M

o0’

Dividing across

) J
C50 ()| < const rorifs

Integrating
/dzy |C’C(T{3,,(J:,y)| < /d2y const % = const 117 /dzz ﬁ < const 17
We made the change of variables z = M7 (y — z). |
To apply Corollary I1.7 to this model, we fix some a > 2 and define the norm
HWHJ of W(w) = Zr>0 fd£1 te dér wr(é.l, to 757") ¢§1 o wér to be

IWll; = Dj|Wllar, = 3 (aCr)" M7= |lw,|

T

Let J > 0 be a cutoff parameter (meaning that, in the end, the model is defined by taking
the limit J — o0) and define, as in §1.5,

Gy (V) = log Zi]/ V) i< (1) where Z; = / VW) dpgi<n (1)
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and

Q;(W)(V) = log 5 / eV dpge () where  Zyy o) = /ew(w)dusw(@b)

WS(J

Then, by Problem 1.16,
Gr= Qg0 0 Qg 0 0Qgwun (W)

Set
W; = Qg 0 Qg+ 0+ 0 Qg (W)

Suppose that we have shown that ||W;||; < 3. To integrate out scale j — 1 we use

Theorem II.15GN Suppose o > 2 and M > ﬁ@%’l) If [W|; < % and w, vanishes
forr <4, then [|Q; 1 (W)l ;-1 < [W]l;.

Proof: We first have to relate |[W (¥ + )| to ||W(¢)||a, because we wish to apply
Corollary I1.7 with W (¢, a) replaced by W (¥ + ). To do so, we temporarily revert to the
old notation with ¢ and a generators, rather than ¥ and 1 generators. Observe that

c+a Z Z wm c-l—a

m 1EM,,

=33 > wn(JA\D))esan,

m 1eM,, JCI

:Z Z Z (l—gr)wl-i-T(JK)CJaK

l,T‘ JGMZ KGMT

In passing from the first line to the second line, we used that w,, (I) is antisymmetric under
permutation of its arguments. In passing from the second line to the third line, we renamed
I\J =K. The (ZJZFT) arises because, given two ordered sets J, K, there are (|J||J§||K|) ordered
sets I with J C I, K=1\J. Hence

W(c+a)lla = Za”’“ S o || = Zam2mllwmll = [[W(a)ll2a

Similarly,
WP+ ¢)]la = W) 20
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To apply Corollary 11.7 at scale j — 1, we need

D1 [[W(¥ + )l a+1yr;-, = Di=t W) l2aryr, ., < 3

But
r i 1)r=4
Dj_lHWHQ(OH—l)ijl = Z (2(0& + 1)CF) M(] b 2 HwTH

201 A1~ (5= 9)) (0 ) M7 |
2950 ) (aC) MTF o |

.
6
< (22t Lw,; <4

6
as M > (2%“) and ||W||; < 5. By Corollary I1.7,

1
3

1921 (W)lj—1 = D111 (W)[lar;_, < 325D 1[[W(¥ +9Y)|lar,_,

-1 — a-—1

6
< 5 @eF) Wl < 1wl

— a—1

Theorem II.15GN is just one ingredient used in the construction of the Gross—

Neveus model. It basically reduces the problem to the study of the projection

PW() = 3 /dsl---dsr Wo(Er, 160 e, - e,

r=2,4

of W onto the part of the Grassmann algebra of degree at most four. A souped up,
“renormalized”, version of Theorem II.15GN can be used to reduce the problem to the

study of the projection P'W of W onto a three dimensional subspace of the range of P.

Example (Naive Many-fermion,)

The propagator, or covariance, for many—fermion models is

Bk 1
o N _ ool ik-(z' —x)
Cog(@,2) = 05, /(%)3 ¢ iko — e(k)
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where k = (ko, k) and e(k) is the one particle dispersion relation (a generalisation of %)
minus the chemical potential (which controls the density of the gas). The subscript on
many-fermion, signifies that the number of space dimensions is two (i.e. k € IR?, k €
]R?’). For pedagogical reasons, I am not using the standard many—body Fourier transform
conventions. We assume that e(k) is a reasonably smooth function (for example, C'*) that
has a nonempty, compact, strictly convex zero set, called the Fermi curve and denoted F.
We further assume that Ve(k) does not vanish for k € F, so that F is itself a reasonably
smooth curve. At low temperatures only those momenta with ky ~ 0 and k near F are

important, so we replace the above propagator with

Bk o UR)
, AN , ik-(z'—x)
Coo (@,) = bo.0 / @2m)3 © iko — e(K)

The precise ultraviolet cutoff, U(k), shall be chosen shortly. It is a C§° function which

takes values in [0, 1], is identically 1 for k3 + e(k)? < 1 and vanishes for k3 + e(k)? larger

than some constant. This covariance does not satisfy Hypotheses (HS) for any finite D.

U(k)
itko—e(k)

If it did, Cy 4/ (0,2’) would be L' in 2’ and consequently the Fourier transform
would be uniformly bounded. But % blows up at kg = 0, e(k) = 0. So we write the
covariance as sum of infinitely many “single scale” covariances, each of which does satisfy
(HG) and (HS). This decomposition is implemented through a partition of unity of the set
of all k’s with k2 + e(k)? < 1.

We slice momentum space into shells around the Fermi curve. The ;' shell is

defined to be the support of
v (k) = v (M* (k3 + e(k)?))

where v is the function of (I1.3). By construction, v(z) vanishes unless ﬁ <z < M? so

that the j*® shell is a subset of

{ k| 58m < liko —e(l)] < 37= }

As the scale parameter M > 1, the shells near the Fermi curve have j near +o0o0. Setting

. 3 ‘ ) (L
(4) nN—=2¢_ d°k ik-(z' —x) v ( )
Ca',a"(w’ €T ) 0,0 / (27T)3 e 77[]{:0 — e(k)
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and U(k) = 3 vU) (k) we have
j=0

Zc(J) {E {E

The integrand of the propagator C'Y) is supported on a region of volume at most
const M=% (|ko| < 55— and, as |e(k)| < 57— and Ve is nonvanishing on F, k must
remain within a distance const M 7 of F) and is bounded by M7*!. By Corollary 1.35,

the value of F for this propagator is bounded by

Fi= (2 / T <] —<3w’§3> < Cr(M375) " = Crypm (I1.8)
for some constant Cr. Also

i U) (ke
sup s e.)] < [ 2y e < const

o,0

&)
Each derivative g_ki acting on % increases the supremum of its magnitude by a factor

of order M7. So the naive argument of Lemma II.14 gives

|C§‘f3,(az,y)| < const % = supZ/d3y |C(J) (z,y)| < const M¥

There is not much point going through this bound in greater detail, because Corollary C.3

gives a better bound. In Appendix C, we express, for any [; € [MJ ) Mg/z] C(J) (x,y) as
a sum of at most % terms, each of which is bounded in Corollary C.3. Applying that

bound, with [; = yields the better bound

1
Mj/2 9

qufZ/dS |C'(J) (z,y)| < const [iij < const M37/2 (11.9)
So the value of D for this propagator is bounded by
D; = M%/?
This time we define the norm

IWl; =DjlIWllar, = Y (aCr)" M7 ||w,|

T
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Again, let J > 0 be a cutoff parameter and define, as in §1.5,

Gs(c) :logz%/ eVt dpgi<s(a)  where ZJ:/GW(w) dpg<n (a)

Q;(W)(e) zlogé/ew(\pw)dus(j)(a) where  Zy gi) = /eW(’“dusm(a)

Zyw s

Then, by Problem 1.16,
Gy =g o 0Qga 0Ngw (W)

Also call G; = W;. If we have integrated out all scales from the ultraviolet cutoff, which in
this (infrared) problem is fixed at scale 0, to j and we have ended up with some interaction
that obeys |[W|; < 3, then we integrate out scale j + 1 using the following analog of
Theorem II.15GN.

Theorem II.15MB; Suppose o« > 2 and M > (2L)2(O‘T+1)12. If W], < 5 and w,

a—1
vanishes for r < 6, then || 1(W)|j41 < [[W];.

Proof: To apply Corollary I1.7 at scale j + 1, we need

D1 [W(¥ +9) [ (ar1)r,pr = Disr W llaasypr, 0 < 5

But

r—>5

z

Djt1[Wllz(a+1yr, 1 = Z 2(a+ 1)C’F)TM—(J'+1)

-5
zuor |

Qa_lM—%(l—é))T(aCF)rM—j’"

1

r .r—5
<3 (220 ) (aC) M |
r>6
6
< (2941)° LA W, < W5 < §

By Corollary I1.7
19201 W)lj41 = Djra I (W) lar, 40 < 3255D41 WY +9)[aF;.

6
< 25 @200) Wl < W

a—1
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It looks, in Theorem II.15MB;, like five-legged vertices ws are marginal and all
vertices w, with r < 5 have to be renormalized. Of course, by evenness, there are no
five-legged vertices so only vertices w, with » = 2,4 have to be renormalized. But it still
looks, contrary to the behaviour of perturbation theory [FST], like four—legged vertices are
worse than marginal. Fortunately, this is not the case. Our bounds can be tightened still
further.

In the bounds (I1.8) and (II.9) the momentum k runs over a shell around the
Fermi curve. Effectively, the estimates we have used to count powers of M7 assume that
all momenta entering an r—legged vertex run independently over the shell. Thus the
estimates fail to take into account conservation of momentum. As a simple illustration of
this, observe that for the two-legged diagram B(z,y) = [ d3z C(J) (x, Z)C'((,J(),(z y), (I1.9)
yields the bound

sup/d3y|B(x,y)| < sup/d3 C’(J) (z,z }/d?’y }C’(J) }
< const M>7/2M31/? = const M%7

But B(zx,y) is the Fourier transform of W (k) = [Zk(”% = C'(j)(k:)C’(j)(p)‘p:k. Conser-

vation of momentum forces the momenta in the two lines to be the same. Plugging this

W(k) and [; = ﬁ into Corollary C.2 yields
Sup/d?’y |B(z,y)| < const %MQJ < const M™/?

We exploit conservation of momentum by partitioning the Fermi curve into “sectors”.

Example (Many-fermion, — with sectorization)
We start by describing precisely what sectors are, as subsets of momentum space.

Let, for k = (ko, k), k'(k) be any reasonable “projection” of k onto the Fermi curve
F={keR*|ek) =0}

In the event that F is a circle of radius kz centered on the origin, it is natural to choose

k'(k) = |k| Zk. For general F, one can always construct, in a tubular neighbourhood of F,
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a C* vector field that is transverse to F, and then define k/(k) to be the unique point of
F that is on the same integral curve of the vector field as k is.

Let j > 0 and set

1 ifkeF
() = ,
vi=(k) = ST v (k) otherwise
2]

Let I be an interval on the Fermi surface . Then
s={k|K(k)el, ke supp (29— }

is called a sector of length length(I) at scale j. Two different sectors s and s’ are called
neighbours if s’ N's # (. A sectorization of length [; at scale j is a set X; of sectors of
length [; at scale j that obeys

- the set X, of sectors covers the Fermi surface

- each sector in X; has precisely two neighbours in ¥, one to its left and one to

its right

- if s, s’ € ¥; are neighbours then 1_16[j <length(snNs' NF) < %[j
Observe that there are at most 2length(F)/l; sectors in X;. In these notes, we fix [; = 7t
and a sectorization X; at scale j.

S1 52 S3 S4

Next we describe how we “sectorize” an interaction

Wr = Z /wr(<x17017ﬁ1)7"'7(377"70-1”7&7")) 1?01(331,%1)"%0,”(33“/{0 }i[ldajl

GiE{Tyl}
x; €{0,1}

where
Vo, (i) = Vo, (24, fiz‘)‘m:o Vo, (#5) = Yo, (4, /‘Ci)}m:l
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Let F(r,3;) denote the space of all translation invariant functions

fr((xl,al,/fcl,sl),- . ',(xrao-r,’irysr)) : (IRS X {Tal} X {Oa 1} X Ej)T - (D

whose Fourier transform, fT((k:l,al, K1,51), "+ (Kpy Op, Ko, sr)) , vanishes unless k; € s;.
An f, € F(r,X;) is said to be a sectorized representative for w, if

wr((kho-l,/{l)?"'7(1{71”70-7"7/{1”)): Z fr((klao-lafilasl)f"7(kr70-r7’€7"73r))

;€%
1<i<r

for all ky,---,k, € suppr(Z9). It is easy to construct a sectorized representative for w,
by introducing (in momentum space) a partition of unity of supp (27 subordinate to 2.

Furthermore, if f, is a sectorized representative for w,., then

/wr((:vl,al,/ﬁ),---,(flfr,or,/-”»r)) Vo, (1, K1) - Vo, (Tr, Ky) f[ld:r:i

= Z fr((xlao-lafihsl)?‘"7(3:1”70-7"7/{1”781”)) wal(xh/{l)"‘wcn(xra’ir) H dxz
=1

Sie):j
1<i<lr

for all ¢, (z;,k;) “in the support of” duc(=j ), i.e. provided 1 is integrated out using a
Gaussian Grassmann measure whose propagator is supported in supp v(Z7) (k). Further-

more, by the momentum space support property of f,,

/f?“((xl,o_b’ib'ﬁ)v"'7('%7“:0-7":"“"7":87"» ¢Ul(x17ﬁl).'.¢ar(xr7ﬁ7") H dx;
=1

r
:/fr(<x170-17/{1781)7”'7(1‘7"70-1”7’%“787")) waj(a:lv’ibsl)""lpa'r(xT7’€T7ST) Hdmz
=1

where
o (2, b, 5) = / @y by (4,6, )39 (2 — 1)

and )A(gj ) is the Fourier transform of a function that is identically one on the sector s. This
function is chosen shortly before Proposition C.1.

We have expressed the interaction

—-
<
8

-
I
MR

Vo, (24, Ki, Si)
1

WT: Z f?“((x17o-17’€1731>7'”7(':1:7"70-1“7"{"'7"787"))
s;E€X; 1
GiE{T»l}
k;€{0,1}

r
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in terms of a sectorized kernel f, and new “sectorized” fields, 1, (x, k, s), that have prop-

agator
Y9, (. 5), (y / o (1,0, 8o (. 1, 8") djien (1)
_ Pk ey VRN ()XY (k)
= O ”’/ e iko — e(k)

The momentum space propagator
v (k)X ()X (k)
iko — e(k)

vanishes unless s and s’ are equal or neighbours, is supported in a region of volume

C((,.J’()T/(k, S, S/) = (50-’0./

const [jﬁ and has supremum bounded by const M7. By an easy variant of Corollary
1.35, the value of F for this propagator is bounded by

1/2

F, < Ce(ghs M74)” = Co\/ 5

for some constant Cr. By Corollary C.3,

sup Z /d3y |C’(J) ,8), (y, )| < const M7

T,0,s o

so the value of D for this propagator is bounded by
_ 12
D; = [—jM J

We are now almost ready to define the norm on interactions that replaces the
unsectorized norm [|[W{|; = D;||W||aF; of the last example. We define a norm on F(r, ¥;)

by

9= max | max S0 [ T dne [F((@nonmns) o nns,))]

1<Z<’I" Ti,04,Ki,Sq PNTArT @;ﬁz
k#1

and for any translation invariant function

wy (1,01, K1), (@, 00, 50)) - (R x {1, 1} x {0,1})" — €

we define

|w,||s; = inf{ £l ’f € F(r,X;) a representative for W}

The sectorized norm on interactions is

r—2  .r4
0.y =D 3_(aF;) wrllz, = 3 (aCr)" G M7 |z,

T

W]
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Proposition I1.16 (Change of Sectorization) Let j' > j > 0. There is a constant
Cs, independent of M, j and j', such that for all r >4

[; 17—3
lwrlls, < [Csgt]™ lerlls,

Proof: The spin indices o; and bar/unbar indices ; play no role, so we suppress them.

