
Riemann Surfaces of Infinite Genus

Joel Feldman∗

Department of Mathematics
University of British Columbia

Vancouver, B.C.
CANADA V6T 1Z2

feldman@math.ubc.ca
http://www.math.ubc.ca/∼feldman/

Horst Knörrer, Eugene Trubowitz
Mathematik

ETH-Zentrum
CH-8092 Zürich
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Preface

In this book we introduce a class of marked Riemann surfaces (X;A1, B1, · · ·) of

infinite genus that are constructed by pasting plane domains and handles together. Here,

A1, B1, · · · , is a canonical homology basis on X . The asymptotic holomorphic structure

is specified by a set of geometric/analytic hypotheses. The analytic hypotheses primarily

restrict the distribution and size of the cycles A1, A2, · · · . The entire classical theory of

compact Riemann surfaces up to and including the Torelli Theorem extends to this class. In

our generalization, compact surfaces correspond to the special case in which all but finitely

many of Aj , j≥ 1 , have length zero.

The choice of geometric/analytic hypotheses was guided by two requirements. First,

that the classical theory of compact Riemann surfaces could be developed in this new context.

Secondly, that a number of interesting examples satisfy the hypotheses. In particular, the

heat curve H(q) associated to q ∈ L2(IR2/Γ) . Here, Γ is the lattice

Γ = (0, 2π) ZZ ⊕ (ω1, ω2) ZZ

where ω1 > 0 , ω2 ∈ IR and H(q) is the set of all points (ξ1, ξ2) ∈ C∗×C∗ for which there

is a nontrivial distributional solution ψ(x1, x2) in L∞loc(IR
2) of the “heat equation”

(
∂

∂x1
− ∂2

∂x2
2

)
ψ + q(x1, x2)ψ = 0

satisfying
ψ(x1 + ω1, x2 + ω2) = ξ1 ψ(x1, x2)

ψ(x1, x2 + 2π) = ξ2 ψ(x1, x2)

The general theory is used to express the solution of the Kadomcev-Petviashvilli equation

with real analytic, periodic initial data q explicitly in terms of the theta function on the

infinite dimensional Jacobian variety corresponding to H(q) . It is evident that the solution

is almost periodic in time. In [Me1,2], this result is improved to finitely differentiable initial

data.

This book is divided into four parts. We begin with a discussion, in a very general

setting, of L2 - cohomology, exhaustions with finite charge and theta series. In the second

part, the geometrical/analytical hypotheses are introduced. Then, an analogue of the classical

theory is developed, starting with the construction of a normalized basis of square integrable

holomorphic one forms and concluding with the proof of a Torelli theorem. The third part

is devoted to a number of examples. Finally, the Kadomcev-Petviashvilli equation is treated

in the fourth part.
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We speculate that our theory can be extended to surfaces with double points, that

a corresponding “Teichmueller theory” can be developed and that there is an infinite dimen-

sional “Teichmueller space” in which “finite genus” curves are dense.
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Part I: L
2
–Cohomology, Exhaustions with Finite

Charge and Theta Series
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Introduction to Part I

It is an elementary fact of topology that for any oriented, compact surface X of

genus g there is a “canonical” basis A1, B1, · · · , Ag, Bg of H1(X,ZZ) satisfying

Ai × Aj = 0

Ai × Bj = δi,j

Bi × Bj = 0

for all 1 ≤ i, j ≤ g , and that all canonical bases are related by Sp(g,ZZ) , the group of

integral symplectic matrices of order 2g . For any smooth closed forms ω, η on X the

Riemann bilinear relation

∫

X

ω ∧ η =
g∑
i=1

∫

Ai

ω

∫

Bi

η −
∫

Ai

η

∫

Bi

ω

is satisfied.

A1

B1

A2

B2

If, in addition, X has a complex structure , in other words, X is a Riemann surface,

then it is a basic result that the complex dimension of Ω(X) , the vector space of holomorphic

one forms, is g and that for every canonical basis A1, B1, · · · , Ag, Bg of H1(X,ZZ) , there is

a unique “normalized” basis ω1, · · · , ωg of Ω(X) satisfying

∫

Ai

ωj = δi,j

for all 1 ≤ i, j ≤ g . It is also easy to show that the “period matrix”

RX =
( ∫

Bi

ωj

)
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is symmetric and ImRX is positive definite and that the associated theta series

θ(z,RX) =
∑

n∈ZZg
e2πi〈z,n〉 eπi〈n ,Rn〉

converges to an entire function of z ∈ Cg . The existence of ω1, · · · , ωg is a simple consequence

of elementary Hodge theory. Uniqueness and the properties of the period matrix follow

directly from the Riemann bilinear relations.

Suppose X is an open Riemann surface marked with an infinite canonical homology

basis A1, B1, A2, B2, · · · , and let Ω(X) be the Hilbert space of square integrable holomorphic

one forms. In §1 we show, again by elementary Hodge theory, that there is a sequence

ωj ∈ Ω(X) , j ≥ 1 , with ∫

Ai

ωj = δi,j

for all i, j ≥ 1 . In general, however, one cannot determine whether the sequence ωj , j ≥ 1 ,

is unique or whether it’s span is Ω(X) . Additional structure is required.

In §2 we introduce (Definition 2.1) the additional structure of an exhaustion function

h with finite charge on a marked Riemann surface (X;A1, B1, · · ·) . More precisely, h is a

nonnegative, proper, Morse function on X with

∫

X

∣∣d∗dh
∣∣ < ∞

that is “compatible” with the marking. A basic result (Theorem 3.8) is that for every marked

Riemann surface (X;A1, B1, · · ·) on which there is an exhaustion function with finite charge

one can construct a unique sequence ωj ∈ Ω(X) , j ≥ 1 , that spans Ω(X) and satisfies

∫

Ai

ωj = δi,j

Furthermore, X is parabolic in the sense of Ahlfors and Nevanlinna. Roughly speaking, an

exhaustion function with finite charge allows one to derive enough of the Riemann bilinear

relations (Theorem 2.9 and Proposition 3.7) to make the dual sequence ωj , j ≥ 1 , unique.

In §3, we first review the basic properties of parabolic surfaces. Next, the canonical

map from X to IP
(
Ω∗(X)

)
is constructed and we show that (Proposition 3.26) that it is

injective and immersive whenever X has finite ideal boundary and is not hyperelliptic. The

Abel-Jacobi map is also discussed (Proposition 3.30).

In §4, we define formal theta series of the argument z ∈ C∞ for all infinite matrices

R with Rt = R and ImR > 0 . We prove
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Theorem 4.6 Suppose that the symmetric matrix R and the sequence tj ∈ (0, 1) , j ≥ 1 ,

satisfy ∑

j≥1

tβj < ∞

for some 0 < β < 1
2 , and

〈n , ImRn〉 =
∑

i,j≥1

ni ImRi,j nj ≥ 1
2π

∑

j≥1

| log tj |n2
j

and all vectors n ∈ ZZ∞ with only a finite number of nonzero components. Let B be the

Banach space given by

B =

{
z = (z1, z2, · · ·) ∈ C∞

∣∣∣ lim
j→∞

|zj |
| log tj | = 0

}

with norm

‖z‖ = sup
j≥1

|zj|
| log tj |

Then, for every point w ∈ B the theta series

θ(z, R) =
∑

n∈ZZ∞
|n|<∞

e2πi〈z,n〉 eπi〈n ,Rn〉

converges absolutely and uniformly on the ball in B of radius r = 1−2β
8π centered at w to a

holomorphic function.

Suppose

RX =

(∫

Bi

ωj

)

is the period matrix of the marked Riemann surface (X;A1, B1, · · ·) on which there is an

exhaustion function with finite charge. In Proposition 4.4, we put a geometric condition

on the cycles A1, A2, · · · , that implies the hypothesis of Theorem 4.6 for RX . We also

derive some properties of these theta series that will be used in part IV to prove that all

smooth spatially periodic solutions of the Kadomcev-Petviashvilli equation propagate almost

periodically in time.

Part I is completed by Appendix S, which contains a summary of the results of this

Part.
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§1 Square Integrable One Forms

In this section we develop L2-cohomology for an open Riemann surface marked with

a canonical homology basis. Our goal (Theorem 1.17) is to derive a criterion for the existence

of a unique, normalized basis for the Hilbert space of all square integrable holomorphic

one forms. In the next section, the concept of an exhaustion function with finite charge is

introduced. It is ultimately shown (Theorem 3.8) that a marked Riemann surface on which

there is an exhaustion function with bounded charge satisfies our criterion.

Let λ be a measureable one form on the Riemann surface X . Suppose z = x1+ix2

is a coordinate on U ⊂ X and write

λ
∣∣
U

= f1dx
1 + f2dx

2

Now set

∗λ
∣∣
U

= −f2dx
1 + f1dx

2

We can use the Cauchy-Riemann equations to derive

Proposition 1.1 Let λ be a measureable one form on the Riemann surface X . The local

one forms ∗λ
∣∣
U
, (U, z) a coordinate system on X , are consistent and define a global

measureable one form ∗λ on X . Furthermore,

∗∗λ = −λ

and

λ ∧ ∗λ
∣∣
U

=
(
|f1|2 + |f2|2

)
dx1 ∧ dx2

Proof: Change coordinates to w = y1+iy2 on V ⊂ X . Then,

λ
∣∣
U∩V =

(
f1
∂x1

∂y1 + f2
∂x2

∂y1

)
dy1 +

(
f1
∂x1

∂y2 + f2
∂x2

∂y2

)
dy2

= g1dy
1 + g2dy

2

Applying the Cauchy-Riemann equations

∗λ
∣∣
U∩V =

(
−f2

∂x1

∂y1 + f1
∂x2

∂y1

)
dy1 +

(
−f2

∂x1

∂y2 + f1
∂x2

∂y2

)
dy2

=
(
−f2

∂x2

∂y2 − f1
∂x1

∂y2

)
dy1 +

(
f2
∂x2

∂y1 + f1
∂x1

∂y1

)
dy2

= −g2dy
1 + g1dy

2
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Let L2(X,T∗X) be the Hilbert space of all measureable one forms λ on X satis-

fying

‖λ‖2 =

∫

X

λ ∧ ∗λ < ∞

with inner product
〈
λ, µ

〉
=

∫

X

λ ∧ ∗µ

and let

CX =
{
λ ∈ L2(X,T∗X)

∣∣∣
∫

X

λ ∧ dϕ = 0 for all ϕ∈ C∞0 (X)
}

= the orthogonal complement of ∗dC∞0 (X) in L2(X,T∗X)

be the closed subspace of all weakly closed forms. Here, ∗dC∞0 (X) denotes the closure of

∗dC∞0 (X) in L2(X,T∗X) .

Example 1.2 Recall that

d log r =
dr

r

∗d log r =
∗dr
r

=
−x2dx1 + x1dx2

r2
= dθ

where r = |z| on C \ {0} . If X is any open subset of C on which r is bounded away from

zero and infinity, then
∫

X

d log r ∧ ∗d log r =

∫

X

dr ∧ dθ
r

< ∞

To prepare for the construction of normalized, square integrable holomorphic one

forms on noncompact surfaces, we quickly review elementary Hodge theory.

Observe that

dC∞0 (X) = the closure of dC∞0 (X) in L2(X,T∗X) ⊂ CX

since ∫

X

dψ ∧ dϕ =

∫

X

d(ψdϕ) = 0

for all ψ , ϕ ∈ C∞0 (X) . By definition, the Hodge-Kodaira cohomology space H1
HK(X) is

the orthogonal complement of dC∞0 (X) in CX . That is,

CX = H1
HK(X)⊕ dC∞0 (X)

or, equivalently,

H1
HK(X) = CX

/
dC∞0 (X)
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Theorem 1.3 (Hodge Decomposition) Let X be a Riemann surface. Then

L2(X,T∗X) = dC∞0 (X)⊕ ∗dC∞0 (X)⊕H1
HK(X)

and

H1
HK(X) =

{
λ ∈ C∞(X,T∗X) ∩ L2(X,T∗X)

∣∣∣ dλ = 0 and d∗λ = 0
}

Proof: To verify the first statement, observe that the cohomology space H1
HK(X) is, by

construction, orthogonal to dC∞0 (X) and ∗dC∞0 (X) . The latter two subspaces are also

orthogonal since

〈
dψ, ∗dϕ

〉
=

∫

X

dψ ∧ ∗∗dϕ = −
∫

X

dψ ∧ dϕ =

∫

X

d(ϕdψ) = 0

for all ψ , ϕ ∈ C∞0 (X) .

For the second statement, suppose λ ∈ H1
HK(X) . By definition,

〈
λ, ∗dϕ+ dψ

〉
= 0

for all ψ , ϕ ∈ C∞0 (X) . In particular,
∫

U

λ ∧ (dϕ− i ∗dϕ) = 0

for all ϕ ∈ C∞0 (U) where U is an open subset of X .

In the coordinate system (U, z = x1 + ix2) the integrand λ∧(dϕ− i∗dϕ) becomes,

λ ∧ (dϕ− i ∗dϕ) = (f1dx
1 + f2dx

2) ∧
(
∂ϕ
∂x1 + i ∂ϕ

∂x2

)
(dx1−idx2)

= −i (f1−if2)
(
∂ϕ
∂x1 + i ∂ϕ∂x2

)
dx1 ∧ dx2

= −2i (f1−if2)
∂ϕ

∂z̄
dx1 ∧ dx2

so that ∫

U

(f1−if2)
∂ϕ

∂z̄
dx1 ∧ dx2 = 0

for all ϕ ∈ C∞0 (U) . In other words, (f1−if2) ∈ L2(U) is a distributional solution to the

elliptic equation
∂

∂z̄
u = 0

It follows that f1, f2 ∈ C∞(U) . Integrating by parts,
〈
dλ, ψ

〉
= 0

〈
d∗λ, ϕ

〉
= 0

for all ψ , ϕ ∈ C∞0 (X) . Consequently, dλ = d∗λ = 0 .
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Remark 1.4 Suppose λ ∈ H1
HK(X) . By construction, dλ = 0 and d∗λ = 0 . Let

(U, z) be a coordinate patch on X . Applying Poincare’s lemma there is a ϕ ∈ C∞(U) with

λ
∣∣
U

= dϕ . We have

0 = d∗λ
∣∣
U

= d∗dϕ =
((

∂
∂x1

)2
ϕ+

(
∂
∂x2

)2
ϕ
)
dx1 ∧ dx2

That is, ϕ is a harmonic function on U . Thus, H1
HK(X) is the Hilbert space of square

integrable, harmonic one forms on X .

Remark 1.5 Let σ be an oriented, simple closed curve on X . Choose a thin, annular region

R ⊂ X lying just to the left of σ . Precisely, R is diffeomorphic to

{
z ∈ C

∣∣ 1
2
< |z| ≤ 1

}

and, after this diffeomorphism,

σ(θ) = eiθ

for all 0 ≤ θ < 2π . Let ϕ be a smooth, nonnegative function on R satisfying

ϕ(z) =

{
1 , 7

8 < |z| ≤ 1

0 , 1
2
< |z| < 5

8

Observe that,

η′σ =

{
dϕ , x ∈ R
0 , x ∈

(
X \ R

)
∪ σ

is a smooth, closed, compactly supported, real valued one form on X . For every smooth,

closed one form ω ∈ L2(X,T∗X) and any oriented, simple closed curve τ that intersects σ

transversally, we have

〈
ω, ∗η′σ

〉
=

∫

X

η′σ ∧ ω =

∫

R
dϕ ∧ ω

=

∫

R
d(ϕω) −

∫

R
ϕdω

=

∫

R
d(ϕω) =

∫

∂R
ϕω

=

∫

σ

ω

11



and 〈
η′σ, ∗η′τ

〉
=

∫

τ

η′σ =
∑

p∈σ∩τ
τ crosses σ from left to right

∫

a segment of τ
left of p

dϕ

+
∑

p∈σ∩τ
τ crosses σ from right to left

∫

a segment of τ
left of p

dϕ

=
∑

p∈σ∩τ
left to right

1 +
∑

p∈σ∩τ
right to left

−1

= τ × σ
where τ × σ is the intersection index of τ and σ .

Remark 1.6 Let ησ be the orthogonal projection of η′σ onto H1
HK(X) . Because ∗ is uni-

tary and leaves H1
HK(X) invariant, it also leaves the orthogonal complement of H1

HK(X)

invariant. Hence, for all ω ∈ H1
HK(X) , ∗(ηση′σ) is perpendicular to ω and
〈
ω, ∗ησ

〉
=
〈
ω, ∗η′σ + ∗(ηση′σ)

〉

=
〈
ω, ∗η′σ

〉

=

∫

σ

ω

By Schwarz’s inequality,

∣∣∣
∫

σ

ω
∣∣∣ =

∣∣〈ω, ∗ησ
〉∣∣ ≤ ‖ ∗ ησ‖ ‖ω‖ = ‖ησ‖ ‖ω‖

Thus,

ω ∈ H1
HK(X) −→

∫

σ

ω ∈ C

defines a bounded linear functional on H1
HK(X) and ∗ησ is the unique square integrable,

harmonic one form satisfying ∫

σ

ω =
〈
ω, ∗ησ

〉

for all ω ∈ H1
HK(X) .

Remark 1.7 By construction, ησ−η′σ is a smooth closed form, orthogonal to H1
HK(X) .

Thus,

ηση
′
σ ∈

(
dC∞0 (X)⊕ ∗dC∞0 (X)

)
∩ CX = dC∞0 (X)

It follows that for any oriented, simple closed curves σ and τ ,
〈
ησ, ∗(ητη′τ )

〉
= −

〈
∗ ησ, (ητη′τ )

〉
= 0

〈
(ηση

′
σ), ∗ητ

〉
= 0
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since ∗ησ , ∗ητ ∈ H1
HK(X) and

〈
(ηση

′
σ), ∗(ητη′τ )

〉
= 0

since ηση
′
σ , ητη

′
τ ∈ dC∞0 (X) . Expanding,〈

η′σ, ∗η′τ
〉

=
〈
ησ − (ηση

′
σ), ∗ητ − ∗(ητη′τ )

〉

=
〈
ησ , ∗ητ

〉

Applying the last statement made in Remark 1.5,
〈
ησ, ∗ητ

〉
= τ × σ

Our review of elementary Hodge theory is finished.

Let X be a Riemann surface. It may have a boundary ∂X . An element σ of

the singular homology space H1(X,ZZ) is called a dividing cycle if σ × τ = 0 for every

τ ∈ H1(X,ZZ) . The set{
σ ∈ H1(X,ZZ)

∣∣∣ σ × τ = 0 for all τ ∈ H1(X,ZZ)
}

of all dividing cycles is the kernel of the intersection form on H1(X,ZZ) . Equivalently, a cycle

σ is a dividing cycle if for every compact submanfold Y containing a representative of σ ,

there is an integral linear combination of cycles in ∂Y that is homologous to σ . Loosely

speaking, “σ can be pushed out to the boundary of Y ”. In particular, each component of

the boundary ∂X is a dividing cycle. A dividing cycle composed of simple closed curves in

the interior of X divides X into at least two components. Some useful properties of dividing

cycles are given in the appendix to this section.

dividing cycle

13



Let

H\
1(X,ZZ) = H1(X,ZZ)

/
(subgroup of dividing cycles)

be the quotient of H1(X,ZZ) by the subgroup of all dividing cycles. The intersection form

induces a non-degenerate, skew-symmetric bilinear form on H \
1(X,ZZ) .

Example 1.8 For any 0 < r1 < r2 <∞ , the path

σ(s) = r1 + r2
2 eis , 0 ≤ s ≤ 2π ,

represents a dividing cycle on the open annulus r1 < |z| < r2 . Thus,

H\
1(r1 < |z| < r2,ZZ) = 0

Note that,
xdy − ydx
x2 + y2

is a square integrable, harmonic one form on the annulus with

∫

σ

xdy−ydx
x2 + y2 = 2π

Remark 1.9 The period map

(σ, ω) ∈ H1(X,C) × H1
HK(X) −→

∫

σ

ω ∈ C

is a (possibly degenerate) bilinear pairing of the singular homology space H1(X,C) , with

complex coefficients, and the cohomology space H1
HK(X) . It does not induce a bilinear pairing

of H\
1(X,C) and H1

HK(X) unless X has the property that

∫

σ

ω = 0

for all dividing cycles σ ∈ H1(X,ZZ) and all ω ∈ H1
HK(X) .

Let X be a Riemann surface. It may have boundary ∂X .

Definition 1.10 A canonical homology basis for X is a sequence of cycles

A1 , B1 , A2 , B2 , · · · , An , Bn , · · ·

14



representing a basis of H\
1(X,ZZ) that satisfies

(i) For all i, j ≥ 1 ,
Ai × Bj = δi,j

Ai × Aj = Bi ×Bj = 0

(ii) For every compact submanifold Y ⊂ X with boundary there is an n ≥ 1 such that

the range of the canonical map

H1(Y,ZZ) −→ H\
1(X,ZZ)

is contained in the span of A1 , B1 , A2 , B2 , · · · , An , Bn .

It can be shown that there is a canonical homology basis for every Riemann surface. See, [A]

or [AS, Chapter I].

A marked Riemann surface (X;A1, B1, · · ·) is a Riemann surface X with a specified

canonical homology basis A1, B1, · · · .

Lemma 1.11 Let Ak , Bk , k ≥ 1 , be a canonical homology basis for X and set

αk = ηBk

βk = −ηAk
Then, αk , βk ∈ H1

HK(X) , k ≥ 1 , and
∫

A`

αk =

∫

B`

βk = δk,`

∫

B`

αk =

∫

A`

βk = 0

That is, αk , βk , k ≥ 1 are real, square integrable, harmonic forms dual to the canonical

homology basis Ak , Bk , k ≥ 1 .

Here, ησ is the real, square integrable harmonic form constructed in Remark 1.6

that is characterized by ∫

σ

ω =
〈
ω, ∗ησ

〉

for all ω ∈ H1
HK(X).

Proof: By the last statement made in Remark 1.7,
∫

A`

αk =
〈
αk, ∗ηA`

〉
=
〈
ηBk , ∗ηA`

〉
= A` ×Bk = δk,`

∫

B`

αk =
〈
αk, ∗ηB`

〉
=
〈
ηBk , ∗ηB`

〉
= B` × Bk = 0

15



Similarly, ∫

B`

βk =
〈
βk, ∗ηB`

〉
= −

〈
ηAk , ∗ηB`

〉
= δk,`

∫

A`

βk = 0

Example 1.12 For any 0 < r1 < r2 < ∞ , slit the real segment r1 < x < r2 of the

open annulus r1 < |z| < r2 along infinitely many disjoint, closed subintervals. Reflect the

slits onto the segment −r2 < x < −r1 and glue the lips of corresponding pairs together to

construct an infinite genus Riemann surface X . The harmonic function log r extends from

the slit annulus to a nonconstant, harmonic function f on X with

‖df‖2 =

∫

X

df ∧ ∗df < ∞

Suppose Ak , Bk , k ≥ 1 , is a canonical homology basis for X and αk, βk , k ≥ 1 , the dual

forms of Lemma 1.11. Then, αk + df, βk , k ≥ 1 , is another set of square integrable, harmonic

forms dual to the canonical homology basis.

Proposition 1.13 Suppose X is a Riemann surface with the properties:

(i) For all dividing cycles σ ∈ H1(X,ZZ) and all ω ∈ H1
HK(X) .

∫

σ

ω = 0

(ii) A harmonic function f on X satisfying

‖df‖2 =

∫

X

df ∧ ∗df < ∞

is constant.

Let Ak , Bk , k ≥ 1 , be a canonical homology basis for X . Then, the dual one forms

αk, βk , k ≥ 1 , are unique and span the Hilbert space H1
HK(X) .

Proof: If ω ∈ H1
HK(X) is orthogonal to αk, βk , k ≥ 1 , then,

0 =
〈
ω, αk

〉
=
〈
∗ω, ∗αk

〉
=
〈
∗ω, ∗ηBk

〉
=

∫

Bk

∗ω

0 =
〈
ω, βk

〉
= −

∫

Ak

∗ω
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It now follows from property (i) that

∫

σ

∗ω = 0

for all σ ∈ H1(X,ZZ) and consequently, that

f(x) =

∫ x

x0

∗ω

is a harmonic function on X with ‖df‖ < ∞ . Our second assumption about X implies

that ω = 0 and, as a result, the dual forms αk, βk , k ≥ 1 , are a basis for the Hilbert space

H1
HK(X) .

That αk, βk , k ≥ 1 , are unique is proven by repeating the second half of the above

argument.

Let ω be a measureable one form and suppose z = x+iy is a coordinate on U ⊂ X .

We have
ω
∣∣
U

= fdx+ gdy

= 1
2
(fig) (dx + idy) + 1

2
(f + ig) (dxidy)

= 1
2 (fig) dz + 1

2(f + ig) dz̄

By definition, ω is a holomorphic one form on U , if

f + ig = 0

and

f = 1
2
(fig)

is a holomorphic function of z on U . That is,

ω
∣∣
U

= f(z) dz

and
∂

∂z̄
f(z) = 0

The form ω is holomorphic on X , if it is holomorphic in every coordinate system (U, z) .

Remark 1.14 Suppose ω is a holomorphic one form on X . Then,

dω = 0

∗ω = −iω

17



since

dω
∣∣
U

= df ∧ dz = 2i
∂

∂z̄
f dx ∧ dy = 0

∗ω
∣∣
U

= f ∗dz = −i fdz
Conversely, suppose ω is a closed form satisfying ∗ω = −iω . Then,

fdx+ gdy = ω
∣∣
U

= i ∗ ω
∣∣
U

= −igdx+ ifdy

or equivalently,

ω = f dz

and

0 = dω
∣∣
U

= df ∧ dz = 2i
∂

∂z̄
f dx ∧ dy

Consequently, ω is holomorphic.

We are particularly interested in the space Ω(X) of all square integrable, holomor-

phic one forms. By Remark 1.14,

Ω(X) =
{
ω ∈ H1

HK(X)
∣∣∣ ∗ ω = −iω

}

It follows that Ω(X) is a closed subspace of H1
HK(X) since ∗ acts as a bounded linear

operator on H1
HK(X) . Therefore, Ω(X) is a Hilbert space with inner product

〈
λ, µ

〉
=

∫

X

λ ∧ ∗µ = i

∫

X

λ ∧ µ

Let Ak , Bk , k ≥ 1 , be a canonical homology basis for X and let αk, βk ∈
H1

HK(X) , k ≥ 1 , be the dual forms constructed in Lemma 1.9. Also, let B be the closed

linear span of βk , k ≥ 1 . Observe that B and ∗B are orthogonal subspaces of H1
HK(X)

since 〈
βk, ∗β`

〉
=
〈
ηAk , ∗ηA`

〉
= A` × Ak = 0

Lemma 1.15 For each k ≥ 1 , set

ωk = π∗B αk + i ∗π∗B αk

where π∗B is the orthogonal projection from H1
HK(X) onto ∗B . Then, ωk ∈ Ω(X) , k ≥ 1 ,

and ∫

A`

ωk = δk,`
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Proof: First of all ωk is a closed form satisfying

∗ωk = ∗π∗B αk − iπ∗B αk = −iωk
Therefore, by Remark 1.14, ωk , k ≥ 1 , is a holomorphic form in Ω(X) . Dropping the

subscript on π∗B , ∫

A`

ωk =
〈
ωk, ∗ηA`

〉

= −
〈
παk + i ∗παk, ∗β`

〉

= −
〈
παk, ∗β`

〉

= −
〈
παk + (1lπ)αk, ∗β`

〉

= −
〈
αk, ∗β`

〉

= −
〈
ηBk ,− ∗ ηA`

〉

= δk,`

Proposition 1.16 Suppose X is a Riemann surface with canonical homology basis Ak, Bk,

k ≥ 1 . Let X satisfy

(i) For all dividing cycles σ ∈ H1(X,ZZ) and all ω ∈ H1
HK(X) .∫

σ

ω = 0

(ii) A harmonic function f on X satisfying

‖df‖2 =

∫

X

df ∧ ∗df < ∞

is constant.

(iii) If ω ∈ Ω(X) satisfies ∫

Ak

ω = 0

for all k ≥ 1 , then ω = 0 .

Then, the normalized holomorphic forms ωk , k ≥ 1 , are unique and span the Hilbert space

Ω(X) .

Proof: Let ω ∈ Ω(X) be orthogonal to ωk , k ≥ 1 . Then,

2
〈
π∗B ω, αk

〉
= 2

〈
ω, π∗B αk

〉

=
〈
ω, π∗B αk

〉
+
〈
∗ω, ∗π∗B αk

〉

=
〈
ω, π∗B αk

〉
+
〈
iω, ∗π∗B αk

〉

=
〈
ω, ωk

〉

= 0
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for all k ≥ 1 . Recalling that the subspaces B and ∗B are orthogonal,

〈
π∗B ω, βk

〉
= 0

for all k ≥ 1 . So by Proposition 1.13, π∗B ω = 0 .

Now, ∫

Ak

ω =
〈
ω, ∗ηAk

〉

= −
〈
ω, ∗βk

〉

= −
〈
π∗B ω + (1lπ∗B)ω, ∗βk

〉

= −
〈
(1lπ∗B)ω, ∗βk

〉

= 0

Therefore, by property (iii), ω = 0 and the forms ωk , k ≥ 1 span Ω(X) .

We now summarize the contents of this section in

Theorem 1.17 Let X be a Riemann surface with a canonical homology basis Ak , Bk , k ≥
1 . Suppose the marked surface (X;A1, B1, · · ·) has the three properties:

(i) For all dividing cycles σ ∈ H1(X,ZZ) and all ω ∈ H1
HK(X) .

∫

σ

ω = 0

(ii) A harmonic function f on X satisfying

‖df‖2 =

∫

X

df ∧ ∗df < ∞

is constant.

(iii) If ω ∈ Ω(X) satisfies ∫

Ak

ω = 0

for all k ≥ 1 , then ω = 0 .

Then, (X;A1, B1, · · ·) has a unique basis ωk , k ≥ 1 , of square integrable holomorphic one

forms dual to Ak , k ≥ 1 , and the period map

(σ, ω) ∈ H\
1(X,C)×H1

HK(X) −→
∫

σ

ω ∈ C
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is a well-defined, nondegenerate pairing of H \
1(X,C) and H1

HK(X) .

In the next section we will introduce certain exhaustion functions on (X;A1, B1, · · ·)
that ultimately force properties (i), (ii), (iii) to hold, and therefore the conclusion of Theorem

1.17 as well. This goal is finally realized in Theorem 3.8.
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Appendix to §1: Some Properties of Dividing Cycles

In this appendix we derive some technical properties of dividing cycles that will be

used in the next section.

Let Y be a compact, connected submanifold of X with boundary ∂Y . Let BY

be the set of all components of ∂Y . Each component is given its natural orientation as a

submanifold of X . If η , η′ ∈ BY , then by definition, η ≈ η′ if and only if η and η′ both

lie in the same component of X \ Y . The relation ≈ is an equivalence relation on BY .

A component η ∈ BY that lies in a compact component of X \ Y is called an accidental

component. In the figure below, η1 ≈ η2 ≈ η3 , η4 ≈ η5 and η6 ≈ η7 ≈ η8 . The components

η4 and η5 are accidental.

η1

η2

η3

η4

η5

η6

η7

η8

Y

Let E(Y ) be the set of equivalence classes in (BY ,≈) . Observe that either all

elements of a class are accidental components or no element of a class is accidental. Let

Ea(Y ) be the set of equivalence classes containing only accidental boundary components.

For each E ∈ E(Y ) , set

βE =
∑

η∈E
η

If E ∈ Ea(Y ) , then βE is homologous to zero in X .

Lemma A1.1 Let σ be a cycle in Y that represents a dividing cycle in H1(X,ZZ) . Then,
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σ is homologous in Y to a cycle of the form

∑

E∈E(Y )

nE βE

where nE ∈ ZZ .

Proof: First of all, σ is homologous in Y to a cycle of the form

∑

η∈BY
νη η

Suppose, η ≈ η′ . Choose points p ∈ η , p′ ∈ η′ and paths α1 ⊂ Y , α2 ⊂ X \ Y ,

as in the figure below, connecting p to p′ .

α1 α2

ηp

η′p′

Y

X

The composition α of α1 and α2 is a closed curve on X which, when properly

oriented, satisfies
α× η = 1

α× η′ = −1

and

α× η′′ = 0

for all η′′ ∈ BY , η′′ 6= η, η′ . It now follows from the definition of dividing cycle that

0 = σ × α = νη − νη′

In other words, η ≈ η′ implies νη = νη′ .
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Lemma A1.2 Let Y ′ be a compact, connected submanifold of X with boundary such that

Y ⊂ intY ′ . Then, for each E ∈ E(Y )\Ea(Y ) there is a subset S(E) of E(Y ′)\Ea(Y ′) such

that βE is homologous in X to ∑

E′∈S(E)

βE′

Furthermore, S(E) ∩ S(F ) = ∅ for all pairs E,F ∈ E(Y ) \ Ea(Y ) with E 6= F .

Proof: For each E ∈ E(Y )\Ea(Y ) , let BY ′(E) be the set of all η′ ∈ BY ′ such that there is

a component K of Y ′ \ Y with η′ ⊂ ∂K and E∩∂K 6= ∅ . Then, the cycle βE =
∑
η∈E η

is homologous in Y ′ to
∑
η′∈BY ′(E) η

′ .

Suppose η′ ∈ BY ′(E) and η′′ ≈ η′ . We have η′′ ∈ BY ′(F ) for some F ∈ E(Y ) . Let

K and L be components of Y ′ \ Y with η′ ⊂ ∂K , E ∩ ∂K 6= ∅ and η′′ ⊂ ∂L , F ∩ ∂L 6= ∅ .

Also, let M be a component of X \ Y ′ such that η′, η′′ ⊂ ∂M . Connecting, K and L to

M along η′ and η′′ we see that some element of E and some element of F belong to the

boundary of the same connected component of X \ Y ′ . That is, E = F and η′′ ∈ BY ′(E) .

It follows from the conclusion of the last paragraph that

∑

η′∈BY ′ (E)

η′ =
∑

E′∈E(Y ′) such that there is a component

K of Y ′\Y with E′∩∂K 6=∅ and E∩∂K 6=∅

∑

η′∈E′
η′

=
∑

E′∈E(Y ′) such that there is a component

K of Y ′\Y with E′∩∂K 6=∅ and E∩∂K 6=∅

βE′

Now, let S(E) be the set of all E ′ ∈ E(Y ′) \ Ea(Y ′) such that there is a component K

of Y ′ \ Y with E′ ∩ ∂K 6= ∅ and E ∩ ∂K 6= ∅ . The cycle βE is homologous in X to∑
E′∈S(E) βE′ .

An exhaustion of X is an increasing sequence

X1 ⊂ X2 ⊂ · · ·

of compact submanifolds of X with smooth boundary such that

Xn ⊂ intXn+1

for all n ≥ 1 . The following technical lemma will be needed in §2.
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Lemma A1.3 Let σ ∈ H1(X,ZZ) be a dividing cycle on X . Then, there is a positive constant

C(σ) such that for every exhaustion X1 ⊂ X2 ⊂ · · · of X the condition below is satisfied:

Let Γ1
n , · · · , Γνnn be the components of ∂Xn . Then, for all sufficiently large n ≥ 1

there are integers s1 , · · · , sνn with

|si| ≤ C(σ)

such that σ is homologous in X to

s1Γ1
n + · · · + sνnΓνnn

Proof: Pick a submanifold Y with smooth boundary that contains a representative of σ .

By Lemma A1.1, σ is homologous in X to

∑

E∈E(Y )\Ea(Y )

nE βE

where nE ∈ ZZ . Set

C(σ) = max
E∈E(Y )\Ea(Y )

nE

It follows from Lemma A1.2 that for any n with Y ⊂ intXn the condition of Lemma A1.3

is fulfilled.
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§2 Exhaustion Functions with Finite Charge

Suppose h is a twice continuously differentiable function on a Riemann surface X .

In any coordinate system (U, z) ,

d∗dh
∣∣
U

= ∆h dx1 ∧ dx2

where, ∆ is the Laplace operator. By analogy with the first of the Maxwell’s equations we

may regard ∆h as the “charge density” corresponding to the “electric field” dh .

Let X be a Riemann surface. If h is any nonnegative function on X and t ≥ 0 ,

set

Xt = h−1([0, t])

Definition 2.1 Let X be a Riemann surface without boundary. An exhaustion function h

with finite charge on X is a proper, nonnegative Morse function on X that satisfies:

(i) ∫

X

∣∣d∗dh
∣∣ < ∞

Suppose Ak , Bk , k ≥ 1 , is a canonical homology basis on X . An exhaustion func-

tion h with finite charge on the marked Riemann surface (X;A1, B1, · · ·) is an exhaustion

function with finite charge on X that in addition satisfies:

(ii) For all sufficiently large t > 0 , there is an n ≥ 1 such that the cycles

A1 , B1 , · · · , An , Bn

are homologous in X to cycles of a canonical homology basis for Xt .

(iii) For all sufficiently large t > 0 , every component of ∂Xt is homologous to a finite

linear combination of A1, A2, · · · and dividing cycles.

Remark 2.2 For all t > s , the charge of the electric field dh on the difference Xt \Xs is

∫

Xt\Xs
d∗dh

For any fixed s > 0 , the function h exhausts X \Xs by compact subsets Xt \ intXs , t > s ,

with uniformly bounded charge.
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Example 2.3 Let p = (y, z) be a point on the smooth, algebraic plane curve

C =
{

(y, z) ∈ C2
∣∣∣

∑
0≤i,j≤n

ci,j y
izj = 0

}

and let π(p) = z be the holomorphic projection from C onto the z-axis in C2 . Then,

f(p) =

{
0 , |z| ≤ 1
log |z| = log |π(p)| , |z| > 1

is a proper, nonnegative function on C that is harmonic on the complement

C \ f−1
(
[0, 1]

)

of the compact subset f−1
(
[0, 1]

)
. We have

∫

C\C1

∣∣d∗df
∣∣ = 0

since f is harmonic. By Proposition A.2 there is an exhaustion function h with finite charge

on C arbitrarily close to f outside a compact set.

Example 2.4 Let ci(z) , 0 ≤ i ≤ n , be entire functions, not all of which are polynomials,

and suppose that the transcendental plane curve

C =
{

(y, z) ∈ C2
∣∣∣

n∑
i=0

ci(z) y
i = 0

}

is smooth. As above,

f(p) =

{
0 , |z| ≤ 1
log |z| , |z| > 1

is a proper, nonnegative function that is harmonic on the complement of the compact subset

f−1
(
[0, 1]

)
. As above, there is an exhaustion function h with finite charge on C arbitrarily

close to f outside a compact set. Using Morse theory one can construct a canonical homology

basis A1, B1, · · · , for C such that h becomes an exhaustion function with finite charge on

the marked surface (C;A1, B1, · · ·) .

Example 2.5 If ϕ is a proper, nonconstant holomorphic function on a (necessarily noncom-

pact) Riemann surface X , set

K =
{
x ∈ X

∣∣∣ |ϕ(x)| ≤ 1
}
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Once again,

f(x) =

{
0 , x ∈ K
log |ϕ(x)| , x /∈ K

is a proper, nonnegative function that is harmonic on the complement of K , and there is

an exhaustion function h with finite charge on X that is arbitrarily close to f outside a

compact set. We can mark X so that h becomes an exhaustion function with finite charge

on the marked surface. In more generality, let I be a nonempty, finite subset of IP1(C)

and suppose that ϕ is a proper holomorphic map from X to IP1(C) \ I . Intuitively, I is

the set of points at “infinity”. Choose a rational function ψ on IP1(C) with poles exactly

at the points of I . Then, ψ ◦ ϕ is a proper holomorphic function on X .