Let € > 0 and choose f, € F(r, X;) such that

wr(kl7”'7k7“): Z fT((kla'Sl):"',(kTvST))
;€25

for all kq,-- -, k, in the support of supp (29 and

[wrlls; = [Ifrll =€

Let

1= Z Xs (k')

S'Ezj/

be a partition of unity of the Fermi curve F subordinate to the set { sSNF } s'ey; } of

intervals that obeys

const
8{;})(5’ S [m o
j/

sup
k/
Fix a function ¢ € C(‘)’O([O,2)), independent of j, j/ and M, which takes values in [0, 1]

and which is identically 1 for 0 < x < 1. Set
i (k) = (MU ~V[k2 + e(k)?)

Observe that ¢, is identically one on the support of v(23") and is supported in the support

of v(Z7'=1)_ Define g, € F(r, ;) by

gr((k1783)7"'7(kr73;)) = E: f}((klysl)v"'7(krasr)) fi [Xﬁ;m(kﬂl)¢y'<kﬂlx

spEX m=1
1<e<r
= Z fr((kb 31)7 ) (kh ST)) H [XSﬁﬂ (km)(pj’(km)}
seﬁslz¢® m=1
1<e<r
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Clearly

wT(k17"'7kT): Z gr(<k178/1)7"'7(k7"78/r))

./
aZEEj/
1<e<r

for all k; in the support of supp v(27"). Define
Mom,(s") = { (s],--,s;) € X,

s; = s’ and there exist ky € sp, 1 <L <r
such that > (—1)‘k, =0}
¢
Here, I am assuming, without loss of generality, that the even (respectively, odd) numbered
legs of w, are hooked to v’s (respectively 1’s). Then

HgTH = max Sup Z H dxy ‘gr((xhsll)v'"7(37“8;))‘

1<i<r .
x; eR3 ¢
. eEj/ Mom; (s”) #i

Fix any 1 <i <r, s’ € ¥ and z; € R®. Then

Z /def }97"((37173/1>7"'7(x7"7324))}

Mom; (s’) t#

Z Z H dl’g ‘f?‘((xlvsl)7”'7(x7“787">) max ||XS” *SOJ ||

PR STES
MOmZ(S ) seﬁs #0 71

By Proposition C.1, with j = j’ and ¢\) = $jr, Maxgrey, |Xs * ¢j¢]|" is bounded by a
constant independent of M, j’ and [;;. Observe that

> .Zw /Hdﬂ?e | fr((@1,81), -, (@ry 57) |

S
Mom; (s’) sgNs)#0

Z Z /Hdmg ‘fr (z1,81)," (:I:T,ST))}

8T Momy; (s’) L1
s ﬁa #0 seﬁs )
1§zgr
I will not prove the fact that, for any fixed s;, --- ,s, € X;, there are at most

[C”S[[J—_j/r_g’ elements of Mom,(s’) obeying sy N's}, # 0 for all 1 < ¢ < r, but I will try to

motivate it below. As there are at most two sectors s € ¥; that intersect s,

Z > /Hdasz | fr((z1,81), - (s 50) |

8T Mom, (s”)
s ﬁa #0 seﬁs )
1<Z<'r‘

Q[Cg r 3 sup Z /Hdwz ‘fr (z1,51), (Ir,Sr))}

381

< 2[Cse] I
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and

A A [, 17—3
lawrlls, < llorl <2 max 1R = @7 [Co 2] 185
J

[, 7r—3
e (T
with Cg = 2 maXsex s * @i ||* Ck.
Now, I will try to motivate the fact that, for any fixed sy, --- s, € XJ;, there are

at most [C”S[[—?',}T_S elements of Mom,(s’) obeying sy N's, # () for all 1 < ¢ < r. We may
J

assume that ¢ = 1. Then s| must be s’. Denote by I, the interval on the Fermi curve F

that has length [; + 2[;, and is centered on s, N F. If s’ € ¥/ intersects s;, then s’ N F is

contained in ;. Every sector in ¥/ contains an interval of F of length %[j/ that does not

420,

31| of these “hard core” intervals can be
J

intersect any other sector in X;,. At most |
contained in I;. Thus there are at most [%l[j—{ + 3]"3 choices for sh, -+, 5. 5.

Fix s}, 85, -+, sl _5. Once s._; is chosen, s/. is essentially uniquely determined by
conservation of momentum. But the desired bound on Mom,(s’) demands more. It says,
roughly speaking, that both s/._; and s, are essentially uniquely determined. As ky runs
over s for 1 < ¢ < r — 2, the sum 22;12 (—1)*k, runs over a small set centered on some
point p. In order for (s}, --,s.) to be in Mom; (s’), there must exist k,_; € s/._; NF and
k, € s/ N F with k, — k,_; very close to p. But k, — k,_; is a secant joining two points
of the Fermi curve F. We have assumed that F is convex. Consequently, for any given
p # 0 in IR? there exist at most two pairs (k/,q') € F? with k’ —q’ = p. So, if p is not
near the origin, s/._; and s/. are almost uniquely determined. If p is close to zero, then

r—2

v—1 (—1)%ky must be close to zero and the number of allowed s}, 5, -, s._, is reduced.

Theorem I1.15MB;, Suppose o« > 2 and M > (—1)2(2050%1)12. If [Wlla,; < 3 and

(e}
.
wy vanishes for r <4, then || Q1 (W)|laj+1 < [[Wla,;-

Proof: We first verify that |[W (¥ + ¥)|lat1,j41 < 3-

r (r—2)/2 (4 r—4
W (T + ) lasrj+1 = IWllaarn o = 9 (2(a+1)Cp) 122 M= |, |15,

T
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<3 (e (B T M (Cor) T (aCe) TR M fu s,

r>6
r—4
<20 M (ML) T (aCe) M s,
r>6
=" (2059 M E0-D) (aCp) 1T M |w, |y,
r>6
< (2052£1)° s | <3

By Corollary 11.7,

(] [0 6
19+1 (W) llaj+1 < 2255 IW (T +9)llager < 525 (205 %) 3772 W llay < W la.

«
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Appendix A: Infinite Dimensional Grassmann Algebras

To generalize the discussion of §I to the infinite dimensional case we need to
add topology. We start with a vector space V that is an ¢! space. This is not the only
possibility. See, for example [Be].

Let Z be any countable set. We now generate a Grassmann algebra from the
vector space

V:€1(I):{Q:I—>(D

Z|ai|<oo}

i€T
Equipping V with the norm ||a| =), 7 |o;| turns it into a Banach space. The algebra
will again be an ¢! space. The index set will be J, the (again countable) set of all finite
subsets of Z, including the empty set. The Grassmann algebra, with coefficients in C,
generated by V is

A(T) = £1(3) = { a:3—C

Z|a1|<oo}

1€3
Clearly 2 = 2((Z) is a Banach space with norm |la| = ;.5 |ar]|.

It is also an algebra under the multiplication

(aB), = Z sgn(J, I\J) aJBI\J

JCI1

The sign is defined as follows. Fix any ordering of Z and view every J > I C 7 as being
listed in that order. Then sgn(J,I\J) is the sign of the permutation that reorders (J,I\J)
to I. The choice of ordering of 7 is arbitrary because the map {a;} — {sgn(l)a,}, with
sgn(I) being the sign of the permutation that reorders I according to the reordering of Z,
is an isometric isomorphism. The following bound shows that multiplication is everywhere

defined and continuous.

ol = S l@tn] = 3| S s ) s < 30 Joul 18] < Nl 18] (A1)

1€7 1€ JCI 1€J JCI

Hence 2A(Z) is a Banach algebra with identity 1, = d, g. In other words, 1 is the function

on J that takes the value one on I = () and the value zero on every I # ().
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Define, for each i € Z, a; to be the element of A(Z) that takes the value 1 on
I = {i} and zero otherwise. Also define, for each I € J, a, to be the element of 2(Z) that

takes the value 1 on I and zero otherwise. Then

a =[] a

S

where the product is in the order of the ordering of 7 and

o = E ;A

1ICT

If f:C — C is any function that is defined and analytic in a neighbourhood of 0,
then the power series f(«a) converges for all & € 2(Z) with ||«|| strictly smaller than the
radius of convergence of f since, by (A.1),

oo

<D ) o

IF(@)] = || 3o H £ ©)a"
n=0

If f is entire, like the exponential of any polynomial, then f(«) is defined on all of A(Z).
The following problems give several easy generalizations of the above construc-

tion.

Problem A.1 Let Z be any ordered countable set and J the set of all finite subsets of 7
(including the empty set). Each I € J inherits an ordering from Z. Let w : Z — (0, 00) be

any strictly positive function on Z and set

WI = Hwi

i€l

with the convention Wy = 1. Define

Vzﬁl(I,w):{oz:Iﬁ@

> w;la;| < oo }

i€T
and “the Grassmann algebra generated by V”
AT, w) = (L3, W) = { a:T-C| X W < oo }
13
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The multiplication is (a3); = Y, sgn(J,I\J) ;8\, where sgn(J,I\J) is the sign of the
permutation that reorders (J,I1\J) to I. The norm ||« = >  Wi|ay| turns A(Z, w) into a

1€
Banach space.

a) Show that
leBll < llall 1131l

b) Show that if f:C — C is any function that is defined and analytic in a neighbourhood
of 0, then the power series f(a) = Yoo, L f(™(0)a™ converges for all a € U with |||

smaller than the radius of convergence of f.

c) Prove that A¢(Z7) = { a:J — C | o = 0 for all but finitely many I } is a dense
subalgebra of A(Z, w).

Problem A.2 Let Z be any ordered countable set and J the set of all finite subsets of Z.
Let
G = { a:T—C }

be the set of all sequences indexed by J. Observe that our standard product (af); =

> scrsen(J, INJ) a8y, is well-defined on & — for each I € J, > | is a finite sum. We now

JCI

define, for each integer n, a norm on (a subset of) & by

lafl, = 3 2"M|a|
1ed

It is defined for all @ € & for which the series converges. Observe that this is precisely
the norm of Problem A.1 with w; = 2" for all 7« € Z. Also observe that, if m < n, then
||l < ||e|| - Define

An={ e ‘ alln, < oo forallneZ }

A, ={ a €& | [lafln < oo for some n € Z }
a) Prove that if o, 8 € 2 then af € An.

b) Prove that if «, 5 € 2, then af € .
c) Prove that if f(z) is an entire function and « € A, then f(a) € An.
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d) Prove that if f(z) is analytic at the origin and o € 2 has |ap| strictly smaller than
the radius of convergence of f, then f(«a) € 2.

Before moving on to integration, we look at some examples of Grassmann algebras
generated by ordinary functions or distributions on RY. In these algebras we can have
elements like

AW, ) =— X [ ks (ko — (% — 1)) Pr.on.o

cEeS

4 -
B % Z H (éw)dﬁl (2W)d+15<k1+k2 ks — k4)wk1 ka:%gu(kl k3)wk2,0’wk4,0’
o,0'€6 i=1

from §1.5, that look like the they are in an algebra with uncountable dimension. But they

really aren’t.

Example A.1 (Functions and distributions on IR?/LZ%.) There is a natural way
to express the space of smooth functions on the torus IR/ Lz (i.e. smooth functions on
RY that are periodic with respect to LZd) as a space of sequences: Fourier series. The
same is true for the space of distributions on IR? / Lz¢. By definition, a distribution on
R?/LZ? is a map
f:CK(EW/LZ?)—»@
h—<f,h>

that is linear in h and is continuous in the sense that there exist constants C'y € IR, vy € IN
such that

< f,h>]< sup qwn f)”u>) (A.2)
x€R?/LZ4

for all h € C*. Each L' function f(x) on IR?/LZ% is identified with the distribution

< f,h >:/IR dx f(x)h(x) (A.3)

d/de

which has Cf = |[|f||z:, vf = 0. The delta “function” supported at x is really the
distribution

< Oy, h >= h(x)
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and has Cs5, =1, v5, =0.
Let v € Z. We now define a Grassmann algebra QlW(IRd/LZd), v e Z. 1t is the

Grassmann algebra of Problem A.1 with index set
_ 2w —zd
I=TZ

and weight function

wy =TI (1+p3)"

<.
Rl

To each distribution f, we associate the sequence

.fp — <f,e—i<p,x>>

indexed by Z. In the event that f is given by integration against an L' function, then

fom [ dx feeiee

d/de

is the usual Fourier coefficient. For example, let q € %Zd and f(x) = £7¢"<9*>. Then

= 1 ifp=q

P10 ifp#q
and

Z wy|fo| = wg

perzd

is finite for all 7. Call this sequence (the sequence whose p** entry is one when p = q and
zero otherwise) 1. We have just shown that 1q € V,(R/LZ?) C 2, (R?/LZ?) for all
~v € Z. Define, for each x € IRd/LZd,

w(x) _ ﬁ Z ei<q,x>¢q
qe3rz4

th : : 1 i<q,x> _ 1 Ji<p,x>
The p*" entry in the sequence for 1(x) is 77 Y-, €' ~¥*76p q = 77" ~P*7. As

1 <p,x>| _ 1
2 Y wple P = Y )

pEFZ¢ pe¥rzd
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converges for all v < —1, (x) € V,(R?/LZ%) c 2, (R?/LZ?) for all v < —1.
By (A.2), for each distribution f, there are constants C'y and vy such that

d

N , d s vy ]
|fp\:}<f,e—z<p,x>>} < sup C’f‘ Hl(l_%) 7 g=i<P, >‘ ey H(l‘f’p?) ;
1= J

xeRd/LZ¢ j=1

Because

S 10+ p2)

pe2azd =1
converges for all v < —1/2 , the sequence {fp, | p € %Zd }is in V,(RY/LZ?) =
(N, w") C A, (R?/LZY), for all v < —v; —1/2 . Thus, every distribution is in V,
for some 7 (often negative). On the other hand, by Problem A.4 below, a distribution is
given by integration against a C*° function (i.e. is of the form (A.3) for some periodic C*°
function f(x)) if and only if fp decays faster than the inverse of any polynomial in p and

then it (or rather f) is in V., for every 7.

Problem A.3

a) Let f(v) € C=(R?/LZ"). Define

fom [ dx jeoeier

d/de

Prove that for every v € IN, there is a constant C's  such that

. d
[fol <Cts H(l—i-p?)_7 for all p € %Zd
j=1

b) Let f be a distribution on R*/LZ®. For any h € C* (]Rd/LZd), set

hR(X):ﬁ Z ei<p’x>ﬁp where Bp:/ dx h(x)e i<Px>
pe%"ld ]Rd/LZd
IpI<R
Prove that

(f.h) = Jim (f. h)
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Problem A.4 Let f be a distribution on ]Rd/LZd. Suppose that, for each v € Z , there

is a constant Cy , such that

d
‘ <f,e_i<p’x>> ‘ <Cr, [T(1+ p?)‘” for all p € %Zd
j=1

Prove that there is a C* function F(x) on IR?/LZ? such that

(f b = /IR dx F(x)h(x)

d/de

Example A.2 (Functions and distributions on IR?). Example A.1 exploited the basis
{ ei<px> } p € %Zd } of L? (IRd/LZd>. This is precisely the basis of eigenfunctions
of H;.lzl (1 — %). If instead we use the basis of L2(IR?) given by the eigenfunctions of

H;lzl (l’? — %) we get a very useful identification between tempered distributions and
J

functions on the countable index set
7= {i: (i1, iq) | i € ZZO}

that we now briefly describe. For more details see [RS, Appendix to V.3].

Define the differential operators

A= (@t ) A= b (o= %)

and the Hermite functions

for ¢ € Z=>°.

Problem A.5 Prove that
a) AATf = ATAf + f
b) Ahy =0
c) ATAhy, = (hy
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d) <hg,hg/> = 55 0. Here f, ff
e) 332—@:2ATA+1

Define the multidimensional Hermite functions
d
:Ilh
j=1
for i € Z. They form an orthonormal basis for L2(IR?) and obey
d d
H(? I)fMZITU+2%Wm
j=1 j=1

By definition, Schwartz space S(IR?) is the set of C'* functions on IR? all of

whose derivatives decay faster than any polynomial. That is, a function f(z) is in S(IR?),

if it is C*° and
sgp} ﬁ1 (933 - %)vf(x)} < o0
for all v € Z=". A tempered distribution on IR¢ is a map
f:S(RY) — C
h—<f,h>
that is linear in A and is continuous in the sense that there exist constants C' € IR,y € IN
such that
| < f,h>]< sup C ﬁ (23 — %)Vh(x))
zelR? ' j=1 7

To each tempered distribution we associate the function
on Z. In the event that the distribution f is given by integration against an L? function

that is,
(A.4)

< f,h>= /F(aj)h(m) dez

for some L? function, F(z), then



The distribution f is Schwartz class (meaning that one may choose the F(x) of (A.4) in
S(IRY)) if and only if f; decays faster than any polynomial in i. For any distribution, f; is

bounded by some polynomial in i. So, if we define
d
w] =[]+ 2i;)
j=1

then every Schwartz class function (or rather its f) is in V., = ¢1(Z,w?) for every v and
every tempered distribution is in V, for some 7. The Grassmann algebra generated by V,
is called QLY(IRd). In particular, since the Hermite functions are continuous and uniformly
bounded [AS, p.787], every delta function é(x — x¢) and indeed every finite measure has
|/i| < const. Thus, since > icz>o(1 4 1)7 converges for all v < —1, all finite measures
are in V, for all v < —1. The sequence representation of Schwartz class functions and of

tempered distributions is discussed in more detail in [RS, Appendix to V.3].

Problem A.6 Show that the constant function f =1 is in V, for all v < —1. Hint: the

Fourier transform of hy is (—i)*hy.

Infinite Dimensional Grassmann Integrals

Once again, let Z be any countable set, J the set of all finite subsets of Z, V = ¢1(7)
and & = ¢*(J). We now define some linear functionals on 2. Of course the infinite
dimensional analogue of f - dap---da; will not make sense. But we can define the
analogue of the Grassmann Gaussian integral, [ - dug, at least for suitable S.

Let S : Z x T — C be an infinite matrix. Recall that, for each i € Z, a; is the
element of 2 that takes the value 1 on I = {i} and zero otherwise, and, for each I € J, a;
is the element of 2 that takes the value 1 on I and zero otherwise. By analogy with the

finite dimensional case, we wish to define a linear functional on 2 by
p
jl;ll ai,dus = Pt [S"j’ik}lsmkgp

We now find conditions under which this defines a bounded linear functional. Any A €
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can be written in the form

A—iZalal

p= 0 ICcT
|T|=p

We want the integral of this A to be

/Ad,ug—z > ozl/ald,us

)=

! (A.5)
— Z Z o, Pf [Slj71k:|1§j,k§p
p=0 ICZT
[T|=p
where I = {Iy,---,I,} with I; < --- <1, in the ordering of 7.
We now hypothesise that there is a number Cg such that

sup [PF [Sy0] o gy | < 5 (A-6)

[T|=p
Such a bound is the conclusion of the following simple Lemma. The bound proven in this
Lemma is not tight enough to be of much use in quantum field theory applications. A

much better bound for those applications is proven in Corollary 1.35.

Lemma A.3 Let S be a bounded linear operator on ¢*(Z). Then

sup |Pf [Slj,lk}
ICT

[I|=p

1<j,k<p

EElE

Proof: Recall that Hadamard’s inequality (Problem 1.24) bounds a determinant by the
product of the lengths of its columns. The k' column of the matrix [SIM,J 1<jk<p has
length

< D 1Sinl?

JeET

But the vector (Sj,lk)j cr 18 precisely the image under S of the I};h standard unit basis

vector, (5j’1k)j€I’ in ¢2(Z) and hence has length at most ||S]|. Hence

p
det [Sy, 1, ] 1<j,k<p H Z 1S l? < ISP



By Proposition 1.18.d,

1/2
PE [0 gy | < |det [S1s0] < 5|

1<5,k< 1<j,k<p }

Under the hypothesis (A.6), the integral (A.5) is bounded by

‘ / Adpc

provided Cs < 1. Thus, if Cs < 1, the map A € A — [ Adug is a bounded linear map

<D D | CE < 4] (A7)

p=0 Ie3J
|T|=p

with norm at most one.
The requirement that C's be less than one is not crucial. Define, for each n € IN,
the Grassmann algebra

Ay ={a:T=C|laf, =3 2"Ma| <o}
1€T

If 2" > Cg, then (A.7) shows that A € A+ [ Adpug is a bounded linear functional on 2,,.
Alternatively, we can view [ - dug as an unbounded linear functional on 2 with domain

of definition the dense subalgebra 2, of 2.
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Appendix B: Pfaffians

Definition B.1 Let S = (S5;;) be a complex n X n matrix with n = 2m even. By
definition, the Pfaffian Pf(S) of S is

n

PE(S) = 5= Y &S o Sin (B.1)
i1yeyin=1
where
1 if4q,---,4, is an even permutation of 1,---,n
ghtin = { —1 iféy,---,4, is an odd permutation of 1,---,n
0 ifiq,---,4, are not all distinct

By convention, the Pfaffian of a matrix of odd order is zero.

Problem B.1 Let T = (T;;) be a complex n x n matrix with n = 2m even and let

S = (T —T") be its skew symmetric part. Prove that PfT = Pf S.

0 Sz

Problem B.2 Let S = (521 0

) with S9; = =512 € C. Show that Pf S = Sqs.

For the rest of this Appendix, we assume that S is a skew symmetric matrix. Let

Pm = { {(k1, 1), (ki €m) } ‘ {k1,lay o ks by = {1, -+, 2m} }

be the set of of all partitions of {1,---,2m} into m disjoint ordered pairs. Observe that,

the expression ghiéikmbm G, ... G , isinvariant under permutations of the pairs in

m

the partition {(k1,%1),- -+, (km,%m)}, since

€k”(1)€”(1) krmyla(m) — 5’61@1 okl

for any permutation 7. Thus,

Pf(S) = 2]7‘n Z Ekl‘el"'kWLg'mSklZl . S}%n[

PeP,,

(B.1")

m

Let
P< = { {<k17£1)7”'7(km7£m)} epm ’ kl <£1 for all 1 S'Lgm }

m
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Because S is skew symmetric

€k1@1"'ki€i"'km@m Skiﬁi _ 5k1@1"'€iki"'km@m Sy

so that
Pf(S) = Z €k1‘€1.nk'm‘€7n Sk1£1 e Sk'm‘g?n (B'1//>
PePy,
Problem B.3 Let a,- -, a, be complex numbers and let S be the 2r x 2r skew symmetric
matrix
T 0 O
=@, 7]

All matrix elements of S are zero, except for r 2 x 2 blocks running down the diagonal.

For example, if r = 2,

0 o 0 0
s 0 0 0
=l o 0 0 a
0 0 —as O

Prove that Pf(S) = a1as--- ;.

Proposition B.2 Let S = (S;;) be a skew symmetric matriz of even order n = 2m .

a) Let m be a permutation and set S™ = (Sr(;)x(;)) - Then,
Pf(S™) = sgn(m)P£f(S)

b) Forall 1 <k +#/{¢<n, let Mg be the matriz obtained from S by deleting rows

k and ¢ and columns k and {. Then,
Pf(S) = S sgn(k —£) (—1)* S Pf (M)
=1

In particular,



Proof: a) Recall that 7 is a fixed permutation of 1, ---, n. Making the change of

summation variables j; = w(i1), -+, Jn = 7(in),

n

Pf(STr) - m Z gil.“insﬂ'(il)ﬂ(iQ) U Sﬂ(infl)ﬂ-(in)

11, in=1

n
— _1 E T G Gn) g, o
—  9mypyl € " S]1]2 e S]nfljn
jl:"'ajnzl
n
. -1 1 Jivdng. . ... Q. .
= sgn(m ) g E : eI S5 4 Sjn—1n
Jisin=1

= sgn(n 1) Pf(S) = sgn(n)Pf(9)

b) Fix 1 <k <n. Let P = {(k1,41), -, (km,?mn)} be a partition in P,,. We may

assume, by reindexing the pairs, that £ = k; or k = ¢;. Then,

1 Ky - Fom 1 Kk Ko
Pf(S) = 5= E g Skey Skt + E gt Sk Skt
PePm PeEPm
k1=k o=k

By antisymmetry and a change of summation variable,

kik---ko 0 § : kb1 -kt
E c 1 m mSk‘lk e Sk'm‘em — g 1 m ’"Skgl e Skmﬁm

PEPm PEPm
L1=k k1=k
Thus,
Pf(S) = & E ghtvhmbn Gy v Syt
PeEPm
ki=k
_ 2 2 k@---kmémS S
= om Z £ ke "t Okl

=1 pecp,,
ki=k £1=2

Extracting Sk from the inner sum,

Pf(S) = kfs 2 Yy tkelhntng, e S
- = k¢ 2m kz@z kmgm

PcPm
k1=k £1=¢
+ Z Sk@ 2% Z gkékgéz...kmémsk2e2 Skmém
gzk‘—'—l PEPm
k1=k £1=¢
The following Lemma implies that,
k—1 n
Pf(S) = Z Ske (—1)k+£ Pf(ng> + Z Ske (—1)k+£+1 Pf(ng)
/=1 l=k+1
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Lemma B.3 Forall 1 <k #/0<mn, let Mgy be the matriz obtained from S by deleting

rows k and £ and columns k and ¢. Then,

m*tm

- k+e e
Pf (ng> = sgn(k:—f) (2,11)_1 Z €k£k2£2 k’"£m5k2£2 oo Sk

PEPm
ki=k £1=2¢

Proof: Forall 1<k</{<n,
ng = (Si/j/;lgi,jgn—2>
where, for each 1 <i<n—2,

-/

{i if1<i<k—-1

1 = 1+1 fk<i</i-—-1
1+2 fi<i<n-—2

By definition,
_ 1 TR

Pf(Mi) = gtz D €70 %Sy o S i
1<iy, - in_2<n—2
We have
gl inoz (_1)k+£—1 ki it

forall 1 <iy,---,i,_o <n—2. It follows that

- (_1)k+€—1 ki’ i’
Pf (Mkﬂ) - _2m71(m_1)! E : € o 51/12/2 e Si;'L73i;L72
1§7;17"'77;n72§n_2
_ (=1t Z k€ koly -kl
— 2m=1(m—1)! € 2 " mSk2‘€2 e Skmgm

1<ka bo- km lm <n
—1)k+e-t kLkolo-km?
= E ghthetarbmbm G o oo+ Ske

27n71(m_1)! mitm
PcPm
k1=k £1=¢
If, on the other hand, k£ > ¢,
—1)ktert Ok kol kmbm
Pf (M) = Pf(My) = S D efhkete Sats <+ Skt
PePm
k1=t L1=k
—1)kte Z kLkolo Kl
— (2m)—1 € 202 Skz@z e Skmém
PEPm
ki=k £1=2
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Proposition B.4 Let

0o C
= (e 0)

where C = (¢;;j) is a complex m x m matriz. Then,

Pf(S) = (=1)2"("=1D det(C)

Proof: The proof is by induction on m > 1. If m =1, then, by Problem B.2,

0 512 .
Pf <S21 0 ) = 512

Suppose m > 1. The matrix elements S;;, 7,5 =1,---,n=2m, of S are
0 if1<i,5<m
g _ Cij—m Hl1<i<mandm+1<j<n
T ) —Cimm fm4+1<i<nand1<j<m
0 iftm+1<i,5<n
For each £ =1,---,m, we have

0 Ol,k
M1k+m = (_Cl,kt 0 )

where C1'* is the matrix of order m — 1 obtained from the matrix C' by deleting row 1

and column k. It now follows from Proposition B.2 b) and our induction hypothesis that

Pf(S) = g:i+1(_1)€ S1e PE (M)

= 3 (=D)cro—m Pf(Myy)
l=m-+1

= 3 (1) ¢y, PE(Migsm)
k=1

_ Z (_1)k+m 1 (_1)%(m—1)(m—2) det (Ol’k)
k=1

Collecting factors of minus one

PE(S) = (=1)™HL(=1)3m=D0m=2) $> (_1yk+ o det (01”“)
k=1

— (—1)Fmm=D) SN (YR et (017’“)
k=1

= (=1)2™"=D det(C)
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Proposition B.5 Let S = (S5, ;) be a skew symmetric matriz of even order n = 2m.

a) For any matriz B of even order n =2m,
Pf(BtSB) = det(B) Pf(9)

b) P£(S)? = det(S)

Proof: a) The matrix element of B*S B with indices i1,i2 is Y. bji, S, )i, - Hence

J1,J2
t p— ) . . .« .. . . . . DY . .
Pf(B SB) - 2’"m' : : 6 : : b]lll b]nln 5.71.72 Sjnfljn
]17 : 7jn
p— 11 Z DY . . . . .« . . .
- Qmm' : : : : € " b]lzl b]nzn S]1]2 S]nfljn
’.. 7jn /1/1

The expression

11 -1 L.
: : € " b]lll T b]nln

1,7 0n
is the determinant of the matrix whose ¢*® row is the ji® row of B. If any two of ji, - -, jn

are equal, this determinant is zero. Otherwise it is &/t""» det(B). Thus
Z é‘il"'in bjlil - b]nln — 6‘71]11 det(B)
and

Pf(B'SB) = det(B) gty > &S5, - S;, 15, = det(B)PE(S)

2mm|
jla"'ajn
b) It is enough to prove the identity for real, nonsingular matrices, since Pf(S)? and
det(S) are polynomials in the matrix elements S;;, 4,5 =1,---,n, of S. So, let S be
real and nonsingular and, as in Lemma 1.10 (or Problem 1.9), let R be a real orthogonal

matrix such that R'SR =T with
- 0 (673
=@, 7]
for some real numbers aq, -+, a,, . Then, det R = £1, so that, by part (a) and Problem

B.3,
Pf(S) = +det(R)Pf(S) = +£Pf(R'SR) = +P{(T) = +a;---a
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and

det(S) = det (R'SR) = detT = af---a2, = Pf(S)?