A linear density g(x) on a Riemann surface X is a piecewise continuous section

of the second symmetric tensor product of the real cotangent bundle of X such that g(x)

is positive semidefinite for all x ∈ X . The length of curves and the areas of surfaces with

respect to the density g is defined just as for a metric. The linear density gh on X associated

to an exhaustion function h is, by definition,

gh(x) = dh⊗ dh+ ∗dh⊗ ∗dh

Observe that (x, y) is a multiple of (−y, x) if and only if x = y = 0 . Consequently gh(x)

is positive definite when dh(x) 6= 0 .

Let λ be a smooth one form on X . If dh(x) 6= 0 , write

λ(x) = λ1dh(x) + λ2 ∗dh(x)

and set

|λ(x)|2 =

{
(|λ1|2 + |λ2|2)

(
(dh)2 + (∗dh)2

)
, dh(x) 6= 0

0 , otherwise

where we suppress the dependence on h . If z = x1 + ix2 is a coordinate on a open set

U ⊂ X where dh 6= 0 , then

dx1 =
hx1

dh−hx2
∗dh

h2
x1

+h2
x2

dx2 =
hx2

dh+hx1
∗dh

h2
x1

+h2
x2

Substituting,

λ
∣∣
U

= f1dx1 + f2dx2 =
f1hx1

+f2hx2

h2
x1

+h2
x2

dh +
−f1hx2

+f2hx1

h2
x1

+h2
x2

∗dh
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If x ∈ X is a Morse critical point of h , there is a coordinate system (V,w = y1+iy2)

centered at x with

h(y1, y2) = h(0) ± y2
1 ± y2

2

for y2
1 + y2

2 < r2 . We have

λ
∣∣
V \{x} = g1dy1 + g2dy2 =

± y1g1 ± y2g2

2(y2
1+y2

2)
dh +

∓ y2g1 ± y1g2

2(y2
1+y2

2)
∗ dh

For any noncritical level set

Γt = ∂Xt

of h we have ∫

Γt

|λ| =

∫

Γt

√
|λ1|2 + |λ2|2

√
(dh)2 + (∗dh)2

=

∫

Γt

√
|λ1|2 + |λ2|2 ∗dh

since the pull back of dh to Γt vanishes. Here, Γt is oriented so that

∗dh
(
an oriented tangent vector to Γt

)
≥ 0

Suppose t is a critical value for h and x is a singular point on Γt . Then, with the

notation above, set

Vε =
{
w ∈ V

∣∣ y2
1 + y2

2 ≥ ε
}

Now, ∫

Γt∩V
|λ| = lim

ε↓0

∫

Γt∩Vε
|λ|

= lim
ε↓0

∫

Γt∩Vε

√
|λ1|2 + |λ2|2 ∗dh

= lim
ε↓0

∫

Γt∩Vε

√
|y1g1±y2g2|2+|y2g1∓y1g2|2

y2
1+y2

2

(∓ y2dy1 ± y1dy2)

If x is a local maximum or minimum, the limit vanishes. If, for example, x is the saddle

point

h(y1, y2) = h(0) + y2
1 − y2

2

then on Γt we have y2 = ±y1 and

∫

Γt∩V
|λ| =

∫

Γt∩V

√
|λ1|2 + |λ2|2 ∗dh = 2

r√
2∫

− r√
2

√
|g1+g2|2+|g1−g2|2 dy1 < ∞
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Also, note that

λ ∧ ∗λ = (|λ1|2 + |λ2|2) dh ∧ ∗dh

and ∣∣∣
∫

γ

λ
∣∣∣ =

∣∣
∫

γ

λ1dh+ λ2 ∗dh
∣∣

≤
∫ b

a

|λ1(γ(s))dh(γ′(s)) + λ2(γ(s)) ∗dh(γ′(s))| ds

≤
∫

γ

√
|λ1|2 + |λ2|2

√
(dh)2 + (∗dh)2

=

∫

γ

|λ|

for any curve γ .

Lemma 2.6 Let h be an exhaustion function with finite charge on the Riemann surface X

and let

Γt = ∂Xt

where Xt = h−1
(
[0, t]) , t ≥ 0 . Suppose, λ is a smooth form in L2(X,T∗X) . Then,

∫ ∞

0

(∫

Γs

|λ|
)2

ds ≤ const ‖λ‖2 < ∞

Proof: By Schwarz’s inequality,

(∫

Γs

|λ|
)2

=
(∫

Γs

√
|λ1|2+|λ2|2 ∗dh

)2

≤
∫

Γs

∗dh
∫

Γs

(|λ1|2+|λ2|2) ∗dh

However, for all s′ > s ,

∫

Γs′
∗dh −

∫

Γs

∗dh =

∫

Xs′\Xs
d∗dh = O(1)

Thus, ∫

Γs

∗dh

is a bounded function of s . It follows that

(∫

Γs

|λ|
)2

≤ const

∫

Γs

(|λ1|2+|λ2|2) ∗dh
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Integrating,
∫ t

0

(∫

Γs

|λ|
)2

ds ≤ const

∫ t

0

∫

Γs

(|λ1|2+|λ2|2) ∗dh ds

= const

∫

Xt\X0

(|λ1|2+|λ2|2) dh ∧ ∗dh

≤ const

∫

X

λ ∧ ∗λ

We can use Lemma 2.6 to prove

Proposition 2.7 If there is an exhaustion function h with finite charge on the Riemann

surface X , then ∫

σ

ω = 0

for all dividing cycles σ ∈ H1(X,ZZ) and all smooth, closed forms ω ∈ L2(X,T∗X) .

Proof: Let ω be a smooth closed form in L2(X,T∗X) . By Lemma 2.6, we can pick a

strictly increasing sequence

t1 < t2 < t3 · · · → ∞

of noncritical values for h with

lim
n→∞

∫

Γtn

|ω| = 0

Let Γ1
n , · · · , Γνnn be the components of Γtn .

Suppose σ ∈ H1(X,ZZ) is a dividing cycle. Then, by Lemma A1.3, there is a

positive constant C(σ) with the property that for all sufficiently large n there are integers

s1
1 , · · · , sνnn satisfying

|sji | ≤ C(σ)

and such that σ is homologous in X to

σn = s1
1Γ1

n + · · · + sνnn Γνnn

Now, ∣∣∣
∫

σ

ω
∣∣∣ =

∣∣∣
∫

σn

ω
∣∣∣ ≤

∫

σn

|ω| ≤ C(σ)

∫

Γtn

|ω|

The right hand side of this inequality tends to zero and consequently, the integral of ω over

the dividing cycle σ vanishes.
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If there is an exhaustion function h with finite charge on the Riemann surface X ,

then, by Proposition 2.7, the first hypothesis of Theorem 1.17 is fulfilled. To verify the third

hypothesis, we derive a variant of the Riemann bilinear relations. For this purpose we prove

Lemma 2.8 Let S be a smooth, compact surface whose boundary ∂S is the union of the

closed curves γ1, · · · , γm . Let A1, B1, · · · , Ag, Bg be a canonical homology basis for S . Sup-

pose that the smooth closed one forms ω and η on S satisfy
∫

γi

ω =

∫

γi

η = 0

for i = 1, · · · , g . Then,
∫

S

ω ∧ η =
g∑
i=1

(∫

Ai

ω

∫

Bi

η −
∫

Bi

ω

∫

Ai

η
)

+

∫

∂S

fη

where f is any smooth function on a neighborhood U of ∂S with

df = ω
∣∣
U

Proof: Set
α′i = η′Bi

β′i = −η′Ai
for i = 1, · · · , g , where η′σ is the one form constructed in Remark 1.5. By construction, the

supports of α′i and β′i do not intersect ∂S . Recall that

Ai(λ) =

∫

Ai

λ

Bi(λ) =

∫

Bi

λ

for all smooth one forms λ on S . It follows from our hypothesis that

ω =
g∑
i=1

Ai(ω)α′i +
g∑
j=1

Bj(ω)β′j + dφ

η =
g∑
k=1

Ak(η)α′k +
g∑
`=1

B`(η)β′` + dψ

Here, φ and ψ are smooth functions on S . We have

ω ∧ η =
g∑

i,`=1

Ai(ω)B`(η)α′i ∧ β′` +
g∑

i,k=1

Ai(ω)Ak(η)α′i ∧ α′k

+
g∑

j,k=1

Bj(ω)Ak(η) β′j ∧ α′k +
g∑

j,`=1

Bj(ω)B`(η) β′j ∧ β′`

+ ω ∧ dψ + dφ ∧ η − dφ ∧ dψ
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By Remark 1.5,
∫

S

ω ∧ η =
g∑
i=1

(∫

Ai

ω

∫

Bi

η −
∫

Bi

ω

∫

Ai

η
)

+

∫

S

(
ω ∧ dψ + dφ ∧ η − dφ ∧ dψ

)

By Stoke’s theorem,
∫

S

(
ω ∧ dψ + dφ ∧ η − dφ ∧ dψ

)
=

∫

S

d
(
− ψω + φη + ψdφ

)

=

∫

∂S

−ψω + φη + ψdφ

=

∫

∂S

φη

since dφ = ω on a neighborhood of ∂S .

If f is any smooth function on a neighborhood U of ∂S with

df = ω
∣∣
U

then there are constants c1, · · · , cm with

f
∣∣
γi

= φ
∣∣
γi

+ ci

for i = 1, · · · ,m . Therefore,
∫

∂S

fη =
m∑
i=1

∫

γi

fη =
m∑
i=1

∫

γi

φη +
m∑
i=1

ci

∫

γi

η =
m∑
i=1

∫

γi

φη =

∫

∂S

φη

Combining this identity with the result of the last paragraph
∫

S

ω ∧ η =
g∑
i=1

(∫

Ai

ω

∫

Bi

η −
∫

Bi

ω

∫

Ai

η
)

+

∫

∂S

fη

Theorem 2.9 (Riemann Bilinear Relations) Suppose there is an exhaustion function

with finite charge on the marked Riemann surface (X;A1, B1, · · ·) . Let ω and η be smooth,

closed, square integrable one forms on X such that
∫

Ai

ω =

∫

Ai

η = 0

for all but finitely many indices i . Then,
∫

X

ω ∧ η =
∞∑
i=1

(∫

Ai

ω

∫

Bi

η −
∫

Bi

ω

∫

Ai

η
)
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Proof: Let h be an exhaustion function with finite charge on (X;A1, B1, · · ·) . By Definition

1.1 (iii), for each sufficiently large regular value t > 0 of h , the boundary Γt of Xt is a

finite union of components each of which is homologous to a linear combination of A1, A2, · · ·
and dividing cycles. Observe that for every j ≥ 1 , there is a t(j) such that Aj does not

appear in any component of Γt when t > t(j) , because Bj can be represented by a closed

curve lying in the interior of Xt(j) . It follows from our hypothesis and Proposition 2.7 that

the integral of ω and η around every component of Γt vanishes when t is large enough.

For each sufficiently large regular value t > 0 of h there is, by Definition 1.1 (ii),

the conclusion of the preceding paragraph and Lemma 2.8, an nt ≥ 0 such that

∫

Xt

ω ∧ η =
nt∑
i=1

( ∫

Ai

ω

∫

Bi

η −
∫

Bi

ω

∫

Ai

η
)

+

∫

Γt

ftη

=
∞∑
i=1

( ∫

Ai

ω

∫

Bi

η −
∫

Bi

ω

∫

Ai

η
)

+

∫

Γt

ftη

where ft is any smooth function on a neighborhood U of Γt with

dft = ω
∣∣
U

We choose ft so that it has a zero on each component of Γt . By the fundamental theorem

of calculus,

sup
x∈Γt

|ft(x)| ≤
∫

Γt

|ω|

Therefore, ∣∣∣
∫

Γt

ftη
∣∣∣ ≤

∫

Γt

|ftη|

≤
(

sup
x∈Γt

|ft(x)|
) ∫

Γt

|η|

≤
∫

Γt

|ω|
∫

Γt

|η|

By Lemma 2.6,

lim inf
t→∞

∣∣∣
∫

Γt

ftη
∣∣∣ ≤ lim inf

t→∞

∫

Γt

|ω|
∫

Γt

|η| = 0

The proof is completed by the observation that

∫

X

ω ∧ η = lim
t→∞

∫

Xt

ω ∧ η
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Proposition 2.10 Suppose there is an exhaustion function with finite charge on the marked

Riemann surface (X;A1, B1, · · ·) . Let ω be a square integrable holomorphic one form on X

such that ∫

Ak

ω = 0

for all k ≥ 1 . Then, ω = 0 .

Proof: Observe that ω and ∗ω = iω are closed. By hypothesis

∫

Ai

ω =

∫

Ai

∗ω = 0

for all i ≥ 1 . It follows from Theorem 2.9 that

‖ω‖2 =

∫
ω ∧ ∗ω

=
∞∑
i=1

(∫

Ai

ω

∫

Bi

∗ω −
∫

Bi

ω

∫

Ai

∗ω
)

= 0

35



Appendix to §2: An Approximation Lemma

We state and prove a proposition that is useful for the construction of exhaustion

functions with finite charge. A technical lemma is required.

Lemma A2.1 Let f be a smooth, proper, positive function on the Riemann surface X

without boundary such that ∫

X

|d∗df | < ∞

Then, there is an exhaustion function h with finite charge arbitrarily close to f in the

Whitney topology on C∞(X) . If, in addition, V and U are open subsets of X with V ⊂ U
and f is Morse on U , then there is an exhaustion function h with finite charge arbitrarily

close to f in the Whitney topology on C∞(X) such that

h
∣∣
V

= f
∣∣
V

Proof: Let Yn , n ≥ 1 , be a sequence of relatively compact open subsets of X satisfying

Yn ⊂ Yn+1 for all n ≥ 1 , and
⋃
n≥1

Yn = X . Fix an open neighborhood N of f in the

Whitney topology (see, for example, [GG, II:§3]) on C∞(X) that contains only proper,

positive functions on X . If we can inductively construct a sequence of functions fn ∈
N , n ≥ 0 , such that f0 = f and for all n ≥ 1 ,

(i) fn
∣∣
Yn

is a Morse function

(ii)

∫

X

|d∗dfn| ≤
∫

X

|d∗df | +
n∑
j=1

1
2j

(iii) fn
∣∣
X\Y n+1

= f

(iv) fn
∣∣
Yn−2

= fn−1

∣∣
Yn−2

(v) fn
∣∣
V

= f
∣∣
V

(vi) fn
∣∣
U

is a Morse function

then,

h = lim
n→∞

fn

is an exhaustion function with finite charge belonging to N with h
∣∣
V

= f
∣∣
V

.

Suppose the functions f0, f1, · · · , fn , for some n ≥ 0 , have been constructed satis-

fying conditions (i) through (vi). To construct fn+1 choose a nonnegative, smooth function

χ on X such that

χ(x) =

{
0 , x ∈ Y n−1 ∪ (X \ Yn+2) ∪ V
1 , x ∈ Y n+1 \ (Yn ∪ U)
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Here, Y−1 = Y0 = ∅ . By construction, χ has compact support.

Yn+2Yn+1
Yn

Yn−1

VU

We can pick a Morse function g on Yn+2 \ Y n−1 arbitrarily close to fn
∣∣
Yn+2\Y n−1

, since

Morse functions are open and dense in C∞(Yn+2 \ Y n−1) [GG,Chapter II, Theorem 6.2].

Now, set

fn+1 =
(
1− χ

)
fn + χg

Clearly, fn+1 has properties (iii), (iv) and (v). To verify (i), (ii), (vi) and fn+1 ∈ N , observe

that

fn+1 − fn = χ
(
g − fn)

If g is close enough to fn in C∞(Yn+2 \ Y n−1) , then (ii) holds and fn+1 belongs to N ,

since, by hypothesis, fn ∈ N . Property (vi) holds because Morse functions are dense in

C∞(U) and fn is a Morse function. For the same reason fn+1

∣∣
Yn

is a Morse function. By

construction, fn+1

∣∣
Yn+1\Yn = g

∣∣
Yn+1\Yn . It follows that fn+1

∣∣
Yn+1

is also a Morse function.

Proposition A2.2 Let f be a continuous, proper function on X that is smooth outside a

compact subset Y . Suppose, ∫

X\Y
|d∗df | < ∞

Let V and U be open subsets of X with V ⊂ U such that f is Morse on U . Then, there is

a compact subset Z and an exhaustion funtion h with finite charge on X such that h
∣∣
X\Z

is arbitrarily close to |f |
∣∣
X\Z in C∞(X \ Z) and

h
∣∣
V \Z = |f |

∣∣
V \Z
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Proof: Let c > max
x∈Y
|f(x)| and set Z = f−1

(
[−2c, 2c]

)
. The set Z is compact since f

is proper. Pick any strictly positive smooth function φ on an open neighborhood of Z and

let χ be a smooth nonnegative function that vanishes on X \ Z and is identically one on

f−1
(
[−c, c]

)
. Observe that the function f̃ defined by

f̃(x) =

{
φ(x) , f(x) ∈ [−c, c]
χ(x)φ(x) +

(
1− χ(x)

)
|f(x)| , |f(x)| > c

satisfies the hypotheses of Lemma A2.1.
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§3 Parabolic Surfaces

In this section, we review the basic properties of Riemann surfaces that are parabolic

in the sense of Ahlfors-Nevanlinna. It is also shown that every Riemann surface with an

exhaustion function with finite charge is parabolic.

Definition 3.1 A harmonic exhaustion function h on a Riemann surface X without bound-

ary is a continuous, proper, nonnegative function on X that is harmonic on the complement

of a compact subset. A Riemann surface X is parabolic, in the sense of Ahlfors and Nevan-

linna [Ah,Ne], if there exists a harmonic exhaustion function on X .

Remark 3.2 A smooth harmonic exhaustion function h with Morse critical points is an

exhaustion function with finite charge (see, Definition 2.1) since d∗dh = 0 outside a compact

set.

Example 3.3 The complex plane is parabolic since

h(z) =

{
0 , |z| ≤ 1
log |z| , |z| > 1

is a continuous proper, nonnegative function that is harmonic on the complement of the

unit disk. The name “parabolic” derives from the fact that noncompact, simply connected

Riemann surfaces satisfying the condition of Definition 3.1 are biholomorphic to C . However,

the present use of the term parabolic should not be confused with the use of the same term

in the context of universal covering surfaces.

The notion of a parabolic surface is clarified by

Theorem 3.4 A Riemann surface X is parabolic if and only if one of the following four

equivalent conditions is satisfied:

(i) There is no nonconstant, negative, subharmonic function on X .

(ii) (The harmonic measure of the ideal boundary vanishes.) Suppose,

{
Xn

∣∣ n ≥ 0
}

is any exhaustion of X by non-empty compact submanifolds Xn ⊂ X with smooth

boundary ∂Xn such that Xn ⊂ intXn+1 , and un , n ≥ 1 , is the unique harmonic
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function on Xn \ intX0 satisfying

un(x) =

{
0 , x ∈ ∂X0

1 , x ∈ ∂Xn

Then, for each x ∈ Xn \X0

lim
n→∞

un(x) = 0

(iii) (Nonexistence of Green’s functions.) Suppose,

{
Xn

∣∣ n ≥ 0
}

is any exhaustion of X as in (ii). Let x0 ∈ X0 and let (U, z) be a coordinate system

centered at x0 . If gn , n ≥ 0 , is the unique harmonic function on Xn \ {x0}
vanishing on ∂Xn such that gn + log |z| is harmonic on U , then

lim
n→∞

gn(x) = ∞

for all x ∈ Xn \ {x0} .

(iv) (Maximum principle.) Suppose v is a bounded subharmonic function on a region

Y ⊂ X such that for all x ∈ ∂Y ,

lim sup
y∈Y
y→x

v(y) ≤M

Then,

sup
y∈Y

v(y) ≤ M

Proof: See [AS, IV.6] and [Na] .

We now review the criterion of extremal distance. It will be used to show that a

Riemann surface X with an exhaustion function with finite charge is parabolic.

Recall that a linear density g on a Riemann surface X is a piecewise continuous

section of the second symmetric tensor product of the real cotangent bundle of X such that

g(x) is positive semidefinite for all x ∈ X . The length of curves and the areas of surfaces

with respect to the density g is defined just as for a metric. Suppose, Xt ⊂ X , t ≥ 0 , is a
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family of compact submanifolds with piecewise smooth boundary such that Xs ⊂ Xt for all

t > s > 0 . Set

L(g : Xs, Xt) = inf
paths γ connecting
∂Xs to ∂Xt inX

(
length of γ with respect to g

)

and

A(g;Xt \Xs) = the area of Xt \Xs with respect to g

for all t > s > 0 .

γ

Xt

Xs

Proposition 3.5 (Criterion of Extremal Distance) Let X be a Riemann surface. Sup-

pose Xt ⊂ X , t ≥ 0 is a family of compact submanifolds with piecewise smooth boundary

such that Xs ⊂ Xt for all t > s > 0 . If there exists a linear density g with

lim
t→∞

L(g:Xs,Xt)
2

A(g;Xt\Xs) = ∞

for some fixed s > 0 , then X is parabolic.

Proof: See [AS,IV.15B] .

Proposition 3.6 There is an exhaustion function with finite charge on the Riemann surface

X without boundary if and only if X is parabolic.

Proof: Suppose, h is an exhaustion function with finite charge on X . As in Section 2,

Xt = h−1([0, t]) , for all t ≥ 0 , and the linear density gh on X associated to h is

gh(x) = dh⊗ dh+ ∗dh⊗ ∗dh
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Observe that for any path γ joining Γs to Γt ,

(
length of γ with respect to gh

)
=

∫

γ

√
(dh)2 + (∗dh)2 ≥

∫

γ

|dh| ≥ t− s

and consequently,

L(gh;Xs, Xt) ≥ t− s

Fix s > 0 . By Stoke’s theorem, for all t > s ,

A(gh;Xt \Xs) =

∫

Xt\Xs
dh ∧ ∗dh

=

∫

Xt\Xs
d(h ∗dh)− hd∗dh

=

∫

Γt

h ∗dh −
∫

Γs

h ∗dh −
∫

Xt\Xs
hd∗dh

= t

∫

Γt

∗dh − s

∫

Γs

∗dh −
∫

Xt\Xs
hd∗dh

where, as before, Γt = ∂Xt for all t ≥ 0 . We have

∫

Γt

∗dh −
∫

Γs

∗dh =

∫

Xt\Xs
d∗dh = O(1)

and
∣∣
∫

Xt\Xs
hd∗dh

∣∣ ≤
∫

Xt\Xs
h
∣∣d∗dh

∣∣ ≤ t

∫

Xt\Xs

∣∣d∗dh
∣∣ = O(t)

since, by hypothesis, h has finite charge. It follows that

A(gh;Xt \Xs) = (t− s)
∫

Γs

∗dh + 0(t) −
∫

Xt\Xs
hd∗dh = O(t)

We see from the conclusions of the preceding two paragraphs that the criterion

lim
t→∞

L(gh;Xs,Xt)
2

A(gh;Xt\Xs) = ∞

of extremal distance is satisfied. Therefore, X is parabolic.

Conversely, suppose that X is parabolic. One can use Proposition A2.2 to construct

an exhaustion function with finite charge from any harmonic exhaustion function.
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An important fact about parabolic surfaces is

Proposition 3.7 Let X be a parabolic Riemann surface. A harmonic function f on X

satisfying

‖df‖2 =

∫

X

df ∧ ∗df < ∞

is constant.

Proof: See [SN, §III, 1.3B], or the appendix to this section.

We now combine Theorem 1.17, Proposition 2.7, Proposition 2.10 , Proposition 3.6

and Proposition 3.7 to obtain the basic

Theorem 3.8 Let h be an exhaustion function with finite charge on the marked Riemann

surface (X;A1, B1, · · ·) . Then, X is parabolic and (X;A1, B1, · · ·) has a unique, normalized

basis ωk , k ≥ 1 , of square integrable holomorphic one forms dual to Ak , k ≥ 1 . Further-

more, the period map

(σ, ω) ∈ H\
1(X,C)×H1

HK(X) −→
∫

σ

ω ∈ C

is a well-defined, nondegenerate pairing of H \
1(X,C) and H1

HK(X) .

The next topic is the canonical map. Several facts are required. Let f be a mero-

morphic function on a Riemann surface X . For each a ∈ IP1(C) , (counting with multiplicity)

set

nf (a) =
∣∣∣
{
x ∈ X

∣∣ f(x) = a
}∣∣∣

Lemma 3.9 Let X be a noncompact, parabolic Riemann surface. Let f be a nonconstant

meromorphic function on X with 1 ≤ m < ∞ (counted with multiplicity) poles that is

bounded on the complement of each neighborhood of its poles. Then,

nf (a) ≤ m

for all a ∈ C , and the set {
a ∈ C

∣∣∣nf (a) < m
}

has Lebesque measure zero.
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Proof: Let h be a harmonic exhaustion function on X . It can be assumed, by scaling, that

the restriction of h to h−1
(
[1,∞)

)
is harmonic. For all r > 0 and a ∈ IP1(C) , (counting

with multiplicity) set

n(a, r) =
∣∣∣
{
x ∈ X

∣∣ f(x) = a and h(x) ≤ r
}∣∣∣

v(r) = 1
π

∫
{
x∈X |h(x)≤r

} f∗
(
Φ
)

where, Φ is the volume form of the Fubini-Study metric on IP1(C) . For all r ≥ 1 , set

N(a, r) =

∫ r

1

n(a, t) dt

T (r) =

∫ r

1

v(t) dt

By Nevanlinna theory [W, p.47], we have

lim sup
r→∞

N(a,r)
T (r) ≤ 1

for all a ∈ IP1(C) , and

lim sup
r→∞

N(a,r)
T (r) = 1

for all a in a subset of full measure of IP1(C) .

Cover the poles of f by the union U of small open disks. By hypothesis,

nf (∞) = m

and

sup
x∈X\U

|f(x)| ≤ const U < ∞

It follows from the argument principle that nf (a) = m for all a ∈ IP1(C) sufficiently near

∞ , and, as a result, n(a, r) = m for all a ∈ IP1(C) sufficiently near ∞ and all sufficiently

large r . Integrating,

N(a, r) = rm + const

for all a ∈ IP1(C) sufficiently near ∞ and all sufficiently large r . Combining this result

with the conclusion of the last paragraph, we obtain

1 = lim sup
r→∞

N(a,r)
T (r) = lim sup

r→∞
rm + const

T (r)
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for all a ∈ IP1(C) \ (set of Lebesque measure zero) sufficiently near ∞ . Consequently,

lim sup
r→∞

r
T (r) = 1

m

Now, suppose nf (a) ≥ m + 1 for some a ∈ IP1(C) . Then, n(a, t) ≥ m + 1 for

all sufficiently large t and N(a, r) ≥ (m + 1)r + const for all sufficiently large r . These

inequalities lead to the contradiction

lim sup
r→∞

N(a,r)
T (r)

≥ lim sup
r→∞

(m+1)r+const
T (r)

= lim sup
r→∞

(m+1)r
T (r)

= m+1
m

> 1

Thus, nf (a) ≤ m for all a ∈ IP1(C) . The same calculation shows that the set of all

a ∈ IP1(C) with nf (a) ≤ m− 1 is contained

{
a ∈ IP1(C)

∣∣ lim sup
r→∞

N(a,r)
T (r)

< 1
}

and hence has measure zero.

Theorem 3.10 (Royden-Riemann-Roch) Let X be a parabolic Riemann surface. Let

x1, · · · , xn , be distinct points on X and m1, · · · ,mn nonnegative integers. Then,

dimC

(
the vector space of all meromorphic functions on X that have

a pole at xi of order at most mi , for each i=1,···,n and are
bounded on the complement of each neighborhood of x1,···,xn

)

= m1 + · · ·+mn + 1

− dimC

(
orthogonal complement in Ω(X) of the closed linear subspace of
all ω that vanish at xi to order at least mi , for each i=1,···,n

)

Proof: See [R, Proposition 4 and Theorem 1] .

Remark 3.11 By Theorem 3.4 (i), a bounded holomorphic function on X is constant.

Therefore, a nonconstant meromorphic function belonging to the vector space on the left

hand side of the Royden-Riemann-Roch theorem must have at least one pole.

Proposition 3.12 Let X be a parabolic Riemann surface that is not biholomorphic to an

open subset of IP1(C) . Then, for every x ∈ X there is a square integrable holomorphic one

form ω such that ω(x) 6= 0 .
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Proof: Suppose every ω ∈ Ω(X) vanishes at the point x . It follows from Theorem 3.10

that there is a nonconstant meromorphic function f on X that has a simple pole at x and

is bounded on the complement of every neighborhood of x . By Lemma 3.9, nf (a) ≤ 1 for

all a ∈ IP1(C) . Therefore, f is a biholomorphic map between X and an open subset of

IP1(C) .

Fix x ∈ X . Let z be a coordinate on a neighborhood U of x . For each ω ∈ Ω(X)

set

δx,z(ω) =
ω
∣∣
U

dz
(x)

Lemma 3.13 Let z be a coordinate on an open subset U of X . For all x ∈ U , δx,z is a

bounded linear functional on Ω(X) . Furthermore, the map

x ∈ U −→ δx,z ∈ Ω∗(X)

is holomorphic. Here, Ω∗(X) is the dual space of Ω(X) .

Proof: Write ω
∣∣
U

= fdz . We have the representation

δx,z(ω) = f
(
z(x)

)

Let r0(x) > 0 be the radius of the largest closed disk centered at z(x) that is contained in

the image of U . For all r ≤ r0(x) ,

δx,z(ω) = 1
2π

∫ 2π

0

f(z(x) + reiθ) dθ = 1
πr2

0

∫

|ξ+iη−z(x)|≤r0(x)

f(ξ + iη) dξdη

By Schwarz’s inequality,

|δx,z(ω)| ≤ 1√
π r0

(∫

|ξ+iη−z(x)|≤r0(x)

|f(ξ + iη)|2 dξdη
) 1

2

≤ 1√
π r0(x)

‖ω‖

Thus, δx,z ∈ Ω∗(X) .

It follows from the representation above that δx,z is a weakly analytic map from U

into Ω∗(X) . By [RS, Theorem VI.4], it is holomorphic.

46



By Lemma 3.13 and Proposition 3.12, we can make

Definition 3.14 The canonical map κX from the parabolic Riemann surface X to the

projectivized dual space IP
(
Ω∗(X)

)
is given by

κX (x) =
[
δx,z

]

where z is any coordinate on a neighborhood of x ∈ X .

Remark 3.15

(i) Suppose z and z ′ are coordinates on a neighbourhood of x ∈ X , then
[
δx,z

]
=
[
δx,z′

]
in

IP
(
Ω∗(X)

)
. Consequently, κX(x) is well-defined.

(ii) Suppose ηj , j ≥ 1 is an orthonormal basis for Ω(X) . Then,

δx,z(ω) =
∑
j≥1

δx,z(ηj) 〈ω, ηj〉

where (
δx,z(η1) , δx,z(η2) , · · ·

)
=
(
η1

dz (x) , η2

dz (x) , · · ·
)
∈ `2(1, 2, · · ·)

We may write

κX(x) =
[
η1

dz (x) ; η2

dz (x) ; · · ·
]
∈ IP

(
`2(1, 2, · · ·)

)

Note that for a general independent, spanning sequence ηj , j ≥ 1 of forms in Ω(X) , say,

the forms ωj , j ≥ 1 of Theorem 3.8,

(
η1

dz
(x) , η2

dz
(x) , · · ·

)

may not lie in any recognizable topological vector space. However, see Remark 4.11.

(iii) The image of the canonical map κX does not lie in any hyperplane. To see this, let H

be a hyperplane in IP
(
Ω∗(X)

)
. Then, there is a nonzero η ∈ Ω(X) , such that

H =
{

[λ] ∈ IP
(
Ω∗(X)

) ∣∣λ(η) = 0
}

If κX(x) ∈ H for all x ∈ X , then

δx,z(η) = 0

for all x ∈ X and all coordinates z . It follows that η = 0 .

We now generalize the fact that the canonical map for a compact Riemann surface

is an embedding if and only if the surface is not hyperelliptic.
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Definition 3.16 A Riemann surface is hyperelliptic if there is a finite subset I of IP1(C) ,

a discrete subset S of IP1(C) \ I and a proper holomorphic map τ from X to IP1(C) \ I
of degree two that ramifies precisely over the points of S .

The map τ is called the hyperelliptic projection for X . The holomorphic map ıX

from X to X characterized by

τ
(
ıX(x)

)
= τ(x)

(
x, ı(x)

)
=

{
(x, x) , x ∈ τ−1(S)
(x, ıX(x) 6= x) , x /∈ τ−1(S)

is called the hyperelliptic involution. By Remark 2.5 one can use τ to construct an exhaustion

function with finite charge. Thus, by Proposition 3.6, hyperelliptic surfaces are parabolic.

Remark 3.17 Suppose I 6= ∅ . Then, there is a holomorphic function fS on IP1(C) \ I
with a simple root at each point of S and no other roots. The hyperelliptic Riemann surface

X is biholomorphic to the plane curve

{
(y, z) ∈ C×

(
IP1(C) \ I

) ∣∣∣ y2 = fS(z)
}

In this representation, the hyperelliptic projection and involution are given by τ(y, z) = z

and ıX(y, z) = (−y, z) .

Proposition 3.18 Let X be a hyperelliptic Riemann surface. For all ω ∈ Ω(X) ,

ı∗X(ω) = −ω

If, in addition, dimCΩ(X) ≥ 2 , then there is an injective, immersive holomorphic map ϕX

from IP1(C) \ I to IP
(
Ω∗(X)

)
such that the diagram

X IP
(
Ω∗(X)

)

IP1(C) \ I

τ

κX

ϕX

commutes. Here, τ is the hyperelliptic projection. In other words, the canonical map factors

over the hyperelliptic involution.
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Proof: Let γ and δ be any cycles on X . To compute the intersection index δ×
(
γ+ıX(γ)

)
,

we may assume that δ intersects γ+ ıX(γ) transversely and that for all x on γ the cycle δ

does not pass through both x and ıX(x) . One can see that τ(δ)×τ(γ) = τ(δ)×τ
(
ıX(γ)

)
= 0

which implies that

0 = τ(δ)× τ(γ) + τ(δ)× τ
(
ıX(γ)

)
= δ ×

(
γ + ıX(γ)

)

It follows that for all cycles on X , [ıX(γ)] = −[γ] in H\
1(X,ZZ) . That is, [ıX(γ)] = −[γ] in

H1(X,ZZ) modulo dividing cycles.

Let ω ∈ Ω(X) and let γ be any cycle. Then,

−
∫

γ

ω + ı∗X(ω) =

∫

ıX(γ)

ω + ı∗X(ω)

since, by Proposition 2.7, the integral of any closed, square integrable form over a dividing

cycle vanishes. Since ı∗X is an involution on Ω(X) we have

−
∫

γ

ω + ı∗X(ω) =

∫

γ

ı∗X(ω) + ω =

∫

γ

ω + ı∗X(ω)

and therefore, ∫

γ

ω + ı∗X(ω) = 0

for all cycles γ . It follows that ω+ı∗X(ω) ∈ Ω(X) is the differential of a holomorphic function

on X . This function is constant by Proposition 3.7 so that

ı∗X(ω) = −ω

In other words, ı∗X acts on Ω(X) by multiplication with −1 .

The first statement of the proposition, proved immediately above, implies that there

is a holomorphic map ϕX from IP1(C) \ I to IP
(
Ω∗(X)

)
such that

κX = ϕX ◦ τ

To prove that it is injective we must show that for all pairs x1 and x2 6= x1, ıX(x1) of points

on X there is a ω ∈ Ω(X) with ω(x1) = 0 and ω(x2) 6= 0 . It is possible to choose a

nonzero η ∈ Ω(X) with η(x1) = 0 , since dimCΩ(X) ≥ 2 . Let m ≥ 0 be the order to which

η vanishes at x2 . Observe that, by the first part of the proposition, m is even when x2 is

a ramification point of τX . Set

ω(x) =

{( τ(x)−τ(x1)
τ(x)−τ(x2)

)m
η(x) , x2 is not a ramification point

( τ(x)−τ(x1)
τ(x)−τ(x2)

)m
2 η(x) , x2 is a ramification point

The proof that ϕX is immersive goes in the same way.
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Remark 3.19

(i) Unravelling the definitions, the injectivity of ϕX is equivalent to the statement that for

all x1, x2 ∈ X and coordinates z1, z2 in neighbourhoods of x1, x2 , there exists a constant

λ such that
(
ω
dz1

)
(x1) = λ

(
ω
dz2

)
(x2) for all ω ∈ Ω(X) if and only if τ(x1) = τ(x2) .

Immersiveness, is equivalent to the statement that for all x ∈ X , there is an ω ∈ Ω(X) with

a simple zero at x if and only if ı(x) 6= x . If ı(x) = x there is an ω ∈ Ω(X) with a zero of

order two at x.

(ii) It is a direct consequence of Proposition 3.18 that the hyperelliptic projection is solely

determined (up to automorphisms of IP1(C) ) by the complex structure on the surface.

Definition 3.20 A pre-end of a Riemann surface is a closed, noncompact, connected sub-

manifold with compact boundary whose complement is connected. An end of a Riemann

surface is a pre-end that does not contain two disjoint pre-ends.

end
end

pre-end

Two ends that contain a common end are called equivalent. An equivalence class of ends is

called an ideal boundary point.

and are boundaries

of two equivalent ends
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A Riemann surface has finite ideal boundary if there is a compact subset whose complement

is the union of a finite number of ends.

Remark 3.21 A Riemann surface with finite ideal boundary has a finite number of ideal

boundary points. The “infinitely branching” surface below has no ends and hence no ideal

boundary points, but still does not have finite ideal boundary.

Remark 3.22 If X is a hyperelliptic surface and τ is the hyperelliptic projection from X

to IP1(C) \ I , then I is in one to one correspondence with the ideal boundary points of X .

Let E be an end of the Riemann surface X . A function f on E has a limit w at

the ideal boundary point represented by E if for every ε > 0 there is an end E ′ ⊂ E such

that

sup
x∈E′

∣∣f(x) − w
∣∣ ≤ ε

If the intersection form on H1(E,ZZ) vanishes, the end E is called planar.

Theorem 3.23 (Heins) Let p be an ideal boundary point of the Riemann surface X .

Supppose f is analytic and bounded on an end E representing p . Then, f has a limit
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wp ∈ C at p . Furthermore, there is a positive integer dp and an end E′ ⊂ E such that the

restriction of f to E′ is a proper map of degree dp from E′ to a punctured neighborhood

of wp in C . If, in addition, p cannot be represented by a planar end, then dp ≥ 2 .

Proof: See, [H, pp. 300, 301] .

Corollary 3.24 Let X be a parabolic Riemann surface with finite ideal boundary. Suppose

there is a meromorphic function f on X with m <∞ (counted with multiplicity) poles that

is bounded on the complement of any neighborhood of its poles. Then, for each ideal boundary

point p of X there is a wp ∈ C and a positive integer dp such that wp is the limit of f at

p and

nf (a) +
∑

ideal boundary points q
such that wq = a

dq = m

for all a ∈ IP1(C) . Furthermore, if p cannot be represented by a planar end, then dp ≥ 2 .

Proof: It is enough to prove that

{
a ∈ IP1(C)

∣∣nf (a) < m
}
⊂
{
wp ∈ IP1(C)

∣∣ p is an ideal boundary point
}

Suppose a ∈ IP1(C) . By Lemma 3.9, there is a sequence ai, i ≥ 1 , converging to a such

that nf (ai) = m for all i ≥ 1 . If the preimage

f−1
({
a1, a2, · · ·

})

is bounded in X , then every accumulation point is mapped to a and the multiplicities must

add up to m , so nf (a) = m . If the preimage is unbounded, there is a subsequence converging

to an ideal boundary point p . By Theorem 3.23, a = wp .

Corollary 3.25 Let X be a parabolic Riemann surface with finite ideal boundary such that

no ideal boundary point can be represented by a planar end. Let f be a meromorphic function

on X with either two simple poles or one double pole and no other singularities. If f is

bounded on the complement of any neighborhood of its poles, then X is hyperelliptic.

Proof: Let I be the set of limits of f at the ideal boundary points of X . By Theorem

3.23 and Corollary 3.24, f is a proper holomorphic map of degree two from X to IP1(C)\I .
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Proposition 3.26 Let X be a parabolic Riemann surface with finite ideal boundary such

that no ideal boundary point can be represented by a planar end. Suppose, dimC Ω(X) ≥ 2 .

Then, the canonical map κX is an injective immersion of X into IP
(
Ω∗(X)

)
if and only if

X is not hyperelliptic.

Proof: Suppose that X is not hyperelliptic. To prove that κX is an injective immersion

we must show that for every pair of distinct points x1, x2 ∈ X there are ω, η ∈ Ω(X)

such that ω(x1) = 0, but ω(x2) 6= 0 and η vanishes simply at x1 . If every ω ∈ Ω(X)

that vanishes at x1 also vanishes at x2 , then, by Theorem 3.10, there is a meromorphic

function with simple poles at x1 and/or x2 and no other singularities that is bounded on

the complement of every neighborhood of its poles. If there are poles at both x1 and x2

then, by Corollary 3.24, X must be hyperelliptic contradicting our hypothesis. If there is a

meromorphic function with a simple pole at x1 or x2 , but not both, that is bounded on the

complement of every neighborhood of this pole, then X is biholomorphic to an open subset

of IP1(C) and dimC Ω(X) = 0 . The case that every η ∈ Ω(X) that vanishes at x1 vanishes

with multiplicity at least two is treated in the same way.

If X is hyperelliptic, then, by Proposition 3.18, the canonical map is not injective.

The last topic of this section is the Abel-Jacobi map. Fix a base point x0 on the

Riemann surface X . For any x ∈ X and any smooth path γ joining x0 to x , set

j(x, γ)(ω) =

∫

γ

ω

for all ω ∈ Ω(X) .

Lemma 3.27 For each x ∈ X and each path γ connecting x0 to x . Then,

(i) j(x, γ) is a bounded linear functional on Ω(X) .

(ii) Let Y be a simply connected open neighborhood of x . For each y ∈ Y , let γy be

path joining x0 to y that is obtained by composing γ with a path inside Y that

connects x to y . Then, the map

y ∈ Y −→ j(y, γy) ∈ Ω∗(X)

is holomorphic. Its derivative with respect to a local coordinate z centered at x is

d
dz j(z, γz)

∣∣
z=0

= δx,z
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where, as before, δx,z(ω) =
ω
∣∣
Y

dz
(x) .

Proof: The proof is similar to that of Lemma 3.13.

Definition 3.28 Let X be a Riemann surface and π : X̃ −→ X its universal cover. Fix

a base point x̃0 in X̃ . The Abel-Jacobi map jX from X̃ to Ω∗(X) is given by

jX(x̃) = j
(
π(x̃), π(γ̃)

)

where γ̃ is any path on X̃ connecting x̃0 to x̃ .

Let x̃1, x̃2 ∈ X̃ with π(x̃1) = π(x̃2) . Then, there is a cycle σ on X such that

jX(x̃1)(ω) − jX(x̃2)(ω) =

∫

σ

ω

for all ω ∈ Ω(X) . We shall prove the converse for parabolic Riemann surfaces. A prerequisite

is

Theorem 3.29 Let X be a parabolic Riemann surface. Let x1, · · · , xn and y1, · · · , yn be

points on X with xi 6= yi for i = i, · · · , n and let γ1, · · · , γn be paths such that γi connects

xi to yi for i = i, · · · , n . If
n∑
i=1

∫

γi

ω = 0

for all ω ∈ Ω(X) , then there is a meromorphic function on X with poles at x1, · · · , xn ,

roots at y1, · · · , yn and no other poles or roots (counting multiplicity) that is bounded on the

complement of every neighborhood of x1, · · · , xn .

Proof: By Abel’s theorem [AS, §V, 22.C], there is a meromorphic function f on X with

poles at x1, · · · , xn , roots at y1, · · · , yn and no other poles or roots such that d log f square

integrable on the complement of every neighborhood of x1, · · · , xn , y1, · · · , yn . By [R, p.

43], df is square integrable on the complement of every neighborhood of x1, · · · , xn . It now

follows from [R, Proposition 4] that f is bounded on the complement of every neighborhood

of x1, · · · , xn .
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Proposition 3.30 Let X be a parabolic Riemann surface that is not biholomorphic to an

open subset of IP1(C) .

(i) The Abel-Jacobi map jX from X̃ to Ω∗(X) is immersive.

(ii) If x̃1, x̃2 ∈ X̃ and σ is a cycle on X such that

jX(x̃1)(ω) − jX(x̃2)(ω) =

∫

σ

ω

for all ω ∈ Ω(X) , then, π(x̃1) = π(x̃2) .

Proof: Part (i) is a direct consequence of Lemma 3.27 (ii) and Proposition 3.12.

For part (ii), suppose x̃1, x̃2 ∈ X̃ and σ is a cycle on X such that

jX(x̃1)(ω) − jX(x̃2)(ω) =

∫

σ

ω

for all ω ∈ Ω(X) . Then, there is a path γ in X joining π(x̃1) to π(x̃2) such that

∫

γ

ω = 0

for all ω ∈ Ω(X) . By Theorem 3.29, there is a meromorphic function with a simple pole at

π(x̃1) that is bounded on the complement of any neighborhood of π(x̃1) . The argument is

now completed just as in the proof of Proposition 3.12.
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Appendix to §3: A Proof of Proposition 3.7

Let h be a harmonic exhaustion function on the parabolic Riemann surface X .

Recall that Xt = h−1
(
[0, t]

)
and Γt = ∂Xt , for all t ≥ 0 . By scaling, we may assume that

t = 1 is a regular value and that h is harmonic on X \X1 . Here, as before, Γt is oriented

so that

∗dh
(
an oriented tangent vector to Γt

)
≥ 0

Of course, dh
(
a tangent vector to Γt

)
= 0 .

Let f be a real valued, harmonic function on X with ‖df‖ < ∞ . By Stoke’s

theorem,

‖df‖2 =

∫

X

df ∧ ∗df = lim
t→∞

∫

Xt

df ∧ ∗df

= lim
t→∞

∫

Γt

f ∗ df

We will show, in the spirit of [Ah], that

lim inf
t→∞

∫

Γt

f ∗ df = 0

Then, ‖df‖2 = 0 and f is constant on X .

Lemma A3.1 For all t > 1 ,

∣∣∣∣
∫

Γt

f ∗ df
∣∣∣∣ ≤ 2

∫

Γt

|df |
∫

Γt

| ∗ df | +
∣∣∣

∑
γ a component

of Γt

∫

γ

f cγ ∗ dh
∣∣∣

where,

cγ =
(∫

γ

∗dh
)−1 (∫

γ

∗df
)

Proof: For each component γ of Γt ,

∫

γ

(∗df − cγ ∗ dh) = 0

Therefore,

∣∣∣∣
∫

γ

f (∗df − cγ ∗ dh)

∣∣∣∣ ≤
(∫

γ

|df |
)(∫

γ

| ∗ df | +
(∫

γ

∗dh
)−1

∫

γ

| ∗ df |
∫

γ

∗dh
)

≤ 2

(∫

γ

|df |
)(∫

γ

| ∗ df |
)

56



It follows that
∣∣∣∣∣∣

∫

Γt

f ∗ df − ∑
γ a component

of Γt

cγ ∗ dh

∣∣∣∣∣∣
≤ ∑

γ

∣∣∣∣
∫

γ

f (∗df − cγ ∗ dh)

∣∣∣∣

≤ ∑
γ

2

(∫

γ

|df |
)(∫

γ

| ∗ df |
)

≤ 2

(∫

Γt

|df |
)(∫

Γt

| ∗ df |
)

Suppose λ is a smooth square integrable one form on X . Observe that the exhaus-

tion function with finite charge in the proof of Lemma 2.6 can be replaced by a harmonic

exhaustion function. Thus,

∫ ∞

0

(∫

Γs

|λ|
)2

ds ≤ const ‖λ‖2 < ∞

In particular, the functions
∫

Γt
|df | and

∫
Γt
| ∗ df | of t are square integrable on [0,∞) .

Therefore, the product ∫

Γt

|df |
∫

Γt

| ∗ df |

appearing on the right hand side of Lemma A3.1 is an integrable function of t and as a

result, the measure of {
t ∈ [1,∞)

∣∣∣ 2
∫

Γt

|df |
∫

Γt

| ∗ df | > ε
}

is finite for all ε > 0

If we can show that

F (t) = 1√
t

∑
γ a component

of Γt

∫

γ

f cγ ∗ dh

is a square integrable function of t ≥ 2 , then the measure of

{
t ∈ [2,∞)

∣∣∣
∣∣∣

∑
γ a component

of Γt

∫

γ

f cγ ∗ dh
∣∣∣ > ε

}

is also finite for all ε > 0 . By Lemma A3.1, this will imply that

lim inf
t→∞

∫

Γt

f ∗ df = 0
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We now prepare for the proof that F (t) is a square integrable function of t ≥ 2 .

Let t > 1 be a regular value of h . The leaves of the (possibly singular) foliation of

Xt \X1 given by the harmonic one form ∗dh coincide with the orbits of the gradient flow

of h with respect to any conformal metric. Each leaf, either connects Γt to Γ1 , or connects

Γt to a singular point of h , or connects a singular point of h to Γ1 . Only a finite number

of leaves hit a singular point since h is harmonic.

For each component γ of Γt , let Lγ ⊂ X be the union of all leaves that hit γ . By

the preceding remarks,

(i) The complement of
⋃

γ a component
of Γt

Lγ in Xt \X1 has measure zero.

(ii) For each γ , the boundary of Lγ consists of γ , Lγ ∩ Γ1 , a finite number of leaves

of ∗dh and a finite number of critical points of h .
γ

Lγ

leaves of the
foliation

singular
point of h

Γ1

Xt rX1

h

For each t > 1 , set

ωt =
∑

γ a component
of Γt

cγ 1lLγ ∗ dh

where 1lLγ is the indicator function of the set Lγ . Observe that ωt is a piecewise harmonic

one form. By Stoke’s theorem, (ii) above, and the fact that ∗dh vanishes, by definition, on

all leaves of the foliation,

F (t) = 1√
t

∑
γ a component

of Γt

{∫

γ

f cγ ∗ dh −
∫

Lγ∩Γ1

f cγ ∗ dh
}

+ 1√
t

∑
γ a component

of Γt

∫

Lγ∩Γ1

f cγ ∗ dh

= 1√
t

∑
γ a component

of Γt

∫

Lγ

df ∧ cγ ∗ dh + 1√
t

∑
γ a component

of Γt

∫

Lγ∩Γ1

f cγ ∗ dh
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so that

F (t) = 1√
t

∫

X

df ∧ ωt + 1√
t

∫

Γ1

f ωt

Lemma A3.2 There is a constant const Γ1
> 0 such that for all t > 2 ,

∫

Γ1

|ωt| ≤ const Γ1
‖ωt‖

Proof: Pick 0 < δ < 1 such that h has no critical values in [1, 1 + δ] . Let γ be a

component of Γt . As above, by Stoke’s theorem,

∫

Lγ∩Γ1

c2γ ∗ dh =

∫

Lγ∩Γs

c2γ ∗ dh

for all 1 ≤ s ≤ 1 + δ . It follows that

δ

∫

Lγ∩Γ1

c2γ ∗ dh =

∫ 1+δ

1

ds

∫

Lγ∩Γs

c2γ ∗ dh

=

∫

Lγ∩
(
X1+δ\X1

) c2γdh ∧ ∗dh

=
∥∥ωt
∣∣
Lγ∩
(
X1+δ\X1

)∥∥2

By Schwarz’s inequality,

(∫

Γ1

|ωt|
)2

=
(∫

Γ1

∣∣ ∑
γ a component

of Γt

cγ 1lLγ
∣∣ ∗ dh

)2

≤
(∫

Γ1

∗dh
) (∫

Γ1

{ ∑
γ a component

of Γt

cγ 1lLγ

}2

∗ dh
)

=
(∫

Γ1

∗dh
) ∑

γ a component
of Γt

∫

Lγ∩Γ1

c2γ ∗ dh

Therefore, (∫

Γ1

|ωt|
)2

= 1
δ

(∫

Γ1

∗dh
) ∑

γ a component
of Γt

∥∥ωt
∣∣
Lγ∩
(
X1+δ\X1

)∥∥2

= 1
δ

(∫

Γ1

∗dh
)∥∥ωt

∣∣(
X1+δ\X1

)∥∥2
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By Schwarz’s inequality,

∫ ∞

2

dt
∣∣∣ 1√

t

∫

X

df ∧ ωt
∣∣∣
2

≤ ‖df‖2
∫ ∞

1

dt
t
‖ωt‖2

Also, ∫ ∞

2

dt
∣∣∣ 1√

t

∫

Γ1

f ωt

∣∣∣
2

≤
(

sup
x∈Γ1

|f (x)|
)2
∫ ∞

1

dt
t

(∫

Γ1

|ωt|
)2

≤
(

const Γ1
sup
x∈Γ1

|f (x)|
)2
∫ ∞

1

dt
t
‖ωt‖2

by Lemma A3.2. Consequently,

∫ ∞

2

dt |F (t)|2 ≤ const

∫ ∞

1

dt
t ‖ωt‖2

The proof of Proposition 3.7 is now reduced to

Lemma A3.3 ∫ ∞

1

dt
t ‖ωt‖2 < ∞

Proof: For each component γ of Γt ,

∥∥∥cγ ∗ dh
∣∣∣
Lγ

∥∥∥
2

= c2γ

∫

Lγ

dh ∧ ∗dh

= c2γ

∫

Lγ

d
(
h ∗ dh

)

= c2γ

∫

∂Lγ

h ∗ dh

= c2γ

(∫

γ

h ∗ dh −
∫

Lγ∩Γ1

h ∗ dh
)

since ∗dh vanishes on all the other boundary components. Recall that h
∣∣
γ

= t and h
∣∣
Lγ∩Γ1

=

1 . Therefore,

∥∥∥cγ ∗ dh
∣∣∣
Lγ

∥∥∥
2

= c2γ

(
t

∫

γ

∗dh −
∫

Lγ∩Γ1

∗dh
)

=
(∫

γ

∗dh
)−2 (∫

γ

∗df
)2
(
t

∫

γ

∗dh −
∫

Lγ∩Γ1

∗dh
)

≤ t
(∫

γ

∗dh
)−1 (∫

γ

∗df
)2
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since ∫

Lγ∩Γ1

∗dh ≥ 0

Summing over components,

‖ωt‖2 =
∑

γ a component
of Γt

∥∥∥cγ ∗ dh
∣∣∣
Lγ

∥∥∥
2

≤ t
∑

γ a component
of Γt

( ∫

γ

∗dh
)−1 (∫

γ

∗df
)2

The statement of the lemma now follows from Lemma A3.4 below.

Lemma A3.4 Let λ be a smooth one form on X . Then,

∫ t

1

ds
∑

γ a component
of Γs

(∫

γ

∗dh
)−1

(∫

γ

|λ|
)2

≤ ‖λ
∣∣
Xt\X1

‖2

In particular, ∫ ∞

1

ds
∑

γ a component
of Γs

(∫

γ

∗dh
)−1

(∫

γ

∗df
)2

< ∞

Proof: For every component γ of Γs ,

(∫

γ

|λ|
)2

=

(∫

γ

√
|λ1|2 + |λ2|2

√
(dh)2 + (∗dh)2

)2

=

(∫

γ

√
|λ1|2 + |λ2|2 ∗ dh

)2

≤
∫

γ

∗dh
∫

γ

(|λ1|2 + |λ2|2) ∗ dh

by Schwarz’s inequality. It follows that

∫ t

1

ds
∑

γ a component
of Γs

(∫

γ

∗dh
)−1

(∫

γ

|λ|
)2

≤
∫ t

1

ds
∑

γ a component
of Γs

∫

γ

(|λ1|2 + |λ2|2) ∗ dh

=

∫ t

1

ds

∫

Γs

(|λ1|2 + |λ2|2) ∗ dh

=

∫

Xt\X1

(|λ1|2 + |λ2|2) dh ∧ ∗dh
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§4 Theta Functions

Suppose there is an exhaustion function with finite charge (see, Definition 2.1) on

the marked Riemann surface (X;A1, B1, · · ·) . Then, by Theorem 3.8, (X;A1, B1, · · ·) has a

unique basis ωk , k ≥ 1 , of square integrable holomorphic one forms satisfying
∫

Ai

ωj = δi,j

for all i, j ≥ 1 .

Definition 4.1 Suppose there is an exhaustion function with finite charge on the marked

Riemann surface (X;A1, B1, · · ·) . The period matrix RX of (X;A1, B1, · · ·) is

RX =
(
Ri,j

)
=

(∫

Bi

ωj

)

As usual, the Riemann bilinear relations (Theorem 2.9) imply

Proposition 4.2 Suppose there is an exhaustion function with finite charge on the marked

Riemann surface (X;A1, B1, · · ·) . Then, the period matrix RX is symmetric and ImRX is

positive definite. That is,

〈n , ImRX n〉 =
∑

i,j≥1

ni ImRi,j nj > 0

for all nonzero vectors

n =



n1

n2
...




in ZZ∞ with only a finite number of nonzero components.

Proof: For each k and ` , the pair of forms ωk , ω` satisfies the hypothesis of Theorem

2.9. Consequently,

0 =

∫

X

ωk ∧ ω` =
∞∑
i=1

(∫

Ai

ωk

∫

Bi

ω` −
∫

Bi

ωk

∫

Ai

ω`

)
= Rk,` − R`,k

since ωk ∧ω` = 0 . Similarly, for each nonzero n ∈ ZZ∞ with only a finite number of nonzero

components, the form
∑
i≥1

niωi and and its complex conjugate

∗∑
i≥1

niωi = i
∑
i≥1

niωi
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satisfy the hypothesis of Theorem 2.9. We have,

0 <
∥∥ ∑
i≥1

niωi
∥∥2

= i

∫

X

( ∑
i≥1

niωi

)
∧
( ∑
j≥1

njωj

)
=

∑

i,j≥1

ni ImRi,j nj

For each 0 < t < 1 , let H(t) ⊂ C2 be the model handle given by

H(t) =
{

(z1, z2) ∈ C2
∣∣∣ z1z2 = t , |z1|, |z2| ≤ 1

}

{
(z1, z2) ∈ H(t)

∣∣ |z1| = t, |z2| = 1
}

H(t)

{
(
√
teiθ,

√
te−iθ

∣∣ 0 ≤ θ ≤ 2π
}

{
(z1, z2) ∈ H(t)

∣∣ |z1| = 1, |z2| = t
}

Lemma 4.3 Fix 0 < t < 1 . Let

A =
{ (√

t eiθ ,
√
t e−iθ

) ∣∣∣ 0 ≤ θ ≤ 2π
}

be the oriented waist on the model handle H(t) . For every holomorphic one form ω on

H(t) ,

‖ω‖2 ≥
√
| log t|

2π

∣∣∣
∫

A

ω
∣∣∣

Proof: The projection

(z1, z2) ∈ H(t) −→ z1 ∈
{
z1

∣∣ t ≤ |z1| ≤ 1
}

from H(t) to the annulus t ≤ |z1| ≤ 1 is a global coordinate. Write

ω = f(z1) dz1
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For any fixed r

∣∣∣
∫

A

ω
∣∣∣
2

=

∣∣∣∣
∫ 2π

0

1 · f(reiθ) reiθdθ

∣∣∣∣
2

≤ 2π

∫ 2π

0

|rf(reiθ)|2dθ

Hence

‖ω‖22 = 1
2

∫

t≤|z1|≤1

|f(z1)|2|dz1 ∧ dz̄1| =

∫ 1

t

∫ 2π

0

|rf(reiθ)|2dθ drr

≥ 1
2π

∣∣∣
∫

A

ω
∣∣∣
2
∫ 1

t

dr
r = | log t|

2π

∣∣∣
∫

A

ω
∣∣∣
2

Proposition 4.4 Denote by RX the period matrix of the marked Riemann surface

(X;A1, B1, · · ·) on which there is an exhaustion function with finite charge. Let tj ∈
(0, 1) , j ≥ 1 . Suppose that for all j ≥ 1 there exists an injective , holomorphic map

φj : H(tj) −→ X

such that

φj

({ (√
tj e

iθ ,
√
tj e
−iθ) ∣∣∣ 0 ≤ θ ≤ 2π

})

is homologous to Aj and

φk
(
H(tk)

)
∩ φ`

(
H(t`)

)
= ∅

for all k 6= ` . Then,

〈n , ImRX n〉 ≥ 1
2π

∑

j≥1

| log tj |n2
j

for all vectors n ∈ ZZ∞ with only a finite number of nonzero components.

Proof: Let n ∈ ZZ∞ with only a finite number of nonzero components. As in the proof of

Proposition 4.2,

〈n , ImRX n〉 =
∥∥ ∑
i≥1

niωi‖2 ≥
∑

j≥1

∥∥∥
∑
i≥1

niωi
∣∣
φj

(
H(tj)

)
∥∥∥

2

By Lemma 4.3,

〈n , ImRX n〉 ≥ 1
2π

∑

j≥1

| log tj |
∣∣∣
∫

Aj

∑
i≥1

niωi

∣∣∣
2

= 1
2π

∑

j≥1

| log tj |n2
j
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Definition 4.5 Let

R =
(
Rij ; i , j≥ 1

)

be an infinite, symmetric complex matrix such that ImR is positive definite. The formal

theta series θ(z, R) , z ∈ C∞ , corresponding to R is

θ(z, R) =
∑

n∈ZZ∞
|n|<∞

e2πi〈z,n〉 eπi〈n ,Rn〉

where

|n| = |n1|+ |n2|+ · · ·

The formal theta series θ(z,RX) for a marked Riemann surface (X;A1, B1, · · ·) on which

there is an exhaustion function with finite charge is the formal theta series corresponding to

the period matrix RX .

The generic formal theta series is divergent. The main result of this section is

Theorem 4.6 Suppose that the symmetric matrix R and the sequence tj ∈ (0, 1) , j ≥ 1 ,

satisfy ∑

j≥1

tβj < ∞ (4.7)

for some 0 < β < 1
2

, and

〈n , ImRn〉 =
∑

i,j≥1

ni ImRi,j nj ≥ 1
2π

∑

j≥1

| log tj |n2
j (4.8)

and all vectors n ∈ ZZ∞ with only a finite number of nonzero components. Let B be the

Banach space given by

B =

{
z = (z1, z2, · · ·) ∈ C∞

∣∣∣ lim
j→∞

|zj |
| log tj | = 0

}

with norm

‖z‖ = sup
j≥1

|zj|
| log tj |

Then, for every point w ∈ B the theta series

θ(z, R) =
∑

n∈ZZ∞
|n|<∞

e2πi〈z,n〉 eπi〈n ,Rn〉

converges absolutely and uniformly on the ball in B of radius r = 1−2β
8π

centered at w to a

holomorphic function.
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Proof: Fix w in B . For all z in the ball of radius r centered at w and all n ∈ ZZ∞

with |n| <∞ ,
∣∣ e2πi〈z,n〉 eπi〈n ,Rn〉 ∣∣ ≤ e2π|〈Im z,n〉| e−π〈n ,ImRn〉

≤ e
2π|〈Im w+Im z−Im w,n〉|− 1

2

∑
j≥1

| log tj |n2
j

≤ e
2π
∑

j≥1

(
|Imwj |+|Im zj−Imwj |

)
|nj | − 1

2

∑
j≥1

| log tj |n2
j

= e
1
2

∑
j≥1
| log tj |

(
4π|nj|

( |Imwj |+|Im zj−Imwj|
| log tj |

)
− n2

j

)

≤ e
− 1

2

∑
j≥1
|nj | | log tj |

(
|nj | − 4π

( |Imwj |
| log tj |+r

))

If the sum of the majorants is finite, then the theta series converges absolutely and uniformly

on the ball ‖w− z‖ ≤ r to a holomorphic function.

Pick j0(r) such that
|Imwj |
| log tj | < r

for all j > j0(r) . We have

∑

n∈ZZ∞
|n|<∞

e
− 1

2

∑
j≥1
|nj | | log tj |

(
|nj | − 4π

( |Imwj |
| log tj |+r

))

≤
∏

j≥1

∑

n∈ZZ

e
− 1

2 |n| | log tj |
(
|n| − 4π

( |Imwj |
| log tj |+r

))

≤
∏

1≤j≤j0(r)

∑

n∈ZZ

e
− 1

2 |n| | log tj |
(
|n| − 4π

( |Imwj |
| log tj |+r

))
×

∏

j>j0(r)

∑

n∈ZZ

e−
1
2 |n|| log tj |

(
|n|−8π r

)

We have
∑

n∈ZZ

e−
1
2 | log tj |(n2−8π |n|r) ≤

∑

n∈ZZ

e−β | log tj | |n| = 1 + 2
∑

n≥1

e−β | log tj |n = 1 + 2
(

tβ
j

1−tβ
j

)

since,
1
2

(
|n| − 8πr

)
= 1

2

(
|n| − (1− 2β)

)
= 1

2

(
|n| − 1

)
+ β ≥ β

for |n| ≥ 1 . Consequently, by (4.7),
∏

j>j0(r)

∑

n∈ZZ

e−
1
2 |n|| log tj |

(
|n|−8π r

)
< ∞

The above argument shows that θ(x,R) is defined and analytic on the subset of the

Banach space
{

z ∈ C∞
∣∣∣ supj→∞

|zj |
| log tj | < ∞

}
consisting of those elements for which

lim sup
j→∞

|Im zj |
| log tj | <

1−2β
4π
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Remark 4.9 Recall that (see, [RS, III.2, Example 3]) the dual space B∗ of B is given by

B∗ =
{

w = (w1, w2, · · ·) ∈ C∞
∣∣∣
∑
j≥1

|wj| | log tj | < ∞
}

Remark 4.10 Supose, f is a map from an open subset U of a complex Banach space E

into a complex Banach space F . We recall that f is holomorphic on U , if it is continuously

differentiable on U . To be precise, let L(E,F ) be the Banach space of bounded linear maps

between E and F . Then, f is holomorphic on U , if there is a continuous map

x ∈ U → dxf ∈ L(E,F )

such that for each x ∈ U and every ε > 0 there is a δ > 0 for which

‖f(x + h)− f(x)− dxf(h)‖F ≤ ε ‖h‖E

when h ∈ E with ‖h‖E < δ . One can show that the limit of a uniformly convergent sequence

of holomorphic maps on U is also holomorphic. (See, for example, [PT,p.137].)

Let f be holomorphic on U . One can also show (see, for example, [PT,p.133]),

that for each x ∈ U there are bounded, symmetric, F -valued multilinear forms

fm(x;h1, · · · , hm) , m ≥ 0 , on E with

|||fm(x; ·, · · · , ·)||| ≤ const(x)
m!

ρm

for some ρ > 0 such that

f(x + y) =
∑

m≥0

1

m!
fm(x; y, · · · , y)

when ‖y‖E < ρ . In our case,

θ(z + h, R) =
∑

n∈ZZ∞
|n|<∞

e2πi〈z+h,n〉 eπi〈n ,Rn〉

=
∑

n∈ZZ∞
|n|<∞

∑

m≥0

1

m!

(
2πi 〈h,n〉

)m
e2πi〈z,n〉 eπi〈n ,Rn〉

=
∑

m≥0

1

m!
θm(z; h, · · · ,h)
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where

θm(z; h1, · · · ,hm) =
∑

n∈ZZ∞
|n|<∞

( m∏
i=1

2πi 〈hi,n〉
)
e2πi〈z,n〉 eπi〈n ,Rn〉

We have
∣∣∣
m∏
i=1

2πi 〈hi,n〉
∣∣∣ ≤

(
2π
∑

j≥1

| log tj | |nj|
)m m∏

i=1

‖hi‖

≤ m!

ρm
e

2π ρ
∑

j≥1
| log tj | |nj | m∏

i=1

‖hi‖

and for all r > ρ > 0 ,

|||θm(z; ·, · · · , ·)||| = sup
hi∈B
hi 6=0

∣∣θm(z; h1, · · · ,hn)
∣∣

m∏
i=1
‖hi‖

≤ m!

ρm

∑

n∈ZZ∞
|n|<∞

e
2π ρ

∑
j≥1
| log tj | |nj | ∣∣ e2πi〈z,n〉 eπi〈n ,Rn〉∣∣

≤ m!

ρm

∏

j≥1

∑

n∈ZZ

e
− 1

2 | log tj |
(
n2−4π |n| | Im zj |

| log tj |−4πr |n|
)

≤ const (z, r)
m!

ρm

since, as in the proof of Theorem 4.6,

∏

j≥1

∑

n∈ZZ

e
− 1

2 | log tj |
(
n2−4π |n| | Im zj |

| log tj |−4πr |n|
)
≤ const (z, r) < ∞

Remark 4.11 Let (X;A1, B1, · · ·) be a marked Riemann surface satisfying the hypotheses of

Proposition 4.4 and (4.7). Let Ω be the Hilbert space of square holomorphic integrable one

forms on X . The linear map

λ ∈ Ω∗ −→
(
λ(ωj) , j ≥ 1

)
∈ C∞

is injective since ωj , j ≥ 1 , is a basis for Ω . Here, Ω∗ is the dual space of bounded

linear functionals on Ω . We have

|λ(ωj)| ≤ ‖λ‖Ω∗ ‖ωj‖Ω

If ‖ωj‖Ω = o(| log tj |) , then

lim
j→∞

|λ(ωj)|
| log tj | ≤ ‖λ‖Ω∗ lim

j→∞
‖ωj‖Ω
| log tj | = 0
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and
∥∥(λ(ωj) , j ≥ 1

)∥∥
B

= sup
j≥1

|λ(ωj)|
| log tj | ≤

(
sup
j≥1

‖ωj‖Ω
| log tj |

)
‖λ‖Ω∗

That is,
(
λ(ωj) , j ≥ 1

)
∈ B and

λ ∈ Ω∗ −→ i(λ) =
(
λ(ω1) , λ(ω2) , · · ·

)
∈ B

is a bounded linear map. In this case, the theta series

θ(λ,RX) =
∑

n∈ZZ∞
|n|<∞

e2πi λ(n) eπi〈n ,RX n〉

with the notation
λ(n) = λ(n1ω1 + n2ω2 + · · ·)

=
〈(
λ(ωj) , j ≥ 1

)
, n
〉

is holomorphic on Ω∗ .

Proposition 4.12 Suppose that the symmetric matrix R and the sequence tj ∈ (0, 1) , j ≥
1 , satisfy (4.7) and (4.8). For all n ∈ ZZ∞ ∩ B ,

θ(z + n, R) = θ(z, R)

In particular,

θ(z + 1lj , R) = θ(z, R)

for all j ≥ 1 , where 1lj = (δi,j , i ≥ 1) ∈ B is the jth column of the identity matrix 1l . Let

Rj =



R1j

R2j

...


 , j ≥ 1 ,

be the columns of R . If Rj belongs to B , then

θ(z + Rj , R) = e−2πi (zj+
1
2Rjj) θ(z, R)
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Proof: The first two statements follow from continuity and the identity

e2πi 〈z + 1lj ,n〉 = e2πi 〈n,z〉

for all n ∈ ZZ∞ with |n| <∞ . The third is verified by the standard manipulation

θ(z + Rj) =
∑

n∈ZZ∞
|n|<∞

e2πi〈z +Rj ,n〉 eπi〈n ,Rn〉

=
∑

n∈ZZ∞
|n|<∞

e2πi〈z +Rj ,n1j〉 eπi〈n1j ,Rn1j〉

= e−2πi〈z +Rj ,1j〉 eπi〈1j ,R 1j〉
∑

n∈ZZ∞
|n|<∞

e2πi〈z,n〉 e2πi〈Rj ,n〉−πi〈n ,R 1j〉−πi〈1j ,Rn〉 eπi〈n ,Rn〉

= e−2πi〈z +Rj ,1j〉 eπi〈1j ,R 1j〉 θ(z)

The symmetry of R was used to pass from the third to the fourth line.

Remark 4.13 Apply Schwarz’s inequality for the positive definite bilinear form 〈x, ImRy〉
to obtain

|ImRjk| =
∣∣ 〈1lj , ImR 1lk〉

∣∣ ≤ 〈1lj , ImR 1lj〉
1
2 〈1lk, ImR 1lk〉

1
2 = (ImRjj)

1
2 (ImRkk)

1
2

Suppose ImRjj = o(| log tj |2) , then

|ImRjk|
| log tj | =

|ImRjk|
|ImRjj |

1
2

|ImRjj |
1
2

| log tj | < |ImRkk|
1
2
o(| log tj |)
| log tj | ≤ |ImRkk|

1
2 o(1)

and ImRk ∈ B for all k ≥ 1 . If (X;A1, B1, · · ·) is a marked Riemann surface as in

Remark 4.11, then, by Theorem 2.9,

‖ωj‖2Ω = i
2

∫

X

ωj ∧ ωj = ImRj,j

and ‖ωj‖Ω = o(| log tj |) implies that the the columns of ImRX belong to B .

Let BRe be the real Banach space given by

BRe = IR∞ ∩ B

and let Z ⊂ BRe be the sublattice given by

Z = ZZ∞ ∩BRe
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The quotient

T = BRe /Z

with metric

d(x,y) = inf
n∈Z
‖x− y − n‖

is a compact abelian group. It is isomorphic to the infinite product
(
IR/ZZ

)∞
.

The exponentials e2πi 〈n,x〉 , n ∈ ZZ∞ , |n| < ∞ , are an orthonormal basis for the

Hilbert space L2(T ) of all measurable functions f(x) on the infinite dimensional torus T
with ∫

T
dx |f(x)|2 < ∞

Here, dx is the Haar measure on T . Concretely, for continuous functions
∫

T
dx f(x) = lim

j→∞

∫

[0,1)j
dx1 · · ·dxj f(x1, · · · , xj, 0, · · ·)

By Proposition 4.12, θ(x, R) defines a continuous function on T and therefore belongs to

L2(T ) .

Proposition 4.14 Suppose that the symmetric matrix R and the sequence tj ∈ (0, 1) , j ≥
1 , satisfy (4.7) and (4.8). If n ∈ ZZ∞ with |n| <∞ , then

∫

T
dx θ(x, R) e−2πi 〈n,x〉 = eπi〈n ,Rn〉

In other words, the Fourier coefficients of θ(x, R) are eπi〈n ,Rn〉 . If, in addition, R is

pure imaginary, then θ(x, R) is a real valued function on T with

inf
x∈T

θ(x, R) > 0

Proof: The domain [0, 1)∞ is a bounded subset of B . In fact, it can be covered by a

finite number of balls of radius r = 1−2β
8π . By Theorem 4.6 and the bounded convergence

theorem
∫

T
dx θ(x, R) e−2πi 〈n,x〉 =

∑

p∈ZZ∞
|p|<∞

∫

T
dx e2πi〈z,p〉 eπi〈p ,Rp〉 e−2πi 〈n,x〉

= eπi〈n ,Rn〉

Suppose R is pure imaginary. Observe that

θ(0, t R) =
∑

n∈ZZ∞
|n|<∞

e−π t〈n ,ImRn〉 > 0
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when R is pure imaginary and t > 0 . We next show that θ(x,R) ≥ 0 for all real vectors

x ∈ B .

For each m ≥ 1 , set

θm(x) =
∑

n∈ZZ∞
nj=0 , j>m

e2πi〈x,n〉 eπi〈n ,Rn〉 =
∑

n∈ZZ∞
nj=0 , j>m

e2πi〈x,n〉 e−π〈n ,ImRn〉

By the Poissson summation formula,

θm(x) =
(2π)m

(det ImRm)
1
2

∑

n∈ZZ∞
nj=0 , j>m

e−π 〈(x+n) , (ImR)−1(x+n)〉 > 0

where Rm is the m×m principal minor of R . It follows that

θ(x, R) = lim
m→∞

θm(x) ≥ 0

The identity,

θ(x, R) =

∫

T
dx θ(xy, 1

2
R) θ(y, 1

2
R)

is easily verified by using the first part of the proposition. Suppose, θ(x, R) = 0 . Then, the

identity and the nonnegativity of θ(xy, 1
2
R) and θ(y, 1

2
R) imply that θ(xy, 1

2
R) θ(y, 1

2
R)

vanishes for all real vectors y . By analyticity, one factor must vanish identically and in

particular θ(0, 1
2
R) = 0 . This contradicts the observation made above.