2
m

Problem B.4 Let S be a skew symmetric D x D matrix with D odd. Prove that det S = 0.
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Appendix C: Propagator Bounds

The propagator, or covariance, for many—fermion models is the Fourier transform

of

Crat (k) = 7% 0
where £ = (ko,k) and e(k) is the one particle dispersion relation minus the chemical
potential. For this appendix, the spins o, ¢’ play no role, so we suppress them completely.
We also restrict our attention to two space dimensions (i.e. k € R? k € IR®) though
it is trivial to extend the results of this appendix to any number of space dimensions.
We assume that e(k) is a C* (though C?*¢ would suffice) function that has a nonempty,
compact zero set F, called the Fermi curve. We further assume that Ve(k) does not vanish
for k € F, so that F is itself a reasonably smooth curve. At low temperatures only those
momenta with kg ~ 0 and k near F are important, so we replace the above propagator
with

U(k)
Ck) = 1ko — e(k)

The precise ultraviolet cutoff, U(k), shall be chosen shortly. It is a C§° function which
takes values in [0, 1], is identically 1 for k2 + e(k)? < 1 and vanishes for k2 + e(k)? larger
than some constant.
We slice momentum space into shells around the Fermi surface. To do this, we fix

M > 1 and choose a function v € C§°([M ~2, M?]) that takes values in [0, 1], is identically
1 on [M~1/2, M'/?] and obeys

i v (M 2j x) =1

j=0

for 0 < o < 1. The j* shell is defined to be the support of
v (k) = v (M* (k¢ + e(k)?))

By construction, the j*" shell is a subset of

[k | e < loho — ()] < 3= }
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Setting
O(j)(k:) = C(k),j(j)(k)

and U(k) = 3 vU) (k) we have
§=0
C(k) =Y _CY(k)
j=0
Given any function y(k’) on the Fermi curve F, we define

O (k) = C9 (k)x(K' (k)

where, for k = (ko, k), k/(k) is any reasonable “projection” of k onto the Fermi curve. In
the event that F is a circle of radius kz centered on the origin, it is natural to choose
kK'(k) = %k. For general F, one can always construct, in a tubular neighbourhood of F,
a C* vector field that is transverse to F, and then define k/(k) to be the unique point of
F that is on the same integral curve of the vector field as k is. See [FST1, Lemma 2.1].

To analyze the Fourier transform of C')(k), we further decompose the ;" shell

: « 9 1 1
into more or less rectangular “sectors”. To do so, we fix [; € [W , W} and choose a

partition of unity

1= XV (K)

sex ()

of the Fermi curve F with each ng ) supported on an interval of length [; and obeying

sg/p ‘3ﬂ7xgj)‘ < —Cg,rﬁt for m <4

Here Oy is the derivative along the Fermi curve. If k/(¢) is a parametrization of the Fermi

curve by arc length, with the standard orientation, then 9y f (k) =l (1) = L f(K'(t)).
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Proposition C.1 Let x(k') be a C* function on the Fermi curve F which takes values

in [0, 1], which is supported on an interval of length [; € [ and whose derivatives

M3i>» Mﬂ/z}
obey

sup [ ()| <

Jg‘ =

forn <4

Fiz any point K. in the support of x. Let t and © be unit tangent and normal vectors to

the Fermi curve at k.. and set
p(x,y) = 1+ M7 |zo —yo| + M77[(x —y) - a| + Gl(x —y) - ¥

Let ¢ be a C§ function which takes values in [0,1] and set ¢\9) = ¢(M?[kZ + e(k)?]). For
any function W (k) define

W) = [ keI (10 () (K ()

There is a constant, const , depending on K, ¢ and e(k), but independent of M, j, x and

y such that
: _ (92 an [~ ag /7 «
W) v)| < const s pla ) ™ max sup gt 90 (093 (8:9) W (R)|

o< k€Esuppxol)

where o = (o, g, a2) and |a| = ag + a1 + as.

A

n

Proof: Use S to denote the support of ¢ (k)x((k'(k)). If ¢(x) vanishes for z > @2,
then ¢U) (k) vanishes unless |ko| < QM7 and |e(k)| < QM. If k € S, then kg lies in an
interval of length 2QM ~7, the component of k tangential to F lies in an interval of length
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const [; and, by Problem C.1 below, the component of k normal to F lies in an interval of

length 2C’QM ~7. Thus S has volume at most const M ~2/[; and
sup |W>£335(a:,y)| < vol(5) iquV( )| < const sz Sug W (k)|
z,y €

We defined p as a sum of four terms. Multiplying out p* gives us a sum of
4* terms, each of the form |Z5 o ‘ﬂo (x— y) n‘ﬂl‘[ y) -f‘ﬁ2 with |3| < 4. To bound
sup,, , p(z,y)* |W>(<]3¢)(a:,y)| by 4*C, it suffices to bound

(257 (ST2) (6~ y) B W)

— ‘/ e ) (3 0k,) ™ (i Vi) (1 Vi) (W) () x (K (R)) )

by C for all z,y € R® and 3 € IN® with |3| < 4. The volume of the domain of integration

is still bounded by const sz , so by the product rule, to prove the desired bound it suffices
to prove that

B N B1 B2 j
|Iél|8£z(1 21611; ‘ (3750k) " (350 - Vi) (it - Vi) (qu(k) X(k'(k))) ‘ < const

Since [; > and all derivatives of k’(k) to order 4 are bounded,

MJ
B2

1 Bor 1 o Bif s B2 / L 1
lréllzgi Sl;.p ‘ (550k) " (550 Vi) (Lt Vi) x(k (k))) < const 5 max TR P < const

so, by the product rule, it suffices to prove
max sup ‘(%Bko)ﬂo (%ﬁ . Vk)ﬂl ([jf: . Vk)ﬁ2¢(j)(k)‘ < const
1B1<4 kes
Set I ={1, ---, |8},
ke f1<i<
d; = ﬁﬂ‘vk it Bo+1<i<Bo+
[t - Vi if Bo+ 01 +1<i<|f

and, for each I' C I, dI' = [I,c; di- By Problem C.2, below,
18]

RCED SIS S U C Rt

s

M d" (kg + e(k)?)

=1

96



where P, is the set of all partitions of I into m nonempty subsets Iy, ---, I, with, for
all 7 < ¢/, the smallest element of I; smaller than the smallest element of I;;. For all

m < 4, }dm‘j’ (MQj (kg + e(k)z)) } is bounded by a constant independent of j, so to prove

deL

the Proposition, it suffices to prove that

max sup ‘sz(ﬁ(?ko)ﬁo (310 Vk)ﬁl (1t Vk)32 (kg + e(k)?) ‘ < const
1B1<4 kes

If Bo #0

M (5500,) ™ (38 Vi)™ (13- Vi) ™ (k +e(10)?) = § 2 if B =2, B =2 =0

0 otherwise

{%oMj ifBo=1, 1 =03=0

1

777 on S. Thus it suffices to consider

is bounded, independent of j, since |ko| < const
Bo = 0. Applying the product rule once again, this time to the derivatives acting on

M?e(k)? = [M7e(k)] [M7e(k)], it suffices to prove

max sup |M? (-1 - Vi )7 (Lt Vi) Pe(k ‘ < const C.1
|8<4 keg} (317 k) (Gt Vi) e(k)| < (C.1)

If 81 = B2 = 0, this follows from the fact that |e(k)| < const 155 on S. If 81 > 1 or 8 > 2,
j[@2
J

it follows from % < 1. (Recall that [; < W) This leaves only 5, =0, B = 1. If

t - Vie(k) is evaluated at k = k/

., it vanishes, since Vie(k.) is parallel to in. The second

derivative of e is bounded so that,

M(;sup |t - Vie(k)| = M1 sup [t - Vie(k) — £ - Vie(k.)|
keS keS

< const M7, sup |k — k.|
kes
< const M7 [? < const

: , 1
since [; < 47575+ [ |

Problem C.1 Prove, under the hypotheses of Proposition C.1, that there are constants
C,C" > 0, such that if }k— k.| < C, then there is a point p’ € F with (k — p’) .t =0 and
[k —p/| < C'e(k)|.
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Problem C.2 Let f: R - Rand g: R — IR. Let 1 <iy,---,i, < d. Prove that

(5) o= X o) Il 11 5 5@

— =1 0e]
m=L(r .1,)ep® P P

where P is the set of all partitions of (1, --- ,n) into m nonempty subsets Iy, -, I,

with, for all 7 < i/, the smallest element of I; smaller than the smallest element of I;/.

Corollary C.2 Under the hypotheses of Proposition C.1,

Sup‘Wg;(aj,y)‘ < const % sup  |W (k)|
kesupp x ¢

and

sup/dy‘W(‘n y)|, Sup/da:‘W)g;(x,y)‘
T Yy

(92
< const max sup

aE]N

j
Milag+or)
'aj<4 kEsuppxpL)

05 (8- Vi)™ (£ Vi) W ()

Proof: The first claim is an immediate consequence of Proposition C.1 since p > 1. For

the second statement, use

1 1 _ _ 1
S‘;P/dva S};P/dmw—sgp/dxm—/dx'm

with ' = x — y. Subbing in the definition of p,

_ 1
/dx PO _/dx [+ M = o [+ M7 |-+ 15 £

_ 25 1 1
=MYg /d"’ =0 = I

< const M? [i
J

We made the change of variables g = Mizy, x - 1= Mz, x-t = %zg. [ |
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Corollary C.3 Under the hypotheses of Proposition C.1,
sup ‘C’g)(aj,y)‘ < const %

and

sup/dy‘C’g)(aj,y)‘, sup/dw‘C’&j)(x,y)‘ < const M7
x Yy

Proof: Apply Corollary C.2 with W (k) = m and ¢ = v. To achieve the desired

bounds, we need

« A « ~ (e} y
max sup ‘(ﬁ@ko) O(ﬁn . Vk) ! ([jt . Vk) 2@‘ < const M’
|Oé|§4 kesuppxy(j)

In the notation of the proof of Proposition C.1, with 3 replaced by «,

il

dvD (k) =" (-1nmm Y (m)mﬂﬁd%ko—e(k))

m=1 (I, I ) EPm
) ‘Ol| . 1/Mj m+1 m T
=M Y (-ymm Y (m) [T M7d" (tho — e(k))
m=1 (I17"'7I7n)€737n i=1

; j m+1
On the support of xvU), |1kg — e(k)| > const — so that (Zkt/_%) is bounded uni-

formly in j. That M7d’i (1ky — e(k)) is bounded uniformly in j is immediate from (C.1),

: . thoM7if By = 1 = B2 =0
M (5550k,)” (30 Vi) ™ (1t Vi) ™ (2ho) = {z if fo =1, 61 =2 =0
0 otherwise
and the fact that |ko| < const 1 on the support of v\, |
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Appendix D: Problem Solutions

¢I. Fermionic Functional Integrals

Problem 1.1 Let V be a complex vector space of dimension D. Let s € A V. Then s has
a unique decomposition s = sg + s; with sop € C and s; € @521 A"V. Prove that, if
so # 0, then there is a unique s’ € AV with ss’ = 1 and a unique s” € AV with s”’"s =1

and furthermore

Then
D
_ _ 1 n_ S
§s = 85 = (80 + 51) [5 + Z(—l) sgil
n=1
D ) D -
= [+ e+ g+ ]
n=1 B B n=1
D . D-1 -
_ _1\nS1 n s
= [+ e+ [ ]
D n r D n’!
=1+ ()| + A
S+ [ S
Thus § satisfies §s = s5 = 1. If some other s’ satisfies ss’ = 1, then s’ = 1s’ = 555’ =51 =5
and if some other s” satisfies s”’s = 1, then s/ = s"1 = 5”55 =15 = 3. [ |

Problem 1.2 Let V be a complex vector space of dimension D. Every element s of AV

100



has a unique decomposition s = sg + s1 with so € C and s; € @521 A"V. Define

= {3 )

n=0

Prove that if s,¢ € AV with st = ts, then, for all n € IN,

n

(8+t)n _ Z (Trrzb)smtn—m

m=0

and

Solution. The proof that (s 4 ¢)™ = Y _, (")s™t"~™ is by induction on n. The case

m=0

n =1 is obvious. Suppose that (s +t)" = > _(")s™t" ™™ for some n. Since st = ts,

m=0

we have ss™t"™ = s"t"s for all nonnegative integers m and n, so that

(s+ )" =s(s+ )"+ (s + )"t

n n
- Z (m) m—l—ltn m+ (:1) mtn—l—l m
m=0 m=0
n+1 n
B SR S
m=1 m=0

n—|—1+ Z m 1 mtn—i—l m+ Z mtn+1—m+tn+1

+1 n! +1— +1
_ oty Z [ty + ey ™ 4 5"

— tn—i—l + Z (n:—ll) |:nL_|_1 4+ n—lT—L}i_—lm]Smtn—l—l—m + Sn+1

m=1
n+1
- n+1\ min+l—m
- Z ( m )8 t
m=0

For the second part, since sg, tg, s1 = s — sg and t; = t — tg all commute with each other,

101



and s? =t} =0 foralln > D

t_ ot — 1 tof = 1 ¢ — 1
S _ s __ S0 m 0 n — 580 0 man
ee =ee =¢e { E msl }6 { 5 mtl}—e e { 5 msl tl}

n=0 m,n=0

o N
:esoeto{ Y W_m)!s;ntf]_m} where N =n+m

— eSOetO{ (N) Tti\]_m}
N=0 ' m=0
650+t°{ > (s +t1)N} = et

Problem I.3 Use the notation of Problem I.2. Let, for each a € R, s(a) € A V. Assume
that s(«) is differentiable with respect to a and that s(a)s() = s(8)s(«) for all a and g.
Prove that

and

g—aes(o‘) = ¢%(@) g—as(a)

Solution. First, let for each o € IR, t(«) € AV and assume that t(«) is differentiable

with respect to a. Taking the limit of

s(a+h)t(a+hh)—s(a)t(a) _ s(a—i—h}z—s(a)t(a + h) + S(Of) t(oz—l—h}i—t(oz)

as h tends to zero gives that s(«)t(«) is differentiable and obeys the usual product rule

& [s(@)t(@)] = s'(a)t(a) + s(a)t' (o)
Differentiating s(«)s(8) = s(5)s(«) with respect to « gives that s'(«)s(8) = s(8)s'(«) for
all o and 3 too. If for some n, <-s(a)” = ns(a)"~'s'(a), then,
ds(a)s(a)" = §'(a)s(a)™ + s(a)d=s(a)™ = s'(a)s(a)" + ns(a)s(a)" s (@)
= (n+1)s(a)"s'(e)
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and the first part follows easily by induction. For the second part, write s(a) = so(a) +
s1(a) with so(a) € € and s1(«) € @521 A"V. Then sg(a) and s1(8) commute for all a
and ( and

D D41
g_aes(a) _ g_a[eso(a){ Z %81(05)”}} — g_a[eSo(a){ %Sl(a)n}]

Problem 1.4 Use the notation of Problem 1.2. If sq > 0, define

S0

D
s = Inso+ Y S (21)"
n=1

with In sy € IR.

a) Let, for each a € IR, s(a) € A\ V. Assume that s(«) is differentiable with respect to «,
that s(a)s(8) = s(8)s(a) for all @ and 8 and that so(«) > 0 for all a. Prove that

b) Prove that if s € AV with sp € R, then
Ine® =s

Prove that if s € AV with so > 0, then



Solution. a)

D
sh(o n—1s1(a)* 1t n s1(a)™
T ns(a) = 25+ > (-1 i (e) - ot sh(@)

so(a)FT S0\

" iMe
T

n=1
, D—1
= S Y (D) s (e) + Y (1) S s (@)
n=0 n=1

D
= sile) 4 sale) Z 1" O[5 () + sh(0)]

since s1(a)Ps)(a) = g %551 ()PF! = 0. By Problem L1,

d _ sp() sh (@) s«
do lnS(()é) - sg(a) + sé(a) + [5(&) 50%04)} [ ( ) + SO( )} o %
b) For the first part use (with a € IR)

d as __ se*® _ . __ d_
o ne®™ =2 =s=2-as

This implies that Ine®® — as is independent of a. As it is zero for a = 0, it is zero for all
«. For the second part, set s’ = e™*. Then, by the first part, Ins’ = Ins. So it suffices to
prove that In is injective. This is done by expanding out s’ = 2520 sy and s = ZZD:O Sp

with s}, s, € /\g V and verifying that every s, = s¢ by induction on ¢. Projecting

lnso—f—z( nm! 5 50 =1In s +Z( Hr! —S_SO)

onto /\0 V gives In sp = In s and hence s = so. Projecting both sides onto /\1 V gives

R RN IR E R
%(70)1:( li ( 360)1

(note that (S/S_,SB)H has no component in A™V for any m < n) and hence sj = s;.
0

Projecting both sides onto /\2 V gives

BEAEES RPN 121 [ 2 EETS B R 21T, e 2
( 1% ( 500)2+( 1% [( 500)1] :%(—’0)24_( 1% [( ’0)1]

Since sj = so and s§ = s1,

i_o = (_lil_l (ﬂ)z == (51_56)2 o

and consequently s, = so. And so on. [ |
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Problem 1.5 Use the notation of Problems 1.2 and I1.4. Prove that if s,t € AV with
st = ts and sg,tg > 0, then

In(st) =Ins+Int

Solution. Let © =Ins and v = Int. Then s = ¢e* and t = e” and, as uv = vu,

In(st) =In (e"e’) =In (¢"*") =u+v=Ins+Int

Problem 1.6 Generalise Problems I.1-1.5 to AgV with $ a finite dimensional graded
superalgebra having Sy = C.