Let U = (U1, U2, · · ·) ∈ IR∞ . Set

{U} =
(
{U1} , {U2} , · · ·

)

where 0 ≤ {Uj} < 1 is the fractional part of Uj , j ≥ 1 . Observe that for all z ∈ B ,

U ∈ IR∞ and n ∈ ZZ∞ with |n| <∞ ,

e2πi〈z+U,n〉 = e2πi〈z+{U},n〉

It follows that for each z ∈ B ,

θ(z + U,R) = θ(z + {U}, R)

is well-defined for all U ∈ IR∞ .
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Proposition 4.15 Suppose that the symmetric matrix R and the sequence tj ∈ (0, 1) , j ≥
1 , satisfy (4.7) and (4.8). Fix a positive integer k . Let Ui = (Ui1, Ui2, · · ·) ∈ IR∞ , i =

0, · · · , p , satisfy

sup
i,j
|Ui,j| t

1−2β′
2k

j < ∞

for some β < β′ < 1
2 . Then, for all z ∈ B ,

θ (z + ξ0U0 + · · ·+ ξpUp , R)

is a k times continuously differentiable function of (ξ0, · · · , ξp) ∈ IRp+1 . If, in addition, R

is pure imaginary, then for all real vectors x ∈ B ,

inf
(ξ0,···,ξp)∈IRp

θ (x + ξ0U1 + · · ·+ ξpUp , R) > 0

Proof: We will show that for all α ∈ INp+1 with |α| ≤ k , the formal derivatives

∂|α|

∂ξα1
0 · · ·∂ξ

αp
p

θ (z+ξ0U0+···+ξpUp) =
∑

n∈ZZ∞
|n|<∞

p∏
`=0

(∑
j≥1

2πiU`,jnj

)α`
e2πi〈z+ξ0U0+···+ξpUp,n〉 eπi〈n ,Rn〉

converge absolutely and uniformly for (ξ0, · · · ξp) ∈ IRp+1 . Fix any β′′ ∈ (β, β′) . Observe

that for all n ∈ ZZ∞ with |n| <∞ ,

∣∣∣∣
p∏
`=0

(∑
j≥1

2πiU`,jnj

)α`
e2πi〈z+ξ0U0+···+ξpUp,n〉 eπi〈n ,Rn〉

∣∣∣∣

≤ (2π)
|α|

p∏
`=0

(∑
j≥1

|U`,j| |nj |
)α`

e2π|〈Im z,n〉| e
− 1

2

∑
j≥1

| log tj |n2
j

≤ (2π)
|α|
(

p∏
`=0

∏
j such that

nj 6=0

|nj|α`
(

max{|U`,j|,2}
)α`
)
e
− 1

2

∑
j≥1
|nj || log tj |

(
|nj |−4π

|Im zj |
| log tj |

)

= (2π)
|α|
( ∏

j such that
nj 6=0

t
1
2

(1−2β′′)n2
j

j
|nj||α|

p∏
`=0

(
max{|U`,j|,2}

)α`
)

× e
1
2 (1−2β′′)

∑
j≥1

n2
j | log tj | e

− 1
2

∑
j≥1
|nj || log tj |

(
|nj |−4π

|Im zj |
| log tj |

)

By hypothesis

sup
j

t
1
2

(1−2β′)
j

p∏
`=0

(
max{|U`,j |,2}

)α` ≤ sup
j

p∏
`=0

(
max{t 1

2k
(1−2β′)

j
|U`,j |,2}

)α` < ∞
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It follows that

n|α|t
1
2

(1−2β′′)n2

j

p∏
`=0

(
max{|U`,j |,2}

)α`

≤ t
(β′−β′′)n2

j sup
j

sup
n>0

n|α|t
1
2

(1−2β′)n2

j

p∏
`=0

(
max{|U`,j|,2}

)α`

≤ const t
(β′−β′′)n2

j

since t
1
2

(1−2β′)
j

≥ n|α|t
1
2

(1−2β′)n2

j
for all sufficiently large j and all n > 0 , or all j and all

sufficiently large n > 0 . Therefore,

sup
n∈ZZ∞
|n|<∞

(2π)
|α|
( ∏

j such that
nj 6=0

t
1
2

(1−2β′′)n2
j

j
|nj||α|

p∏
`=0

(
max{|U`,j|,2}

)α`
)

≤ sup
n∈ZZ∞
|n|<∞

∏
j such that

nj 6=0

const t
(β′−β′′)n2

j < ∞

Combining the last two paragraphs,

∣∣∣∣
p∏
`=0

(∑
j≥1

2πiU`,jnj

)α`
e2πi〈z+ξ0U0+···+ξpUp,n〉 eπi〈n ,Rn〉

∣∣∣∣

≤ const e
1
2 (1−2β′′)

∑
j≥1

n2
j | log tj | e

− 1
2

∑
j≥1
|nj || log tj |

(
|nj |−4π

|Im zj |
| log tj |

)

= const e
−β′′

∑
j≥1
|nj || log tj |

(
|nj |− 2π

β′′
|Im zj |
| log tj |

)

Pick j0 such that

1− 2π
β′′
|Im zj |
| log tj | ≥

β
β′′

for all j ≥ j0 . Summing the majorants,

∑
n∈ZZ∞
|n|<∞

e
−β′′

∑
j≥1
|nj || log tj |

(
|nj |− 2π

β′′
|Im zj |
| log tj |

)
≤ ∏

j≥1

∑
n∈ZZ

e
−β′′|n|| log tj |

(
|n|− 2π

β′′
|Im zj |
| log tj |

)

≤ const
∏
j≥j0

∑
n∈ZZ

e−β|n|| log tj |

≤ const
∏
j≥j0

(
1 + 2

tβ
j

1−tβ
j

)

< ∞

and consequently, θ (z+ξ0U0+···+ξpUp) is k times continuously differentiable.

The second statement follows immediately from Proposition 4.14.
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Proposition 4.16 Let f be a continuous function on T , x a point in T and Ui =

(Ui1, Ui2, · · ·) ∈ IR∞ , i = 0, · · · , p . For all (ξ0, ξ1, · · · , ξp) ∈ IRp+1 , set

f
(
x+ξ0U0+ξ1U1+···+ξpUp

)
= f

(
{x+ξ0U0+ξ1U1+···+ξpUp}

)

Then, for all ε > 0 there is a `(ε) such that in any interval of length `(ε) there is a η for

which

sup
ξ0

sup
(ξ1,···,ξp)∈IRp

∣∣f
(
x+(ξ0+η)U0+ξ1U1+···+ξpUp

)
− f

(
x+ξ0U0+ξ1U1+···+ξpUp

)∣∣ ≤ ε

In other words, f
(
x+ξ0U0+ξ1U1+···+ξpUp

)
is an L∞(IRp) valued almost periodic function of

ξ0 ∈ IR .

Proof: Fix ε > 0 . Recall that f is uniformly continuous on the compact metric space T .

Consequently, there is a δ > 0 such that
∣∣f(y)− f(y′)

∣∣ ≤ ε

whenever d(y,y′) < δ .

Pick jδ > 0 such that

d(y,y′) < δ
2

for all y,y′ ∈ T with yj = y′j , 1 ≤ j ≤ jδ . By elementary arithmetic [HW, Theorem 200]

(Hardy, G.H., Wright, E.M., An Introduction to the Theory of Numbers, Oxford 1979), there

is an `(ε) such that in every interval of length `(ε) there is an η with

d
(
0, η(U0,1, · · · , U0,jδ , 0, · · ·)

)
≤ δ

2

Therefore,

d
(
0, {ηU0}

)
< δ

We have

sup
ξ0

sup
(ξ1,···,ξp)∈IRp

d
(
x+{(ξ0+η)U0+ξ1U1+···+ξpUp} , x+{ξ0U0+ξ1U1+···+ξpUp}

)
< δ

Remark 4.17 We will apply Proposition 4.16 to the function

−2
∂2

∂ξ2
1

log θ
(
x + ξ0U0 + ξ1U1 + ξ2U2

)

to show that all smooth, spatially periodic solutions of the Kadomcev-Petviashvilli equation

propagate almost periodically in time.
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Appendix to §4: A Hyperelliptic Surface with Divergent Theta Se-
ries

In this appendix we explicitly construct a marked hyperelliptic Riemann surface

(X;A1, B1, · · ·) on which there is an exhaustion function with finite charge such that the

period matrix RX is pure imaginary and

θ(0,RX) =
∑

n∈ZZ∞
|n|<∞

e−π〈n,ImRXn〉 = ∞

We will construct this surface using the (convergent!) genus one theta function

ϑ(z, τ) , Im τ > 0 , given by

ϑ(z, τ) =
∑
n∈ZZ

e2πi nz eπ in
2τ

It is an entire, even function of z that has a simple root at each point of the shifted lattice
1+τ

2
+ ZZ⊕ τZZ and no other roots. Moreover,

ϑ(z + 1, τ) = ϑ(z, τ)

ϑ(z + jτ) = e−πij
2τ−2πijzϑ(z, τ)

for all j ∈ ZZ . It follows that

f(ζ) = ϑ
(

1
2πi log ζ + 1+i

2 , i
)

= e
π
4
∑
n∈ZZ

(−1)
n e−π (n+ 1

2 )2

ζn

is holomorphic on C∗ = IP1 \ {0,∞} and has a simple root at ζ = e2πj for each j ∈ ZZ and

no other roots.

Let X be the hyperelliptic Riemann surface given by

X =
{

(y, ζ) ∈ C× C∗
∣∣∣ y2 = f(ζ)

}

and τX : (y, ζ) 7→ ζ the hyperelliptic projection onto C∗ .

Lemma A4.1 For each ` ∈ ZZ , the inverse image

τ−1
X

({
e(4`+1)π+2πiα

∣∣ 0 ≤ α < 1
})

of the oriented circle of radius e(4`+1)π in C∗ consists of two disjoint oriented cycles.
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Proof: For all j ∈ ZZ ,

f
(
e(2j+1)π+2πiα

)
= ϑ

(
1

2πi

(
(2j + 1)π + 2πiα)

)
+ 1+i

2 , i
)

= ϑ
(
α+ 1

2
− ij

)

= eπj
2+2πij (α+ 1

2 ) ϑ
(
α+ 1

2 , i
)

Observe that the winding number of ϑ(α+ 1
2 , it) around zero as α runs from zero to one is

zero for all t > 0 , since

lim
t→∞

ϑ
(
α+ 1

2 , it
)

= 1

and ϑ
(
α + 1

2 , it
)

never vanishes for α, t real. It follows that the winding number of f

around zero along the circle of radius e(2j+1)π is j , for all j ∈ ZZ . Since j = 2` is even,

the inverse image τ−1
X

({
e(4`+1)π+2πiα

∣∣ 0 ≤ α < 1
})

consists of two disjoint simple closed

curves.

For each ` ∈ ZZ , let A` be the component of

τ−1
X

({
e(4`+1)π+2πiα

∣∣ 0 ≤ α < 1
})

containing the point (+
√
f(e(4`+1)π) , e(4`+1)π) and orient

B` = τ−1
X

(
[e4`π , e(4`+2)π]

)

such that A` × B` = 1 .

1
eπ

e2π e4π

e−2π0

τX(B1)τX(B0)τX(B−1)

τX(A0)
τX(A−1)

Lemma A4.2

(i) The cycles A`, B` , ` ∈ ZZ are a canonical homology basis for the hyperelliptic Rie-

mann surface X .
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(ii) There is a compact subset Z ⊂ X and an exhaustion function h with finite charge

on the marked Riemann surface (X;A`, B` , ` ∈ ZZ) such that

h
∣∣
X\Z =

∣∣ log |ζ|
∣∣

(iii) The map j(y, ζ) = (y, ζ) is an antiholomorphic involution on X with

j(A`) = −A`
j(B`) = B`

for all ` ∈ ZZ .

(iv) The map s(y, ζ) =
(
eπζy , e4πζ

)
is a holomorphic automorphism of X with

s(A`) = A`+1

s(B`) = B`+1

for all ` ∈ ZZ .

Proof: It is easy to check that the cycles A`, B` , ` ∈ ZZ , satisfy Definition I.10 (i) and (ii)

and therefore
(
X;A`, B` , ` ∈ ZZ

)
is a marked Riemann surface.

To verify (ii), observe that the function log |ζ| is harmonic and Morse on X . By

Proposition A2.2, there is a compact subset Z ⊂ X and an exhaustion function h with finite

charge on X such that

h
∣∣
X\Z =

∣∣ log |ζ|
∣∣

For all r > 0 , the preimage τ−1
X

(
circle of radius r

)
is a dividing cycle that is either connected

or is the union of two components one of which is homologous to A` for some ` ∈ ZZ . By

construction, the boundary ∂Xt of Xt = h−1
(
[0, t]

)
is the union

τ−1
X

(
circle of radius et

)
∪ τ−1

X

(
circle of radius e−t

)

for all sufficiently large t > 0 . It follows that h satisfies Definition 2.1 (ii) and (iii) and

therefore h is an exhaustion function with finite charge on the marked hyperelliptic Riemann

surface (X;A1, B1, · · ·) .

Part (iii) is a direct consequence of the reality of f . For part (iv), we use the

identity
f(e4πζ) = ϑ

(
1

2πi
log e4πζ + 1+i

2
, i
)

= ϑ
(

1
2πi log ζ + 1+i

2 − 2i , i
)

= e4π+4πi
(

1
2πi log ζ+

1+i
2

)
ϑ
(

1
2πi

log ζ + 1+i
2
, i
)

= e2π ζ2 f(ζ)
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By Lemma A4.2(ii) and Theorem 3.8, X is parabolic and (X;A`, B` , ` ∈ ZZ) has

a unique, normalized basis ω` , ` ∈ ZZ , of square integrable holomorphic one forms dual to

A` , ` ∈ ZZ .

Proposition A4.3

(i) The period matrix

RX =
(
R`,m ; `,m ∈ ZZ

)
=

(∫

B`

ωm ; `,m ∈ ZZ

)

of the marked hyperelliptic Riemann surface (X;A`, B` , ` ∈ ZZ) is pure imaginary.

(ii) For all `,m ∈ ZZ ,

R`,m = R0,m−`

(ii) The evaluation

θ(0,RX) =
∑

n∈ZZ∞
|n|<∞

eπi〈n,RXn〉

of the theta series for (X;A`, B` , ` ∈ ZZ) at z = 0 is a divergent sum of positive

terms. Here, the sum is over all doubly infinite sequences n = (· · · , n−1, n0, n1, · · ·)
of integers with |n| = ···+ |n−1|+ |n0|+ |n1|+ ··· <∞ .

Proof: To verify (i), first observe that j∗ω ∈ Ω(X) for all ω ∈ Ω(X) . By Lemma A4.2

(iii), ∫

A`

j∗ωm =

∫

j(A`)

ωm = −
∫

A`

ωm = − δ`,m

for all `,m ∈ ZZ . It follows that

j∗ωm = −ωm
for all m ∈ ZZ . Now,

∫

B`

ωm = −
∫

B`

j∗ωm = −
∫

j(B`)

ωm = −
∫

B`

ωm

Therefore, the period matrix RX of X is pure imaginary.

For (ii), observe that s∗ω ∈ ω(X) for all ω ∈ Ω(X) . By Lemma A4.2 (iv),

∫

A`

s∗ωm =

∫

s(A`)

ωm =

∫

A`+1

ωm = δ`+1,m

for all `,m ∈ ZZ . It follows that

s∗ωm = ωm−1
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for all m ∈ ZZ . Again, by Lemma A4.2 (iv),

∫

B`

ωm =

∫

s`(B0)

ωm =

∫

B0

(s`)∗ωm =

∫

B0

(s∗)`ωm =

∫

B0

ωm−`

Therefore,

R`,m = R0,m−`

for all `,m ∈ ZZ .

Finally, by part (i),

θ(0,RX) =
∑

n∈ZZ∞
|n|<∞

eπi〈n,RXn〉 =
∑

n∈ZZ∞
|n|<∞

e−π〈n,ImRXn〉

is a sum of positive terms. We have

∑
n∈ZZ∞
|n|<∞

e−π〈n,ImRXn〉 ≥ ∑
δ`,m , `∈ZZ

e−π〈δ`,m,ImRXδ`,m〉 =
∑
`∈ZZ

e−π ImR`,`

Here, δ`,m is the doubly infinite sequence whose elements are zero for m 6= ` and one for

m = ` . By part (ii),

∑
n∈ZZ∞
|n|<∞

e−π〈n,ImRXn〉 ≥ e−π ImR0,0
∑
`∈ZZ

1 = ∞
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Appendix S: Summary of Results from Part I

Definition. Let X be a Riemann surface (possibly with boundary). A system of homology

classes A1, B1, A2, B2, · · · on X is called a canonical homology basis if

(i) Ai ·Aj = Bi ·Bj = 0 , Ai ·Bj = δij

(ii) If C ∈ H1(X,ZZ) is such that C ·Ai = C ·Bi = 0 for all i = 1, 2, · · · then C ·D = 0

for all D ∈ H1(X,ZZ).

Definition. A marked Riemann surface is a Riemann surface X, together with a choice

of the classes of a canonical homology basis.

A basic concept for our discussion is

Definition. A C∞ function h on a Riemann surface X that satisfies:

sup
t>s>0

∣∣∣
∫

XtrXs
d∗dh

∣∣∣ < ∞

is called a function with bounded charge. Here, Xt = h−1((−∞, t]). A proper Morse

function with bounded charge is called an exhaustion function h with bounded charge.

An exhaustion function h with bounded charge on the marked Rie-

mann surface (X;A1, B1, · · ·) is an exhaustion function with bounded charge on X for

which there is a bijection σ : IN → IN such that for each t > 0 there is n ≥ 1 and

A′1, B
′
1, A

′
2, B

′
2, · · · , A′n, B′n ∈ H1(Xt,ZZ) with the following properties

(i) A′1, B
′
1, A

′
2, B

′
2, · · · , A′n, B′n generate a maximal submodule of H1(h−1((−∞, t]),ZZ) on

which the intersection form is nondegenerate.

(ii) If ι : H1(Xt,ZZ) → H1(X,ZZ) denotes the map induced by the inclusion then for i =

1, · · · , n
ι(A′i) = Aσ(i)

ι(B′i) = Bσ(i) modulo finite linear combinations of the Aj

Lemma S.1 (See the Appendix to §2.) Let h be a proper function with bounded charge on

X. Then there are exhaustion functions h′ with bounded charge arbitrarily close to h in the

C(0)-topology. If M is a closed subset of X and the restriction of h to a neighborhood of M

is already a Morse function, then one can choose h′ above such that h′
∣∣
M

= h
∣∣
M

.
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Theorem S.2 (See Proposition 3.6.) A Riemann surface that admits an exhaustion function

with bounded charge is parabolic in the sense of Ahlfors Nevanlinna.

For surveys of properties of parabolic Riemann surfaces see [Ac1,AS, FK§4.3]. We

review those properties that are used here. First we discuss the Riemann-Roch theorem and

Abel’s theorem for finite divisors.

A divisor on X is an expression of the form
∑
p∈X mpp with mp ∈ ZZ for all p ∈ X

and mp 6= 0 for p only in a discrete subset of X. A divisor
∑
mpp is called finite if mp = 0

for all but finitely many p. The degree of a finite divisor D =
∑
mpp is degD :=

∑
mp .

If D =
∑
mpp, D

′ =
∑
m′pp are divisors one says D ≥ D′ if mp ≥ m′p for all p ∈ X. A

divisor D is called effective if D ≥ 0. If f is a meromorphic function on X then its divisor

(f) is

(f) =
∑

p∈X
multp(f)p

where multp(f) denotes the order of vanishing of f at p. If f has a pole at p then multp(f)

is the negative of the pole order. One defines the divisor of a holomorphic differential form

in a similar way.

Denote by Ω the space of square integrable holomorphic differential forms on X.

For a divisor D, let

Ω(D) = {ω ∈ Ω | (ω) ≥ −D }.

Definition. A meromorphic function f on X is said to be of class M if it has only a finite

number of poles and is bounded in the complement of each neighbourhood of these poles.

Theorem S.3 (Riemann-Roch Theorem for finite divisors) (See [R] or Theorem 3.10.)

Let D be an effective finite divisor on a parabolic Riemann surface X. Then

dim{f ∈ M|(f) ≥ −D}+ codimΩΩ(−D) = degD + 1

Consequences of the Riemann-Roch theorem include

Proposition S.4 (See Proposition 3.12 and Proposition 3.30.) Let X be a parabolic Riemann

surface that is not biholomorphic to an open subset of IP1(C). Then

(i) for every x ∈ X there is an ω ∈ Ω such that ω(x) 6= 0
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(ii) for any two different points x1, x2 ∈ X and any path γ joining x1 to x2 there exists ω ∈ Ω

such that
∫
γ
ω 6= 0.

Definition. A Riemann surface X is hyperelliptic if there is a finite subset I of IP1(C) ,

a discrete subset S of IP1(C)rI and a proper holomorphic map τ : X → IP1rI of degree

2 that ramifies precisely over the points of S .

Definition. An end region of a Riemann surface X is an open connected subset E ⊂ X

that is not relatively compact such that for every compact subset K of X there is a compact

subset K ′ of X such that K ⊂ K ′ and E∩ (XrK ′) is a connected component of XrK ′. We

say that two end regions E1, E2 of X are equivalent if there is an end region E3 contained

in E1 ∩E2. An end of X is an equivalence class of end regions. An end is said to be planar

if it can be represented by an end region E such that the intersection form on H1(E,ZZ) is

zero. X is said to have only finitely many ends if there is a compact subset K ⊂ X such

that X rK is a union of finitely many end regions.

Proposition S.5 (See Proposition 3.26.) Let X be a parabolic Riemann surface that is not

biholomorphic to an open subset of IP1(C). Assume that X has only finitely many ends,

none of which is planar. If there is an effective divisor D of degree two on X such that

codimΩΩ(D) ≤ 1 then X is hyperelliptic.

To formulate Abel’s Theorem we use

Definition. A nonzero meromorphic function on a parabolic Riemann surface X is called

quasi-rational if the set M of zeroes and poles of f is finite and if, for every neighbourhood

U of M in X,

i

∫

XrU

df

f
∧ df
f
<∞.

Theorem S.6 (Abel’s Theorem for finite divisors) (See [AS] or Theorem 3.29.) Let

D = p1 + · · ·+ pn − q1 − · · · − qn be a finite divisor of degree zero on a parabolic Riemann

surface X. Then D is the divisor of a quasi-rational function on X if and only if there are

paths γj joining pj to qj such that

n∑

j=1

∫

γj

ω = 0 for all ω ∈ Ω
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To study the analog of the Abel-Jacobi mapping we consider a marked Riemann

surface X; A1, B1, A2, B2, · · · of infinite genus together with an exhaustion function h of

bounded charge.

Theorem S.7 (Riemann Period Relations) (See Theorem 2.9.) Suppose α, β ∈ Ω are

forms with ∫

An

α =

∫

An

β = 0

for all but finitely many n ≥ 1 . Then

∫

X

α ∧ β = i
∑

n≥1

∫

An

α

∫

Bn

β̄ −
∫

An

β̄

∫

Bn

α

Corollary S.8 [Ne] If ω ∈ Ω is a form with

∫

An

ω = 0

for n ≥ 1 , then ω = 0 .

An important fact for the construction of a theta function is

Theorem S.9 (See Theorem 3.8.) Let (X;A1, B1, · · ·) be a marked Riemann surface that

admits an exhaustion function with bounded charge. Then there exists a basis ω1, ω2, · · · for

the Hilbert space Ω of square integrable holomorphic one forms such that

∫

Ai

ωj = δi,j

Definition. The Riemann period matrix R(X) is defined by

Rij =

∫

Bi

ωj

It follows from the period relations that R is symmetric, and its imaginary part is

positive definite. Precisely, ∑

1≤i,j≤n

(
ImR

)
ij
xixj > 0
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for all n ≥ 1 and all nonzero real vectors x = (x1, x2, · · · , xn) .

The set

Γ :=
{ ∞∑
j=1

(njEj +mjRj)
∣∣∣ nj ,mj ∈ ZZ, nj = mj = 0 for all but finitely many j

}

where Rj denotes the jth column of the period matrix R and Ej is the jth unit vector is called

the period lattice. It acts by translation on the product
∞∏
j=1

C of infinitely many copies of

C. (For now, this product is just considered as a topological vector space, endowed with the

product topology). We define the “point set Jacobian” of X as

J :=
( ∞∏
j=1

C
)
/Γ.

For each point x0 ∈ X we define the Abel-Jacobi map with base point x0 by

X −→ J

x 7−→
∫

γ

~ω :=
(∫

γ

ω1,

∫

γ

ω2, ...
)

where γ is a path in X joining x0 to x. If one replaces γ by another path,
∫
γ
~ω only changes

by an element of Γ, so the map is well defined. Part (ii) of the Proposition above shows that

the Abel-Jacobi map is injective.

Ω∗ can be identified with a subspace of the sequence space
∏∞
j=1 C by the map

Ω∗ ↪→
∞∏
j=1

C

ϕ 7→ (ϕ(ω1), ϕ(ω2), ...) .

One can show that Γ ⊂ Ω∗ .

If x is a point of X, ξ a local coordinate at x, the componentwise derivative of the

Abel-Jacobi map at x with respect to ξ is the vector

κξ(x) =

((
ω1

dξ

)
(x),

(
ω2

dξ

)
(x), · · ·

)
∈
∞∏
j=1

C

Part (i) of the Proposition above implies that this vector is never zero. Of course it depends

on the choice of the local coordinate ξ, but a change in the local coordinate affects the vector

above only by multiplication with a non-zero number. Therefore we let IP be the quotient of(∏∞
j=1 C

)
r {0} by the action of C∗ given by

λ · (e1, e2, · · ·) = (λe1, λe2, · · ·) (λ ∈ C∗)

By what we said above we get a well-defined map

κ : X → IP

x 7→ [κξ(x)]

This map is called the canonical map, we sometimes also write κ(x) = [~ω(x)].
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Proposition S.10 (See Proposition 3.18 and Proposiition 3.26.)

(i) If for every effective divisor D of degree two codimΩΩ(−D) = 2 then κ : X → IP is

injective. Furthermore for each x ∈ X one has dim span[~ω(x), ~̇ω(x)] = 1.

(ii) If X is hyperelliptic, τ : X → IP1 rM the hyperelliptic projection and M 6= ∅ then for

x1, x2 ∈ X
κ(x1) = κ(x2) if and only if τ(x1) = τ(x2).

Furthermore dim span[~ω(x), ~̇ω(x)] = 1 if and only if x is not a ramification point of τ .

Using the Riemann period matrix R one can define the theta function of the marked

Riemann surface (X;A1, B1, · · ·).

Theorem S.11 (See Theorem 4.6.) Suppose that there is a sequence tj ∈ (0, 1) , j ≥ 1

such that ∑

j≥1

tβj < ∞

for some 0 < β < 1
2

and such that

〈n , ImRn〉 =
∑

i,j≥1

ni ImRi,j nj ≥
1

2π

∑

j≥1

| log tj |n2
j

for all vectors

n =



n1

n2
...




in ZZ∞ with only a finite number of nonzero components. Then the theta series

θ(z, R) =
∑

n∈ZZ∞
|n|<∞

e2πi〈z,n〉 eπi〈n ,Rn〉

converges absolutely and uniformly on bounded subsets of the Banach space

B =
{
z = (z1, z2, · · ·) ∈ C∞

∣∣ lim
j→∞

zj
| log tj |

= 0
}

‖z‖ = sup
j>1

|zj |
| log tj |

to an entire function that does not vanish identically.

Finally we recall a standard consequence of Stoke’s Theorem.
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Proposition S.12 Let X be a compact Riemann surface whose boundary ∂X has connected

components ∂X1, · · · , ∂Xm and with canonical homology basis Ai, Bi, 1 ≤ i ≤ g. Let ω, η be

closed 1-forms on X with

∫

∂Xj
ω =

∫

∂Xj
η = 0 for 1 ≤ j ≤ m

Let f be a single valued Stammfunktion (=primitive) of ω on a neighbourhood of ∪mj=1∂Xj.
Then ∫

X
ω ∧ η =

g∑
i=1

(∫

Ai

ω

∫

Bi

η −
∫

Bi

ω

∫

Ai

η

)
+

m∑

j=1

∫

∂Xj
fη
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Part II: The Torelli Theorem
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Prop.II. Extension is an attribute of God, or God is an extended thing.

Proof.−The proof of this proposition is similar to that of the last.

− Benedict De Spinoza , The Ethics

Introduction to Part II

We introduce a class of marked Riemann surfaces (X;A1, B1, · · ·) of infinite genus

by pasting plane domains and handles together. Here , A1, B1, · · · , is a canonical homology

basis on X . The asymptotic holomorphic structure is specified by six geometric hypotheses

presented in Section 5.

The first important fact, Theorem 5.1, about a surface (X;A1, B1, · · ·) in this class

is the existence of a proper, nonnegative Morse function h on X that satisfies

sup
t>s>0

∣∣∣
∫

Xt\Xs
d∗dh

∣∣∣ < ∞

and has the additional property that for each t > 0 , there is an n ≥ 1 such that the cycles

A1 , B1 , · · · , An , Bn

generate a maximal submodule of H1(Xt,ZZ) on which the intersection form is nondegenerate.

Here,

Xt = h−1([0, t])

We showed in Part I (see Appendix S, at the end of Part I, for a summary of Part

I) that any marked Riemann surface supporting a function h with the properties above is

“parabolic” in the sense of Nevanlinna-Ahlfors (see, [AS]) and has unique holomorphic one

forms ωj , j ≥ 1 , satisfying

‖ωj‖2 =

∫

X

ωj ∧ ∗ωj < ∞

and ∫

Ai

ωj = δij

Furthermore, the associated, infinite, Riemann matrix

RX =
(∫

Bi

ωj

)

89



is symmetric and ImRX is positive definite.

Another important fact (see the proof of Theorem 7.1) about (X;A1, B1, · · ·) is

〈n , ImRX n〉 =
∑

i,j≥1

ni ImRi,j nj ≥
∑

j≥1

| log tj |n2
j

for all vectors

n =



n1

n2
...




in ZZ∞ with only a finite number of nonzero components. Here, tj , j ≥ g + 1 , determines

(see, (GH2), Section 5) the waists of the handles outside a compact submanifold of X . It

follows from our results in Part I that the theta series

θ(z, RX) =
∑

n∈ZZ∞ with only a finite
number of nonzero components

e2πi〈z,n〉 eπi〈n ,RX n〉

converges to a nontrivial entire function on the complex Banach space

B =

{
z = (z1, z2, · · ·) ∈ C∞

∣∣∣ lim
j→∞

|zj |
| log tj | = 0

}

with the norm

‖z‖ = sup
j≥1

|zj |
| log tj |

and satisfies the usual tranformation laws.

We see from the preceding discussion that for each surface in our class there is

a unique, normalized frame of square integrable holomorphic one forms and an associated

theta function that is holomorphic on B . It is now possible to investigate the relationship

between the surface (X;A1, B1, · · ·) and the geometry of its theta function. In this paper

we formulate and prove, among other things, analogues of Riemann’s vanishing theorem and

Torelli’s theorem.

Suppose (X;A1, B1, · · · , Ag, Bg) is a marked Riemann surface of genus g and

θ(z, RX) its theta function. Fix e ∈ Cg and let ω1, · · · , ωg , be the corresponding normalized

frame of holomorphic one forms. Then, by a classical theorem of Riemann, the mutilvalued

function

θ

(
e+

∫ x

x0

~ω

)

of x ∈ X either vanishes identically or has exactly g roots.
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To generalize this fact to our class of infinite genus Riemann surfaces we first show

(Proposition 7.3) that for any path joining x1 to x2 on X the infinite vector
∫ x2

x1

~ω =

(∫ x2

x1

ω1 ,

∫ x2

x1

ω2 , · · ·
)

lies in the Banach space B . Next, it is observed that there is one ideal point at infinity for

each of the plane domains appearing in the decomposition of X . For the rest of the Preface

it is assumed, for simplicity, that there is just one plane domain. We prove (Proposition 7.6)

that there is a path from each point x ∈ X to ∞ such that
∫ x

∞
~ω

belongs to B .

Now, let e ∈ B and suppose θ(e) 6= 0 . We show (Theorem 7.11) that there is a

compact submanifold Y with boundary such that the multivalued, holomorphic function

θ

(
e+

∫ x

∞
~ω , RX

)

has exactly genus(Y ) roots in Y , exactly one root in each in each handle outside of Y and

no other roots. That is, exactly “genus(X)” roots. The solution of the Jacobi inversion

problem, formulated in terms of the roots of the theta function, is given in Theorem 7.16.

The proofs of these statements require estimates on the frame ω1, ω2, · · · . For

example, by Theorem 6.4 and formula (6.3), the pull back wj(z)dz of ωj to any plane

domain in the decomposition of X decays quadratically. When there is only one plane

domain, ∣∣∣∣wj(z)−
1

2πi

(
1

z − s1(j)
− 1

z − s2(j)

)∣∣∣∣ ≤
const

|z2|
where the jth handle is glued into the plane domain close to the points s1(j) , s2(j). The

const is independent of j. We also make a detailed investigation of the pull backs of ωj to

the handles (see, Proposition 6.16).

In Section 8 we introduce the notion of a divisor of degree “genus(X)” on X . This

is done by fixing an auxiliary point ê ∈ B with θ(ê) 6= 0 and comparing sequences of points

on X to the “genus(X)” many roots x̂1 , x̂2 · · · , of

θ

(
ê+

∫ x

∞
~ω

)
= 0

Precisely, a sequence yj , j ≥ 1 , on X represents a divisor of degree “genus(X)” if eventually,

yj lies in the same handle as x̂j and the vector
(∫ y1

x̂1

ω1 ,

∫ y2

x̂2

ω2 , · · ·
)
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lies in B . The space W (0) of all these sequences is given the structure of a complex Banach

manifold modelled on B . The quotient S(0) of W (0) by the group of all finite permutations

is the manifold of divisors of degree “genus(X)” . The construction is independent of the

auxiliary point ê . We similarly construct Banach manifolds S(−n) of divisors of index n ,

that is, of degree “genus(X)−n” , by deleting the first n components in a sequence y1, y2, · · ·
belonging to W (0) .

Fix ê as above. The analogue of the Abel-Jacobi map

f (0) : S(0) −→ B

is induced by

(y1 , y2 , · · · ) 7→ ê− ∑
i≥1

∫ yi

x̂i

~ω

By Proposition 8.1, f (0) is holomorphic and its derivative is Fredholm of index zero at every

point of S(0) . Let

Θ =
{
e ∈ B

∣∣ θ(e) = 0
}

be the theta divisor of X . Then, by the solution of the Jacobi inversion problem, f (0) is a

biholomorphism between f (0)−1 (B \Θ) and B \Θ .

Similarly, the map

f (−1) : S(−1) −→ B

is induced by

(y2 , y3 , · · · ) 7→ ê −
∫ ∞

x̂1

~ω − ∑
i≥2

∫ yi

x̂i

~ω

The analogue of the Riemann vanishing theorem (Theorem 8.4) is that

f (−1)
(
S(−1)

)
⊂ Θ

and {
e ∈ Θ

∣∣∣ θ
(
e−

∫ x

∞
~ω

)
6= 0 for somex inX

}
⊂ f (−1)

(
S(−1)

)

The set {
e ∈ Θ

∣∣∣ θ
(
e−

∫ x

∞
~ω

)
= 0 for allx inX

}

is stratified and studied in Theorem 9.1.

The Torelli theorem for compact Riemann surfaces states that two Riemann surfaces

that have the same period matrices are biholomorphically equivalent. We prove (Theorem

11.1) the same statement for Riemann surfaces in our class. The proof mimics the argument

of Andreotti [An,GH] for the compact case. We investigate the ramification locus of the
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Gauss map on the theta divisor. It turns out (Proposition 9.8) that at a generic point e

of this ramification locus the kernel of the derivative of the Gauss map is related to the

values ωj(x) , j = 1, 2, · · · , of the differentials ωj at some point x = x(e) of X. If X is not

hyperelliptic then almost all points of X occur, while in the hyperelliptic case (Proposition

10.5) only the Weierstrass points occur. Using these observations it is possible to recover the

Riemann surface X from Θ , which in turn is completely determined by the period matrix of

X.

In part III we will show that Fermi curves, spectral curves for the periodic

Kadomcev-Petviashvilii equation and spectral curves for periodic ordinary differential op-

erators belong to our class.
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§5 Geometric Hypotheses

In this section we introduce a class of marked Riemann surfaces (X; A1, B1, · · · )
that are “asymptotic to” a finite number of complex lines C joined by infinitely many handles.

Here, X is a Riemann surface and A1, B1, · · · is a canonical homology basis for X.

C

C

A1

B1

A2

B2

To be precise, we make the

Definition. The notation

X = Xcom ∪Xreg ∪Xhan

denotes a marked Riemann surface (X; A1, B1, · · · ) with a decomposition into a compact,

connected submanifold Xcom ⊂ X with smooth boundary and genus g ≥ 0 , a finite number

of open “regular pieces” Xreg
ν ⊂ X , ν = 1, · · · ,m ,

Xreg =
m⋃

ν=1

Xreg
ν
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and an infinite number of closed “handles” Yj ⊂ X , j ≥ g + 1 ,

Xhan =
⋃

j≥g+1

Yj

with Xcom ∩
(
Xreg ∪ Xhan

)
6= ∅ , that satisfies the geometric hypotheses (GH1-6) stated

below.

(GH1) (Regular pieces)

(i) For all 1 ≤ µ 6= ν ≤ m ,

Xreg
µ ∩Xreg

ν = ∅

(ii) For each 1 ≤ ν ≤ m there is an infinite discrete subset Sν ⊂ C . Furthermore, for each

s ∈ Sν there is a compact, simply connected neighborhood Dν(s) with smooth boundary

∂Dν(s) such that

Dν(s) ∩Dν(s′) = ∅

when s 6= s′ .

(iii) For each 1 ≤ ν ≤ m , there is a compact simply connected neighborhood Kν ⊂ C of

0 with smooth boundary and

Kν ∩Dν(s) = ∅

for all s ∈ Sν . Set

Gν = C r
(

intKν ∪
⋃

s∈Sν
intDν(s)

)

There is a biholmorphic map Φν ,

Φν : Gν → Xreg
ν

between Gν and Xreg
ν .

Informally, the closure of the regular piece X reg
ν , ν = 1, · · · ,m , is biholomorphic

to a copy of C minus an open, simply connected neighborhood around each point of Sν

and an additional set Kν . One end of a closed cylindrical handle will be glued to a closed

“annular” region surrounding Dν(s) in Gν . One connected component of ∂Xcom will be

glued to ∂Kν .
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0

Gν

s

Kν

Dν(s)

(GH2) (Handles)

(i) For all i 6= j with i, j ≥ g + 1 ,

Yi ∩ Yj = ∅

(ii) For each j ≥ g + 1 there is a 0 < tj <
1
2

and a biholomorphic map φj

φj : H(tj) → Yj

between the model handle H(tj) and Yj . Here, the model handle H(t) is defined by

H(t) =
{

(z1, z2) ∈ C2
∣∣ z1z2 = t and |z1|, |z2| ≤ 1

}

for all 0 < t < 1
2 . It is clearly diffeomorphic to S1 × [0, 1] . In particular, Yj , is

diffeomorphic to a closed cylinder.

(iii) For all j ≥ g + 1 the cylinder Yj represents the cycle Aj in homology. Exactly, Aj

is the homology class represented by the oriented loop

φj

({
(
√
tj e

iθ,
√
tj e
−iθ)

∣∣ 0 ≤ θ ≤ 2π
})

(iv) For every β > 0 ∑

j>g+1

tβj <∞
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In other words, the handle Yj , j ≥ g + 1 , is biholomorphic to the smooth

deformation H(tj) of the ordinary double point singularity

{
(z1, z2) ∈ C2

∣∣ z1z2 = 0 and |z1|, |z2| ≤ 1
}

The size of the handle is determined by tj . {
(z1, z2) ∈ H(t)

∣∣ |z1| = t, |z2| = 1
}

H(t)

{
(
√
teiθ,

√
te−iθ

∣∣ 0 ≤ θ ≤ 2π
}

{
(z1, z2) ∈ H(t)

∣∣ |z1| = 1, |z2| = t
}

Intuitively, condition (iv) is fulfilled when the waists of Yj , j ≥ g + 1 are rapidly decreasing.

(GH3) (Glueing handles and regular pieces together)

(i) For each j ≥ g + 1 the intersection Yj ∩Xreg consists of two components Yj1, Yj2:

Yj ∩Xreg = Yj1 ∪ Yj2

For each pair (j, µ) with j ≥ g + 1 and µ = 1, 2 there is a radius

τµ(j) ∈
(√

tj , 1
)

and a sheet number

νµ(j) ∈ {1, . . . ,m}

such that

Yjµ = φj
({

(z1, z2) ∈ H(tj)
∣∣ τµ(j) ≤ |zµ| ≤ 1

})

and

Yjµ ⊂ Xreg
νµ(j)
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H(tj)

{
(z1, z2) ∈ H(tj)

∣∣ τ1(j) ≤ |z1| ≤ 1
} {

(z1, z2) ∈ H(tj)
∣∣ τ2(j) ≤ |z2| ≤ 1

}

φj

Φν1(j)(∂Dν1(j)(s1(j)) Φν2(j)(∂Dν2(j)(s2(j))

Xreg
ν2(j)

Xreg
ν1(j)

Yj

Yj2

Yj1

There is a bijective map

(j, µ) ∈
{
j ∈ ZZ

∣∣ j ≥ g + 1
}
× {1, 2} 7→ sµ(j) ∈

m⊔

ν=1

Sν (disjoint union)

such that

φj
({

(z1, z2) ∈ H(tj)
∣∣ |zµ| = τµ(j)

})
= Φνµ(j)

(
∂Dνµ(j)(sµ(j))

)

(ii) For each j ≥ g + 1 and µ = 1, 2 there are

Rµ(j) > 4rµ(j) > 0

such that the biholomorphic map

gjµ : Ajµ =
{
z ∈ C

∣∣ τµ(j) ≤ |z| ≤ 1
}
−→ C

defined by

gjµ(z) =





Φ−1
ν1(j) ◦ φj(z,

tj
z

) , µ = 1

Φ−1
ν2(j) ◦ φj(

tj
z , z) , µ = 2
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satisfies ∣∣gjµ(4τµ(j)eiθ) − sµ(j)
∣∣ < rµ(j)

and ∣∣gjµ(eiθ) − sµ(j)
∣∣ > Rµ(j) >

∣∣gjµ(eiθ/2) − sµ(j)
∣∣

∣∣gjµ(eiθ/4) − sµ(j)
∣∣ > Rµ(j)/4

for all 0 ≤ θ ≤ 2π.

|z1| = 1 |z2| = 1z1z2 = tj

s1(j)

s2(j)

|k2 − s1(j)| = r1(j)

|k2 − s2(j)| = R2(j)

Remark 1 Informally, the map sµ(j) enumerates the points of
⊔m
ν=1 Sν and specifies that

the end of the handle H(tj) containing

{
(z1, z2) ∈ H(tj)

∣∣ |zµ| = 1
}

is glued to the annular region Φ−1
νµ(j)(Yjµ) in Gνµ(j) .

Remark 2 The map gj,µ describes how Yjµ is glued to Gνµ(j).

The parameters that control the overlap Yj1∪Yj2 between Xreg and the handle Yj

are introduced in hypothesis (GH3). The component Yjµ of the overlap is specified in two

charts; in the plane region Gν , and on the model handle H(tj) . The preimage φ−1
j (Yjµ)

in H(tj) of the overlap Yjµ is
{

(z1, z2) ∈ H(tj)
∣∣ τµ(j) ≤ |zµ| ≤ 1

}
.
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{
z ∈ H(tj)

∣∣ |gj2(z2)− s2(j)| = R2(j)
}

{
z ∈ H(tj)

∣∣ |gj2(z2)− s2(j)| = 1
4R2(j)

}

{
z ∈ H(tj)

∣∣ |gj2(z2)− s2(j)| = r2(j)
}

{
(z1, z2) ∈ H(tj)

∣∣ |z1| = |z2| =
√
tj
}

{|z2| = 1}
{|z2| = 1

2}

{|z2| = 1
4}

{|z2| = 4τ2(j)}
{|z2| = τ2(j)}

H(tj)

We imagine, as in the figure above, that τµ(j) is relatively close to the radius of the waist
√
tj so that the overlap on H(tj) is large.

The preimage Φ−1
νµ(j)

(
Yjµ
)

in the other chart Gνµ(j) is the annular plane region

surrounding sµ(j) whose inner boundary is ∂Dνµ(j)(sµ(j)) and whose outer boundary is

Φ−1
νµ(j) ◦φj

({
(z1, z2) ∈ H(tj)

∣∣ |zµ| = 1
})
. It contains

{
z ∈ C

∣∣ rµ(j) ≤ |z − sµ(j)| ≤ Rµ(j)
}
.

We will assume, (GH5)(ii), that rµ(j) and
rµ(j)
Rµ(j) are both asymptotically small. Conse-

quently, the “holes” Dν(s) , s ∈ Sν , in Gν are also asymptotically small and the overlap is

asymptotically big.

sµ(j)
rµ(j)

Rµ(j)

∂Dνµ
(
sµ(j)

)

Φ−1
νµ(j)

(
φj
({

(z1, z2) ∈ H(tj)
∣∣ |zµ| = 1

}))
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Passing from the chart Gνµ(j) to H(tj) , the image of the circle |z− sµ(j)| = Rµ(j) lies near

{
(z1, z2) ∈ H(tj)

∣∣ |zµ| = 1
2

}

and the image of the circle |z − sµ(j)| = rµ(j) lies outside

{
(z1, z2) ∈ H(tj)

∣∣ |zµ| = 4τµ(j)
}

Remark 3 If ∂Dνµ(j) is counterclockwise oriented, then, by construction, Φ
(
∂Dνµ(j)

)
is

homologous to (−1)µ+1Aj.

(GH4) (Glueing in the compact piece)

∂Xcom = Φ1(∂K1) ∪ · · · ∪ Φm(∂Km)

Furthermore A1, B1, · · · , Ag, Bg is the image of a canonical homology basis of Xcom under

the map H1(Xcom,ZZ)→ H1(X,ZZ) induced by inclusion.

Xreg
1

Xreg
2

Xreg
3

Φ2(∂K2)

Xcom

Φ2(∂D2(s))

Φ3(∂K3)

Φ1(∂K1)

(GH5) (Estimates on the Glueing Maps)

(i) For each j ≥ g + 1 and µ = 1, 2

Rµ(j) < 1
4

min
s∈Sνµ(j)

s6=sµ(j)

|s− sµ(j)|

Rµ(j) < 1
4
dist

(
sµ(j), Kνµ(j)

)
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(ii) There are 0 < δ < d such that

∑

j,µ

1

|sµ(j)|d−4δ−2
<∞

and such that, for all j ≥ g + 1 and µ = 1, 2

rµ(j) <
1

|sµ(j)|d Rµ(j) >
1

|sµ(j)|δ

|s1(j)− s2(j)| > 1

|sµ(j)|δ

(iii) For all j ≥ g + 1

∣∣|s1(j)| − |s2(j)|
∣∣ ≤ 1

4 min
µ=1,2

min
s∈Sνµ(j)

s6=sµ(j)

|s− sµ(j)|

For µ = 1, 2
∑

j

∣∣|s1(j)| − |s2(j)|
∣∣

|sµ(j)| <∞

(iv) For µ = 1, 2

lim
j→∞

log |sµ(j)|
| log tj |

= 0

(v) For µ = 1, 2

lim
j→∞

Rµ(j)

min
s∈Sνµ(j)

s6=sµ(j)

|s− sµ(j)| log |sµ(j)| = 0

(vi) For each j ≥ g + 1 and µ = 1, 2 we define αj,µ(z) by

αj,µ(z)dz = (gj,µ)∗
(

1
2πi

dz1
z1

)
− (−1)µ+1

2πi
1

z−sµ(j)dz

We assume

sup
j,µ

∥∥∥αj,µ(z)dz
∣∣
{z∈C | rµ(j)<|z−sµ(j)|<Rµ(j)}

∥∥∥
2
<∞

and, for µ = 1, 2

lim
j→∞

Rµ(j) sup
|z−sµ(j)|=Rµ(j)

|αj,µ(z)| = 0

Morally, (GH5)(i) says that the holes Dν(s) are separated. The first and last parts

of (GH5)(ii) and (GH5)(v) bound their density at infinity. The second part of (GH5)(ii)
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implies that rµ(j) and
rµ(j)
Rµ(j) are both asymptotically small. The condition (GH5)(iii) forces

the two ends of a handle to be attached at approximately the same distance from the origin

on the regular pieces. (GH5)(iv) relates the size of the waist of the handle Yj to the distance

from the origin at which it is attached to the regular piece. Finally, (GH)(vi) measures the

derivative of the glueing map gj,µ by pulling back the holomorphic form dz1
z1

on H(tj) and

comparing it to the meromorphic form 1
z−sµ(j)dz . The intuition is that both of these forms

have the same Aj period and should be the leading part of ωj .

(GH6) (Distribution of sν)

For all ν = 1, · · · ,m such that

#
{

(j, µ)
∣∣ νµ(j) = ν, ν1(j) 6= ν2(j)

}
<∞

that is, such that the sheet Xreg
ν is joined to other sheets by only finitely many handles, one

has

lim sup
j→∞

ν1(j)=ν2(j)=ν

|s1(j)− s2(j)| =∞

This ends the statment of the hypotheses that specify the class of Riemann surfaces

that we consider. The first four hypotheses are essentially topological in nature. The esti-

mates in (GH5) control the analytic structure of X. Hypothesis (GH6) is used only in the

proof of the Torelli theorem in §11.

We should point out that the results of this paper apply more generally than under

hypotheses (GH1-6). It suffices to assume (GH1-4), (GH5i,iv) and the conclusions of Lemmas

5.2, 6.1-3, 6.17, 6.19, 7.5 and 7.7 below.

The first important consequence of the hypotheses is

Theorem 5.1 A marked Riemann surface X = Xcom ∪ Xreg ∪ Xhan as above admits an

exhaustion function with bounded charge.

By (S.2) the Theorem implies that these surfaces are parabolic in the sense of

Ahlfors-Nevanlinna. By construction they have only finitely many ends.
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To prepare for the proof of Theorem 5.1 we first note

Lemma 5.2

(a) For all j ≥ g + 1 and µ = 1, 2
rµ(j)

|sµ(j)| <
1

2

(b)
∑

j≥g+1
µ=1,2

(
1 + | log τµ(j)|
| log tj |

∣∣∣∣ log
|s1(j)|
|s2(j)|

∣∣∣∣+
rµ(j)

|sµ(j)|

)
< ∞

Proof: (a) Since 0 ∈ Kν for ν = 1, · · · ,m we have by (GH5i)

rµ(j) < 1
4Rµ(j) < 1

16 |sµ(j)|

(b) This part follows from
1 + | log τµ(j)|
| log tj |

= O(1)

∑

j

∣∣∣∣log
|s1(j)|
|s2(j)|

∣∣∣∣ ≤
∑

j,µ

log

(
1 +

∣∣|s1(j)| − |s2(j)|
∣∣

|sµ(j)|

)
<∞

which is a consequence of (GH5iii) and

∑

j

rµ(j)

|sµ(j)| ≤
∑

j

1

|sµ(j)|d+1
<∞

which is a consequence of (GH5ii).

The estimates of Lemma 5.2 are motivated by the following simple Ansatz for an

exhaustion function with bounded charge. Fix a smooth monotone function χ(t) satisfying

χ(t) =

{
0 , t ≤ 2
1 , t ≥ 3

and set

cµ (j) =
log |sµ(j)|

log tj

for µ = 1, 2 . Notice that log |Φ−1
ν (x)| is a proper, harmonic function on Xreg

ν and that

c2(j) log |z1|+ c1(j) log |z2|
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is a proper, harmonic function of x = φj (z1,z2) on Yj . We now introduce our Ansatz

hX(x) =





log |Φ−1
ν (x)| , x ∈ Xreg

ν r
⋃
j≥g+1 Yj1 ∪ Yj2

c2(j) log |z1|+ c1(j) log |z2| , x = φj(z1, z2) ∈ Yj r (Yj1 ∪ Yj2)

(
1χ( |zµ|

τµ(j)
)
)(
c2(j) log |z1|+ c1(j) log |z2|

)

+χ( |zµ|
τµ(j)

) log |Φ−1
νµ(j)(x)| , x = φj(z1, z2) ∈ Yjµ

for an exhaustion function with bounded charge on X . Suppose, for example, that x =

φj(z1, z2) ∈ Yj1 . Then

hX(x) = hX(z1, z2) = hX(z1,
tj
z1

)

on Aj1 . By construction, hX is smooth and proper on X rXcom and harmonic on

X r
(
Xcom ∪

⋃

j≥g+1

Yj1 ∪ Yj2
)

Let C = min
1≤ν≤m

inf
{

log |z|
∣∣ z ∈ Gν

}
. Let X̃com ⊂ Xcom be a submanifold of Xcom

which is the complement of a small neighbourhood of the boundary ∂Xcom. For x ∈ Xcom

define hX(x) = C − 1 if x ∈ X̃com and interpolate smoothly in the neighbourhood of ∂Xcom.

Lemma 5.3 ∑

j≥g+1
µ=1,2

∫

Ajµ

∣∣∆hX
(
Φνµ(j)(z)

)∣∣ |dz ∧ dz̄| < ∞

Proof: Again, suppose that x = φj(z1,z2) ∈ Yj1 . Collecting terms,

hX(x) =
(
1χ( |z1|

τ1(j)
)
)(
c2(j) log |z1|+ c1(j) log |z2|

)
+ χ( |z1|

τ1(j)
) log |Φ−1

ν1(j)(x)|
= c2(j) log |z1|+ c1(j) log | tj

z1
|+ χ( |z1|

τ1(j)
)hj1(x)

with
hj1(x) = log |gj1(z1)| −

(
c2(j) log |z1|+ log |s1(j)| − c1(j) log |z1|

)

= log
∣∣∣ gj1(z1)
s1(j)

∣∣∣− 1
log tj

log
∣∣∣ s2(j)
s1(j)

∣∣∣ log |z1|

For all x ∈ Yj1 , we have

∆hX(x) = hj1(z1) ∆χ( |z1|
τ1(j)

) + 2 〈∇χ,∇hj1〉 (z1)

since hj1 is harmonic. Integrating the absolute value,

1
2

∫

Aj1

∣∣∆hX
∣∣ |dz∧dz̄| ≤ 1

2

∫

Aj1

∣∣hj1(z) ∆χ( |z|
τ1(j)

)
∣∣ |dz∧dz̄|+

∫

Aj1

∣∣ 〈∇χ,∇hj1〉
∣∣ |dz∧dz̄|
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To estimate the first term, observe that in polar coordinates,

1
2

∫

Aj1

∣∣hj1(z) ∆χ( |z|
τ1(j)

)
∣∣ |dz∧dz̄| =

∫ 1

τ1(j)

∫ 2π

0

∣∣hj1(reiθ) r∆χ( rτ1
)
∣∣ drdθ

≤
∫ 3τ1

2τ1

∣∣ r
τ2
1
χ′′( rτ1 ) + 1

τ1
χ′( rτ1 )

∣∣
∫ 2π

0

∣∣∣ log
∣∣∣ gj1(reiθ)

s1(j)

∣∣∣
∣∣∣ dθdr

+

∫ 3τ1

2τ1

∣∣ r
τ2
1
χ′′( rτ1 ) + 1

τ1
χ′( rτ1 )

∣∣
∫ 2π

0

| log r|
| log tj |

∣∣∣ log
∣∣∣ s1(j)
s2(j)

∣∣∣
∣∣∣ dθdr

since, χ( rτ1
) is supported between 2τ1 and 3τ1 . It follows that,

1
2

∫

Aj1

∣∣hj1(z) ∆χ(
|z|
τ1(j)

)
∣∣ |dz∧dz̄| ≤ const sup

2τ1≤r≤3τ1

∫ 2π

0

∣∣∣ log
∣∣∣ gj1(reiθ)

s1(j)

∣∣∣
∣∣∣ dθ

+ const
| log τj |
| log tj |

∣∣∣ log |s1(j)|
|s2(j)|

∣∣∣

By hypothesis (GH3iii) on the glueing map gj1 ,

sup
2τ1≤r≤3τ1

∫ 2π

0

∣∣∣ log
∣∣∣ gj1(reiθ)

s1(j)

∣∣∣
∣∣∣ dθ ≤ const sup

2τ1≤r≤3τ1
0≤θ≤2π

∣∣∣ gj1(reiθ)−s1
s1

∣∣∣

≤ const
ρ−1 (j)

|s1(j)|
Therefore,

1
2

∫

Aj1

∣∣hj1(z) ∆χ(
|z|
τ1(j)

)
∣∣ |dz∧dz̄| ≤ const

(
| log τj |
| log tj |

∣∣∣ log |s1(j)|
|s2(j)|

∣∣∣+
ρ−1 (j)

|s1(j)|

)

For the second term, we evaluate the inner product to obtain

2 〈∇χ,∇hj1〉 =
χ′( |z|τ1 )

τ1|z||gj1(z)|2
(

Re zRe
(
gj1z gj1

)
− Im z Im

(
gj1z gj1

))
− 1

log tj
log
∣∣∣ s2(j)
s1(j)

∣∣∣ χ
′( |z|τ1 )

τ1|z|

By Schwarz’s inequality,

2 |〈∇χ,∇hj1〉| ≤
∣∣χ′( |z|τ1 )

∣∣
τ1|z||gj1(z)|2 |z||gj1zgj1| + 1

| log tj |

∣∣∣log
∣∣∣ s2(j)
s1(j)

∣∣∣
∣∣∣
∣∣χ′( |z|τ1 )

∣∣
τ1|z|

Integrating,
∫

Aj1
|〈∇χ,∇hj1〉| |dz∧dz̄| ≤ 1

| log tj |

∣∣∣ log |s2(j)|
|s1(j)|

∣∣∣
∫ 3τ1

2τ1

∣∣χ′( rτ1 )
∣∣

τ1
drdθ

+

∫ 3τ1

2τ1

|χ′( |z|τ1 )|
τ1|gj1| |gj1z| rdrdθ

< const 1
| log tj |

∣∣∣ log |s2(j)|
|s1(j)|

∣∣∣

+ const τ1 sup
2τ1≤|z|≤3τ2

|gj1z|
|gj1|
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Now observe that for all 2τ1 ≤ |z| ≤ 3τ1 ,

1
2
|s1(j)| ≤ |s1(j)| − ρ−1 (j) ≤

∣∣|s1(j)| − |gj1(z)− s1(j)|
∣∣ ≤ |gj1(z)|

and by Cauchy’s formula,

sup
2τ1≤|z|≤3τ2

|gj1z| = sup
2τ1≤|z|≤3τ2

∣∣(gj1 − s1(j)
)
z

∣∣ ≤ 1
τ1

sup
|z|=τ1 , 4τ2

|gj1 − s1(j)| < ρ−1 (j)

τ1

Combining this remark with the result of the last paragraph we obtain
∫

Aj1
|〈∇χ,∇hj1〉| |dz∧dz̄| < const 1

| log tj |

∣∣∣ log |s2(j)|
|s1(j)|

∣∣∣

+ const τ1
|s1(j)| sup

2τ1≤|z|≤3τ2

|gj1z|

≤ const
(

1
| log tj |

∣∣∣ log |s1(j)|
|s2(j)|

∣∣∣+
ρ−1 (j)

|s1(j)|

)

The proof is completed by applying the estimate of Lemma 5.2b.

Proof of Theorem 5.1: Lemma 5.3 implies that hX is a proper function with bounded

charge. By (S.1) there exists an exhaustion function h′ with bounded charge arbitrary close to

h. We may assume that h′ coincides with h onXregr∪mj=1Yj and that for each j the restriction

h′
∣∣
∂Yj

is a Morse function. We put Xt = h(−1)((−∞, t]) . It remains to show that h′ is an ex-

haustion function of bounded charge on the marked Riemann surface (X;A1, B1, A2, B2, · · ·),
i.e. that the exhaustion function is compatible with the chosen homology basis.

For each j ≥ g + 1 the handle Yj is homeomorphic to a closed cylinder. Therefore

its homology H1(Yj,ZZ) is generated by the class of

Ãj = φj
({

(
√
tje

iθ,
√
tje
−iθ)

∣∣ 0 ≤ θ ≤ 2π
})

and its relative homology H1(Yj, ∂Yj) is generated by the class of

B̃j = φj

({
(
1

r

√
tj r
√
tj
∣∣ (
√
tj ≤ r ≤

1√
tj

})

Yj

B̃j

Ãj
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If v is a regular value of h and of h′
∣∣
∂Yj

then Yj ∩ Xv is a submanifold with boundary and

corners inside Yj .

Yj ∩Xv

The image of the natural map

H1(Yj ∩Xv, (∂Yj) ∩Xv)→ H1(Yj , ∂Yj)

contains the class [B̃j] of B̃j if and only if there are points p1, p2 on the two components of

∂Yj that can be connected by a path that lies completely inside Yj ∩Xv. Similarly [Ãj] lies

in the image of

H1(Yj ∩Xv,ZZ)→ H1(Yj ,ZZ)

if and only if it is possible to go around the cylinder on a path that lies completely inside

Yj ∩Xv.

Now let C < v′1 < v′2 < · · · be the crititical values of h′ above C. Choose

v0, v1, v2, · · · such that

C < v0 < v′1 < v1 < v′2 < v2 < · · ·

and such that each vj is a regular value of h′
∣∣
∪j∂Yj . We put

Ni = {1, · · · , g}∪
{
j ≥ g + 1

∣∣ the images of the natural maps H1(Yj ∩Xvi
,ZZ)→ H1(Yj,ZZ)

resp H1(Yj ∩Xvi , (∂Yj) ∩Xvi)→ H1(Yj, ∂Yj) contain [Ãj ] resp. [B̃j ]
}

Obviously N0 ⊂ N1 ⊂ · · · and # |Ni+1 rNi| ≤ 1 , since h is a Morse function. Now we

recursively construct cycles

A′j , B
′
j j ∈ Ni

such that for each i ≥ g + 1

A′j , B
′
j , j ∈ Ni represent a canonical homology basis for Xvi

and

A′j lies inside Yj and is homologous to Ãj whenever j ≥ g + 1, j ∈ Ni

(5.1)i
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For i = 0 the compact piece Xcom is a deformation retract of Xv0
, so N0 = {1, · · · , g}.

We choose A′1, B
′
1, · · · , A′g, B′g as cycles that represent the canonical homology basis for

Xcom of (GH4). Now suppose that A′j, B
′
j , j ∈ Ni have been constructed such that

(5.1)i holds. If Ni+1 = Ni then nothing has to be done. Otherwise, by Morse theory,

dimH1(Xvi+1
, Xvi) = 1 and Ni+1rNi consists of one element, say k. Choose a cycle A′k in

Yk ∩Xvi+1
whose image under the the natural map H1(Yk ∩Xvi+1

,ZZ)→ H1(Yk,ZZ) is [Ãk] .

Then

A′j ·A′k = 0 , B′j ·A′k = 0 for j ∈ Ni

With this choice the second condition of (5.1)i+1 is fulfilled. Next choose a curve B̃′k
connecting two points p1, p2 of different components of ∂Yk completely inside Yk ∩ Xvi+1

.

Connect p1 and p2 by paths B
(1)
k resp.B

(2)
k inside Xreg ∩ Xvi+1

to points q1 resp. q2 of

∂Xcom, and join q1 and q2 by a path B
(3)
k inside Xcom which has zero intersection number

with A′1, · · · , A′g. The union of B̃′k, B
(1)
k , B

(2)
k , B

(3)
k is a closed curve B′′k such that with

suitably chosen orientation

A′j ·B′′k = 0 for j 6= k, j ∈ N − i
A′k ·B′′k = 1

By adding suitable linear combinations of the A′j , j 6= k to B′′k we get a cycle B′k such that

A′j ·B′k = δjk , B′j ·B′k = 0 for j ∈ Ni

To prove that A′j, B
′
j , j ∈ Ni+1 indeed represent a homology basis for Xvi+1

we use the exact

sequence

0→ H1(Xvi,ZZ)→ H1(Xvi+1
,ZZ)→ H1(Xvi+1

, Xvi)→ 0

By the induction hypothesis the rank of the intersection form on H1(Xvi,ZZ) is 2|Ni|. As ob-

served before, dimH1(Xvi+1
, Xvi) = 1 . So the rank of the intersection form on H1(Xvi+1

,ZZ)

is 2|Ni+1| = 2|Ni|+ 2. This completes the construction of the cycles A′j, B
′
j , j ∈ IN.

The cycles A′j , B
′
j , j ∈ IN represent a canonical homology basis of X for which h′ is

an exhaustion function of bounded charge. As

Aj = [A′j ] and Bj = [B′j ] modulo finite linear combinations of the Ai

h′ is also an exhaustion function with bounded charge for the original marked Riemann

surface (X;A1, B1, · · ·).
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§6 Pointwise Bounds on Differential Forms

From now on we consider a Riemann surface X = Xcom ∪ Xreg ∪ Xhan that

fulfills the hypotheses (GH1-6) of §5. By Theorem 5.1 and (S.9) there exist square integrable

holomorphic differential forms ωj with

∫

Ai

ωj = δi,j

The main purpose of this section is to give pointwise bounds on the forms ωj .

Before doing that we derive a geometric consequence of the hypotheses which allows

us to construct a convenient class of compact submanifolds of X. To simplify the notation,

set, for each s ∈ Sν ,

r(s) = rµ(j) R(s) = Rµ(j) when s = sµ(j)

A(s) =
{
z ∈ C

∣∣ r(s) < |z − s| < R(s)
}

Define the curves

a(s) := Φν({z ∈ C | |z − s| = R(s)}) s ∈ Sν

Let Y ′j be the cylinder in Yj bounded by a(s1(j)) and a(s2(j)).

a(s1(j))

a(s2(j))

Yj

Y ′j

Lemma 6.1 For each ε,N > 0 there exists a system Γ = (Γ1, · · · ,Γm) of simple closed

curves Γν ⊂ Gν such that
m∑

ν=1

sup
z∈Γν

length Γν
|z|2 < ε (6.1a)
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∑

s∈Sν

(
r(s) length Γν

)2
sup
z∈Γν

1

|z − s|4 < ε2 for 1 ≤ ν ≤ m (6.1b)

and for all j ≥ g + 1 and µ = 1, 2

∫

Γν

|s1(j)− s2(j)|
|z − s1(j)||z − s2(j)| |dz| ≤ ε| log tj | if ν = ν1(j) = ν2(j) (6.1c)

∫

Γν

|sµ(j)|
|z(z − sµ(j))| |dz| ≤ ε| log tj | if ν = νµ(j), ν1(j) 6= ν2(j) (6.1d)

Furthermore ∪mν=1Φν(Γν) decomposes X into a compact connected component X(Γ) contain-

ing Xcom and a noncompact component such that for all j ≥ g + 1

Y ′j ⊂ X(Γ) or Y ′j ∩X(Γ) = ∅
Yi ⊂ X(Γ) for i ≤ N

Proof: Define, for each j ≥ g + 1 and µ = 1, 2

ρµ(j) = 1
4 min
s∈Sνµ(j)∪{0}

s6=sµ(j)

|s− sµ(j)|

Cµ(j) =
{
z ∈ C

∣∣ |z − sµ(j)| = ρµ(j)
}

Observe that, by hypothesis (GH5iii)

∣∣|s1(j)| − |s2(j)|
∣∣ ≤ 1

4 min{ρ1(j), ρ2(j)} (6.2)

Let R � 1. Consider the circle Γ′(R) of radius R around the origin in C. If neither of the

circles Cµ(j), µ = 1, 2 intersects Γ′(R) then, by (6.2), s1(j) and s2(j) are either both outside

or both inside Γ′(R). Now construct Γν(R) by modifying Γ′(R) as follows. Suppose that

Γ′(R) meets at least one of the circles C1(j), C2(j). If |s1(j)|, |s2(j)| ≤ R replace the arc

of Γ′(R) joining the two points of Γ′(R) ∩Cµ(j) by the outer part of Cµ(j) joining the same

two points. In the other case use the inner parts of C1(j), C2(j).

C1(j)

s1(j′)

C2(j) Γ′(R)

s1(j)

s2(j)

s2(j′)
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By construction, ∪mν=1Φν(Γν) decomposes X into a compact connected component

X(Γ) containing Xcom and a noncompact component such that for all j ≥ g + 1

Y ′j ⊂ X(Γ) or Y ′j ∩X(Γ) = ∅
Yi ⊂ X(Γ) for i ≤ N

Also by construction

length Γν(R) ≤ constR

inf
z∈Γν(R)

|z| ≥ constR

which implies (6.1a).

To prove (6.1b) observe that for z ∈ Gν with |z − s| ≥ 1
4
R(s) for all s ∈ Sν

∑

s∈Sν

r(s)

|z − s|2 =
∑

s∈Sν
|s|≤|z|/2

r(s)

|z − s|2 +
∑

s∈Sν
|s|>|z|/2

r(s)

|z − s|2

≤
∑

s∈Sν

4r(s)

|z|2 +
4

|z|2
∑

s∈Sν
|s|>|z|/2

16r(s)

R(s)2
|s|2

≤ 4

|z|2
∑

s∈Sν

1

|s|d +
64

|z|2
∑

s∈Sν

1

|s|d−2δ−2

Hence by (GH5ii), if z ∈ Gν with |z − s| ≥ 1
4
R(s) for all s ∈ Sν then

∑

s∈Sν

r(s)

|z − s|2 ≤
const

|z|2 (6.3)

So (6.1b) follows from (6.1a).

We now prove (6.1c) and (6.1d). First observe that by
∣∣∣∣

s1 − s2

(z − s1)(z − s2)

∣∣∣∣ =

∣∣∣∣
1

z − s1
− 1

z
+

1

z
− 1

z − s2

∣∣∣∣

≤
∣∣∣∣

s1

(z − s1)z

∣∣∣∣+

∣∣∣∣
s2

z(z − s2)

∣∣∣∣

both (6.1c) and (6.1d) follow from

lim
R→∞

sup
j,µ

1

log tj

∫

Γνµ(j)(R)

|sµ(j)|
|z(z − sµ(j))| |dz| = 0 (6.4)

We now prove (6.4). If |s| = |sµ(j)| > 2R

∫

Γν(R)

|s|
|z(z − s)| |dz| ≤ const

|s|
R|s|R = const
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Since lim
j→∞

tj = 0 this implies

lim
R→∞

sup
j,µ

|sµ(j)|>2R

1

log tj

∫

Γνµ(j)(R)

|sµ(j)|
|z(z − sµ(j))| |dz| = 0

If 2R ≥ |s| = |sµ(j)| > 1
2R

∫

Γν(R)

|s|
|z(z − s)| |dz| ≤ const

∫

Γν(R)

|dz|
|z − s| = const

∫

Γν(R)/s

|dζ|
|ζ − 1|

To bound the last integral observe that

∫

|ζ−1|=ρµ(j)/|s|

|dζ|
|ζ − 1| = 2π

and ∫
|ζ|=R/|s|

|ζ−1|≥ρµ(j)/|s|

|dζ|
|ζ − 1| ≤ const log

|s|
ρµ(j)

Therefore

∫

Γν(R)

|s|
|z(z − s)| |dz| ≤ const log

|s|
ρµ(j)

≤ const log
|s|
R(s)

≤ const (1 + δ) log |s|

by (GH5i,ii). So, by (GH5iv)

lim
R→∞

sup
j,µ

2R≥|sµ(j)|> 1
2
R

1

log tj

∫

Γνµ(j)(R)

|sµ(j)|
|z(z − sµ(j))| |dz| = 0

Finally, if |s| = |sµ(j)| ≤ 1
2
R

∫

Γν(R)

|s|
|z(z − s)| |dz| ≤ const

|s|
R2

R = const
|s|
R

Let ε > 0. Then

1

| log tj |
|sµ(j)

R
≤





ε log 2 if |sµ(j)| ≤ εR
1

2 log tj
if |sµ(j)| > εR

So

lim
R→∞

sup
j,µ

|sµ(j)|≤ 1
2
R

1

log tj

∫

Γνµ(j)(R)

|sµ(j)|
|z(z − sµ(j))| |dz| = 0

This finishes the proof of (6.4) and hence of (6.1c,d).
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We also need the following fact which one deduces immediately from (GH5ii).

Lemma 6.2
∑

j

(
max{r1(j), r2(j)}
min{R1(j),R2(j)}

)2

<∞

The strategy for obtaining pointwise bounds on the forms ωj is to compare Φ∗νωj
with the “Rosenlicht differentials”(

δν,ν1(j)

2πi

1

z − s1(j)
− δν,ν2(j)

2πi

1

z − s2(j)

)
dz

which would play the role of ωj if all the tj ’s were zero and Xcom were empty. On Gν the

difference between Φ∗νωj and the Rosenlicht differential can be written as a sum of terms

wνj,s(z)dz, s ∈ Sν and wνj,com(z)dz which are holomorphic and decay quadratically away

from the points s and 0 respectively. The coefficient of 1
|z−s|2 in wνj,s(z) is related to the

norm ‖ωj
∣∣
Yi
‖2 if s ∈ {s1(i), s2(i)} . On the other hand, we use (S.12) to get bounds on

‖ωj
∣∣
Yi
‖2 in terms of the expansions

∑
s∈Sν w

ν
j,s(z)dz + wνj,com(z)dz . In this way we get a

system of inequalities for the norms ‖ωj
∣∣
Yi
‖2 , which allow us give bounds on ‖ωj

∣∣
Yi
‖2 and

then pointwise estimates on ωj in Xreg and in the handles Yi.

In the course of the argument, the following quantities will play an important role.

a) The numbers

Ai,k =





6π max
µ=1,2

[
rµ(i)

Rµ(i)
+ δν1(i),ν2(i)

2r3−µ(i)Rµ(i)

|s1(i)− s2(i)|2
]

if i = k

24π max
µ,τ=1,2

δνµ(i),ντ (k)
rτ (k)Rµ(i)

|sµ(i)− sτ (k)|2 if i 6= k

estimate the influence of ‖ωj
∣∣
Yk
‖2 on ‖ωj

∣∣
Yi
‖2 .

b) The numbers

ℵj = max
µ=1,2

‖αj,µ(z)dz
∣∣
A(sµ(j))

‖2
are used to control the difference of ωj from the Rosenlicht differential in a neighbourhood

of Yj .

c) When ν1(j) = ν2(j), that is, when both ends of the handle Yj belong to the same sheet,

define

Oj = 4 max
µ=1,2

Rµ(j)2

|s1(j)− s2(j)|2 + 4
∑

s∈Sν (j)
s6=s1(j),s2(j)

R(s)2|s1(j)− s2(j)|2
|s− s1(j)|2|s− s2(j)|2

+ 8π2 max
µ=1,2

Rµ(j)2 sup
|z−sµ(j)|=Rµ(j)

|αj,µ(z)|2
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When the jth handle joins distinct sheets define, for N > 0,

Oj(N) = 4 max
µ=1,2

Rµ(j)2

|sµ(j)|2 + 4
∑

i≥N+1
i6=j

max
µ,τ=1,2

δνµ(i),ντ (j)
Rµ(i)2|sτ (j)|2

|sµ(i)|2|sµ(i)− sτ (j)|2

+ 8π2 max
µ=1,2

Rµ(j)2 sup
|z−sµ(j)|=Rµ(j)

|αj,µ(z)|2

Lemma 6.3

(a) ∑

i,k≥g+1
i6=k

A2
i,k <∞

(b) For each j,N ,

Oj ,Oj(N) <∞

(c)

lim
j→∞

ν1(j)=ν2(j)

Oj = 0

lim
N→∞

lim sup
j→∞

ν1(j)6=ν2(j)

Oj(N) = 0

(d)

sup
j
ℵj <∞

Proof: (a) For each fixed k, τ

π
∑

i6=k

∑

µ=1,2

δνµ(i),ντ (k)
Rµ(i)2

|sµ(i)− sτ (k)|4 ≤
∑

s∈Sντ (k)
s6=sτ (k)

Rµ(s)

|s− sτ (k)|4

≤ 16
∑

s∈Sντ (k)
s6=sτ (k)

∫

|y−s|≤R(s)

dy

|y − sτ (k)|4 ≤ 16

∫

|y−sτ (k)|≥ 1

2|sτ (k)|δ

dy

|y − sτ (k)|4

since for each s ∈ Sντ (k) with s 6= sτ (k) and each y ∈ IR2 with |y − s| ≤ R(s)

|y − sτ (k)| ≥ 1

2
|s− sτ (k)| ≥ 1

2|sτ (k)|δ
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by (GH5ii) and since the discs around the points s with radii R(s) do not overlap. Therefore

∑

i6=k
A2
i,k ≤ 242 · 16π

∑

k,τ

rτ (k)2

∫

|y−sτ (k)|≥ 1

2|sτ (k)|δ

dy

|y − sτ (k)|4

≤ const
∑

k,τ

rτ (k)2|sτ (k)|2δ

≤ const
∑

k,τ

1

|sτ (k)|2d−2δ
<∞

by (GH5ii).

(b) For s ∈ Sν put

ρ(s) =
R(s) log |s|
min
s′∈Sν
s′ 6=s

|s′ − s|

By (GH5v)

lim
|s|→∞

ρ(s) = 0 (6.5)

As above, if ν1(j) = ν2(j) = ν

π
∑

s∈Sν
s6=s1(j),s2(j)

R(s)2|s1(j)− s2(j)|2
|s− s1(j)|2|s− s2(j)|2 = π

∑

s∈Sν
s6=s1(j),s2(j)

ρ(s)2

(
min
s′ 6=s
|s′ − s|

)2

|s1(j)− s2(j)|2

|s− s1(j)|2|s− s2(j)|2 log2 |s|

≤ 128
∑

s∈Sν (j)
s6=s1(j),s2(j)

ρ(s)2

∫

|y−s|≤ 1
2 min
s′ 6=s

|s′−s|

|s1(j)− s2(j)|2
|y − s1(j)|2|y − s2(j)|2 log2 |y|

dy

(6.6)

By (6.5) this is bounded by

const

∫

|y−sµ(j)|≥ 1

2|sµ(j)|δ

|s1(j)− s2(j)|2
|y − s1(j)|2|y − s2(j)|2 log2 |y|

dy

which converges. This proves part (b) when ν1(j) = ν2(j). The case ν1(j) 6= ν2(j) is treated

similarly.

(c) Again we give the proof only for the case ν1(j) = ν2(j) = ν. The first term in Oj goes to

zero with j since by (GH5v)

lim
j→∞

Rµ(j)

|s1(j)− s2(j)| ≤ lim
j→∞

Rµ(j)

min
s6=sµ(j)

|s− sµ(j)| = 0

The third term in Oj goes to zero by (GH5vi). We now concentrate on the second term.

116



Fix ε > 0. By (6.5) there is a finite subset S̃ ⊂ ⊔mν=1 Sν such that ρ(s) < ε for all

s /∈ S̃. Clearly

lim
j→∞

∑

s∈S̃
ρ(s)2

∫

|y−s|≤ 1
2 min
s′ 6=s

|s′−s|

|s1(j)− s2(j)|2
|y − s1(j)|2|y − s2(j)|2 log2 |y|

dy = 0

Hence, by (6.6), it suffices to prove

sup
j

∫

|y−sµ(j)|≥ 1

2|sµ(j)|δ

|s1(j)− s2(j)|2
|y − s1(j)|2|y − s2(j)|2 log2 |y|

dy <∞ (6.7)

Clearly the integral in (6.7) over the region
{
y ∈ C

∣∣ |y| ≤ e
}

is bounded in j. The

integral in (6.7) over the region
{
y ∈ C

∣∣ |y| ≥ e, |y− sµ(j)| ≥ 1
2
|s1(j)− s2(j)| for µ = 1, 2

}

is bounded by ∫

|y−sµ(j)|≥ 1
2 |s1(j)−s2(j)|

|s1(j)− s2(j)|2
|y − s1(j)|2|y − s2(j)|2 dy

By translating and scaling, we see that this is independent of j.

Now, we consider the integral in (6.7) over the region

Mj =
{
y ∈ C

∣∣ |y| ≥ e, 1
2|s1(j)|δ ≤ |y − s1(j)| ≤ 1

2 |s1(j)− s2(j)|
}

There
|s1(j)− s2(j)|
|y − s2(j)| ≤ 2

so the integral is bounded by

4

∫

Mj

dy

|y − s1(j)|2 log2 |y|
Clearly∫

{y∈Mj | |y|≤ 1
2 |s1(j)|}

dy

|y − s1(j)|2 log2 |y|
≤ 4

|s1(j)|2
∫

{y∈Mj | |y|≤ 1
2 |s1(j)|}

dy ≤ π

Finally, ∫

{y∈Mj | |y|≥ 1
2 |s1(j)|}

dy

|y − s1(j)|2 log2 |y|

≤ 1

log2
(

1
2 |s1(j)|2

)
∫

1

2|s1(j)|δ≤|y|≤
1
2 |s1(j)−s2(j)|

dy

|y − s1(j)|2

=
2π
(
log 1

2
|s1(j)− s2(j)|+ log 2|s1(j)|δ

)

log2
(

1
2 |s1(j)|2

)

By (GH5iii)

|s1(j)− s2(j)| ≤ const |s1(j)|
This show that the integral over Mj is bounded. The integral in (6.7) over the analogous

region centred at s2(j) is treated in the same way.

(d) is a reformulation of the first part of (GH5vi).
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We now come to the statement of the main theorem of this section. By (GH5i),

there exists a collar Tν of Kν such that |z − s| >
√

2√
2−1

R(s) for all z ∈ Tν and s ∈ Sν .