Solution. The definitions of Problems 1.1-1.5 still make perfectly good sense when the
Grassmann algebra /\ V is replaced by a finite dimensional graded superalgebra $ having
89 = C. Note that, because $ is finite dimensional, there is a finite Dg such that $ =
@®Ps 8,,. Furthermore, as was observed in Definitions 1.5 and 1.6, $’ = Ng V is itself a finite

dimensional graded superalgebra, with §' = @P%TP8’  where §/ = S, ®
m m 1

m=0 mi+ma=m

A" V. In particular 8 = $¢. So, just replace
Let V be a complex vector space of dimension D. Every element s of /\ V has a unique
decomposition s = sg + s1 with sg € C and s; € @521 N"V.
by
Let §' = @,?,L/:OS;” be a finite dimensional graded superalgebra having S, = C. Every
element s of $' has a unique decomposition s = sg+s; with s9 € € and s; € ®P_, 8! .
The other parts of the statements and even the solutions remain the same, except for

trivial changes, like replacing D by D’.

Problem 1.7 Let V be a complex vector space of dimension D. Let s = so+s1 € AV
with sp € C and s; € @le AN"V. Let f(2) be a complex valued function that is analytic
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in |z| < r. Prove that if |so| <r, then > 7, %f(”)(O) s"™ converges and

o) D
Dm0 sm = L™ (s0) 5T
n=0 n=0

Solution. The Taylor series Y °_, i, ™) (0)t™ converges absolutely and uniformly to
f(t) for all t in any compact subset of { z € C } |z| <7 }. Hence > .0, m,f(”+m (0) sg

converges to f(™(sq) and

Z f(n) 50 81 = Z Z nlmlf(n+m) )S 51

n=0 m=0
oo min{N,D}

- Z Z mf(N)( ) év_ns? where N =m +n
N n=0

min{N,D}

SUAURD SO

n=0

Problem 1.8 Let aq,---,ap be an ordered basis for V. Let b; = Zle M; ja;,1 <1< D,

be another ordered basis for V. Prove that

/~ daD~-~da1:detM/~ dbp - - - dby

In particular, if b; = a4 (;) for some permutation o € Sp
/ - dap ---day :sgna/ - dbp -+ -dby

Solution. By linearity, it suffices to verify that
/bil"'big dap---da; =0
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unless £ = D and

/b1~-~bD dap ---day = det M

That [b;, ---b;, dap---da; = 0 when ¢ # D is obvious, because [aj, ---aj, dap---da;
vanishes when ¢ # D.

/bl"‘deaD"‘dCLl: Z Ml,jl"'MD,jD/ajl'“ajDdaD"'dal

Jiship=1
Now fajl +-aj, dap---da; = 0 unless all of the j;’s are different so

/b1 ~++bp dap -+ -day = Z My 1) - Mp.x(D) /%(1) o +ar(p) dap - - day

TESD

= 32 Musty Moo [senm ar---ap dap-da

TESD

= Z sgn Ml,Tr(l) e 'MD,ﬂ'(D) =det M

TESD

In particular, if b; = a4 (;) for some permutation o € Sp
/bl"'bD dap - -day = /%(1)"'%(1}) dap -+ da;

zfsgna ay---ap dap---da; =sgno

Problem 1.9 Let
o S be a matrix

A be a real number

@)

o

v1 and U5 be two mutually perpendicular, complex conjugate unit vectors

o SU; = 1A\Up and SUy = —1\Us.
Set
wp = ﬁ(’lﬁ—ﬁz) Wy = %(171 —|-772)

a) Prove that
e W and Wy are two mutually perpendicular, real unit vectors

L Sdﬂ :=Aﬂb andAgdb::-—Adﬂ.
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b) Suppose, in addition, that S is a 2 x 2 matrix. Let R be the 2 x 2 matrix whose first
column is w; and whose second column is wy. Prove that R is a real orthogonal matrix

‘ 10 =A
andthatRSR—{)\ 0|

c) Generalise to the case in which S is a 2r x 2r matrix.

Solution. a) Aside from a factor of /2, w; and 1, are the imaginary and real parts of ¥,
so they are real. I’ll use the convention that the complex conjugate is on the left argument

of the dot product. Then

Wy - Wy =

and
Sy = (Sm ST,) = \/_L(z)«ul +1AD) = %(171 + Ty = Al
Sty = E(Sﬁl +S0) = 25 (1A —ABy) = (i — ) =~

b) The matrix R is real, because its column vectors w; and ws are real and it is orthogonal

because its column vectors are mutually perpendicular unit vectors. Furthermore,

wh L, wh . . wh - .
— )\ w1 - Wy —Wq "lIfl o 0 —X
1172 1172 —wa U71 A 0

c) Let r € IN and

o S be a 2r x 2r matrix

@)

Ao, 1 < £ < r be real numbers

o

for each 1 < ¢ < r, U1, and ¥ be two mutually perpendicular, complex conjugate

unit vectors

@)

U;,¢ and U} ¢ be perpendicular for all 1 <4,j <2 and all £ # ¢’ between 1 and r

o

SV1,¢ = 1A\eU1 0 and STz p = =1\ ¢, for each 1 < £ < 7.

Set

Wy, = ﬁ (U1, — Taye) W, = 7 (U1,0 + Ua,0)



for each 1 < ¢ < r. Then, as in part (a), w11, w2 1, w12, W22, -, W r, Wa, are mutually

perpendicular real unit vectors obeying
S’u_fl’g = )\@1172’5 Swz,e = —)\éwl,é

and if R = [wy,1, wa,1, w12, W22, -+, W1, Wa,r), then

" _T 0 -\
RSR—EG?{M 0}

Problem I.10 Let P(z) = Y c¢;2" be a power series with complex coefficients and
i>0
infinite radius of convergence and let f(a) be an even element of /g V. Show that

Solution. Write f(a) = fo + fi(a) with fo € C and fi(a) € (5\ So) @ @72:1 S A" V.
We allow P(z) to have any radius of convergence strictly larger than | fo|. By Problem 1.7,

D

Yocf@r =Y wP"(fo) fr(a)"

n=0

As g—ae fla) = g—ae fi(a), it suffices, by linearity in P, to show that

o (A@)" = n(fi@)" ™" (4 i) (D.1)
For any even g(a) and any h(a), the product rule
0 _la 0
2= [o(@h(@)] = |5 9(@)|r(a) + 9(a) | % h(o)]

applies. (D.1) follows easily from the product rule, by induction on n. [ |
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Problem I.11 Let V and V'’ be vector spaces with bases {ai,...,ap} and {by,...,bp/}
respectively. Let S and T' be D x D and D’ x D’ skew symmetric matrices. Prove that

1] v dns@] dur) = [ [ [ @ty dur(®)] duso

Solution. Let {ci,...,cp} and {d1,...,dp/} be bases for second copies of V and V',

Sicia;i+3:dib;

respectively. It suffices to consider f(a,b) = e , because all f(a,b)’s can be

Ezczaz—i—zzdzb

constructed by taking linear combinations of derivatives of e i with respect to

¢;’s and d;’s. For f(a,b) = e¥ici®itXidibi,

/[/f(a»b) dus(a)] dpr (D) =/ :/ezici“ﬁzidibi dug(a)} dpir (b)
:/ :GEidibi/eziciai dﬂs(a)} dpr(b)

:/ 'ezzdzbze QEZJCZSZJCJ]dMT(b)

_%EijcisijCj/GEidibi dﬂT(b)

=e

— e__EUCZSUCJe__zijdiTijdj
and ]

(a,b) dur(b d s(a) = eFiciaitBidibi g (b) | dpg(a
K K

:/ Eiciai/ezidibi duT(b)] d,us(a)

:/ Ziciaie—%zijdiTijdj]dﬂs(a)

— e—%EijdiTijdj /eZiciai le/S(a/)

— o 3%ijdiTijd; ,—33ijciSijc;
are equal. [ |

Problem 1.12 Let V be a D dimensional vector space with basis {a1,...,ap} and V' be
a second copy of V with basis {c1,...,cp}. Let S be a D x D skew symmetric matrix.

Prove that

/eEiciaif(a) d,ug(a) _ e—%zijcisz'jcj /f(a — Sc) d,US(a)
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Here (Sc), = > Sije-

Yibja;

Solution. It suffices to consider f(a) = e , because all f’s can be constructed by

taking linear combinations of derivatives of %% with respect to b;’s. For f(a) = e>i%:,

[ @) dusta) = [ 0o duga

3 3ij(bit+ci)Sij(bj+c;)

= 8_5
— e_%EijCiSing’e_EijbiSijCje_%zijbisijbj
and
il e S e 1l n Qo bila:—:S::cs
e ZEZJCZSZch/f(aI_SC) d,us(a)ze 2zlezSzjcj/eEzbz(az %;Sijc;) dﬂS(a)
— e—%EijciSijcje—EijbiSijcje—%EijbiSijbj
are equal. [ |

Problem 1.13 Let V be a complex vector space with even dimension D = 2r and basis
{41, -+, Uy, b1, -+, 1, }. Here, ¥; need not be the complex conjugate of ¥;. Let A be an

r x r matrix and [ - dpa(1, 1)) the Grassmann Gaussian integral obeying
ity duatw.d) = [ 0idy duato.d) =0 [0y duatod) = 4,
a) Prove
/@/h’n iy g, dpa(i, )
= 30 A [ i i dua(,9)

Here, the 7;, signifies that the factor ¢;, is omitted from the integrand.

b) Prove that, if n # m,

[ iy duat ) =0
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c) Prove that

[ i i, da,0) = det [ 44

1<k (<n
) Let V' be a second copy of V with basis {(7,

an element of A ,,, V. Prove that

/621(@%4—@(1) dﬂA(@D,";) — ezi,jEiAijCj

"7<r7517"'7§r}- View ezi(fﬂbrl-i/_%‘@) as

Solution. Define

. [ if1<i<r
azw,w)—{%_r ifr+1<i<2r
and
0 A
S—{_At 0:|
Then

[ @ dusta) = [ (a06.9) duatv. )

a) Translating the integration by parts formula

[ o fa) dusta) = z Sur [ 4 £(@) dusta)

of Proposition 1.17 into the v, language gives

/ i F@,§) dua(,§) =

> Aue [ G5z £(06) dualv )
=1 ¢
Now, just apply this formula to

[ uin b dpal, ) = (CDIOD [y, dual,9)
with k =4y and f(¢,9) = 4, - 1bj,, s, -
[s s, dnato )

_ (—1)(m+D(n-1) Z 1A, /%...

_ (1) (mA) =1 (m=1) (1) ZZ(_l)g_lAilje /win i B ey g (0, D)
=1
- gi(_l)f—lAim /¢in .. .¢i2¢§jl ?],je ..
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as desired.

d) Define

(& if1<i<r
bl(¢,¢>_{_§i—r lfr—|—1§2§27’

Then
/621'({_1‘1/11‘-1-11_%{1‘) dﬂA@pﬂE) _ /eEibiai d,uS(a) _ e—%Zi,jbiSijbj _ eEi,jC_iAijCj

s6-a | % o] [ =3te-a | ag] -

b) Apply [],_, STZ_E and [],~, gC—je to the conclusion of part (d) and set ¢ = ¢ = 0. The

[ - CAC+catg) = —CAcC

N —

resulting left hand side is, up to a sign, [, i, ¥, - ¥;,. dpa(, ). Unless m = n,
the right hand side is zero.

c¢) The proof is by induction on n. For n = 1, by the definition of du 4,
/¢i1¢j1 dﬂA(@D?@E) = Ailjl
as desired. If the result is known for n — 1, then, by part (a),

/@/h’n i gy g, dpa(i, 1))

I
3

(—1)*1 A4, /@/h by e g, dpa (Y, )

o~
Il

1

(_1)Z+1Ai1jg det M(l’z)

I
3

o~
Il
—_

where M (19 is the matrix [Aiois] with row 1 and column ¢ deleted. So expansion

1<a,f<n

along the first row,

N KZ <_1)€+1Ai1je det M(I’E)
=1

det [Aiajg}

1<a,f<n

gives the desired result. |
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Problem 1.14 Prove that
C(C) = —%Eijcisijcj —+ g( — SC)

where (Sc)i =2, Sijc)-

Solution. By Problem 1.12, with f(a) = ¢"(®) and Problem 1.5,
C(c) =log %/ eZiciai W (a) dug(a)
— ].Og [%e—%EijciSijCj / eW(a—SC) d,U/S(a/)i|

= —1%ij¢iSij¢i + log [%/ etV (a=5e) dus(a)]

= —%EijciSijcj + Q( - SC)

Problem I.15 We have normalized G ;11 so that Gy41(0) = 0. So the ratio Zfil in

Gyt1(c) =log %il /ng(CM) dpger+ (a)

had better obey
7= / €9 dpigrn (a)

Verify by direct computation that this is the case.

Solution. By Proposition 1.21,
Lijy1 = / ew(a) d,us<§J+1)(a)
:/[/ eiate) dﬂs@ﬂ(@] dpgon (c)
:/[Zjeg‘](“)} dpgo+n(c)

= Zj/ng(a) dpgcs+v (c)
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Problem 1.16 Prove that
Gy =Qgw) 0Qgu-10---0Qg0) (W)
= Qg 0Qg 0---0 Qg (W)

Solution. By the definitions of G; and Qg(W),
G = Qg<n (W)

Now apply Theorem 1.29.

Problem 1.17 Prove that
fla): = / f(a+b) du_s(b)
f(a) = / Fo(a+b) dus(b)

Solution. It suffices to consider f(a) = e*i¢% . For this f
/f(a—|— b) dN—S(b) = /eZicz‘(aH-bz‘) d,U/—S(b) — XiCii /eZiCibi d,U/—S(b)
= eciaieézi»jcisijcj = ;f(a);

and
/ fr(a+b) dps(b) = / R TR ()

:eEiciaie%Zi,jciSijcj/GEicibi dﬂs(b>

_ JSiciai 3% jciSijci ,— 5% jciSijc; _ JTicia; _
=e e e =e = f(a

Problem I.18 Prove that



Solution. By linearity, it suffices to consider f(a) = a; with I = (i1, --,4,).

o .,._08 9o .. . 0 1%;,;b:Si5b; Zibia;

da; "M = Ba; oby, ob;,, € € b=
_(_1\nd . 9 13568505 Sibsa;
= (=1)"g; b;,, das € € b—0
_ _(_1)ngbi1 oo D3PSty b -

If ¢ ¢ 1, we get zero. Otherwise, by antisymmetry, we may assume that ¢ = i,,. Then

ol no ol 13 ,;0:8i5b; Sibia,
_:a::——l o .. 62 'L,J’L'ngezer
Oay I ( ) 8b~;1 8bin_1 b—0
—-1. .
= (—1)” -ail .'.ain—l .
_ -0
- .aazal

Problem I.19 Prove that

D
[eataras: 1) dusta) = 5= Su [sgla) §r-1(@ dusta)

Solution. It suffices to consider g(a) = a; and f(a) = a;. Observe that
/ezmbmameézm,jbmsmjbjezmcmam dus(a) = e35m.0mSm;ibj o= 5Tm j (bm+cm)Smj(bj+c;)
_ e—Em’jbmSijje—%Em’jcmSijj

Now apply % to both sides

D
T 3 j A — . —1 e
gb» /ezmbmamQZEm,jbmSmjbjezmcmam d,ug(a) - Z Si,ﬁcﬁ e EbmSchJe 15¢m Smjcj
' (=1

D
1 . b
— Z SLKCK /eEmbmame2Zm7]bmSmjbj echmam d,ug(a)
(=1

ag

D
S bmam 23 b S ibi O Y mCmGm
:13215M /e ez i 5—e dus(a)

Applying

to both sides and setting b = ¢ = 0 gives the desired result. The (—1)P! is to move
e, g—ck past the g_ln on the left and past the g—ae on the right. [ |
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Problem 1.20 Prove that
fila+b)=:f(a+b):qg=:f(a+ )y

Here : - :, means Wick ordering of the a;’s and : - :; means Wick ordering of the b;’s.

Precisely, if {a;}, {b;}, {A;}, {B;} are bases of four vector spaces, all of the same dimension,

:ezlAlaz—l—ZlBlbl :a eEszbz :eEZAZaZ :a eEZAZaZ—I—EZBZble22131415”143
:eElAlaz—l—EzBlbl :b eZJZAIaI :eEszbz :b 621A1a1+Eszble2Z”BZSW B;

Solution. It suffices to consider f(a) = e¥i¢*. Then

— eZici(aitbi) g 33i5¢i8i5¢;

fila+b) = Zf(d)id‘d:a+b = e¥i¢itign i i ‘d:a—f—b -

and
3f<CL + b):a — :eﬂici(ari—bi):a — eZicibi:exiciai:a — eEicibieﬁiciaieéxijciSijcg‘
— eEiCi(ai'i‘bi)e%EijciSijcj
and 1
:f(a + b):b — :eEiCi(ai-i-bz‘):b — eEiCiai:eEicibi:b — eEiciaieEiCibieﬁzijCiSijCj
— eZiCi(ari‘bi)e%EijCiSijCj
All three are the same. [ |

Problem I.21 Prove that

fiser(a+b) = fla+b)

S
b, T
Here S and T are skew symmetric matrices, : - :g4+7 means Wick ordering with respect to
S+ T and ; - ;.s means Wick ordering of the a;’s with respect to S and of the b;’s with
b, T

respect to T

Solution. It suffices to consider f(a) = e¥¢% . Then

fispr(a+b) = :f(d):d,S—FT‘d:a-i-b = eieidiea BB tTle d=a+b

— ezici(ai‘l‘bi)e%zijci(sij+Tij)Cj
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and

. . - Xici(as+b;) - __ .pXicia4, - 2icib; .
f(a,_|_b)(;§:e ci(a;+ )Z;_e ca.a’s.e c .
— eEiciaie%EijciSijcj ezicibie%zijCiTijCj
— eZiCi(ai+bi)e%Zijci(Sij+Tij)Cj
The two right hand sides are the same. [ |

Problem 1.22 Prove that

/ F(@): dus(a) = £(0)

Solution. It suffices to consider f(a) = e¥¢%. Then

/ F(a): dps(a) = / S dyg(a) — / eBiein g3 SieSucs gy a)

1. . Q. . Iy, Q. A 1l Q. ..
— ezzwczswcj /eEzczaz dﬂs(a) — ezzmclsmcje 33i5CiSijC5 1= f(())

Problem I1.23 Prove that

/ [1: 11 ar,,: dusw) =Pt (Tu,u),(i',u'))

i=1 k=1

where
0 ifi =14
T(i,u),(i’,u’) = { Sy ifi#£4

i,#’gi’,u’

Here T is a skew symmetric matrix with Z?:l e; rows and columns, numbered, in order
(1,1),--+,(1,e1),(2,1),---(2,e2),- -+, (n,e,). The product in the integrand is also in this

order.
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Solution. The proof is by induction on the number of a’s. That is, on Y, , ;. As

/:ai: dus (1) = /ai dps(¥) =0
/:ailz (i, dus(Y) = /ailaig dps(¥) = Siy iy
/:ailaiQ: dus(¥) =0
the induction starts OK. By Problem 1.19,
/H HH ar,, . dus(y) = %Szlel,p 611_[16661”1 oa; H HH ar, ,, . dps(¥)
i=1 H= i=2 H=

Define

EOZO Ei:Zej

Jj=1

and
lEifl‘i'N = Ei,u

Under this new indexing, the last equation becomes

Ei—1 n
/ ay, dps() = X S p [ 11, 5 [T i, dpus(v)
i=1 J= Ez 1+1 P j=1 i—o J=Ei_ 1+1
E, E1 1 n E;
= > (1P, H a, H II  ay: dus(¥)
k=E1+1 j—o I= b;;kwl

where we have used the product rule (Proposition 1.13), Problem 1.18 and the observation

that HZ:1 ay, , . has the same parity, even or odd, as e; does. Let My, be the matrix

obtained from T by deleting rows k£ and ¢ and columns k£ and ¢. By the inductive
hypothesis

En
/ E - ai, : dps(v) = EZ+1(—1)’“—E1—1SZE1,lka(MElk)
=1 .7 i—1 =Lfn

By Proposition 1.18.a, with k replaced by FEj,

JII: T dusto) = Picr)

i=1 J=Fi—1+1
since, for all k > By, sgn(E; — k) (—1)F1+F = (—1)k=E1—1, -
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Problem 1.24 Let a;; , 1 <4,7 <n be complex numbers. Prove Hadamard’s inequality

n n 1/
det[a || < T (X lawl?)
i=1 \j=1
from Gram’s inequality.
Solution. Set a; = (a1, --,a:,) and write a;; = (a;,e;) with the vectors e; =

0,---,1,---,0) , j = 1,---,n forming the standard basis for C" . Then, by Gram’s

inequality

aeefa]| = [aetanen]| < f1 ol e = 1 (S bas)”

=1

Problem I.25 Let V be a vector space with basis {a1,---,ap}. Let Sp¢ be a skew

symmetric D x D matrix with
S, = (fe,90) forall 1 <¢,0' <D
for some Hilbert space H and vectors fy, g € H. Set Fy = /|| fel|#|lgel|». Prove that

‘/ [T a;, dus(@)| < [] Fu

1<i<n

Solution. I will prove both
(a)
‘/ H asg, d:uS

<[] P

1<4<n

<2" [] Fa. []Fi

1<k<m 1<4<n

’ knlalk Haje d,uS

For (a) Just apply Gram’s inequality to

‘ 11 a, d,us(a)‘ — )Pf Ex | det [Si,]|
/=1

1<k,l<n
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For (b) observe that, by Problem 1.17,
[T a2 11 aj, : dps(a)
k=1 (=1
= [ 1 ew T o5+ ] dus(a) du-so

- Z /H ai, [T aj, dups(a )/Hbje dp_s(b)

{1, ler 01

There are 2™ terms. Apply (a) to both factors of each term. |

Problem 1.26 Prove, under the hypotheses of Proposition 1.34, that

‘/H Hw zw/iz,u) dNA(w)'S H \/§erz,u||H H \/§Hg€i,uHH

i—1 M= 1 1<i<n 1<i<n
1<p<e; 1<p<e;
®i,u=0 mi,p=1

Solution. Define

S:{(i,u)‘lgign, 1<u<ey, m,“:O}

S={(ip|1<i<n 1<p<e, kiuy=1}

If the integral does not vanish, the cardinality of S and S coincide and there is a sign +

such that (this is a special case of Problem 1.23)

/i

1

L (6 1) dpa() = et (Mas)
pn=1

Bes

where
0 if i =4/
My, iy = {A(&,mﬁi',u') if 1 #£ 4

Define the vectors u®, o€ S and v?, 3 € Sin C"™ by

[ 2
;=

1 ifa=(i,u) for some 1 < p <e;
0 otherwise

{1 ifi=n+1

1 ifi=n+1
U?: —1 if 8= (i, ) for some 1 < p < e;
0 otherwise
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Observe that, for all « € S and 3 € S,

lu®ll = [|0°]| = V2
uo o f o 4L ita=(p), f=0" ) with iz
10 ifa=(i,u), 8=, 1) withi =4

Hence, setting
Fo=u"® fg, cC" o H for a = (i,u) € S

ngvﬁ@)ggw cC" oH for 3= (i,pu) € S
we have

Ma,ﬂ = <Fa7 Gﬂ)@n+l®H

and consequently, by Gram’s inequality,

'/}j:uﬁltb(giw’fi,u): d#A(@[’)‘ = ’det (Maﬂ) s

BES

< [T 1Ealleniien IT IGslIcnt1an

a€eS B€S

< I Valfeulin 11 V2l ln

a€S BeSs
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¢II. Fermionic Expansions

Problem II.1 Let

D
F(a) = Z f(i1,j2) aj, a4,
jl’j2:1
D
W)= Y wliija s ja) aj,05,05,a;,
J1,J2,J3,Ja=1

with f(j1,72) and w(j1, j2, j3, j4) antisymmetric under permutation of their arguments.

a) Set
SO = 2 [ F@) V@ dus(a) where 2y = [V dugo
te 4, )\’ for £=0, 1, 2

Compute 5y7S( ))\:0 or 0, 1,

b) Set

0

Compute S7R()) for all £ € IN.

o

Solution. a) We have defined

F AW (a) 4 D . eMW(a) g

SO = f f(zzd/le/(a) d IELCLS)(CO - Z f(Jl’jQ)f a?ijjwe(a) d (Zf(a)
Hs it Hs

Applying Proposition 1.17 (integration by parts) to the numerator with k = j; and using

the antisymmetry of w gives
I % (aj, @) dus(a)
J W@ dus(a)

¢ ‘  AW(@) D
= > fUd2) | Shg. — Zsjl’kf %2 © o (AW (a)) dus(a)}
- P

D
S(\) = Z f(j17j2)§5j1,k

J1,52=1

J W@ dpg(a)

J1,J2=1
D r o AW(a)
o S Ay, Q5. Qjs € dus(a
= > fUd2) | Sig. — 4N D Sjl,jsw(33’14a15716)f T JAWJ((;) ( )]
e I | [e dus(a)
J1,J2=1 J3,J4,J5,J6

(D.2)
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Setting A = 0 gives
D
S(O) = Z f(j17j2>sj1,j2
j17j2:1

Differentiating once with respect to A and setting A = 0 gives

S'(0)=-4 > f(jlaj2)5j17j3w(j37j47j57j6>/ajzajzlajsaj(a dps(a)

J1s 06

Integrating by parts and using the antisymmetry of w a second time

8/(0) =12 Z f(jbjQ)Sjl,j3Sj27j4w(j37j47j57j6)/ Qs Ajg dlus<a)

J1s006

=12 Z f(jl:j2)5j17j35j2,j4w(j3,j4,j5,j6)5j5,j6

J17...’]6

To determine S”(0) we need the order A contribution to
f Ajp Uy Qs Aje erWia) dus(a)
[ W@ dps(a)

f Qg5 Ajg eAW(a) dﬂs(a)
[ V@ dug(a)

Z Sj17j3w(.j37 j47 j57 ]6)

J3,J4,J5,J6

=3 Z Sj17j35j27j4w(j37j47j57j6)

J3,J4,J5,J6
S Sjaw(issdas 5. Jo)S J aiazsa5, W 5 (AW (a)) dpis(a)
- 71,73 37J45J55J6)°9 72,k AW (a)
Javisds g6k Je dus(a)
=3 Z Sj17j3Sj2,j4w(j37j4aj57j6)Sj5,j6
j37j47j5aj6
eAW(@) D (W d
A [ ajs e 5o (AW (a)) dus(a)
-3 Z Sy i3 Si2.5a0 (I35 345 J55 J6) Sis k fe/\W(Z) s (@)
J3,J4,J5,J6,k
L. faj4aj5aj6 eAW(a)ng(/\W(a)) dﬂS(a)
- Z Sj1,j3w<]37]47]57]6)Sj2,k feAW(a) dpt (a)
J3.dands g6 k S
=3 Z Sj17j3Sj2,j4w(j37j4aj57j6)Sj5,j6
J3,J4,J5,J6

—3A Z Sj17j35j27j4w(j3:j4:j5:j6)5j5,k/ ajg ngW(a) dus(a)

j3’j4aj57j67k

- A Z Sj17j3w(j37j47j57j6>sj2,k/ Ajs Qg5 Qe %%W(a) dus(a) +O()‘2>

j3’j4aj57j67k
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D
S,/(O) =24 Z f(317]2>{ Z Sj17j35j27j4w(j37j47j57j6>sj5,k /ajG ngW(a) dug(a)

J1,J2=1 j37j4aj5’j67k

D
+8 ) f(jlajZ){ Zsjl,jgw(j:a,j4,j5,j6)3j2,k/aj4aj5aj6ngW(a) dps(a)

J1,72=1 J3:J4,35,36,k

D
=24 Z f(]17]2){ Z Sj1,j3Sj2,j4w(j37j47j57j6)sj5,k/ajangW(a') d:u5<a)}

J1,j2=1 J3,J4,J5,J6,k

D
+ 16 Z f(]l:]Z){ Z Sj17j3w(j37j47j57j6>3j47j55j27k/aje%ww(a) dMS(a)}

Ji,72=1 J3:J4,35,36,k

Zsjl,jsw(j&h,j&j6)5j2,k5j4,£/aj5aj6g—ngkW(a) d,us(a)]