C

Dν(s)
Tν

Kν

We define functions wνj (z) on Gν by

wνj (z)dz = Φ∗νωj

Theorem 6.4 There exists a constant C such that, for 1 ≤ ν ≤ m and z ∈ Gν r Tν with

|z − s| ≥ 3r(s) for all s ∈ Sν

∣∣wνj (z)
∣∣ ≤ C

(∑

s∈Sν

r(s)

|z − s|2 +
1

dist(z, Tν)2

)
for j ≤ g

∣∣∣∣wνj (z)− δν,ν1(j)

2πi

(
1

z − s1(j)
− 1

z

)
+
δν,ν2(j)

2πi

(
1

z − s2(j)
− 1

z

)∣∣∣∣

≤ C
(∑

s∈Sν

r(s)

|z − s|2 +
1

dist(z, Tν)2

)
for j ≥ g + 1

Furthermore, for every ρ > 0 there is a constant g0(ρ) such that

lim sup
j→∞

∑

i≥g0+1
i6=j

∥∥∥ωj
∣∣
Y ′i

∥∥∥
2

2
+
∥∥∥
(
ωj − (φj)∗

(
1

2πi
dz1
z1

)) ∣∣
Y ′j

∥∥∥
2

2
< ρ

In the single sheet case, m = 1, it is possible to choose g0(ρ) = g. More detailed bounds are

given in Remark 6.13.

We first outline the proof of Theorem 6.4 in the simple setting of a single sheet,

that is m = 1, without a compact region, that is Xcom = ∅. We also make the simplifying
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assumption ‖A‖ < 1
2 . For simplicity of notation we delete the sub and superscripts ν. In

this setting the estimate of Theorem 6.4 on wνj (z) becomes

∣∣∣∣wj(z)−
1

2πi

(
1

z − s1(j)
− 1

z − s2(j)

)∣∣∣∣ ≤ C
∑

s∈S

r(s)

|z − s|2 for j ≥ 1

For each form ωj and each s ∈ S we consider the principal part

wj,s(z) = − 1

2πi

∫

|ζ−s|=r(s)

wj(ζ)

ζ − z dζ |z − s| > r(s)

of the Laurent expansion of wj in the annulus A(s).

Proposition 6.5 For z ∈ G with |z − s| > r(s) for all s ∈ S

wj(z) =
∑

s∈S
wj,s(z) (6.8)

The series on the right hand side converges absolutely and uniformly on compact subsets of{
z ∈ G

∣∣ |z − s| > r(s) ∀s ∈ S
}

. Furthermore, for s ∈ S and |z − s| > 3r(s)

|wj,s(z)| ≤
3r(s)

|z − s|2
∥∥∥wjdz

∣∣
A(s)

∥∥∥
2

for s 6= s1(j), s2(j)

∣∣∣wj,s(z)− (−1)µ+1

2πi
1
z−s

∣∣∣ ≤ 3r(s)

|z − s|2
∥∥∥
(
wj − (−1)µ+1

2πi
1
z−s

)
dz
∣∣
A(s)

∥∥∥
2

for s = sµ(j)

(6.9)

Proof: Formula (6.9) is a standard estimate for Laurent series relating pointwise bounds

to L2 bounds on annular regions. It will be stated and proven in a more general setting in

Lemma 6.9 below. The absolute and uniform convergence on compacts of the right hand side

of (6.8) follows from the convergence of
∑

s∈S r(s)/|s|2, which is a consequence of Lemma

5.2b, and from the fact that
∥∥∥wjdz

∣∣
A(s)

∥∥∥
2
≤ ‖ωj‖2.

We now prove equation (6.8). For R� 0 we define curves L(R) around 0 similar to

the curves Γ(R) constructed in the proof of Lemma 6.3. Again we start with the circle Γ′(R)

of radius R around 0. For each s ∈ S such that D(s)∩ Γ′(R) 6= ∅ let p1(s) and p2(s) be the

two extremal points of D(s) ∩ Γ′(R). Replace the segment of Γ′(R) between p1(s) and p2(s)

by the piece of ∂D(s) that joins p1(s) and p2(s) on the outside resp. inside of s if |s| ≤ R
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resp. |s| > R . Call the resulting curve L(R), and put

Γ′(R)

∂Dν(s)

s

L̃(R) = L(R)r ∪s∈SL(R) ∩ ∂D(s)

Now let z ∈ Gν with |z − s| > r(s) for all s ∈ Sν . Let R > 2|z|. By Cauchy’s

formula

wj(z) =
1

2πi

∫

L(R)

wj(ζ)

ζ − z dζ +
∑

s inside L(R)

wj,s(z)

Then for R′ > R

wj(z) =
1

2πi

1

R′ −R

∫ R′

R

(∫

L(t)

wj(ζ)

ζ − z dζ
)
dt

+
∑

R<|s|≤R′

R′ − |s|
R′ −R wj,s(z) +

∑

|s|≤R
wj,s(z)

Therefore it suffices to show that

lim
R→∞

inf
R′>R

1

R′ − R

∣∣∣∣∣

∫ R′

R

(∫

L(t)

wj(ζ)

ζ − z dζ
)
dt

∣∣∣∣∣ = 0

Now

1

R′ − R

∣∣∣∣∣

∫ R′

R

(∫

L̃(t)

wj(ζ)

ζ − z dζ
)
dt

∣∣∣∣∣ ≤
2

R(R′ −R)

∫ R′

R

∫

L̃(t)

|wj(ζ)|d|ζ|dt

≤ 2

R(R′ − R)

∫

∪R≤t≤R′ L̃(t)

|wj(z)||dz ∧ dz̄|

≤ 2

R(R′ − R)

(∫

∪R≤t≤R′ L̃(t)

|dz ∧ dz̄|
)1/2

·
(∫

∪R≤t≤R′ L̃(t)

|wj(z)|2|dz ∧ dz̄|
)1/2

≤ const

R

√
R′ + R

R′ − R ||wj(z)dz
∣∣
∪R≤t≤R′ L̃(t)

||2

By construction

L(t)r L̃(t) ⊂ ∪{
s∈S

∣∣ t−r(s)≤|s|≤t+r(s)
}L(t) ∩ ∂D(s)
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If s = sµ(i) is an element of S such that L(t) ∩ ∂D(s) 6= ∅ then L(t) ∩ ∂D(s) is a part of

φi
({

(z1, z2) ∈ H(ti)
∣∣ |zµ| = τi

})

so that ∣∣∣∣∣

∫

L(t)∪∂D(s)

wj(ζ)

ζ − z dζ
∣∣∣∣∣ ≤

∣∣∣∣∣

∫

|zµ|=τi

φ∗i (ωj)
gi,µ(zµ)− z

∣∣∣∣∣
In Lemma 6.8 below we derive a general pointwise bound on differentials in handles in terms

of the L2 norm of the differentials in the handle. In the case at hand it implies
∣∣∣∣
φ∗i (ωj)
dzµ

∣∣∣∣ ≤
2√
π

(
1 +

∣∣∣∣
z3−µ
zµ

∣∣∣∣
)
‖ωj
∣∣
Yi
‖2

As |gi,µ(zµ)− z| ≥ const |s| and zµz3−µ = ti
∣∣∣∣∣

∫

|zµ|=τi

φ∗i (ωj)
gi,µ(zµ)− z

∣∣∣∣∣ ≤ const
τi
|s|

(
ti
τ2
i

+ 1

)
||ωj

∣∣
Yi
||2

Using this estimate and the fact that L(t) ∩ ∂D(s) = ∅ unless |s| − r(s) ≤ t ≤ |s|+ r(s) we

have
1

R′ −R

∣∣∣∣∣

∫ R′

R

(∫

L(t)rL̃(t)

wj(ζ)

ζ − z dζ
)
dt

∣∣∣∣∣ ≤
const

R′ −R
∑

i,µ

τirµ(i)

|sµ(i)| ‖ωj
∣∣
Yi
‖2

≤ const

R′ −R

(∑

i

rµ(i)2τ2
i

|sµ(i)|2

)1/2(∑

i

‖ωj
∣∣
Yi
‖22

)1/2

Since τi ≤ 1 and
∑
s∈S

r(s)2

|s|2 ≤ 4
∑

s∈S

r(s)2

R(s)2
<∞ by Lemma 6.2 this goes to zero as R′ →∞.

We want to use (6.8) to derive bounds on the L2 norms appearing in (6.9). Clearly,
∥∥∥wjdz

∣∣
A(s)

∥∥∥
2
≤
∥∥∥ωj

∣∣
Y ′i

∥∥∥
2

if s = s1(i) or s2(i) (6.10)

To estimate
∥∥∥ωj

∣∣
Y ′i

∥∥∥
2

we use the following special case of (S.12).

Lemma 6.6 Let α be a holomorphic differential form on Y ′i with
∫
Ai
α = 0 and let fµ be

functions in a neighborhood of
{
z ∈ C

∣∣ |z − sµ(i)| = Rµ(i)
}

with dfµ = Φ∗(α). Then

∥∥∥α
∣∣
Y ′i

∥∥∥
2

2
=
i

2

(∫

|z−s1(i)|=R1(i)

f1(z)Φ∗(α) +

∫

|z−s2(i)|=R2(i)

f2(z)Φ∗(α)

)

Observe that, since
∫
Ai
α = 0, we may choose any fµ obeying dfµ = Φ∗(α). By

choosing fµ to have a zero on |z − sµ(i)| = Rµ(i) we get
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Corollary 6.7 Let α be a holomorphic differential form on Y ′i with
∫
Ai
α = 0. Write the

form Φ∗(α) = f(z)dz. Then

∥∥∥α
∣∣
Y ′i

∥∥∥
2

2
≤ 2π2


R1(i)2

[
sup

|z−s1(i)|=R1(i)

|f(z)|
]2

+ R2(i)2

[
sup

|z−s2(i)|=R2(i)

|f(z)|
]2



Proof of Theorem 6.4 - simple single sheet case: We apply Corollary 6.7 to α = ωj

with j 6= i and substitute (6.8)

∥∥∥ωj
∣∣
Y ′i

∥∥∥
2
≤ 2π sup

µ=1,2
Rµ(i)

[
sup

|z−sµ(i)|=Rµ(i)

|wj(z)|
]

≤ 2π sup
µ=1,2

Rµ(i) sup
|z−sµ(i)|=Rµ(i)

∣∣∣∣
∑
s∈S

wj,s(z)

∣∣∣∣
(6.11)

By (6.9) and hypothesis (GH5i)

sup
|z−sµ(i)|=Rµ(i)

|wj,s(z)| ≤





6r(s)

|sµ(i)− s|2
∥∥∥wjdz

∣∣
A(s)

∥∥∥
2

if s 6= s1(j), s2(j), sµ(i)

3r(s)

R(s)2

∥∥∥wjdz
∣∣
A(s)

∥∥∥
2

if s = sµ(i)

Since

wj,s1(j)(z)+wj,s2(j)(z) =
1

2πi

s1(j)− s2(j)

(z − s1(j))(z − s2(j))
+
∑

τ=±1

(
wj,sτ (j)(z)− τ

2πi
1

z−sτ (j)

)
(6.12)

we have

sup
|z−sµ(i)|=Rµ(i)

|wj,s1(j)(z) + wj,s2(j)(z)| ≤
1

π

|s1(j)− s2(j)|
|sµ(i)− s1(j)||sµ(i)− s2(j)|

+
∑
τ=±1

6rτ (j)
|sµ(i)−sτ (j)|2

∥∥∥
(
wj

τ
2πi

1
z−sτ (j)

)
dz
∣∣
A(sτ (j))

∥∥∥
2

Substituting these bounds into (6.11) and using (6.10)

∥∥∥ωj
∣∣
Y ′i

∥∥∥
2
≤ 6π sup

µ=1,2

[
rµ(i)

Rµ(i)
+

2r3−µ(i)Rµ(i)

|s1(i)− s2(i)|2
]∥∥∥ωj

∣∣
Y ′i

∥∥∥
2

+ 24π
∑

k 6=i,j
sup

µ,τ=±1

rτ (k)Rµ(i)

|sµ(i)− sτ (k)|2
∥∥∥ωj

∣∣
Y ′k

∥∥∥
2

+ 2 sup
µ=1,2

Rµ(i)|s1(j)− s2(j)|
|sµ(i)− s1(j)||sµ(i)− s2(j)|

+ 12π sup
µ=1,2

∑
τ=±1

rτ (j)Rµ(i)
|sµ(i)−sτ (j)|2

∥∥∥
(
wj

τ
2πi

1
z−sτ (j)

)
dz
∣∣
A(sτ (j))

∥∥∥
2
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To clarify the structure of this system of inequalities, define, for each j and i 6= j

Ωji =
∥∥∥ωj

∣∣
Y ′i

∥∥∥
2

Ω̃ji = 2 sup
µ=1,2

Rµ(i)|s1(j)− s2(j)|
|sµ(i)− s1(j)||sµ(i)− s2(j)|

(6.13)

Then the system of inequalities reads, for i 6= j

Ωji ≤ Ω̃ji +
∑

k 6=j
Ai,kΩjk

+ 1
2
Ai,j

2∑
µ=1

∥∥∥
(
wj

(−1)µ+1

2πi
1

z−sµ(j)

)
dz
∣∣
A(sµ(j))

∥∥∥
2

(6.14)

By Lemma 6.3b and c, the vector Ω̃j =
(

Ω̃ji

)
is in `2, with a norm bounded uni-

formly in j. By Lemma 6.10a below, A = (Ai,k) is a bounded operator on `2. By our

additional assumption, its norm is smaller than 1. So, if it weren’t for the term involving∥∥∥
(
wj

(−1)µ+1

2πi
1

z−sµ(j)

)
dz
∣∣
A(sµ(j))

∥∥∥
2

we would get a bound on the `2 norm of Ωj in terms of

the `2 norm of Ω̃j and the operator norm of A.

We now wish to incorporate a term involving ωj
∣∣
Y ′j

in the system of inequalities

(6.14). The form
(
wj

(−1)µ+1

2πi
1

z−sµ(j)

)
dz
∣∣
A(sµ(j))

is not, in general, the pull-back under Φ

of a holomorphic differential form on Yj . Therefore we cannot apply the analysis based

on Lemma 6.6 directly. However, ωj − (φj)∗
(

1
2πi

dz1
z1

)
is a holomorphic form on Yj whose

pull-backs Φ∗
(
ωj − (φj)∗

(
1

2πi
dz1
z1

))
= wj(z)dz − (gj,µ)∗

(
1

2πi
dz1
z1

)
can be used in place of

(
wj

(−1)µ+1

2πi
1

z−sµ(j)

)
dz.

Put

Ωjj =
∥∥∥
(
ωj − (φj)∗

(
1

2πi
dz1
z1

)) ∣∣
Y ′j

∥∥∥
2

Since

(
wj

(−1)µ+1

2πi
1

z−sµ(j)

)
dz
∣∣
A(sµ(j))

=
(
wj(gj,µ)∗

(
1

2πi
dz1
z1

)
+ αj,µdz

) ∣∣
A(sµ(j))

(6.15a)

we get ∥∥∥
(
wj

(−1)µ+1

2πi
1

z−sµ(j)

)
dz
∣∣
A(sµ(j))

∥∥∥
2
≤ Ωjj + ℵj (6.15b)

and, by substituting into (6.14),

Ωji ≤
(

Ω̃ji + Ai,jℵj
)

+
∑

k

Ai,kΩjk for i 6= j (6.16a)
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We now derive a similar formula for i = j. We apply Corollary 6.7 with i = j and

α = ωj − (φj)∗
(

1
2πi

dz1
z1

)
. Observe that

(
wj(gj,µ)∗

(
1

2πi
dz1
z1

)) ∣∣
A(sµ(j))

=
∑

s6=sµ(j)

wj,sdz +
(
wj,sµ(j) − (−1)µ+1

2πi
1

z−sµ(j)

)
dz − αj,µdz

Hence

Ωjj ≤ 2π sup
µ=1,2

Rµ(j) sup
|z−sµ(j)|=Rµ(j)

∣∣∣∣∣
∑

s6=sµ(j)

wj,s(z)

∣∣∣∣∣

+ 2π sup
µ=1,2

Rµ(j) sup
|z−sµ(j)|=Rµ(j)

∣∣∣wj,sµ(j) − (−1)µ+1

2πi
1

z−sµ(j)

∣∣∣

+ 2π sup
µ=1,2

Rµ(j) sup
|z−sµ(j)|=Rµ(j)

|αj,µ|

By the estimates of Proposition 6.5 and (6.10)

Ωjj ≤
(

Ω̃jj + Aj,jℵj
)

+
∑

k

Aj,kΩjk (6.16b)

with

Ω̃jj = 2π sup
µ=1,2

Rµ(j)

[ √
2

2π|s1(j)− s2(j)| + sup
|z−sµ(j)|=Rµ(j)

|αj,µ(z)|
]

Now view Ωj =
(

Ωji

)
i≥1

as a vector in `2. Observe that

∑

i

|Ω̃ji |2 ≤ Oj (6.17)

We shall show below, in Lemma 6.11, that (Ai,jℵj)i≥1 is a vector in `2 whose norm Cj goes

to zero with j. As A = (Ai,k)i,k≥1 is an operator on `2 of norm smaller than one half (6.16)

implies

‖Ωj‖ ≤
√
Oj + Cj

1− ‖A‖ ≤ 2(
√
Oj + Cj)

As Oj goes to zero with j by Lemma 6.3c, this proves the last inequality of the Theorem.

Put

C = 3 sup
j

(√
Oj + Cj + ℵj

)

By Lemma 6.3c and d, C is finite. Now, by (6.10), (6.15b) and Proposition 6.5

∣∣∣wj(z)− 1
2πi

1
z−s1(j) + 1

2πi
1

z−s2(j)

∣∣∣ ≤ C
∑

s∈S

r(s)

|z − s|2

when |z−s| > 3r(s) for all s ∈ S. This concludes the proof of Theorem 6.4, under the special

assumptions made above.
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Before proving the technical Lemmata 6.8-6.11 used above, we describe how to

modify the strategy in the general case. First, one can not expect the operator norm of A

to be smaller than a half. On the other hand, the projected operator (Ai,k)i,k>N will have

small operator norm if N is large enough. This and the problems arising from the existence

of Xcom is taken care of by enclosing Xcom and the handles Yi, i ≤ N in an enlarged compact

piece X(Γ) that is treated as a unit.

The other main difference is that the cancellation (6.12) is only possible when both

ends of Yj hit the same component of Xreg. If only one end of Yj hits Xreg
ν then Φ∗νωj will

have a ±1/z decay away from the compact piece and ∓1/(z−s) decay away from the annulus

A(s) corresponding to the intersection of Y ′j and Xreg
ν .

Lemma 6.8 Let ω be a holomorphic differential form on H(t) =
{

(z1, z2) ∈ C
∣∣ z1z2 =

t, |z1|, |z2| ≤ 1
}

with t < 1/4, such that
∫
|z1|=

√
t
ω = 0 . Then

∣∣∣∣
ω

dz1/z1

∣∣∣∣ ≤
2√
π

(|z1|+ |z2|)
∥∥∥ω
∣∣
H(t)

∥∥∥
2

for (z1, z2) ∈ H(t), |z1|, |z2| ≤ 1/2 .

Proof: We use z = z1 as a coordinate on H(t). Write

ω = f(z)
dz

z
with f(z) =

∞∑

n=−∞
anz

n, a0 = 0

Then

∥∥∥ω
∣∣
H(t)

∥∥∥
2

2
=

1

2i

∫

H(t)

|f(z)|2 dz ∧ dz̄|z|2

=
∑

n6=0

∫ 1

t

∫ 2π

0

|an|2r2n−2r dr dφ

= 2π
∑

n6=0

|an|2
2n

(1− t2n)

≥ 2π
∑

n≥1

|an|2
2n

+ 2π
∑

n≥1

|a−n|2
2n

1

t2n
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On the other hand, for |z| = 1/2

∣∣∣∣
f(z)

z

∣∣∣∣
2

≤ 4


∑

n≥1

|an|
1

2n
+
∑

n≥1

|a−n|2n



2

≤ 8





∑

n≥1

|an|√
2n

1√
2n




2

+


∑

n≥1

√
8n|a−n|

1√
2n




2



≤ 8


∑

n≥1

1

2n




∑

n≥1

|an|2
2n

+
∑

n≥1

8n|a−n|2



≤ 8


∑

n≥1

|an|2
2n

+
∑

n≥1

|a−n|2
2n

1

t2n


 ≤ 4

π
‖ω‖22

Similarly, for |z| =
√
t

∣∣∣∣
f(z)

z

∣∣∣∣
2

≤ 2

t





∑

n≥1

|an|√
2n

(
√

2t)n




2

+


∑

n≥1

|a−n|
(
√

2t)n
(
√

2t)n




2



≤ 2

t


∑

n≥1

(2t)n




∑

n≥1

|an|2
2n

+
∑

n≥1

|a−n|2
2n

1

t2n




≤ 4

1− 2t

1

2π
‖ω‖22 ≤

4

π
‖ω‖22

So, by the maximum principle,

|f(z)| ≤ 2√
π
‖ω‖2|z| for

√
t ≤ |z| ≤ 1/2

and hence ∣∣∣∣
ω

dz1/z1

∣∣∣∣ ≤
2√
π
|z1|‖ω‖2 ≤

2√
π

(|z1|+ |z2|)‖ω‖2

on
{

(z1, z2) ∈ H(t)
∣∣ √t ≤ |z1| ≤ 1/2

}
. The same estimate on

{
(z1, z2) ∈ H(t)

∣∣ t/2 ≤ |z1| ≤
√
t
}

=
{

(z1, z2) ∈ H(t)
∣∣ √t ≤ |z2| ≤ 1/2

}

is proven in the same way.
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Lemma 6.9 Let J : S1 × [0, 1]→ C be a smooth function with J(S1 × {t}) winding once

in the positive direction around s ∈ C for each t ∈ [0, 1]. Let w be a holomorphic function on

J(S1 × [0, 1]). Then

(a) ∣∣∣∣∣
1

2πi

∫

J(S1×{0})

w(ζ)

ζ − z dζ
∣∣∣∣∣ ≤ CJ

∥∥∥w
∣∣
J(S1×[0,1])

∥∥∥
2

sup
ζ∈J(S1×[0,1])

∣∣∣∣
1

ζ − z

∣∣∣∣

where

CJ =
1

2π

√∫

S1×[0,1]

∣∣∣∣
∂J

∂φ

∣∣∣∣
2

dφdt

DJ(φ, t)

and DJ is the Jacobian of J(φ, t).

(b) If, in addition,
∫
J(S1×{0}) w(ζ)dζ = 0 then

∣∣∣∣∣
1

2πi

∫

J(S1×{0})

w(ζ)

ζ − z dζ
∣∣∣∣∣ ≤ CJ

∥∥∥w
∣∣
J(S1×[0,1])

∥∥∥
2

sup
ζ∈J(S1×[0,1])

|s− ζ|
|ζ − z||s− z|

(c) If w is a holomorphic function on the annulus
{
ζ
∣∣ r ≤ |ζ − s| ≤ 2r

}
and∫

|ζ−s|=r w(ζ)dζ = 0 then, for |z − s| ≥ 3r,

∣∣∣∣∣
1

2πi

∫

|ζ−s|=r

w(ζ)

ζ − z dζ
∣∣∣∣∣ ≤

3r

|z − s|2
∥∥∥w
∣∣
r≤|ζ−s|≤2r

∥∥∥
2

Proof: (a) By Cauchy’s Theorem, for z /∈ J(S1 × [0, 1]),

∫

J(S1×{0})

w(ζ)

ζ − z dζ =

∫ 1

0

∫

J(S1×{t})

w(ζ)

ζ − z dζdt

=

∫ 1

0

∫

S1

w(J(φ, t))

J(φ, t)− z
∂J

∂φ
(φ, t)dφdt

=

∫

S1×[0,1]

w(J(φ, t))
√
DJ(φ, t)

[
1

(J(φ, t)− z)
√
DJ(φ, t)

∂J

∂φ

]
dφdt

By the Cauchy-Schwarz inequality

∣∣∣∣∣

∫

J(S1×{0})

w(ζ)

ζ − z dζ
∣∣∣∣∣

2

≤
[∫

S1×[0,1]

|wj(J(φ, t))|2DJ(φ, t)dφdt

][∫

S1×[0,1]

1

|J(φ, t)− z|2DJ(φ, t)

∣∣∣∣
∂J

∂φ

∣∣∣∣
2

dφdt

]

≤
∥∥∥w
∣∣
J(S1×[0,1])

∥∥∥
2

2

[∫

S1×[0,1]

∣∣∣∣
∂J

∂φ

∣∣∣∣
2

dφdt

DJ(φ, t)

]
sup

ζ∈J(S1×[0,1])

1

|ζ − z|2
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(b) Since
∫
J(S1×{0})w(ζ)dζ = 0

∫

J(S1×{0})

w(ζ)

ζ − z dζ =

∫
w(ζ)

ζ − z dζ −
∫

w(ζ)

s− z dζ

=

∫

J(S1×{0})
w(ζ)

s− ζ
(ζ − z)(s− z)dζ

Now, continue as in part (a).

(c) Apply (b) with

J(φ, t) = s+ (t+ 1)reiφ

Since
∂J

∂φ
= i(t+ 1)reiφ

and

DJ =

∣∣∣∣
r cosφ r sinφ

−(t+ 1)r sinφ (t+ 1)r cosφ

∣∣∣∣ = (t+ 1)r2

we have

CJ ≤
1

2π

√∫ 2π

0

dφ

∫ 1

0

dt(t+ 1) ≤
√

3π

2π

Thus ∣∣∣∣∣
1

2πi

∫

|ζ−s|=r

w(ζ)

ζ − z dζ
∣∣∣∣∣ ≤
√

3π

2π
sup

r≤|ζ−s|≤2r

|s− ζ|
|ζ − s||s− z|

∥∥∥w
∣∣
r≤|ζ−s|≤2r

∥∥∥
2

≤ 3r

|z − s|2
∥∥∥w
∣∣
r≤|ζ−s|≤2r

∥∥∥
2

Lemma 6.10

(a) (Ai,k)i,k≥g+1 is a bounded operator on `2.

(b) there is an N such that the norm of the operator (Ai,k)i≥N+1,k≥g+1 is bounded by 1
5

.

(c) The vector
(

maxµ=1,2
Rµ(i)

dist(sµ(i),T )2

)
i≥g+1

is in `2.

Proof: (a,b) The norm of the operator is bounded by

√√√√√
∑

i≥N+1
k≥g+1
i6=k

A2
i,k + sup

j≥N+1
Aj,j
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The first term is finite for all N ≥ g + 1 and goes to zero as N →∞ by Lemma 6.3a. Since

Aj,j ≤ 6π
max{r1(j), r2(j)}
min{R1(j),R1(j)}

(
1 + sup

µ=±1

Rµ(j)2

|s1(j)− s2(j)|2
)

(GH5i) and Lemma 6.3b,c imply that

lim
j→∞

Aj,j = 0

(c) The convergence of
∑
s

R(s)2

|s|4 is equivalent to the convergence of the first term of Oj for

any fixed j.

Lemma 6.11 For each j ≥ g + 1, the vector (Ai,jℵj)i≥g+1 is in `2 and

lim
j→∞

∥∥∥(Ai,jℵj)i≥g+1

∥∥∥
2

= 0

Proof: We bound ∥∥∥(Ai,jℵj)i≥g+1

∥∥∥
2
≤
∥∥∥(Ai,j)i≥g+1

∥∥∥
2

sup
j
ℵj

Lemma 6.3d states that ℵj is bounded uniformly in j. As in Lemma 6.10, (Ai,j)i≥g+1 is in

`2 for all j and its norm converges to zero as j tends to infinity.

Proof of Theorem 6.4 - general single sheet case: We now prove Theorem 6.4, still in

the single sheet case m = 1, but allowing Xcom to be nonempty and deleting the simplifying

assumption ‖A‖ < 1/2 . Again, we supress the subscript ν.

We define

wj,com(z) = − 1

2πi

∫

∂K

wj(ζ)

ζ − z dζ z ∈ CrK

By Lemma 6.9b,c we have the following analog of Proposition 6.5

Proposition 6.12 For z ∈ G with |z − s| for all s ∈ S

wj(z) = wj,com(z) +
∑

s∈S
wj,s(z)
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The series on the right hand side converges absolutely and uniformly on compact subsets of{
z ∈ G

∣∣ |z − s| > r(s) ∀s ∈ S
}

. Furthermore, for s ∈ S and |z − s| > 3r(s)

|wj,s(z)| ≤
3r(s)

|z − s|2
∥∥∥wjdz

∣∣
A(s)

∥∥∥
2

for s 6= s1(j), s2(j)

∣∣∣wj,s(z)− (−1)µ+1

2πi
1
z−s

∣∣∣ ≤ 3r(s)

|z − s|2
∥∥∥
(
wj − (−1)µ+1

2πi
1
z−s

)
dz
∣∣
A(s)

∥∥∥
2

for s = sµ(j)

Finally there is a constant γ, independent of j, such that, for all z ∈ CrK ∪ T ,

|wj,com(z)| ≤ γ

dist(z, T )2

∥∥wjdz
∣∣
T

∥∥
2

where dist(z, T ) is the distance from z to T .

Proof: Proposition 6.12 is proven just like Proposition 6.5. The last estimate follows

immediately from Lemma 6.9b.

Observe that Proposition 6.12 implies a bound on wj(z) as claimed in Theorem 6.4,

but with a possibly j dependent constant

C2
j = γ2

∥∥wjdz
∣∣
T

∥∥2

2
+ 9

∑

i≥g+1
i6=j

∥∥∥ωj
∣∣
Y ′i

∥∥∥
2

2
+ 9

∑

µ=1,2

∥∥∥
(
wj − (−1)µ+1

2πi
1

z−sµ(j)

)
dz
∣∣
A(sµ(j))

∥∥∥
2

2

We wish to improve this to a j independent bound. Define

Ωjcom =
∥∥wjdz

∣∣
T

∥∥
2

and as above, for i ≥ g + 1

Ωji =





∥∥∥ωj
∣∣
Y ′i

∥∥∥
2

if i 6= j
∥∥∥
(
ωj − (φj)∗

(
1

2πi
dz1
z1

)) ∣∣
Y ′j

∥∥∥
2

if i = j

In the same way as (6.16) one shows

Ωji ≤
(

Ω̃ji + Ai,jℵj
)

+
∑

k≥g+1

Ai,kΩjk + Ai,comΩjcom for i ≥ g + 1 (6.18)

where Ω̃ji is as in (6.13), Ai,k is defined as above and

Ai,com = 4π sup
µ=1,2

γRµ(i)

dist(sµ(i), T )2
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By Lemma 6.10b,c, there is an N such that the operator Ai,k with i running over

N + 1, N + 2, · · · and k running over com, g+ 1, g+ 2, · · · has norm at most 1/4. Fix any such

N and also fix any b < 1/2. As before, we define Ωj to be the vector (Ωjcom,Ω
j
g+1,Ω

j
g+2, · · ·)

in `2. Denote by Ωj the components (Ωjcom,Ω
j
g+1,Ω

j
g+2, · · · ,ΩjN) and by Ω̄j the components

(ΩjN+1, · · ·). Define

ai =

{
0 i = com or i ≤ N(
A2
i,com +

∑N
k=g+1 A2

i,k

)1/2

i ≥ N + 1

Then (6.18) implies that, for i ≥ N + 1,

Ωji ≤
(

Ω̃ji + Ai,jℵj
)

+
∑

k≥N+1

Ai,kΩjk + ai
∥∥Ωj

∥∥ (6.19a)

and, in particular, ∥∥Ω̄j
∥∥ ≤

∥∥∥Ω̃j + Aℵj
∥∥∥+ 1

4

(∥∥Ω̄j
∥∥+

∥∥Ωj
∥∥) (6.19b)

Let Γ be a curve as in Lemma 6.1 with ε = b√
γ2+1

such that X(Γ) contains all

handles Yi with i ≤ N . Observe that for any j

(Ωjcom)2 +
∑

i≤N
(Ωji )

2 ≤
∥∥∥ωj

∣∣
X(Γ)

∥∥∥
2

2
(6.20)

Consider any j such that s1(j), s2(j) are outside of Γ. Since
∫

Γ
wj(z)dz = 0 and

∫
Ai
ωj = 0

for all i such that Yi ⊂ X(Γ), (S.12) implies that

∥∥∥ωj
∣∣
X(Γ)

∥∥∥
2

2
=
i

2

∫

Γ

f(z)wj(z)dz

where f(z) is a Stammfunktion of wj on Γ. As in the proof of Corollary 6.7 we may choose

a Stammfunktion that is zero at some point of Γ and conclude that

∥∥∥ωj
∣∣
X(Γ)

∥∥∥
2
≤ (length Γ) sup

z∈Γ
|wj(z)| (6.21)

By (6.10), (6.15b) and Proposition 6.12, for z ∈ Γ

|wj(z)| ≤
∣∣∣∣∣wj,com(z) +

∑

s∈S
wj,s(z)

∣∣∣∣∣

≤ γ

dist(z, T )2
Ωjcom +

∑

i≥g+1

∑

µ=1,2

3rµ(i)

|z − sµ(i)|2 Ωji +
∑

µ=1,2

3rµ(j)

|z − sµ(j)|2ℵj

+
1

2π

1

|z − s1(j)| +
1

2π

1

|z − s2(j)|
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By (6.20), (6.21) and Cauchy-Schwarz

‖Ωj‖ ≤
∥∥∥ωj

∣∣
X(Γ)

∥∥∥
2
≤ Ω̃jΓ + b‖Ωj‖

≤ Ω̃jΓ + b‖Ω̄j‖+ b‖Ωj‖
(6.22)

where

Ω̃jΓ = (length Γ) sup
z∈Γ

( ∑

µ=1,2

3rµ(j)

|z − sµ(j)|2ℵj +
1

2π

1

|z − s1(j)| +
1

2π

1

|z − s2(j)|

)

≤ const (Γ)
1

minµ=1,2 |sµ(j)|

since by Lemma 6.1 and the choice of Γ

(length Γ) sup
z∈Γ

√
γ2

dist(z, T )4
+
∑

s

18r(s)2

|z − s|4 ≤ b

By Lemma 6.3d, ℵj is uniformly bounded. Since the series
∑
s
r(s)
|s|2 converges and

lim
j→∞

1
sµ(j) = 0 we have

lim
j→∞

Ω̃jΓ = 0 (6.23)

Since b < 1/2, (6.22) implies

‖Ωj‖ ≤ 2Ω̃jΓ + 2b‖Ω̄j‖

By (6.19b)

‖Ω̄j‖ ≤ 1
2 Ω̃jΓ + ‖Ω̃j + Aℵj‖+ 1

4‖Ω̄j‖+ b
2‖Ω̄j‖

which implies that

‖Ω̄j‖ ≤ Ω̃jΓ + 2‖Ω̃j + Aℵj‖
‖Ωj‖ ≤ 3Ω̃jΓ + 4b‖Ω̃j + Aℵj‖

(6.24)

By (6.23), (6.17), Lemma 6.3c and Lemma 6.11, ‖Ωj‖ goes to zero with j. By (6.22) and

(6.23),
∥∥∥ωj

∣∣
X(Γ)

∥∥∥
2

also goes to zero with j. The Theorem follows as above.

Remark 6.13 We have actually proven more detailed bounds than claimed in the Theorem.

Pick any N sufficient for Lemma 6.10b and any b > 0. Define, for k ≥ N + 1

ak =

(
A2
k,com +

N∑
n=g+1

A2
k,n

)1/2
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Then there exists a constant V = V (N, b) such that the following bounds hold.

Define,

Ω̂ji =





V
min
µ=1,2

sµ(j)
+ b if i ≤ N or i =com

∑
k≥N+1(1l− Ar)−1

i,k

(
Ω̃jk + Ak,jℵj + bak + V

min
µ=1,2

sµ(j)
ak

)
if i ≥ N + 1

where the superscript r denotes the resriction to i, k ≥ N + 1. The vectors Ω̂j are uniformly

bounded in `2. The expansion of (1l − Ar)−1 converges, since ‖Ar‖ ≤ 1/4. Then, for all

z ∈ Gν ,

∣∣∣∣wνj (z)− δν,ν1(j)

2πi

(
1

z − s1(j)
− 1

z

)
+
δν,ν2(j)

2πi

(
1

z − s2(j)
− 1

z

)∣∣∣∣

≤
∑

s∈Sν

3r(s)Ω̂ji(s)

|z − s|2 +
∑

µ=1,2

δν,νµ(j)
3rµ(j)ℵj
|z − sµ(j)|2 +

γΩ̂jcom

dist(z, Tν)2

where we put ν1(j) = ν2(j) = 0 for j ≤ g. Define

Ωji =





∥∥∥ωj
∣∣
Y ′i

∥∥∥
2

if i 6= j
∥∥∥
(
ωj − (φj)∗

(
1

2πi
dz1
z1

)) ∣∣
Y ′j

∥∥∥
2

if i = j

Ωjcom =
∥∥wjdz

∣∣
T

∥∥
2

Then, for all i ≥ g + 1 and i = com,

Ωji ≤ Ω̂ji

Choosing Γ sufficiently large we have that, for any compact subset K of X,

lim
j→∞

∥∥ωj
∣∣
K
∥∥

2
= 0

Proof of Theorem 6.4 - general, multiple sheet case: Recall

Ai,k =





6π max
µ=1,2

[
rµ(i)

Rµ(i)
+ δν1(i),ν2(i)

2r3−µ(i)Rµ(i)

|s1(i)− s2(i)|2
]

if i = k

24π max
µ,τ=1,2

δνµ(i),ντ (k)
rτ (k)Rµ(i)

|sµ(i)− sτ (k)|2 if i 6= k

Ai,com = 4π sup
µ=1,2

γRµ(i)

dist(sµ(i), Tνµ(i))2

ℵj = max
µ=1,2

‖αj,µ(z)dz
∣∣
A(sµ(j))

‖2
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and define

Ω̃ji =





2 max
µ=1,2

δνµ(i),ν1(j)
Rµ(i)|s1(j)− s2(j)|

|sµ(i)− s1(j)||sµ(i)− s2(j)| if i 6= j ν1(j) = ν2(j)

2 max
µ,τ=1,2

δνµ(i),ντ (j)
Rµ(i)|sτ (j)|

|sµ(i)||sµ(i)− sτ (j)| if i 6=j ν1(j) 6=ν2(j)

max
µ=1,2

[ √
2Rµ(j)

|s1(j)− s2(j)| + sup
|z−sµ(j)|=Rµ(j)

2πRµ(j) |αj,µ(z)|
]

if i = j ν1(j) = ν2(j)

max
µ=1,2

[√
2Rµ(j)

|sµ(j)| + sup
|z−sµ(j)|=Rµ(j)

2πRµ(j) |αj,µ(z)|
]

if i = j, ν1(j) 6= ν2(j)

Observe that for all N > 0
∑

i≥N+1

(
Ω̃ji

)2

≤
{
Oj(N) if ν1(j) 6= ν2(j)
Oj if ν1(j) = ν2(j)

(6.25)

Recall that in Theorem 6.4 we wish to get bounds dependent on a small number

ρ. Select first, any positive b < min
(

1
16ρ,

1
2

)
; second, any N sufficient for Lemma 6.10b and

such that

lim sup
j→∞

ν1(j)6=ν2(j)

Oj(N) < 1
16
ρ (6.26)

This is possible by Lemma 6.3c. Third, choose a system Γ of curves as in Lemma 6.1 with

the selected N and ε = b/(1 + γ). Here γ is defined as in Proposition 6.12. It is determined

purely by the collars Tν . Finally select, for each pair (ν1, ν2) of sheets with ν1 6= ν2, a handle

I(ν1, ν2) with ν1(I(ν1, ν2)) = ν1, ν2(I(ν1, ν2)) = ν2 and YI(ν1,ν2) ∩X(Γ) = ∅. Furthermore,

choose these handles far enough out that for all (ν1, ν2), I = I(ν1, ν2) obeys

∑

ν

(length Γν) sup
z∈Γν

( ∑

µ=1,2

δνµ(I),ν
3rµ(I)

|z − sµ(I)|2ℵI +
∑

µ

δνµ(I),ν
1

2π

1

|z − sµ(I)|
)
< b (6.27a)

∥∥∥(Ai,IℵI)i≥g+1

∥∥∥
2
< b (6.27b)

OI(N) < 1
16ρ (6.27c)

Requirement (6.27a) is possible by the uniform boundedness of ℵj (Lemma 6.3d), the con-

vergence of
∑
s
r(s)
|s|2 and by lim

j→∞
1

sµ(j)
= 0. Requirement (6.27b) is possible by Lemma 6.11.

Requirement (6.27c) is possible by (6.26).

We will develop bounds on

Ωjcom =

[
m∑

ν=1

∥∥∥(wνj − wνI(j))dz
∣∣
Tν

∥∥∥
2

2

]1/2

Ωji =
∥∥∥
(
ωj − ωI(j) −

(
δi,j − δi,I(j)

)
(φi)∗

(
1

2πi
dz1
z1

)) ∣∣
Y ′i

∥∥∥
2
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where, by convention I(j) = I(ν1(j), ν2(j)) and ωI(ν,ν) = δi,I(ν,ν) = 0 for all 1 ≤ ν ≤ m.

As before we define, for each form ωj , each 1 ≤ ν ≤ m, and each s ∈ Sν

wνj,s(z) = − 1
2πi

∫

|z−s|=r(s)

wνj (ζ)

ζ−z dζ |z − s| > r(s), z ∈ Gν

and

wνj,com(z) = − 1
2πi

∫

∂Kν

wνj (ζ)

ζ−z dζ z ∈ Gν

The analog of Propositions 6.5 and 6.12 is

Proposition 6.14 For z ∈ Gν with |z − s| > r(s) for all s ∈ Sν

wνj (z) = wνj,com(z) +
∑

s∈Sν
wνj,s(z)

The series on the right hand side converges absolutely and uniformly on compact subsets of{
z ∈ Gν

∣∣ |z − s| > r(s) ∀s ∈ Sν
}

. Furthermore, for s ∈ Sν and |z − s| > 3r(s)

|f(z)s| ≤
3r(s)

|z − s|2
∥∥∥f(z)dz

∣∣
A(s)

∥∥∥
2

for both

f(z) = wνj −
∑

µ=1,2
δs,sµ(j)

(−1)µ+1

2πi
1
z−s

f(z) = wνj − wνI(j) −
∑

µ=1,2

(
δs,sµ(j) − δs,sµ(I(j))

) (−1)µ+1

2πi
1
z−s

Finally there is a constant γ, independent of j, I(j), ν, such that, for all z ∈ CrKν ∪ Tν ,

∣∣∣wνj,com(z) +
δν,ν1(j)

2πiz
− δν,ν2(j)

2πiz

∣∣∣ ≤ γ
dist(z,Tν)2

∥∥∥
(
wνj (z) +

δν,ν1(j)

2πiz
− δν,ν2(j)

2πiz

)
dz
∣∣
Tν

∥∥∥
2∣∣∣wνj,com(z)− wνI(j),com(z)

∣∣∣ ≤ γ
dist(z,Tν)2

∥∥∥
(
wνj (z)− wνI(j)(z)

)
dz
∣∣
Tν

∥∥∥
2

where dist(z, Tν) is the distance from z to Tν.

Proof: Proposition 6.14 is proven just like Proposition 6.12.

Again, Proposition 6.14 implies a bound on wνj (z) as claimed in Theorem 6.4, but

with a possibly j dependent constant Cj .
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By Corollary 6.7, for all i ≥ g + 1 and j 6= I(j),

Ωji =
∥∥∥
(
ωj − ωI(j) −

(
δi,j − δi,I(j)

)
(φi)∗

(
1

2πi
dz1
z1

)) ∣∣
Y ′i

∥∥∥
2

≤ 2π sup
µ=1,2

Rµ(i) sup
|z−sµ(i)|=Rµ(i)

∣∣∣wνµ(i)
j (z)− wνµ(i)

I(j) (z)−
(
δi,jδi,I(j)

)
(gi,µ)∗

(
1

2πi
dz1
z1

)
1
dz

∣∣∣

= 2π sup
µ=1,2

Rµ(i) sup
|z−sµ(i)|=Rµ(i)

∣∣∣wνµ(i)
j − wνµ(i)

I(j) −
(
δi,jδi,I(j)

) ( (−1)µ+1

2πi
1

z−sµ(i)
+ αi,µ(z)

)∣∣∣

= 2π sup
µ=1,2

Rµ(i) sup
|z−sµ(i)|=Rµ(i)

∣∣∣wνµ(i)
j,com(z)− wνµ(i)

I(j),com(z) +
∑

s∈Sνµ(i)

(
w
νµ(i)
j,s − wνµ(i)

I(j),s

)
(z)

−
(
δi,jδi,I(j)

) ( (−1)µ+1

2πi
1

z−sµ(i) + αi,µ(z)
) ∣∣∣

Using Lemma 6.9c, the terms with s 6= s1(j), s2(j), s1(I(j)), s2(I(j)) are bounded by

sup
|z−sµ(i)|=Rµ(i)

∣∣∣
(
w
νµ(i)
j,s − wνµ(i)

I(j),s

)
(z)
∣∣∣ ≤





6r(s)
|sµ(i)−s|2 Ωjk if s 6= sµ(i)

3r(s)
Rµ(i)2 Ωji if s = sµ(i)

with k chosen so that s ∈ {s1(k), s2(k)} and, using Lemma 6.9b, the “com” terms are bounded

by

sup
|z−sµ(i)|=Rµ(i)

∣∣∣
(
w
νµ(i)
j,com − w

νµ(i)

I(j),com

)
(z)
∣∣∣ ≤ 2γ

dist(sµ(i),Tνµ(i))2 Ωjcom

If ν1(j) 6= ν2(j) then, since ντ (j) = ντ (I(j)), the remaining terms are bounded using
∣∣∣
∑
τ=1,2

δνµ(i),ντ (j)

(
w
νµ(i)

j,sτ (j) − w
νµ(i)

I(j),sτ (j) + w
νµ(i)

j,sτ (I(j)) − w
νµ(i)

I(j),sτ (I(j))

)
(z)

−
(
δi,jδi,I(j)

) ( (−1)µ+1

2πi
1

z−sµ(i) + αi,µ(z)
) ∣∣∣

≤
∣∣∣ δνµ(i),ν1(j)

2πi

(
1

z−s1(j) − 1
z−s1(I(j))

)
− δνµ(i),ν2(j)

2πi

(
1

z−s2(j) − 1
z−s2(I(j)

)
− (−1)µ+1

2πi

δi,jδi,I(j)
z−sµ(i)

∣∣∣

+
∑
τ=1,2

δνµ(i),ντ (j)

∣∣∣wνµ(i)

j,sτ (j)(z)− w
νµ(i)

I(j),sτ (j)(z)− 1
2πi

(−1)τ+1

z−sτ (j)

∣∣∣

+
∑
τ=1,2

δνµ(i),ντ (j)

∣∣∣wνµ(i)

j,sτ (I(j))(z)− w
νµ(i)

I(j),sτ (I(j))(z) + (−1)τ+1

2πi
1

z−sτ (I(j))

∣∣∣

+
(
δi,j + δi,I(j)

)
|αi,µ(z)|

≤ 1
2π

∣∣∣δνµ(i),ν1(j)
s1(j)−s1(I(j))

(z−s1(j))(z−s1(I(j))) − δνµ(i),ν2(j)
s2(j)−s2(I(j))

(z−s2(j))(z−s2(I(j))) −
(−1)µ+1

2πi

δi,jδi,I(j)
z−sµ(i)

∣∣∣

+
∑
τ=1,2

δνµ(i),ντ (j)

(
Ωjj + ℵj

)




6rτ (j)
|sµ(i)−sτ (j)|2 if (i, µ) 6= (j, τ)

3rτ (j)
Rµ(i)2 if (i, µ) = (j, τ)

+
∑
τ=1,2

δνµ(i),ντ (j)

(
ΩjI(j) + ℵI(j)

)




6rτ (I(j))
|sµ(i)−sτ (I(j))|2 if (i, µ) 6= (I(j), τ)

3rτ (I(j))
Rµ(i)2 if (i, µ) = (I(j), τ)

+
(
δi,j + δi,I(j)

)
|αi,µ(z)|
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on |z − sµ(i)| = Rµ(i). If ν1(j) = ν2(j) the remaining terms are bounded by

∣∣∣
∑
τ=1,2

δνµ(i),ντ (j)w
νµ(i)

j,sτ (j)(z)− δi,j
(

(−1)µ+1

2πi
1

z−sµ(i)
+ αi,µ(z)

) ∣∣∣

≤
∣∣∣ δνµ(i),ν1(j)

2πi

(
1

z−s1(j) − 1
z−s2(j)

)
− (−1)µ+1

2πi
δi,j

z−sµ(i)

∣∣∣

+
∑
τ=1,2

δνµ(i),ντ (j)

∣∣∣wνµ(i)

j,sτ (j)(z)− 1
2πi

(−1)τ+1

z−sτ (j)

∣∣∣+ δi,j |αi,µ(z)|

≤ 1
2π

∣∣∣δνµ(i),ν1(j)
s1(j)−s2(j)

(z−s1(j))(z−s2(j))
− (−1)µ+1

2πi
δi,j

z−sµ(i)

∣∣∣

+
∑
τ=1,2

δνµ(i),ντ (j)

(
Ωjj + ℵj

)




6rτ (j)
|sµ(i)−sτ (j)|2 if (i, µ) 6= (j, τ)

3rτ (j)
Rµ(i)2 if (i, µ) = (j, τ)

+ δi,j |αi,µ(z)|

on |z − sµ(i)| = Rµ(i).

So, for i ≥ g + 1 and j 6= I(j),

Ωji ≤
(

Ω̃ji + Ω̃
I(j)
i + Ai,jℵj + Ai,I(j)ℵI(j)

)
+
∑

k≥g+1

Ai,kΩjk + Ai,comΩjcom (6.28)

This system of equations is supplemented by the following bound on the first N

handles. Consider any j such that s1(j), s2(j) are outside of Γ.

(Ωjcom)2 +
∑

i≤N
(Ωji )

2 ≤
∥∥∥(ωj − ωI)

∣∣
X(Γ)

∥∥∥
2

2

Clearly, ∫

Ai

(ωj − ωI) = 0

for all i such that Y ′i ⊂ X(Γ). We claim that

∫

Γν

(wνj − wνI )(z)dz = 0 (6.29)

for all ν. To prove this, let ε′ > 0 and Γ′ = (Γ′1, · · · ,Γ′m) a system of curves as in Lemma 6.1

with this ε′ such that
X(Γ) ⊂ intX(Γ′) and

Yj ⊂ X(Γ′), YI ⊂ X(Γ′)

Then Γν − Γ′ν is homologous to
∑
i∈P (Γν)Ai −

∑
i∈N(Γν ) Ai where

P (Γν) =
{
i
∣∣ Y ′i ∩X(Γ) = ∅, Y ′i ⊂ X(Γ′), ν1(i) 6= ν, ν2(i) = ν

}

N(Γν) =
{
i
∣∣ Y ′i ∩X(Γ) = ∅, Y ′i ⊂ X(Γ′), ν1(i) = ν, ν2(i) 6= ν

}
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Therefore ∫

Γν

(wνj − wνI )(z)dz =

∫

Γ′ν

(wνj − wνI )(z)dz

By Proposition 6.14

∣∣∣∣∣

∫

Γ′ν

(wνj − wνI )(z)dz

∣∣∣∣∣ ≤
∫

Γ′ν

( ∑

i,µ
νµ(i)=ν

3rµ(i)

∥∥ωj
∣∣
Yi

∥∥
2

+
∥∥ωI

∣∣
Yi

∥∥
2

|z − sµ(i)|2 +
const

|z2|

)
|dz|

≤ const
(
1 + ‖ωj‖2 + ‖ωI‖2

) ∫

Γ′ν

√√√√ 1

|z|4 +
∑

s∈Sν

r(s)2

|z − s|4 |dz|

≤ const ε′

This shows (6.29).

Now (S.12) implies that

∥∥∥(ωj − ωI)
∣∣
X(Γ)

∥∥∥
2

2
=

m∑

ν=1

i

2

∫

Γν

fν(z)(wνj − wνI )(z)dz

where, for each 1 ≤ ν ≤ m, fν(z) is a Stammfunktion of wνj − wνI on Γν . As in the proof of

Corollary 6.7, we may choose fν to be zero at some point of Γν and conclude that

∥∥∥(ωj − ωI)
∣∣
X(Γ)

∥∥∥
2
≤
√∑

ν
(length Γν)2 sup

z∈Γν

|wνj (z)− wνI (z)|2

≤
∑

ν

(length Γν) sup
z∈Γν

|wνj (z)− wνI (z)|

By Proposition 6.14, for z ∈ Γν

|wνj (z)− wνI (z)| ≤
∣∣∣∣∣w

ν
j,com(z)− wνI,com(z) +

∑

s∈Sν

(
wνj,s(z)− wνI,s(z)

)
∣∣∣∣∣

≤ γ

dist(z, Tν)2
Ωjcom +

∑

i≥g+1

∑

µ=1,2

δνµ(i),ν
3rµ(i)

|z − sµ(i)|2 Ωji +
∑

µ=1,2

δνµ(j),ν
3rµ(j)

|z − sµ(j)|2ℵj

+
∑

µ=1,2

δνµ(I),ν
3rµ(I)

|z − sµ(I)|2ℵI +
∑

µ

δνµ(j),ν
1

2π

1

|z − sµ(j)| +
∑

µ

δνµ(I),ν
1

2π

1

|z − sµ(I)|

As before denote by Ωj the components (Ωjcom,Ω
j
g+1,Ω

j
g+2, · · · ,ΩjN ) and by Ω̄j the compo-

nents (ΩjN+1, · · ·). By Cauchy-Schwarz

‖Ωj‖ ≤
∥∥∥(ωj − ωI)

∣∣
X(Γ)

∥∥∥
2
≤ Ω̃jΓ + b‖Ωj‖

≤ Ω̃jΓ + b‖Ω̄j‖+ b‖Ωj‖
(6.30)
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where

Ω̃jΓ =
∑

ν

(length Γν) sup
z∈Γν

( ∑

µ=1,2

δνµ(j),ν
3rµ(j)

|z − sµ(j)|2ℵj +
∑

µ=1,2

δνµ(I),ν
3rµ(I)

|z − sµ(I)|2ℵI

+
∑

µ

δνµ(j),ν
1

2π

1

|z − sµ(j)| +
∑

µ

δνµ(I),ν
1

2π

1

|z − sµ(I)|
)

since by Lemma 6.1 and the choice of Γ

∑

ν

(length Γν) sup
z∈Γν

√√√√ γ2

dist(z, Tν)4
+
∑

s∈Sν

18r(s)2

|z − s|4 ≤ b

By Lemma 6.3d, ℵj is uniformly bounded. Since the series
∑
s
r(s)
|s|2 converges and

lim
j→∞

1
sµ(j) = 0 we have, by (6.27a)

lim sup
j→∞

Ω̃jΓ < b (6.31)

Since b < 1/2, (6.30) implies

‖Ωj‖ ≤ 2Ω̃jΓ + 2b‖Ω̄j‖

By (6.28) and Lemma 6.10b

‖Ω̄j‖ ≤ 1
2 Ω̃jΓ +

∥∥∥∥
(

Ω̃ji + Ω̃
I(j)
i + Ai,jℵj + Ai,I(j)ℵI(j)

)
i≥N+1

∥∥∥∥+ 1
4‖Ω̄j‖+ b

2‖Ω̄j‖

which implies that

‖Ω̄j‖ ≤ Ω̃jΓ + 2

∥∥∥∥
(

Ω̃ji + Ω̃
I(j)
i + Ai,jℵj + Ai,I(j)ℵI(j)

)
i≥N+1

∥∥∥∥

‖Ωj‖ ≤ 3Ω̃jΓ + 4b

∥∥∥∥
(

Ω̃ji + Ω̃
I(j)
i + Ai,jℵj + Ai,I(j)ℵI(j)

)
i≥N+1

∥∥∥∥
(6.32)

By (6.25), Lemma 6.3c, (6.26) and (6.27c), lim sup
j→∞

∥∥∥∥
(

Ω̃ji + Ω̃
I(j)
i

)
i≥N+1

∥∥∥∥ < 2
16ρ. By Lemma

6.11 and (6.27b), lim sup
j→∞

∥∥∥
(
Ai,jℵj + Ai,I(j)ℵI(j)

)
i≥N+1

∥∥∥ < 1
16
ρ. Using this, (6.31) and (6.32)

we conclude that

lim sup
j→∞

‖Ωj‖ < ρ
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Recall that the components of Ωj are given by

Ωjcom =

[
m∑

ν=1

∥∥∥(wνj − wνI(j))dz
∣∣
Tν

∥∥∥
2

2

]1/2

Ωji =
∥∥∥
(
ωj − ωI(j) −

(
δi,j − δi,I(j)

)
(φi)∗

(
1

2πi
dz1
z1

)) ∣∣
Y ′i

∥∥∥
2

i ≥ g + 1

Since
m∑

ν=1

∥∥∥
(
wνI(j) +

δν,ν1(j)

2πiz −
δν,ν2(j)

2πiz

)
dz
∣∣
Tν

∥∥∥
2

2
+
∑

i≥g+1

∥∥∥
(
ωI(j) − δi,I(j)(φi)∗

(
1

2πi
dz1
z1

)) ∣∣
Y ′i

∥∥∥
2

2
<∞

there is a g0 such that

lim sup
j→∞

∑

i≥g0+1

∥∥∥
(
ωj − δi,j(φi)∗

(
1

2πi
dz1
z1

)) ∣∣
Y ′i

∥∥∥
2

2
< ρ

and, since ℵj is uniformly bounded,

sup
ν,j

[∥∥∥
(
wνj +

δν,ν1(j)

2πiz −
δν,ν2(j)

2πiz

)
dz
∣∣
Tν

∥∥∥
2

2
+
∑
s∈Sν

∥∥∥
(
wνj −

∑
µ=1,2

δs,sµ(j)
(−1)µ+1

2πi
1
z−s

)∣∣
A(s)

∥∥∥
2

2

]
<∞

The Theorem follows by Proposition 6.14.

Remark 6.15 Choosing Γ sufficiently large we have by (6.30) and (6.31) that, for any

compact subset K of X,

sup
j

∥∥ωj
∣∣
K
∥∥

2
<∞

Using Lemma 6.9a one sees that for each x0 ∈ X and each i0 ∈ IN with ωi0(x0) 6= 0 there is

a neighbourhood U of x0 in X such that

sup
x∈U, i∈IN

∣∣∣∣
ωi(x)

ωi0(x)

∣∣∣∣ <∞

We now state three corollaries of the preceding discussion. Applying Lemma 6.8,

we have

Proposition 6.16 Let j be sufficiently large. Then for z = (z1, z2) ∈ H(tj) with |z1|, |z2| ≤ 1
4∣∣∣∣

φ∗jωj(z)

dz1/z1
− 1

2πi

∣∣∣∣ ≤
2

5π
(|z1|+ |z2|) ≤

1

4π

and for i 6= j, ∣∣∣∣∣
φ∗jωi(z)

φ∗jωj(z)

∣∣∣∣∣ ≤ 16
√
π(|z1|+ |z2|)

∥∥∥ωi
∣∣
Y ′j

∥∥∥
2
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Proof: The map
H(4tj) −→ Yj

(ζ1, ζ2) 7−→ φj
(

1
2ζ1,

1
2ζ2
)

parametrizes the part of Yj that lies betwen the curves φj
(
|z1| = 1

2

)
and φj

(
|z2| = 1

2

)
. By

Hypothesis (GH3) this part of Yj is contained in Y ′j . So we can apply Lemma 6.8 using the

bounds of Theorem 6.4.

Corollary 6.17

0 < lim inf
j→∞

‖ωj‖22
| log tj |

< lim sup
j→∞

‖ωj‖22
| log tj |

<∞

Furthermore

lim
j→∞

‖ωj
∣∣
XrY ′j

‖22
| log tj |

= 0

Proof: By Theorem 6.4 for all sufficiently big j

1
2

√
| log tj | ≤

∥∥∥(φj)∗

(
1

2πi
dz1
z1

) ∣∣
Y ′j

∥∥∥
2
− 1

10
√
π

≤ ‖ωj
∣∣
Y ′j
‖2 ≤

∥∥∥(φj)∗

(
1

2πi
dz1
z1

) ∣∣
Y ′j

∥∥∥
2

+ 1
10
√
π
≤ 2
√
| log tj |

We show that this is the dominant contribution to ‖ωj‖2. By Theorem 6.4

‖ωj
∣∣
∪i6=jY ′i

‖2

is bounded uniformly in j. Now fix a compact subset K of X such that Xcom ∪mν=1 Tν ⊂ K.

By remark 6.13

lim
j→∞

‖ωj
∣∣
K‖2 = 0

Furthermore by Proposition 6.14 for ν = 1, · · · ,m
∥∥∥ωj

∣∣
Xreg
ν rK∪jY ′j

∥∥∥
2

≤
∑

µ=1,2

δν,νµ(j)

∥∥∥∥
1

2πi

(
1

z − sµ(j)
− 1

z

)
dz
∣∣{

z∈C
∣∣ |z−sµ(j)|≥Rµ(j),|z|≥const

}
∥∥∥∥

2

+

∥∥∥∥∥

(
wνj,com(z) +

∑

s∈Sν
wνj,s

)
dz

∣∣∣∣{
z∈Gν

∣∣ |z−s|≥R(s) for all s∈Sν
}

∥∥∥∥∥
2
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The first term is bounded by

const
√

logR1(j) + logR2(j) + log |s1(j)|+ log |s2(j)|

So it is irrelevant by (GH5i,iv). By Proposition 6.14 the second term is bounded by

∥∥∥∥
( ∑

i,µ
νµ(i)=ν

rµ(i)Ωji
|z − sµ(i)|2 +

1

|z|2 Ωjcom

)
dz

∣∣∣∣{
z∈Gν

∣∣ |z−s|≥R(s) for all s∈Sν
}
∥∥∥∥

2

Using Cauchy-Schwarz and the fact that (Ωj
com)2 +

∑
i(Ω

j
i )

2 ≤ C we get a bound

const


1 +

∑

s∈Sν

∥∥∥∥∥
r(s)

|z − s|2 d|z|
∣∣∣∣
|z−s|≥R(s)

∥∥∥∥∥

2

2




1/2

≤ const

(
1 +

∑

s∈Sν

r(s)2

R(s)2

)1/2

This last expression is bounded by Lemma 6.2.

To conclude we state one more property of the forms ωj . It will be used only in the

proof of Torelli’s Theorem in Section 11.

For j ≥ g + 1 and ν = 1, · · · ,m define

σν(j) :=





0 if ν1(j) 6= ν , ν2(j) 6= ν

(−1)µ+1sµ(j) if νµ(j) = ν , ν1(j) 6= ν2(j)

s1(j)− s2(j) if ν1(j) = ν2(j) = ν

Proposition 6.18 Let (xn)n∈IN be a sequence of points in X. Suppose that there is i0 ≥ g+1

such that ωi0(xn) 6= 0 for all n ∈ IN and

sup
i,n∈IN

∣∣∣∣
ωi(xn)

ωi0(xn)

∣∣∣∣ <∞ (6.33)

Assume furthermore that for each i ≥ g+ 1 the limit lim
n→∞

ωi(xn)
ωi0 (xn) exists, and that there is no

ν ∈ {1, · · · ,m} such that

lim
n→∞

ωi(xn)

ωi0(xn)
=

σν(i)

σν(i0)
for all i ≥ g + 1. (6.34)

Then the sequence (xn)n∈IN has an accumulation point.

To prepare for the proof we state
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Lemma 6.19 For every ν = 1, · · · ,m and every C̃ > 0 the set

{
z ∈ Gν

∣∣∣ C̃
∑

s∈Sνν

r(s)
|z−s|2 ≥ sup

j≥g+1
ν1(j) = ν2(j)=ν

∣∣∣ 1
z−s1(j) − 1

z−s2(j)

∣∣∣+ sup
j≥g+1,µ=1,2
νµ(j)=ν

ν1(j)6=ν2(j)

∣∣∣ 1
z−sµ(j) − 1

z

∣∣∣

and |z − s| ≥ 1
4R(s) for all s ∈ Sν

}

is compact in C.

Proof: For z ∈ Gν with |z − s| ≥ 1
4R(s) for all s ∈ Sν
∑

s∈Sν

r(s)

|z − s|2 ≤
const

|z|2

by (6.3). The Lemma follows from (GH6) and the facts that

lim
z→∞

|z|2
∣∣∣ 1
z−s1(j) − 1

z−s2(j)

∣∣∣ = |s1(j)− s2(j)| if ν1(j) = ν2(j) = ν

lim
z→∞

|z|2
∣∣∣ 1
z−sµ(j)

− 1
z

∣∣∣ = |sµ(j)| if νµ(j) = ν and ν1(j) 6= ν2(j)

Observe that, if Xreg
ν is joined to other sheets by infinitely many handles then

lim
j,µ

νµ(j)=ν ν1(j)6=ν2(j)

|sµ(j)| =∞

since Sν is discrete.

Proof of Proposition 6.18: Suppose the sequence has no accumulation point. Now,

Proposition 6.16 and (6.33) imply that the sequence meets only finitely many handles

φj
({

(z1, z2) ∈ H(tj)
∣∣ |z1|, |z2| ≤ 1

4

})
. By going to a subsequence we may therefore assume

that there is ν ∈ {1, · · · ,m} and a sequence of points zn with |zn−s| ≥ 1
4R(s) for all s ∈ Sν

such that xn = Φν(zn) . Write

Φ∗ν(ωj) = wj(z)dz

Clearly

lim
n→∞

zn =∞

Put

ρj(z) =
δν,ν1(j)

2πi

(
1

z − s1(j)
− 1

z

)
− δν,ν2(j)

2πi

(
1

z − s2(j)
− 1

z

)

R(z) =
∑

s∈Sν

r(s)

|z − s|2
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By Theorem 6.4 there is C > 0 such that for j ≥ g + 1

|wj(z)− ρj(z)| ≤ C|R(z)|

Now fix any C̃ > 0. By (GH6) we may assume that none of the points zn lies in

{
z ∈ C

∣∣ C̃|R(z)| ≥ sup
j≥g+1

|ρj(z)|
}

Therefore for each n ∈ IN there is j(n) ≥ g + 1 such that

∣∣ρj(n)(zn)
∣∣ ≥ C̃|R(zn)|

By assumption (6.33), there is a (possibly small) constant K > 0 such that for all n ∈ IN
∣∣∣∣
wj(n)(zn)

wi0(zn)

∣∣∣∣ ≤
1

K

so that

|wi0(zn)| ≥ K
(
|ρj(n)(zn)| − C|R(zn)|

)
≥ K(C̃ − C)|R(zn)|

Since |ρi0(zn)| ≥ |wi0(zn)| − C|R(zn)| we have

|R(zn)| ≤ 1

KC̃ − (K + 1)C
|ρi0(zn)| for all n ∈ IN (6.35)

Hence for each j there is n0(C̃, j) such that for n ≥ n0(C̃, j)
∣∣∣∣
wj(zn)

wi0(zn)
− ρj(zn)

ρi0(zn)

∣∣∣∣ =

∣∣∣∣
wj(zn)ρi0(zn)− ρj(zn)wi0(zn)

wi0(zn)ρi0(zn)

∣∣∣∣

≤ C|R(zn)|
∣∣|ρi0(zn)|+ |ρj(zn)|

∣∣
(|ρi0(zn)| − C|R(zn)|)|ρi0(zn)|

≤ C

KC̃ − (K + 1)C

|ρi0(zn)|
∣∣|ρi0(zn)|+ |ρj(zn)|

∣∣
(

1− C
KC̃−(K+1)C

)
|ρi0(zn)|2

=
C

KC̃ − (K + 2)C

∣∣|ρi0(zn)|+ |ρj(zn)|
∣∣

|ρi0(zn)|

Here we used (6.35) twice. The inequality above holds for every C̃. As

ρj(z) =
1

2πi

σν(j)

z2
+O

(
1

|z|3
)

as |z| → ∞

the inequality above implies that

lim
n→∞

wj(zn)

wi0(zn)
= lim
n→∞

ρj(zn)

ρi0(zn)
=

σν(j)

σν(i0)
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§7 Zeroes of the Theta Function

We continue considering a Riemann surface X = Xcom ∪Xreg ∪Xhan that fulfills

the hypotheses (GH1-6) of §5. Its period matrix

R = (Ri,j) =

∫

Bi

ωj

is symmetric and has positive definite imaginary part. Select any numbers t1, · · · , tg ∈ (0, 1
2
).

Theorem 7.1 The theta series

θ(z) = θ(z,R) =
∑

n∈ZZ∞
|n|<∞

e2πi〈z,n〉 eπi〈n ,Rn〉

associated with the Riemann period matrix R, converges absolutely and uniformly on bounded

subsets of the Banach space

B =
{

z = (z1, z2, · · ·) ∈ C∞
∣∣ lim
j→∞

zj
| log tj | = 0

}

with norm ‖z‖ = sup
j>1

|zj |
| log tj |

to an entire function that does not vanish identically.

This theorem is proven using (S.11). By way of preparation we show

Lemma 7.2 Let ω be a holomorphic 1-form on H(t)=
{

(z1, z2) ∈ C2
∣∣z1z2 = t, |z1|, |z2| ≤ 1

}
.

Then

‖ω‖2 ≥
√
| log t|

2π

∣∣∣∣
∫

A

ω

∣∣∣∣

where A =
{

(z1, z2) ∈ H(t)
∣∣ |z1| = |z2| =

√
t
}
.

Proof: We use z1 as coordinate on H(t). Write

ω = f(z1)dz1

For any fixed r

∣∣∣∣
∫

A

ω

∣∣∣∣
2

=

∣∣∣∣
∫ 2π

0

1 · f(reiφ) reiφdφ

∣∣∣∣
2

≤ 2π

∫ 2π

0

|rf(reiφ)|2dφ
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Hence

‖ω‖22 = 1
2

∫

t≤|z1|≤1

|f(z1)|2|dz1 ∧ dz̄1| =

∫ 1

t

∫ 2π

0

|rf(reiφ)|2dφdr
r

≥ 1

2π

∣∣∣∣
∫

A

ω

∣∣∣∣
2 ∫ 1

t

dr

r
=
| log t|

2π

∣∣∣∣
∫

A

ω

∣∣∣∣
2

Proof of Theorem 7.1: We show that the hypotheses of (S.11) are fulfilled. The condition

that
∑
tβj <∞ for some β < 1

2 is an immediate consequence of (GH2iv).

Choose nonintersecting representatives of the cycles A1, · · · , Ag and let U1, · · · , Ug
be small tubular neghbourhoods of these representatives which are biholomorphic to some

H(t)’s. By Lemma 7.2, if ω is any square integrable form on X, then

‖ω‖22 ≥
g∑

j=1

‖ω
∣∣
Uj
‖22 +

∑

j≥g+1

‖ω
∣∣
Yj
‖22

≥ 1

2π

( ∞∑

j=1

| log tj |
∣∣∣∣
∫

Aj

ω

∣∣∣∣
2) (7.1)

Now let

n =



n1

n2
...




be a vector in ZZ∞ with only finitely many nonzero components. By the Riemann period

relation (S.7) and formula (7.1)

〈n , ImRn〉 =

∥∥∥∥
∑

j

njωj

∥∥∥∥
2

2

≥ 1

2π

∑

j≥1

| log tj |n2
j

In this section we consider the analog of the Abel-Jacobi map from X to its Jacobian

and the zero set of the Theta function of the image of X. More precisely, let π : X̃ → X be

the universal covering of X. The analog of the Abel-Jacobi map is the map from X̃ to B

described in part (ii) of
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Proposition 7.3

i) Let x0 ∈ X, ξ a local coordinate on a neighbourhood U of x0 and write ωj
∣∣
U

= fj(ξ)dξ .

Then the map

ξ 7→
(
f1(ξ), f2(ξ), · · ·

)

is an analytic map from U to B.

ii) Let x̃0 ∈ X̃. Then the map

X̃ → B

x̃ 7→
(∫ x̃

x̃0

π∗ω1,

∫ x̃

x̃0

π∗ω2, · · ·
)

is analytic.

Proof: Let x0 ∈ X. If U is chosen small enough then it follows from Remark 6.15 and

Lemma 6.9a that

sup
j

sup
ξ∈U
|fj(ξ)| <∞

Then the claims follow from the Weierstrass Convergence Theorem.

For any path γ in X we put
∫

γ

~ω =

(∫

γ

ω1,

∫

γ

ω2, · · ·
)

By Proposition 7.3,
∫
γ
~ω lies in B for all compact γ and depends analytically on the end

points of γ.

Proposition 7.4 There is a constant const such that for all systems of closed curves

Γ = (Γ1, · · · ,Γm) fulfilling the conclusions of Lemma 6.1
∥∥∥∥
∫

Γν

|~ω|
∥∥∥∥ ≤ const ε

where |~ω| = (|ω1|, |ω2|, · · ·).

Proof: By Theorem 6.4 and Proposition 6.14 there exists a constant C and, for each j,

constants Ωjs, s ∈ tSν (disjoint union) and Ωjcom such that
∣∣∣∣wνj (z)

δν,ν1(j)

2πi

(
1

z − s1(j)

1

z

)
δν,ν2(j)

2πi

(
1

z − s2(j)

1

z

)∣∣∣∣ ≤
Ωjcom

dist(z, Tν)2
+
∑

s∈Sν

Ωjsr(s)

|z − s|2
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and
(
Ωjcom

)2
+
∑

s

(
Ωjs
)2 ≤ C2

For all j,

∫

Γν

∣∣∣∣∣
Ωjcom

dist(z, Tν)2
+
∑

s∈Sν

Ωjsr(s)

|z − s|2

∣∣∣∣∣ |dz| ≤ C
∫

Γν

√√√√ 1

dist(z, Tν)4
+
∑

s∈Sν

r(s)2

|z − s|4 |dz|

≤
√

2Cε

by (6.1b).

If ν1(j) = ν2(j) = ν then

∫

Γν

∣∣∣∣
1

z − s1(j)
− 1

z − s2(j)

∣∣∣∣ |dz| =
∫

Γν

|s1(j)− s2(j)|
|z − s1(j)||z − s2(j)| |dz| ≤ ε| log tj |

by (6.1c). If ν = ν1(j) 6= ν2(j) then, by (6.1d)

∫

Γν

∣∣∣∣
1

z − s1(j)
− 1

z

∣∣∣∣ |dz| =
∫

Γν

|s1(j)|
|z||z − s1(j)| |dz| ≤ ε| log tj |

This implies the Proposition.

We choose standard paths to infinity in

Lemma 7.5 There is a point x(0) ∈ Xcom and there are non self-intersecting paths Pν :

[0,∞) → X, ν = 1, · · · ,m such that Pν(0) = x(0), Pν and Pµ intersect only at x(0), Pν(t)

lies in Xreg
ν r h−1

X ([0, t]) for all sufficiently big t, P−1
ν (Xreg) is connected and

lim
t→∞

sup
j

ν1(j)=ν2(j)=ν

1

| log tj |

∣∣∣∣log
Φ−1
ν Pν(t)− s1(j)

Φ−1
ν Pν(t)− s2(j)

∣∣∣∣ = 0 (7.2a)

lim
t→∞

sup
ν1(j)6=ν2(j)

νµ(j)=ν

1

| log tj |

∣∣∣∣log

(
1− sµ(j)

Φ−1
ν Pν(t)

)∣∣∣∣ = 0 (7.2b)

∫

Φ−1Pν([t0,∞))

√√√√ 1

|z|4 +
∑

s∈Sν

r(s)2

|z − s|4 |dz| <∞ (7.2c)

for some t0.
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Proof: Choose ζν ∈ Gν sufficiently large and obeying |ζν − s| ≥ 1
4R(s) for all s ∈ Sν .

Join ζν to ∞ by a straight line that goes radially outward. Replace each line segment that

intersects one of the discs
{
|z − s| < 1

4R(s)
}

s ∈ Sν

by the shorter arc of the circle
{
|z − s| = 1

4
R(s)

}
. Call the resulting path P̃ν .

Choose any x(0) ∈ Xcom. Connect x(0) to Φν(ζν), 1 ≤ ν ≤ m by paths that are nonself-

intersecting and that intersect each other only at x(0). Call Pν the path obtained by composing

the path connecting x(0) to Φν(ζν) with Φν(P̃ν).

We now prove (7.2a). Pick any z ∈ P̃ν and let j obey ν1(j) = ν2(j) = ν. We may

assume without loss of generality that |z − s1(j)| ≥ |z − s2(j)|. Using (GH5iii), we have

1

| log tj |

∣∣∣∣log
z − s1(j)

z − s2(j)

∣∣∣∣ ≤
1

| log tj |
log

(
1 +

∣∣∣∣
s1(j)− s2(j)

z − s2(j)

∣∣∣∣
)

≤ 1

| log tj |
log

(
1 +

const |s2(j)|
R2(j)

)
≤ const (1 + δ)

| log tj |
log |s2(j)|

This is independent of z and goes to zero as j goes to infinity, by (GH5iv). Furthermore, for

each fixed j

lim
|z|→∞
z∈P̃ν

log

∣∣∣∣
z − s1(j)

z − s2(j)

∣∣∣∣ = 0

This proves (7.2a). The proof of (7.2b) is similar.

To prove (7.2c), notice that by (6.3)

∫

P̃ν

√√√√ 1

|z|4 +
∑

s∈Sν

r(s)2

|z − s|4 |dz| ≤ const

∫

P̃ν

1

|z|2 |dz| <∞
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Proposition 7.6 For ν = 1, · · · ,m

êν := lim
t→∞

∫

Pν([0,t])

~ω

exists in B.

Proof: We must show that

lim
t→∞

sup
t′>t

∥∥∥∥∥

∫

Pν([t,t′])
~ω

∥∥∥∥∥ = 0

As in the proof of Proposition 7.4

∣∣∣∣wνj (z)
δν,ν1(j)

2πi

(
1

z − s1(j)

1

z

)
δν,ν2(j)

2πi

(
1

z − s2(j)

1

z

)∣∣∣∣ ≤
Ωjcom

dist(z, Tν)2
+
∑

s∈Sν

Ωjsr(s)

|z − s|2

with (
Ωjcom

)2
+
∑

s

(
Ωjs
)2 ≤ C2

The integral

∫

Φ−1
ν Pν([t,t′])

∣∣∣∣∣
Ωjcom

dist(z, Tν)2
+
∑

s∈Sν

Ωjsr(s)

|z − s|2

∣∣∣∣∣ |dz| ≤
∫

Φ−1
ν Pν([t,t′])

√√√√ 1

dist(z, Tν)4
+
∑

s∈Sν

r(s)2

|z − s|4 |dz|

converges to zero as t→∞ by (7.2c).