3,46
k.,

D
+8 ) f(jl,]é){

J1,J2=1

=24 x4 x3 Z f(jlajZ)Sjl,jSSj2,j4w(j3:j4:j5:j6)5j5,j7sj6,jsw(j7:j87j97j10)5j9,j10

J1is5J10

+16 x4 x3 Z f(jl,j2)Sj1,j35j2,j7w(j37j47j57j6)5j4,j55j6,j8w(j77j87j97j10)sj9,j10

Ji,J10

+8x4x3 Z f(.jl,jQ)Sjl,jgsjg,j7w(j37j47j57jG)Sj4,jsSj5,j6w(.j77j87j97j10)5j9:j10
Ji,J10

— 8 x 4! Z f(jbj2>Sj1,j35j2,j7w(j37j47j57jG)SJ&,jsSj&jgSj67j10w(j77j87j97j10)

Ji,d10
=24 x4 x3 Z f(jlajZ)Sjl,jSSj2,j4w(j3:j4:j5:j6)5j5,j7sj6,jsw(j7:j87j97j10)5j9,j10

Ji,++5J10

+24x4x3 Z f(jhj2)Sj1,j35j2,j7w(j37j47j57j6)5j4,j55j6,j8w(j77j87j97j10)sj9,j10

J1i,+,J10

— 8 x 4! Z f(jl,j2)5j1,j35j2,j7w(j37j47j57jG)sz;,jsSjs,jgSjﬁ,j10w<j77j87j97j10)

Jis 5710

By way of resume, the answer to part (a) is

D
S(O)= > f(i1,42)S)1.js
Ji1,J2=1
D

Sl(o) =—12 Z f(jbj2>Sj17j35j27j4w(j37j47j57j6>sj5,j6

.jl?”'7.j6:1

SH(O) = 288 Z f(jlaj2)5j1,j3sj27j4w(j37j47j57j6)Sj5,j7Sj67j8w<j7aj8>j9>j10)Sj9,j1o

Ji,5Jd10

+ 288 Z f(jhj2)Sj17j3SJ2,j7w(j37j47j57j6)5j4,j5sj6,j8w(j77jS?jQ?le)Sjgajlo

J1,05J10
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— 192 Z f(jhj2)5j17j3sj2,j7w(j37j47j57jG)szL,jsSjsngsjﬁ,jmw(j%j87j97j10)

jl:'“:le

b) First observe that

D
W(a+b)=W(a)= > wlirjz, dss ja) | bj binbisbss + 4bs,bs,bj, 5,

J1,J2,J3,Ja=1

+ 6bj1 bjz aj,aj, + 4bj1 gy Ajg CljJ

is of degree at least one in b. By Problem 1.19 and Proposition I.31.a, [:b;:b, dus(b)
vanishes unless the degree of J is at least as large as the degree of I. Hence WR()‘) =0

for all ¢ > 3. Also

A=0

R(0) = / 05 F(b) dps(b) =0

That leaves the nontrivial cases
R(O) = [ Wa+t) - W@, FO) dus(d

=6 > f(ir,d2)w 93,]4,]5,]6)/ Tbjsbjaagsag by by, dps(D)

Ji,°7,J6

=—12 > (1, 52)S1 55 o jaw(s, Jas J5, J6) s 0
Ji,5Je

and
R (0) = / W (a+b) — W(a)2:, F(b) dus(b)
- 16Zf jla]Q .]37]4 35736) (j77j87j97j10)[ bj3aj4aj5aj6bj7aj8aj9aj10 :bbj1bj2 d,uS(b)

»,J10

= 32 Z F(G1,32) i1 .35 Siair w35 Jas J55 J6) 5405 @ W7, 85 795 J10) s Ao Wy

»J10

Problem II.2 Define, for all f : M,, - C and g : My — C with r,s > 1 and r + s > 2,
f*xg: Mpys—2— Cby

D
FrgUn e dras—2) = Y FU1 e dr1, K)g(k s, Grss—2)
k=1
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Prove that

1f =gl < WfIgll and 1 =gl < min {LAll gl » 19l }

Solution. By definition

* = max max *g(J1, s Jrgs—
||f g” 1<i<r+s—2 1<4<D 1§j1,...,jz,r+572§D ‘f g(jh Jras 2>}
Jji=¢
We consider the case 1 < ¢ < r— 1. The case r < i < r 4+ s — 2 is similar. For any

1< <r—1,

max *g(J1,y Jr+s—
1<0<D 1Sj1,~~»;+5_2§D }f g(]l Jr+s 2)‘
Ji =~
D
< max .7"'7'7"—7]{7 k; 'r7"'7.r s—
S P VRNpY, G s dr1, K)g (R G- Gres—2))|
Jji=~
D
= max fU, - gre1, k g(kyJry v Jras—2
1<¢<D 1§j17~‘z»]:»,~_1§D kzzjl ‘ ( )‘ 1§jr,"',§+3_2§D ‘ ( + )‘
Ji =~
D
< max [ 1,y Jr—1, k } max Eyjrys s Jrgs—
1<4<D 191,-»%,193 kgl ‘f(jl Jr=1 )} 1§k§D1§jw",er+5Lg§(D J Jr+ 2)}
ji=¢
D
< max 11,y Jr—1, k
- 1§£§D 15J1;"Zj,«,1§D kgl }f(jl ]T 1 >} ||g||
ji=¢
< [If1 lgl
We prove |||f gl < [IIfIll llg||- The other case is similar.
H‘f*gm = Z }f*g(jlf"?jr-l-s—Q)‘
1§j17"'7jr+372§D
D . . . .
< > S| f G e, R)g (R Gy s Girs—2)|

1§j1""7j7‘+s—2§D k=1

= Z [zk:‘f(jh'"?jr—hk)‘ ) Z ‘g(k7jr7"'7jr+s—2)‘]

.]Ta"':.j'r«l»sz

jl"“?j"‘—l

< Z [Z‘f(jlf"?jT—l?k)‘] [I’IlI?X Z ‘g(k7jr7"'7j7"+8—2)u
Jirsdr—1 k Jryodrts—2

S Z Z}f(jlf"?jT—l?k)‘ HgH
j17...7j'f'71 k:

= LA gl
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Problem II1.3 Let : - :g denote Wick ordering with respect to the covariance S.

a) Prove that if

‘ / by :by:s dug(b) ‘ <FMFIT T forall H,Je [ M,

r>0

then
} / b :byi.s du.s(b) ‘ < (MF)'HHU' for all H,J € U M,

r>0

b) Prove that if
‘ / bu :by:s dps(b) ‘ < FHHIL and ) / b :by:r dpr(b) ‘ < GlHI+

for all H,J € {J,5q M, then

113
)

‘ / by :by:s+r distr(b) } < (F + G forall H,J e U M.

r>0

Solution.
a) For any ¢ with (2 = z,

/ezzazbz:ezzczbz:zs d,U/ZS<b) — /ezzazbzez’bc’bb’beQZZJZC’LS’LJCJ duzs<b)

— o 3%ij2(aitci)Sij(aj+es) o 5Dij2ciSije;

_ e—%Eij(Caz‘-l-CCi)Sz‘j(Caj+ch)e%21j(ﬁci)5ij(CCj)
— /eEiCaibi s eXiceibi » dps(b)

Differentiating with respect to a;, ¢ € H and ¢;, ¢ € J gives

/bH byies dpss(b) = ngl+lJl/ by :by:g dug(b) = z<|Hl+lJl>/2/ by :byg dpg(b)

Note that if |H|+ |J| is not even, the integral vanishes. So we need not worry about which

square root to take.
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b) Let f(b) = by. Then

/ by :by:s+r dusir(b) = /(a +b0)y :fiser(a+b) dus(a)dur(b) by Proposition 1.21
= /(a +b)u (a+b)y:as dus(a)dur(b) by Problem 1.21
b, T

= Z :i:/ ayg’r aj.s dﬂs(a) /bH\H’ :bJ\J/ZT d,uT(b)
H/CH

J'cI

Hence

| [ brisir dusin(t)] < 3 BHIIGIITN _ (g

H/CH
J'ca

Problem I1.4 Let W(a) = Zlﬁi,jSD w(t,7) a;a; with w(i, j) = —w(y,4). Verify that

W(a+b)=W(a) = > w(i,j)bibj+2 > w(ij) ab;
1<ij<D 1<ij<D
Solution.
W(a+b)=W(a)= > w(i,j) (ai+bi)la;+b)— >  wli,j) aia;
1<i,j<D 1<ij<D
= > w(i,j) bibj+ > w(i,j) aibj+ Y w(i,j) bia;
1<i,j<D 1<i,j<D 1<ij<D

Now just sub in

> w(i,g) biaj = >3 —w(ji) (—ab)= > w(ji)azbi= Y w(i,j) ab;

1<i,j<D 1<i,j<D 1<i,j<D 1<i,j<D

Problem IL.5 Assume Hypothesis (HG). Let s,s’,m > 1 and

fO)= 3 fu )ba  Wh) = 3 w(K)bx W)= 3> wy(K)bg

HEM,, KeM, K/'EM,,
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a) Prove that
| [ W), 10 dus )] < mEm 2 £ 1S] o]

b) Prove that [ W (b)W’(b):, f(b) dus(b) = 0 if m = 1 and that, for m > 2,

| [ Wew o), 70) dus®)] < mim = DE™ gl ISP | )|

Solution. a) By definition

[0, 50) dus®) = 3 w0 i) [, b dus )

HeMqpm,
KeMs

- Z k§1w5<K~<k))fm(H)/:bf(bk:be dps(b)

HeMm
KeMg_1

Recall that K.(k), the concatenation of K and (k), is the element of M, constructed by

appending k to the element K of M,_;. By Problem I.19 (integration by parts) and
Hypothesis (HG),

D
‘/:bf{bk;be dus(b)‘ - ‘ > Skg/:bf(: 2 by dus(b)‘
=1

J

(_I)J_lsk’hj /:bR: bhla"%ﬂj?"'J‘“m dﬂs(b)

1

S |Sk,hj| Fs—l—m—2

INNGER

We may assume, without loss of generality, that f,,(H) is antisymmetric under permutation

of its m arguments. Hence

[, 10 dus) < Y 8 5 (R S| )] 7572

HeMpy k=
KeMg_1

—m Y S (X e (KR)) S )] FE

HeM,, k=1 KeMg_q

D
Smlfunll 32 (X 1kml) ()] P72

HeM,,

<mfws| IS Y |fm(H) FoF2

= mfws|| S| [l fmlll B2
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b) By definition

_HEM'nL k,k/zl

By Problem 1.19 (integration by parts), twice, and Hypothesis (HG),
D
‘/:bf{bkbﬁ, by -, b dus(b)‘ S Sk/g/:bkbkbf(,: 2 by dus(b)‘

(— )J’—lsk’,hj/ /:bf{bkbf{,: bhl,"',h’j/,-“,hm dus(b>’
1

|FM3 |FM3 1§

= Z Sk/ﬁj,skﬁj /be(bf{,: bH\{hj,hj/} dus(b)‘
bz
S Z Z |Sk,hj| ‘Sk/,hj,| FS+5’—|—m—4
/=1 j=1
#J

Again, we may assume, without loss of generality, that f,,(H) is antisymmetric under

permutation of its m arguments, so that
[ w e, 10) dus)

S5 ()] s (R (K] 1S | 1S, | ()] 547

KeMg_1
KIEMS/ 1
D ’

=m(m —1) Z > (Z |ws(f<.(k:))|> (Z |ws/(f<’.(k’))|> 1Sk h | 1Sk hg | | o (H)] pst+s’+m—4

HeM,, k,k'=1" K K

> 3 +s'+m—4
<m(m —1) |lws| sl > ( > \Sk,h1|)< > |s,€,7h2|) o (H) |+
HeEM,, F=1 k=1
< m(m = 1) lwsl| [[we|| [SI* Y |fon ()| FoHFm—
HeM,,

= m(m — 1) [lws]| [[ws || Sl fm]] T

131



Problem II.6 Let M > 1. Construct a function v € C§°([M ~2, M?]) that takes values in
[0,1], is identically 1 on [M /2 M'/?] and obeys

iu(Mij) =1

j=0

for 0 <z < 1.

Solution. The function

Vl(x) _ 6_1/962 ifz>0
0 ifx <0

is C°°. Then

vo(z) = 1 (—z)vi(x + 1)
is C'°°, strictly positive for —1 < z < 0 and vanishes for x > 0 and = < —1,

. ffl V2(y> dy

=

is C'°°, vanishes for x < —1, is strictly increasing for —1 < x < 0 and identically one for

z >0 and

vy(z) =v3(1 — z)vi(x 4+ 1)

is C'*°, vanishing for |z| > 2 identically one for || < 1 and monotone for 1 < |z| < 2.

Observe that, for any x, at most two terms in the sum

oo

w@)= > wilw+3m)

m=—0o0

are nonzero, because the support of v4 has width 4 < 2 x 3. Hence the sum always
converges. On the other hand, as the width of the support is precisely 4 > 3, at least one
term is nonzero, so that v(x) > 0. As v is periodic, it is uniformly bounded away from zero.
Furthermore, for |z| < 1, we have |x + 3m/| > 2 for all m # 0, so that v(z) = v4(z) =1 for

all |x| < 1. Hence




is C*°, nonnegative, vanishing for |z| > 2 identically one for |z| < 1 and obeys

oo oo

> wla+sm)= 3 mCEm =1

m=—oo m=—oo

Let L > 0 and set
v(z) =vs(1 Inz)

Then v(x) is C*° on z > 0, is supported on ‘%lnx} < 2, ie. for e 2l <z < 2L is
identically one for ‘% lnx} <1,i.e. for e ¥ <z < e and obeys

oo oo

Z V(e?’me) = Z V5(%1Il$+ 3m) =1 for all x > 0

m=—0o0 m=—oo

Finally, just set M = e3L/2 and observe that 2L < M2, el > M1'/2 and that when z < 1

only those terms with m > 0 contribute to anoz_oo l/(engaz). [ |
Problem I1.7 Prove that
| =
pZ4m? » _|_m2
Solution. For any matrix, | M||? = || M*M]||, where M* is the adjoint (complex conjugate

of the transpose) of M. As
«_ (o 1\ _(—ip0 —p1) _
y <—p1 —ipo) ( P1 ipo ) v

P = ipo  P1 ipo 1\ _ _ (p5+pi 0 = —p’1
—p1 —1po —p1 —ipo 0 pg+pi

and

we have

=

:W\\—¢2+m e U] = e
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Appendix A. Infinite Dimensional Grassmann Algebras

Problem A.1 Let Z be any ordered countable set and J the set of all finite subsets of 7
(including the empty set). Each I € J inherits an ordering from Z. Let w : Z — (0, 00) be

any strictly positive function on Z and set

WI = Hwi

i€l

with the convention Wy = 1. Define

V:gl(z,w):{a:I—WD

> wilay| < oo }
i€T
and “the Grassmann algebra generated by V”
AT, w) = (13, W) = { a:7—C| ¥ Wal <o }
1€7
The multiplication is (af); = >, sgn(J,I\J) a; 3, where sgn(J,I\J) is the sign of the
permutation that reorders (J,I\ J) to I. The norm ||a|| = >  Wi|ay| turns A(Z, w) into a

1eJ
Banach space.

a) Show that
[l < llexl] (18]

b) Show that if f:C — C is any function that is defined and analytic in a neighbourhood
of 0, then the power series f(a) = Yoo, L f(™(0)a™ converges for all a € U with |||

smaller than the radius of convergence of f.

c) Prove that A¢(Z7) = { a:J — C | o = 0 for all but finitely many I } is a dense
subalgebra of A(Z, w).

Solution. a)

8l =" [WilaB)| = 31| 3 sen(3,1\J) ey,

1€J 1€J JC1
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= Z ‘ ngn(J, I\J) Wia, WI\JﬁI\J

€3 JCI

< ZZWJ|04J| I/VI\J|ﬁI\J|
1€J JCI

<Y Wilas| WilBi] = [la]l 1]
1,JEJ

<Dl ol

()] = | i L (0)a

converges if ||a]| is strictly smaller than the radius of convergence of f.

c) ™A¢(Z) is obviously closed under addition, multiplication and multiplication by complex
numbers, so it suffices to prove that A¢(Z) is dense in A(Z, w). J is a countable set. Index
its elements Iy, Iy, I3, ---. Let o € A(Z,w) and define, for each n € IN, o™ € A;(Z) by

Qg 7 .
I 0 otherwise

Then
lim o — (”)H = lim Z oy, | =
n—oo n—oo
j=n+1
since Z;’;l Wi, |ou,| converges. |

Problem A.2 Let 7 be any ordered countable set and J the set of all finite subsets of 7.
Let

62{04:3—%3}

be the set of all sequences indexed by J. Observe that our standard product (af); =

> scrsen(J, INJ) a8y, is well-defined on & — for each I € J, > - is a finite sum. We now

JCI

define, for each integer n, a norm on (a subset of) & by

lafln = 32 2"M|a|

1eJ
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It is defined for all & € G for which the series converges. Define

%m:{ae(%‘||a||n<oofora11n€Z}
A, ={ a €& | [lafln < oo for some n € Z }

a) Prove that if o, 3 € 2~ then af € An.

b) Prove that if a, 8 € Ay then af € A.

c¢) Prove that if f(z) is an entire function and « € An, then f(a) € An.

)
)
)
d) Prove that if f(z) is analytic at the origin and a € 21 has |agp| strictly smaller than

the radius of convergence of f, then f(«a) € 2.

Solution. a), b) By problem A.1 with w; = 2", [[af|. < ||a|l. ||5]ln. Part (a) follows

immediately. For part (b), let ||a||m, ||B|lm/ < co. Then, since |||/ < |||, for all m < n,

HO‘B”min{m,m’} < ||a||min{m,m’} Hﬁ”min{m7m’} < ”aHm Hﬂ”m’ <0

c) For each n € Z,

o0

I£(a ||n—HZk,f<’“> Jok|| <37 A 1790 flall;

k=0

converges if |||, is strictly smaller than the radius of convergence of f.

d) Let n € Z be such that ||a/, < co. Such an n exists because o € 2. Observe that,

for each m < n,

lallm = 32 27" Mau| = 30 2012 oy | < Jag| + 2707 50 27y
Ied Ied 1eJ

< lag| + 27 o]l
Consequently, for all o € 2,

lim o = fagl
oo

If |ay| is strictly smaller than the radius of convergence of f, then, for some m, |||, is

also strictly smaller than the radius of convergence of f and

[f(e)llm < Z wlF PO ey, < oo
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Problem A.3
a) Let f(x) € C* (]Rd/LZd). Define
fo [ ax seoe e
R

d/de
Prove that for every « € IN, there is a constant Cy - such that

fol < C1s H(l‘i‘P]) 7 for all p € 2Zrz¢

]_

b) Let f be a distribution on R®/LZ%. For any h € C* (]Rd/LZ ), set

X) = 2o E P where hp / dx h(x)e "<P*>
p€27TZd IR‘d/LZd
\pI<R

Prove that

Solution. a)

e

(1 + p§>’7€—i<p,x>

L 0+pd = [ dx 1)

R?/LZ4 j=1
d ) ,
= [ 100 f1 - e
R4/ LZ4 j=1 7
) d
= [t e I ) 00
R?/LZ4 j=1

by integration by parts. Note that there are no boundary terms arising from the integration

by parts because f is periodic. Hence

d - J .
H(l-l-p?) }fp‘gcf,’vz/mdx I1(1-%=) f(X)’<oo

J=1 d/pz%" j=1 i
b) By (A.2)
| (f,h—hg) | = ‘<f,Ld Y ], >‘
pe2rzd
IpIZR
o A0 (2 X o)

x€R4/LzZ¢ " j=1 e2mzd

Ip\>R

<%y H (1+p3)" | hp|

pE 27rzd .7_
\p|>R
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By part (a) of this problem, there is, for each v > 0, a constant C}, ~ such that

3 d
lhp| < Chy TT(1+ p?)_’y for all p € %Zd
j=1

Hence, choosing v = vy + 1,

[(fh—nn | <% Y T +p) (p)

27 5a J=1
pPE LZ
IpI=ZR

Since
d -1 RL
oA+ =] Y ] <
pe2"Zd] 1 plezTWZ
we have
d
. o\ —1
Jm > T+ =0
pe%’ldjzl
I[pI>R
and hence

Problem A.4 Let f be a distribution on ]Rd/LZd. Suppose that, for each v € Z , there

is a constant Cy  such that

d
fe PN [ < Oy TT(14p))77 forallp e Z2
f J L

Jj=1

Prove that there is a C°° function F(x) on IR?/LZ? such that

mmaéwamo

d/de
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Proof: Define Fj, = (f,e”"<P*>) and F(x) = 25 qu%zd ¢'<ax>F. . By hypothesis
‘Fq‘ < Cf 4 H?zl(l + q?)‘"* for all q € %Zd and v € IN. Consequently, all termwise
derivatives of the series defining F' converge absolutely and uniformly in x. Hence F' €

c> (IRd / LZd). Define the distribution ¢ by

<, h >:/ dx F(x)h(x)
R4 /LZ4

We wish to show that ¢ = f. As

<@, e ISPEZ s / dx F(x)e ‘<px*>
R/ LZ4
_ 1 [ i<(q—p),x>
= 7a Fq ddx de
acZrzd Re/LZ
1 [ d o —i<p,Xx>
= 73 g FqL%p q = Fp =< f,e"°P%7 >
qe3rzd

we have that < ¢,h >=< f,h > for any h that is a finite linear combination of
e I<PX> pe 2t 274 Tt now suffices to apply part (b) of Problem A.3. [ |

Problem A.5 Prove that
a) AATf=ATAf + f

b) Ahg =0

c) ATAhy = Chy

d) <hg,hg/> —5@@/ Here f, ff

e) ———2ATA+1

Solution. a) By definition and the fact that < (zf) = f + 2@; )
AMTF=Ll(z+d)(z-L)f=1 _zd —1 1— 4

2 x+dm dx x’ +dacx Tz — dac2 f 2 x’ + dxz? f

Aaf=L(e-5)(@+8)f=L( - botok - L) r=L(*-1-%)f

Subtracting
AATf — ATAf = f
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VoA Ahy = (z+ g—m) e 2" = g% —ge 3% =
c¢) The proof is by induction on ¢. When ¢ = 0,
ATAhg = 0 = Ohg

by part (b). If ATAh, = ¢h,, then, by part (a),

ATAhy 1 = ATA—A_AThy = L_ATATAR, + 2-ATh, = L_ATlh, + L=ATh,

VEI+1 VEI+1 VEI+1 V41 V41
= ((+1) g AThy = (L4 Dy

d) By part (c)

(6 =) (hoy har) = (Chy, hyr) — (hey O he) = (ATARg, her) — (ho, ATARy )
= (he, ATARy ) — (he, ATARy ) =0

since AT and A are adjoints. So, if £ # ¢/, then (hy, hy) = 0. We prove that (hy, he) = 1,
by induction on ¢. For ¢/ =0
hosho) = == [ e dz =1
(ho,ho) = = [ e T =
If (h[, hg> = 1, then
(hetyhora) = 7 (AThe, AThe) = 5 (he, AATRY)

= o5 (he, (ATA + 1) he) = 75 (he, (C+ 1) gy =1

e) Adding the two rows of (D.3) gives

2

AATF + ATAf = (aﬂ—g?)f

or
22— £, — AAT 4 ATA
Part (a) may be expressed AAT = ATA + 1. Subbing this in gives part (e). |
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Problem A.6 Show that the constant function f =1 isin V, for all v < —1.

Solution. We first show that, under the Fourier transform convention,

g(k) = = / g(x) e dg

hy = (—i)¢hg. The Fourier transform of hq is

7 1 1 —1z2 ik 1 1 -1 ik)? —1p?
ho(k> ﬂ1/4?/e 3% o tkT 1. :ﬂ1/47/e 5 (z+ik) e 2% dx

L) = = / g'(x) e = ——L [ g(x) e~ dz = ik (k)
127r /:L'g(x) e”hrdy =il L [ g(z)e *de = z’% g(k)

so that
Afg = %((m - z—x)g) = L (it —ik)g = (-i)Alg

As hy = %AT}M_L the claim hy = (—i)%hy follows easily by induction.

Now let f be the function that is identically one. Then
fo=<f hy>= /hg(a:) dr =27 ﬁg(O) = V2r(—i)%hy(0)

is bounded uniformly in £ (see [AS, p.787]). Since ), (1 +27)7 converges for all v < —1,
fisin V, for all v < —1. [ |
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Appendix B. Pfaffians

Problem B.1 Let T = (T;;) be a complex n X n matrix with n = 2m even and let

S = (T —T") be its skew symmetric part. Prove that PfT = Pf S.

Solution. Define, for any n matrices, T*) = (Tif)), 1 <k <n each of size n X n,

n

pf(T(l),---,T(n)) _ _1 Z givinp()

2m ! 1112 tn—1%n
i1, in =1

Then

n

pf(T(l)t’T(Q),...’T(”)) =gy Y girinpMt @)

2mm/! 1112 T 1314 In—1%n
11, in=1
n

_ _1 Z Eilmi"TO) T(2) . T(n)

2mm! 1211 T 1314 Tn—1tn
Z‘1 7"'7in:1
n

_ 1 S vy p@) g

2mm! J1J2 Ti3iq In—1%n
J1,J2,13, " in=1
n

= _ﬁ Z gJ1,J2:13 Tj1j2 Ti3i4 RN Tinflin
J1,J2,83,  ,in=1
= —pf(TM, 7® ... TM)
Because pf(T(l),T(Q), R T(n)) is linear in T,
pf(%{T(l) — T(l)t}, T ... ,T(n))
= %pf(T(l)’ T? ... ’ T(n)) _ %pf(T(l)t, T(z), o T(”))
= Lpf(TM, 7@ .. M) 4 Lpp(7M) @) ... )
=pf(TW, 7@, ... M)

Applying the same reasoning to the other arguments of pf (T(l),T(z), cee T(”)).
pf(L{T™ — TN . Lep() T(nﬁ}) = pf(TW), 7@ ... T(m)

Setting T = T®) = ... = T(") =T gives the desired result. [ |
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0 Sz

Problem B.2 Let S = <521 0

) with S31 = —S15 € C. Show that Pf S = S4,.

Solution. By (B.1) with m =1,

0o S
P (g 0) =8 B e = H(Su-s) = Su

Problem B.3 Let o, - - -, a,- be complex numbers and let S be the 2r x 2r skew symmetric

matrix
A 0 O
@l T
Prove that Pf(S) = a1as--- ;.

Solution. All matrix elements of S are zero, except for » 2 x 2 blocks running down the

diagonal. For example, if r = 2,

0 o 0 0

ey 0 0 0

S = 0 0 0

0 0 —a2 O

By (B.17),
PES) = D MGy o S,
PePs
= Z €k1£1"'kr‘€rsk1£1 e Skrgr

1<ki<ko<--<kp<2r
1<k;<£;<2r, 1<i<r

The conditions 1 < k1 < ko < -+ <k, <2rand 1 <k; </¥; <2r, 1 <i<r combined
with the requirement that the ky, ¢1---k,, ¢, all be distinct force k; = 1. Then Sk, ,, is
nonzero only if /1 = 2. When k; = 1 and /5 = 2, the conditions k1 < ko < --- < k,, < 2r
and 1 < k; < ¥; <2r, 1 <i <r combined with the requirement that the ky, ¢1---k,, ¢,

all be distinct force k3 = 3. Then Sj,,, is nonzero only if /5 = 4. Continuing in this way

Pf(S) = el 2 rm2rg, o o Sor 19 = aran -y
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Problem B.4 Let S be a skew symmetric D x D matrix with D odd. Prove that det S = 0.

Solution. As St = —§,
det S = det S* = det(—S) = (—=1)P det S

As D is odd, det S = —det S and det S = 0. [ |
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Appendix C. Propagator Bounds

Problem C.1 Prove, under the hypotheses of Proposition C.1, that there are constants
C,C" > 0, such that if ‘k— kg‘ < C, then there is a point p’ € F with (k —p’) -t = 0 and
‘k — p" < C’"e(k)‘.

Solution. We are assuming that Ve does not vanish on F. As Ve(k.) || nn, Ve(k.) -1 is
nonzero. Hence Ve(k) - nn is bounded away from zero, say by Cs, on a neighbourhood of

k. This neighbourhood contains a square centered on k’,, with sides parallel to n and t,
ALL

k
/I,k'c -t
P p/\

such that F is a graph over the sides parallel to t. Pick C' to be half the length of the

sides of this square. Then any k within a distance C' of k/, is also in this square. For each
k in this square there is an € such that k +en € F and the line joining k to k +en € F

also lie in the square. Then

le(k)| = |e(k) — e(k + en)| = ‘/06 dt Le(k + th)

= Oy|k — (k + )|

/ dt Ve(k + th) - 1| > Cyle]
0

Pick p’ = k + en. |

Problem C.2 Let f: R? — R and g: IR —1R. Let 1 <4y,---,1, <d. Prove that

Jof@) =3 X ¢m(@) I I 5 f)

m=1 (117.”’17”)67)7(7?) p:l EGIP

o
( H ox;
/=1 £

where 777(7?) is the set of all partitions of (1, --- ,n) into m nonempty subsets Iy, -, I,

with, for all i < 7/, the smallest element of I; smaller than the smallest element of I;/.
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Solution. The proof is easy by induction on n. When n =1,

e 9(f(@) = g'(f(2)) G- F (@)

which agrees with the desired conclusion, since Pfl) = {(1)}, m must be one and I; must

be (1). Once the result is known for n — 1,

o)

(MT2) @) =2=% Y ) {1 11 2=r@
m:l(

=1 _ p=1/el
I, Ipn)ePir ™ ?

=YY (@) G @ T T G S
m:l(

p=1/tel
117’Im)€P7(r?) P

£ Y e (1 G sw) (5 1 5 w)

— p=1 ¢c] lel,
L1y, 1) ePi) 4=1 pra T ?

’

=YY (@) I I /)

T
1= n p=leer,
M= (11 )eP) v

For the first sum after the second equals sign, we made the changes of variables m’ = m+1,
n=»rn,---,1, =1L, 1, = (n). They account for all terms of (I1,---,I/ ,) € 777(7,7,) for
which n is the only element of some I;. For each 1 < g < m, the ¢*" term in the second
sum after the second equals sign accounts for all terms of (I{,---,1].,) € 777(:,) for which n

appears in I, and is not the only element of I;. [ |
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