If ν1(j) = ν2(j) then

∫

Φ−1
ν Pν([t,t′])

(
1

z − s1(j)
− 1

z − s2(j)

)
dz = log

z − s1(j)

z − s2(j)

∣∣∣
Φ−1
ν Pν(t′)

Φ−1
ν Pν(t)

so that, by (7.2a),

lim
t→∞

sup
t′>t

sup
j

1

| log tj |

∣∣∣∣∣

∫

Φ−1
ν Pν([t,t′])

(
1

z − s1(j)
− 1

z − s2(j)

)
dz

∣∣∣∣∣ = 0

Also by (7.2b), if ν1(j) 6= ν2(j) and ν = ν1(j) then

lim
t→∞

sup
t′>t

sup
j

1

| log tj|

∣∣∣∣∣

∫

Φ−1
ν Pν([t,t′])

(
1

z − s1(j)
− 1

z

)
dz

∣∣∣∣∣ = 0
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Lemma 7.7

lim
j→∞

ν1(j)=ν2(j)

1

| log tj |
log

(
|s1(j)− s2(j)|

min
(
R1(j),R2(j)

)
)

= 0

and

lim
j→∞

ν1(j)6=ν2(j)

1

| log tj |

(
log
|s1(j)|
R1(j)

+ log
|s2(j)|
R2(j)

)
= 0

Proof: We consider the case ν1(j) = ν2(j). The other case is similar. By (GH5ii)

min
(
|s1(j)|−1−δ, |s2(j)|−1−δ) ≤ |s1(j)− s2(j)|

min
(
R1(j),R2(j)

) ≤ 2 max
(
|s1(j)|1+δ, |s2(j)|1+δ

)

So the claim follows from (GH5iv).

Proposition 7.8 For every ε > 0 and T > 0 there is a t > T such that for every point

x in Xreg
ν ∩ h−1

X ([t,∞)) with |Φ−1
ν (x) − s| ≥ 1

4R(s) for all s ∈ Sν there exists a path γ in

Xreg
ν ∩ h−1

X ([T,∞)) with the following properties:

1) γ joins x to a point of Pν([0,∞))

ii) sup
j

∣∣∣∣
1

| log tj |

∫

γ

ωj

∣∣∣∣ < ε

Proof: Let ζ ∈ Gν be sufficiently large and obey |ζ − s| ≥ 1
4R(s) for all s ∈ Sν . Join ζ to

∞ by a straight line that goes radially outward. Replace each line segment that intersects

one of the discs {
|z − s| < 1

4R(s)
}

s ∈ Sν

by the shorter arc of the circle
{
|z − s| = 1

4R(s)
}

. Call the resulting path γ̃.

Using the notation as in the proofs of Propositions 7.4, 7.6 we have for each ρ > 0

∫

γ̃ζ

∑

s∈Sν
|s|>ρ

Ωjsr(s)

|z − s|2 |dz| ≤
∑

s∈Sν
|s|>ρ

Ωjs
r(s)

R(s)

≤ C
√√√√
∑

s∈Sν
|s|>ρ

r(s)2

R(s)2

(7.3)

To see the the last inequality observe that

∫

P̃ν

1

|z − s|2 |dz| <
const

R(s)
∀s ∈ Sν
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When P̃ν is a straight line this is obvious from

∫ ∞

−∞

dx

x2 + σ2
=
π

σ
≤ 4π

R(s)
∀ σ ≥ 1

4R(s)

The process of substituting circular arcs for line segments just changes the constant in the

bound.

If ρ is sufficiently large, then the right hand side of (7.3) is smaller than ε by Lemma

6.2. Furthermore ∫

γ̃ζ

∑

s∈Sν
|s|≤ρ

Ωjsr(s)

|z − s|2 |dz| ≤ C
∫

γ̃ζ

∑

s∈Sν
|s|≤ρ

r(s)

|z − s|2 |dz|

goes to zero as |ζ| → ∞ uniformly in j.

Next, if ν1(j) = ν2(j) = ν then for any τ > 0 and j ≥ g + 1

∣∣∣∣∣
1

log tj

∫

γ̃ζ([0,τ ])

(
1

z − s1(j)
− 1

z − s2(j)

)
dz

∣∣∣∣∣ ≤
1

| log tj |

∣∣∣∣log
ζ − s1(j)

ζ − s2(j)
− log

γ̃ζ(τ)− s1(j)

γ̃ζ(τ)− s2(j)

∣∣∣∣

≤ 1

| log tj |

[
2 log

(
1 +

4|s1(j)− s2(j)|
min(R1(j),R2(j))

)
+ 4π

]

This goes to zero with j by Lemma 7.7. Also, for any fixed j with ν1(j) = ν2(j)

lim
|ζ|→∞

sup
τ>0

∣∣∣∣∣
1

log tj

∫

γ̃ζ([0,τ ])

(
1

z − s1(j)
− 1

z − s2(j)

)
dz

∣∣∣∣∣ = 0

Finally, if ν1(j) = ν with ν1(j) 6= ν2(j) then for any τ > 0

∣∣∣∣∣
1

log tj

∫

γ̃ζ([0,τ ])

(
1

z − s1(j)
− 1

z

)
dz

∣∣∣∣∣ ≤
1

| log tj |

[
2 log

(
1 +
|4s1(j)|
R1(j)

)
+ 4π

]

goes to zero with j by Lemma 7.7 and, for any fixed j as above

lim
|ζ|→∞

sup
τ>0

∣∣∣∣∣
1

log tj

∫

γ̃ζ([0,τ ])

(
1

z − s1(j)
− 1

z

)
dz

∣∣∣∣∣ = 0

By the estimates above

lim
|ζ|→∞

sup
j

sup
τ>0

∣∣∣∣∣
1

log tj

∫

γ̃ζ([0,τ ])

w
(ν)
j (z)dz

∣∣∣∣∣ = 0 (7.4)

Given ε and T as in the Proposition choose t > T such that the expression of (7.5) is smaller

than ε for all ζ with hX(Φν(ζ)) ≥ t and |ζ − s| ≥ 1
4R(s) for all s ∈ Sν . Consider x such that
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ζ = Φ−1
ν (x) has these properties. By Proposition 7.4 there exists Γ = (Γ1, · · · ,Γm) such that

x ∈ X(Γ), h−1
X ([0, T ]) ⊂ X(Γ) and ∥∥∥∥

∫

Γ

|~ω|
∥∥∥∥ ≤ ε

Let Φν
(
γ̃ζ(τ)

)
be an intersection point of Φν γ̃ζ([0,∞)) with Γν . Define γ as the composition

of Φ
(
γ̃ζ([0, τ ])

)
and a piece Γ̂ of Γν that joins Φν

(
γ̃ζ(τ)

)
to a point of Pν([0,∞)). Since

1

| log tj |

∣∣∣∣
∫

Γ̂

ωj

∣∣∣∣ ≤
∥∥∥∥
∫

Γ̂

|~ω|
∥∥∥∥

we have

sup
j

1

| log tj |

∣∣∣∣
∫

Γ̂

ωj

∣∣∣∣ ≤ 2ε

If x1, x2 are points of the same regular piece X reg
ν and γ, γ′ are paths in Xreg

ν joining

x1 to x2 then the homology classes of γ and γ ′ differ by a linear combination of A-cycles. So,

by the periodicity of the theta function, for any e ∈ B

θ

(
e+

∫

γ

~ω

)
= θ

(
e+

∫

γ′
~ω

)

In this situation we define

θ

(
e+

∫ x2

x1

~ω

)
= θ

(
e+

∫

γ

~ω

)

If x is a point of Xreg
ν and e ∈ B we define θ

(
e+

∫ x
∞ν

~ω
)

as follows: Choose an auxiliary

point x′ = Pν(t′) in Xreg
ν on the path Pν([0,∞)) and put

θ

(
e+

∫ x

∞µ

~ω

)
:= θ


e− êµ +

∫

wν ([0,t′])

~ω +

∫ x

x′
~ω




If x′′ = Pν(t′′) is another choice of the auxiliary point then by construction the path

Pν([t′, t′′]) ⊂ Xreg
ν . As above one sees that the definition is independent of the choice of

auxiliary point. Put

θ

(
e+

∫ x

∞
~ω

)
:= θ

(
e+

∫ x

∞1

~ω

)

Lemma 7.9 For each e ∈ B and ν = 1, · · · ,m

lim
|Φ−1
ν (x)|→∞

θ

(
e+

∫ x

∞
~ω

)
= θ (e+ êν − ê1)

The limit is over all x in
{
x ∈ Xreg

ν

∣∣ |Φ−1
ν (x)− s| ≥ 1

4
R(s) ∀s ∈ Sν

}
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Proof: Let ε > 0. By Propositions 7.8 and 7.6 respectively there exists, for each point of{
x ∈ Xreg

ν

∣∣ |Φ−1
ν (x)−s| ≥ 1

4R(s) ∀s ∈ Sν
}

with Φ−1
ν (x) sufficiently large, a path γx in Xreg

ν

joining x to a point Pν(t(x)) such that

sup
j

1

| log tj |

∣∣∣∣
∫

γx

ωj

∣∣∣∣ < ε and
∥∥∥
∫

Pν([t(x),∞))

~ω
∥∥∥ < ε

We have

θ

(
e+

∫ x

∞
~ω

)
= θ


e+ êν − ê1 −

∫

Pν([t(x),∞))

~ω −
∫

γx

~ω




The claim now follows from the continuity of the theta function.

We use the previous Lemma to discuss the integral of d log θ
(
e+

∫ x
∞ ~ω

)
around the

curves

a(s) = Φν({z ∈ C | |z − s| = R(s)}) s ∈ Sν

a(s) is a special representative of ±Aj , s = s1(j) or s = s2(j).

Corollary 7.10 Let e ∈ B and ν ∈ {1, · · · ,m} such that

θ (e− ê1 + êν) 6= 0

(i) For all sufficiently large s ∈ Sν
∫

a(s)

d log θ

(
e+

∫ x

∞
~ω

)
= 0

(ii) For all curves Γ = (Γ1, · · · ,Γm) as in Lemma 6.1 with ε sufficiently small

∫

Γν

d log θ

(
e+

∫ x

∞
~ω

)
= 0

Proof: Whenever s is sufficiently large then, by the previous lemma

∣∣∣∣θ
(
e+

∫ x

∞
~ω

)
− θ (e− ê1 + êν)

∣∣∣∣ <
1

2
|θ (e− ê1 + êν)|

for all x ∈ a(s) so that there is a single valued branch of log θ
(
e+

∫ x
∞ ~ω

)
defined on a(s).

The same argument applies to Γν .
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We are now going to discuss zeroes of the theta function on X. Observe that, by

the transformation properties of the theta function, for any two points x1, x2 ∈ X and any

two paths γ, γ′ joining x1 to x2,

θ

(
e+

∫

γ

~ω

)
= 0 ⇐⇒ θ

(
e+

∫

γ′
~ω

)
= 0

In this case we say that θ
(
e+

∫ x2

x1
~ω
)

= 0. Otherwise we say θ
(
e+

∫ x2

x1
~ω
)
6= 0. Observe

that, in general, the actual value depends on the homology class of the joining path. Similarly

we say that θ
(
e+

∫ x
∞µ

~ω
)

= 0 if θ
(
e− êµ +

∫ x
x(0) ~ω

)
= 0

Theorem 7.11 Let e ∈ B such that θ (e− ê1 + êν) 6= 0 for ν = 1, · · · ,m. Then there is a

compact subset K of X such that

(i) θ
(
e+

∫ x
∞ ~ω

)
has exactly genus(X(Γ)) zeroes in X(Γ) if Γ is as in Lemma 6.1 with K ⊂

X(Γ).

(ii) θ
(
e+

∫ x
∞ ~ω

)
has no zeroes in

⋃
ν

{
x ∈ Xreg

ν rK
∣∣ |Φ−1

ν (x)− s| ≥ 1
4R(s) ∀s ∈ Sν

}
.

(iii) For each j such that the handle Yj is contained in X rK there is exactly one zero xj of

θ
(
e+

∫ x
∞ ~ω

)
in Yj. There is η > 0 such that for all such j

xj ∈ Yj(η) := φj{(z1, z2) ∈ H(tj) | |zµ| < |tj|η for µ = 1, 2}

Proof: Part (ii) of the Theorem is an immediate consequence of Lemma 7.9. We now

discuss points of Y ′j − Yj(η) for a priori arbitrary η. Let y = φ(ξ1, ξ2) be such a point with,

say, |ξ1| ≥ exp (−η| log tj |). Let σ be the image of the line segment

{
(z1, z2) ∈ H(tj)

∣∣ arg z1 = arg ξ1, |ξ1| ≤ |z1| ≤ 1
}

under φj and let x := φj

(
ξ1
|ξ1| , |ξ1| ξ2

)
.

Let j be sufficiently large. Then, by Proposition 6.16

sup
i

1

log ti

∫

σ

|ωi| ≤ const η

and, as x lies in one of the sets Xreg
ν , there is, by Propositions 7.8 and 7.6, a path γx joining

x to a point Pν(t(x)) such that

sup
i

1

log ti

∫

γx

|ωi|+
∥∥∥
∫

Pν([t(x),∞))

~ω
∥∥∥ < η
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If η was chosen such that for all e′ with supj
|e′j |
| log tj | ≤ (const + 2)η one has

θ (e− ê1 + êν + e′) 6= 0 then

θ

(
e+

∫ y

∞
~ω

)
= θ

(
e− ê1 + êν −

(∫

Pν([t(x),∞))

~ω +

∫

γx

~ω +

∫

σ

~ω
))
6= 0

To count the number of zeroes of θ
(
e+

∫ x
∞ ~ω

)
we use

Lemma 7.12 Let e ∈ B be such that θ(e− ê1 + êν) 6= 0 for ν = 1, · · · ,m. Let X ′ be a compact

submanifold with boundary in X containing Xcom such that

(i) X ′ ∩Xreg
ν is connected for ν = 1, · · · ,m.

(ii) ∂X ′ ⊂ Xreg
ν

(iii)
∫
C′ d log θ

(
e+

∫ x
∞ ~ω

)
= 0 for each component C ′ of ∂X ′

Then θ
(
e+

∫ x
∞ ~ω

)
has precisely genus(X ′) zeroes in X ′.

Proof: Let C1, · · · , Cn be the components of ∂X ′. There is i1 < i2 < · · · < ip such

that Ai1 , · · ·Aip , Bi1 , · · · , Bip , C1 · · · , Cn generate the homology of X ′. This basis can be

represented by closed curves ai1 , · · · , aip , bi1 , · · · , bip , C1 · · · , Cn in X ′ obeying aik ∩ ail =

bik ∩ bil = aik ∩Cj = bik ∩Cj = ∅ for all k, l, j. Furthermore aik ∩ bil = ∅ if k 6= l and aik ∩ bik
consists of exactly one point. Cutting up X ′ along this system of paths we get a Riemann

surface X̃ ′ whose homology is generated by AijBijA
−1
ij
B−1
ij
, 1 ≤ j ≤ p and Cj , 1 ≤ j ≤ n.

Each Cj is a closed curve in Xreg
ν and hence an integer linear combination of A

cycles. Thus
∫
Cj
~ω is an integer linear combination of 1lk’s. Clearly

∫
AijBijA

−1
ij
B−1
ij

~ω = 0. By

the periodicity of the theta function, θ
(
e+

∫ x
∞ ~ω

)
is a single valued holomorphic function on

X̃ ′. Here, for x ∈ X ′, the vector
∫ x
∞ ~ω is defined as −ê1 +

∫
γ
~ω , where γ is a path in X̃ ′

joining x(0) to x. We now verify that, this definition coincides with the previous definition

whenever x ∈ Xreg.

Let P com
ν = Pν([0,∞)) ∩Xcom. We can choose the representative curves aik , bik so

that they do not intersect any P com
ν . Also we can view X̃ ′ ∩Xreg

ν as follows. Take X ′ ∩Xreg
ν ,

which by hypothesis is connected, and delete from it the curves bik with ik ≥ g+1. Whenever

ν1(ik) = ν2(ik) = ν this involves deleting a line segment joining the “holes” around s1(ik)

and s2(ik). When ν = ν1(ik) 6= ν2(ik) this involves deleting a line segment joining the “hole”

around s1(ik) to Xcom. Consequently, X ′ ∩Xreg
ν r {bik} is connected and we can choose, for

any x ∈ X ′∩Xreg
ν the path γ to consist of P com

ν composed with some path in X ′∩Xreg
ν r{bik}.

This path was also allowed under the previous definition.
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By Stokes’ theorem the number of zeroes of θ
(
e+

∫ x
∞ ~ω

)
in X ′ is

1

2πi

∫

∂X̃′
d log θ

(
e+

∫ x

∞
~ω

)

By the assumption of the Lemma,
∫
Cj
d log θ

(
e+

∫ x
∞ ~ω

)
= 0 so we are left with

1

2πi

p∑

k=1

{∫

aik

d log θ
(
e+

∫ x
∞ ~ω

)
+

∫

bik

d log θ
(
e+

∫ x
∞ ~ω

)
−
∫

aik

d log ω̃

−
∫

bik

d log θ
(
e+

∫ x
∞ ~ω + 1lik

)}

=
1

2πi

p∑

k=1

∫

aik

d
[
2πi

(
eik +

∫ x
∞ ωik + 1

2Rikik
)]

= p

To continue the proof of Theorem 7.11 observe that by Corollary 7.10 the surface

X(Γ) fulfils the hypothesis of Lemma 7.12 if Γ is sufficiently far out. This gives part (i) of the

Theorem. To prove the remaining part of (iii) recall that Y ′j is the cylinder in Yj bounded by

a(s1(j)) and a(s2(j)). Let Γ be far enough out that Yj ⊂ X(Γ), and put X ′ := X(Γ)− Y ′j .

By Corollary 7.10 the hypotheses of Lemma 7.12 are fulfilled if j is big enough. Since

genus(X’)=genus(X(Γ))− 1 there must be a zero of θ
(
e+

∫ x
∞ ~ω

)
inside Y ′j .

Remark 7.13 The proof shows that there exist E > 0, η > 0 and j0 > 0 such that for all

j ≥ j0 and all ‖e′‖ < E, there is exactly one zero x′j of θ(e+ e′ +
∫ x
∞ ~ω) in Yj(η). This is the

unique zero of θ(e+ e′ +
∫ x
∞ ~ω) in Yj.

To compare the zero sets of θ
(
e+
∫ x
∞ ~ω

)
and θ

(
e′+

∫ x
∞ ~ω

)
for different e, e′ we will

use

Lemma 7.14 Let xg+1, xg+2, · · · and x′g+1, x
′
g+2, · · · be sequences of points in X such that

xj , x
′
j ∈ Yj for all j and let γj be paths in Yj connecting xj to x′j. Assume that there is

an η > 0 such that xj , x
′
j ∈ Yj(η) for all sufficiently big j. Assume further that there

is an increasing sequence of finite subsets Jn of {g + 1, g + 2, · · ·} such that ∪n≥0Jn =

{g + 1, g + 2, · · ·} and

lim
n→∞

∑

j∈Jn

∫

γj

~ω
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exists in B. Then (
0, · · · , 0,

∫

γg+1

ωg+1,

∫

γg+2

ωg+2, · · ·
)
∈ B

Proof: We may assume that xj , x
′
j ∈ Yj(η) and γj ⊂ Yj(η) for all j. By Proposition 6.16

∣∣∣∣∣

∫

γj

ωi

∣∣∣∣∣ ≤ 48
√
π
∥∥∥ωi
∣∣
Y ′j

∥∥∥
2
tηj

∣∣∣
∫

γj

ωj

∣∣∣

for all i 6= j. Therefore, for each finite subset J of {g + 1, g + 2, · · ·}
∥∥∥
∑

j∈J

∫

γj

(~ω − 1ljωj)
∥∥∥ ≤ 48

√
π sup

i


 1

| log ti|
∑

j∈J

∥∥∥ωi
∣∣
Y ′j

∥∥∥
2
tηj

∣∣∣
∫

γj

ωj

∣∣∣




≤ 48
√
π sup

i


 1

| log ti|
∑

j∈J

∥∥∥ωi
∣∣
Y ′j

∥∥∥
2
tηj | log tj |


 sup

j∈J

1

| log tj |
∣∣∣
∫

γj

ωj

∣∣∣

≤ 48
√
π sup

i


∑

j∈J

∥∥∥ωi
∣∣
Y ′j

∥∥∥
2

2




1/2
∑

j∈J
t2ηj | log tj |2




1/2∥∥∥
∑

j∈J

∫

γj

1ljωj

∥∥∥

Here 1lj denotes the vector (0, · · · , 0, 1, 0, · · ·) of B. By Theorem 6.4 the first factor is bounded

by a constant independent of J . By (GH2iv) there is for each ε > 0 an N ∈ IN such that
∑

j∈J
t2ηj | log tj |2 < ε2

whenever J ⊂ {N,N + 1, · · ·}. So we see that for every ε > 0 there is an N ∈ IN such that

for all finite subsets J of {g, g+ 1, · · ·}
∥∥∥
∑

j∈J
j≥N

∫

γj

(~ω − 1ljωj)
∥∥∥ ≤ ε

∥∥∥
∑

j∈J
j≥N

∫

γj

1ljωj

∥∥∥ (7.5)

Observe that we have not used the convergence of lim
n→∞

∑
j∈Jn

∫
γj
~ω yet. We do so

now. From (7.5) it follows that there is an N such that for all n ≥ N and for all n′ ≥ n
∥∥∥

∑

j∈Jn′rJn
1lj

∫

γj

ωj

∥∥∥ ≤
∥∥∥

∑

j∈Jn′rJn

∫

γj

~ω
∥∥∥+

∥∥∥
∑

j∈Jn′rJn

∫

γj

(~ω − 1ljωj)
∥∥∥

≤
∥∥∥

∑

j∈Jn′rJn

∫

γj

~ω
∥∥∥+ 1

2

∥∥∥
∑

j∈Jn′rJn
1lj

∫

γj

ωj

∥∥∥

Therefore
(∑

j∈Jn 1lj
∫
γj
ωj

)
n

is a Cauchy sequence in B and

∞∑

j=g+1

1lj

∫

γj

ωj =

(
0, · · · , 0,

∫

γg+1

ωg+1,

∫

γg+2

ωg+2, · · ·
)

lies in B.
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The proof of the Lemma above also yields the following result, which will be useful

later.

Lemma 7.15 Let xg+1, xg+2, · · · and x′g+1, x
′
g+2, · · · be sequences of points in X such that

xj , x
′
j ∈ Yj(η) for all j and let γj be paths in Yj(η) connecting xj to x′j. Assume further

(
0, · · · , 0,

∫

γg+1

ωg+1,

∫

γg+2

ωg+2, · · ·
)
∈ B

Then

(i)
∑∞
j=g+1

∫
γj
~ω converges in B

(ii) For every ε > 0 there is an N , depending only on ε, η, not on the sequences x, x′, such

that for all n ≥ N
∥∥∥
∞∑

j=n

∫

γj

(~ω − 1ljωj)
∥∥∥ ≤ ε

∥∥∥
∞∑

j=n

∫

γj

1ljωj

∥∥∥

Proof: The bound (7.5) is also true under the assumptions of this Lemma. It implies that

∞∑

j=g+1

∫

γj

(~ω − 1ljωj)

converges in B. Therefore

∞∑

j=g+1

∫

γj

~ω =
∞∑

j=g+1

1lj

∫

γj

ωj +
∞∑

j=g+1

∫

γj

(~ω − 1ljωj)

also converges. This proves part (i). Part (ii) is again a direct consequence of (7.5).

Theorem 7.16 Let e, e′ ∈ B be such that

θ(e− ê1 + êν) 6= 0, θ(e′ − ê1 + êν) 6= 0 for ν = 1, · · · ,m

Let x1, x2, · · ·, resp x′1, x
′
2, · · ·, be the zeroes of θ

(
e+

∫ x
∞ ~ω

)
resp, θ

(
e′ +

∫ x
∞ ~ω

)
such that

xj , x
′
j ∈ Yj for all sufficiently big j. Then there are paths γj joining xj to x′j such that

γj ⊂ Y ′j for all sufficiently large j

(∫

γ1

ω1,

∫

γ2

ω2, · · ·
)
∈ B
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and

e− e′ =
∑

j≥1

∫

γj

~ω

To prepare for the proof, we construct a special exhaustion of X by compact sub-

manifolds X(n). Namely, let Γ(n), n sufficiently big, be systems of curves as in Lemma 6.1

with N = n, ε = 1
n such that, with X(n) = X(Γ(n)),

X(n) ⊂ intX(n+1) (7.6)

Proof of Theorem 7.16: Denote J (n) =
{
j
∣∣ Y ′j ⊂ X(n)

}
and C

(n)
ν = Pν([0,∞))∩X(n).

Cut X(n) open as follows and call the resulting surface X̃(n). First cut along the C
(n)
ν ’s.

a2

a1

b1

b2C
(n)
m

∂X
(n)
m

(
C

(n)
m

)−1

C
(n)
1

∂X
(n)
1

(
C

(n)
1

)−1

C
(n)
2

∂X
(n)
2

(
C

(n)
2

)−1

The result is a manifold with boundary
∑m
ν=1C

(n)
ν ∂X

(n)
ν

(
C

(n)
ν

)−1

and handles Yj , j ∈ J (n).

Choose curves aj, bj, j ∈ J (n) representing the A and B cycles in X ′ that obey aj ∩ aj′ =

bj ∩ bj′ = aj ∩ C(n)
ν = bj ∩ C(n)

ν = aj ∩ ∂X(n)
ν = bj ∩ ∂X(n)

ν = ∅ for all j, j′, ν. Furthermore

aj ∩ bj′ = ∅ if j 6= j′ and aj ∩ bj consists of exactly one point. Cut along the aj ’s and bj ’s.

a−1
1

a−1
2

a1

a2
b1

b2

b−1
1

b−1
2

X̃(n)
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Then X̃(n) has outer boundary given by the single curve
∑m

ν=1C
(n)
ν ∂X

(n)
ν

(
C

(n)
ν

)−1

and

|J (n)| holes each bounded by a AjBjA
−1
j B−1

j , j ∈ J (n).

We define the holomorphic function u : X̃(n) → B by

u(x) =

∫ x

x(0)

~ω − ê1

Since ∫

Aj

~ω +

∫

Bj

~ω +

∫

B−1
j

~ω +

∫

A−1
j

~ω = 0

m∑

ν=1

∫

C
(n)
ν ∂X

(n)
ν

(
C

(n)
ν

)−1
~ω =

∫

∂X(n)

~ω = 0

the function u is single-valued on X̃(n). So, by the residue theorem

∑

j∈J(n)

u(xj) =
1

2πi

∫

∂X̃(n)

u(x)d log θ(e+ u(x))

A standard calculation like in the case of compact Riemann surfaces (see e.g.

[M, p149]) shows that the contribution to the right hand side from the holes AjBjA
−1
j B−1

j is

∑

j∈J(n)

{∫

aj

(u(x) + Rj)ωj −
1

2πi
Rj

∫

aj

d log θ(e+ u(x)) +
1

2πi
1lj

∫

bj

d log θ(e+ u(x))

}

The contribution from the outer boundary is

1

2πi

∫

∂X(n)

u(x)d log θ(e+ u(x))−
m∑

ν=1

1

2πi

∫

∂X
(n)
ν

~ω

∫

C
(n)
ν

d log θ(e+ u(x))

Substracting the corresponding result for
∑

j∈J(n)

u(x′j) we get

∑

j∈J(n)

(u(xj)− u(x′j)) =
1

2πi

∑

j∈J(n)

{
−Rj

∫

aj

[
d log θ(e+ u(x))− d log θ(e′ + u(x))

]

+1lj

∫

bj

[
d log θ(e+ u(x))− d log θ(e′ + u(x))

]}

+
1

2πi
Vn +

1

2πi
Wn

(7.7)

where

Vn =

∫

∂X(n)

u(x)
(
d log θ

(
e+

∫ x
∞ ~ω

)
− d log θ

(
e′ +

∫ x
∞ ~ω

))

Wn =

m∑

ν=1

1

2πi

∫

∂X
(n)
ν

~ω

∫

C
(n)
ν

(d log θ(e′ + u(x))− d log θ(e+ u(x)))

161



We now show that both Vn and Wn converge to zero as n→∞. By Corollary 7.10ii

log θ
(
e+

∫ x
∞ ~ω

)
and log θ

(
e′ +

∫ x
∞ ~ω

)
are single valued functions on ∂X(n) whenever n is big

enough. In this case we can apply partial integration and get

Vn = −
∫

∂X(n)

[
log θ

(
e+

∫ x
∞ ~ω

)
− log θ

(
e′ +

∫ x
∞ ~ω

)]
~ω

yielding the bound

‖Vn‖ ≤ sup
x∈∂X(n)

∣∣∣log θ
(
e+

∫ x
∞ ~ω

)
− log θ

(
e′ +

∫ x
∞ ~ω

)∣∣∣
∥∥∥∥
∫

∂X(n)

|~ω|
∥∥∥∥

By Lemma 7.9, the supremum remains bounded as n→∞. By Proposition 7.4, the integral

converges to zero. Observe that ∂X
(n)
ν is a linear combination, with coefficients ±1 or 0, of

Aj ’s with j /∈ J (n). Thus
∣∣ ∫
∂X

(n)
ν

ωi
∣∣ ≤ 1 and is zero if i ∈ J (n) so that

lim
n→∞

∥∥∥∥
∫

∂X
(n)
ν

~ω

∥∥∥∥ = 0

By Lemma 7.9, the integral
∫
C

(n)
ν

(
d log θ(e′+u(x))− d log θ(e+u(x))

)
is uniformly bounded

and we conclude that

lim
n→∞

Vn = lim
n→∞

Wn = 0 in B

To continue the discussion of (7.7) put

mj :=
1

2πi

∫

aj

(
d log θ(e+ u(x))− d log θ(e′ + u(x))

)

Clearly mj ∈ ZZ. Since aj is represented by one a(s) for j ≥ g+ 1 we have by Corollary 7.10i

mj = 0 for all but finitely many j

Next
1

2πi

∫

bj

[d log θ(e+ u(x))− d log θ(e′ + u(x))]

=
1

2πi

[
log θ(e+ u(x(j)) + Rj)− log θ(e+ u(x(j)))

− log θ(e′ + u(x(j)) + Rj)− log θ(e′ + u(x(j)))
]

+ nj

with an integer nj depending on the choices of the branches of the logarithms. By the

“periodicity” rules for the theta function it is equal to

1

2πi

[
−πi(2uj(x(j)) + 2ej + Rjj) + πi(2uj(x

(j)) + 2e′j +Rjj)
]

+ nj = e′j − ej + nj
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Putting everything together we get

∑

j∈J(n)

(u(xj)− u(x′j)) =
∑

j∈J(n)

(1lj(e
′
j − ej)−mjRj + nj1lj) +

1

2πi
Vn +

1

2πi
Wn

As X̃(n) can be considered as a subset of X̃(n+1) the integers mj , nj do not depend on n .

Now choose paths γj from xj to x′j such that

∫

γj

~ω = u(x′j)− u(xj)−mjRj + nj1lj

By Theorem 7.11, there is an η > 0 such that xj and x′j are in Yj(η) for all but finitely many

j. As mj = 0 for all but finitely many j, we can have γj ⊂ Yj(η) for all but finitely many j.

Then ∑

j∈J(n)

∫

γj

~ω =
∑

j∈J(n)

1lj(ej − e′j)−
1

2πi
Vn −

1

2πi
Wn

As limn→∞ Vn = limn→∞Wn = 0 and limn→∞
∑
j∈J(n) 1lj(ej− e′j) = e− e′ the Theorem now

follows from Lemma 7.14.
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§8. Riemann’s Vanishing Theorem

We fix a point ê ∈ B such that

θ(ê− ê1 + êν) 6= 0 for ν = 1, . . . ,m.

Let x̂1, x̂2, . . . be the zeroes of θ
(
ê+

∫ x
∞ ~ω

)
such that x̂j ∈ Yj for all sufficiently large j. We

wish to mimic the classical construction of the genus(X)-fold symmetric product of X using

the points x̂j as reference points.

Denote by π : X̃ → X the universal cover of X and choose x̃j ∈ π−1(x̂j). Put

Y ′′j = φj
({

(z1, z2) ∈ H(tj)
∣∣ |z1|, |z2| ≤ 1

4

})
⊂ Yj

Furthermore let Ỹj be a component of π−1(Y ′′j ) such that x̃j ∈ Ỹj , whenever x̂j ∈ Y ′′j . Let

Ỹj(η) be the preimage of Yj(η) in Ỹj . By abuse of notation we retain the symbol ωj for the

differential form π∗(ωj) on X̃. Put

W (−n) :=

{
(yn+1, yn+2, . . .)

∣∣∣ yj ∈ X̃, yj ∈ Ỹj for all sufficiently big j,

(
0, . . . , 0,

∫ yn+1

x̃n+1

ωn+1,

∫ yn+2

x̃n+2

ωn+2, . . .
)
∈ B

}

The group S of permutations of
{
r ∈ ZZ

∣∣ r ≥ n + 1
}

, that leave all but finitely many

numbers fixed, acts naturally on W (−n). Put

S(−n) := W (−n)/S

We call elements of S(−n) divisors of index n.

We give W (−n) the structure of a B-Banach manifold as follows. For N ≥ n+ 1 put

W
(−n)
N :=

{
(yj) ∈ W (−n)

∣∣ yj ∈ Ỹj for j ≥ N
}

The W
(−n)
N form an exhaustion of W (−n) by open sets. The map

W
(−n)
N → X̃N−n−1 ×

{
e ∈ B

∣∣ e1 = . . . = eN−1 = 0
}

y 7→
(

(yn+1, . . . , yN−1),
(

0, 0, . . . , 0,

∫ yN

x̃N

ωN ,

∫ yN+1

x̃N+1

ωN+1, · · ·
)) (8.1)

is injective, since, as we now show, the map

Ỹj → C , y 7→
∫ y

x̃j

ωj
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is biholomorphic to its image. First observe that the derivative of this map at y is ωj(y),

which is nonzero by Proposition 6.16. Furthermore

πj :
{
ξ ∈ C

∣∣ 1
2 log tj + log 2 ≤ Re ξ ≤ 1

2 | log tj | − log 2
}
→ Y ′′j

ξ 7→ φj
(√

tje
ξ,
√
tje
−ξ)

is the universal cover of Y ′′j . Again, by Proposition 6.16, in Ỹj

π∗j (ωj) =
1

2πi
(1 + g)dξ with |g(ξ)| ≤ 1

2

So for any two points y, y′ ∈ Ỹj

1

4π
|y − y′| ≤

∣∣∣∣∣

∫ y

x̃j

ωj −
∫ y′

x̃j

ωj

∣∣∣∣∣ ≤
3

4π
|y − y′| (8.2)

Second, we verify that the image of the map (8.1) is open in the product of X̃N−n−1 and the

appropriate subspace of B. Theorem 7.11iii implies that there exists an η > 0 such that for

all sufficiently big j

|Re x̃j | <
(

1

2
− η
)
| log tj |

Now let e be a point in the image of (8.1), and y its preimage. Since lim
j→∞

1
| log tj |

∣∣∣
∫ yj
x̃j
ωj

∣∣∣ = 0

it follows from (8.2) that there is η′ > 0 such that

|Re yj | <
(

1

2
− η′

)
| log tj |

for all j big enough. Using (8.2) again one sees that the image of (8.1) contains a neighbour-

hood of e.

So the maps (8.1) give coordinates on W (−n). The quotient S(−n) = W (−n)/S

inherits the structure of an B-Banach manifold as follows. Let y = (yn+1, · · ·) ∈ W (−n).

Then there is N ≥ n + 1 such that for j ≥ N one has yi ∈ Yj if and only if i = j. By

(8.1) a neighbourhood of y in W (−n) is isomorphic to a neighbourhood U of its image in

X̃N−n−1 ×B(−N+1),where

B(−k) :=
{
e ∈ B

∣∣ ej = 0 for j ≤ k
}

The symmetric group SN−n−1 acts by permutation on X̃N−n−1, and the quotient

X̃N−n−1/SN−n−1 is again a manifold (see [GH p. 236]). Let U ′ be the image of U un-

der the natural map

X̃N−n−1 ×B(−N+1) → X̃N−n−1/SN−n−1 ×B(−N+1)
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Then there is a homeomorphism from U ′ to a neighbourhood of the image of y in S(−n) such

that the following diagram commutes

X̃N−n−1×B(−N+1) ⊃ U −→W (−n)

↓ ↓
X̃N−n−1/SN−n−1×B(−N+1) ⊃ U ′−→ S(−n)

Here the top row is the inverse map to (8.1). The maps constructed this way are coordinates

on S(−n).

Proposition 8.1

(a) The map

µ(−n) : W (−n) → B ,

y 7→
∞∑

j=n+1

∫ yj

x̃j

~ω

is holomorphic for each n ≥ g + 1.

(b) Denote by Pn the projection

(
Pn(e)

)
j

=

{
ej for j ≥ n+ 1
0 for j ≤ n

from B to B(−n). Then, for each η such that x̃j ∈ Ỹj(η) for j big enough there is an n0 > 0

such that for all n > n0 the map

Pn ◦ µ(−n) :
{
y ∈W (−n)

∣∣ yj ∈ Ỹj(η) for j ≥ n+ 1
}
→ B(−n)

is injective.

(c) At every point of W (−n) the derivative of µ(−n) is Fredholm of index n. That is dµ(−n)(g)

has kernel of finite dimension and range of finite co-dimension with

codim
(

range dµ(−n)(y)
)
− dim

(
ker dµ(−n)(y)

)
= n .

(d) Let η > 0. If n is big enough, the derivative of Pn ◦µ(−n) is boundedly invertible at every

point of
{
y ∈W (−n)

∣∣ yj ∈ Ỹj(η) for j ≥ n+ 1
}

Corollary 8.2 µ(−n) induces a holomorphic map j(−n) : S(−n) → B whose derivative is

Fredholm of index n.
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Proof of Proposition 8.1a,b: (a) Fix any η such that x̃j ∈ Ỹj(2η) for all j sufficiently

large. For each ŷ ∈W (−n) there is an N > 0 and a neighbourhood U of ŷ such that yj ∈ Ỹj(η)

for all y ∈ U , j ≥ N + 1. On U write

µ(−n)(y) = f(y) +

∞∑

j=N+1

1lj

∫ yj

x̃j

ωj + g(y)

with

f(y) =
N∑

j=n+1

∫ yj

x̃j

~ω

g(y) =
∑

j=N+1

∫ yj

x̃j

(~ω − 1ljωj)

By Proposition 7.3, f is a holomorphic map into B which is a function of yn+1, . . . , yN only.

By Lemma 7.15, for every ε > 0 there is an nε such that if m > n > nε

∥∥∥
m∑

j=n

∫ yj

x̃j

(~ω − 1ljωj)
∥∥∥ ≤ ε

∥∥∥
m∑

j=n

∫ yj

x̃j

1ljωj

∥∥∥

Thus g converges uniformly on bounded subsets of W (−n) and is holomorphic by the Weier-

strass convergence Theorem. In particular, if N was chosen big enough

‖g(y)‖ ≤ 1
2

∥∥∥
∞∑

j=N+1

1lj

∫ yj

x̃j

ωj

∥∥∥ ∀ y ∈ U

‖g(y)− g(y′)‖ ≤ 1
2

∥∥∥
∞∑

j=N+1

1lj

∫ yj

ỹ′
j

ωj

∥∥∥ ∀ y, y′ ∈ U
(8.3)

As y → ∑∞
j=N+1 1lj

∫ yj
x̃j
ωj gives (some of the) coordinates on U , µ(−n)(y) is holomorphic

on U .

(b) If n is big enough we can choose N = n. Then

Pn ◦ µ(−n)(y) =

∞∑

j=n+1

1lj

∫ yj

x̃j

ωj + Pn ◦ g(y)

and the statement follows from (8.3)

For the proofs of Proposition 8.1c,d we use the coordinates on Ỹj defined just be-

fore (8.2). In these coordinates ωi = wi(yj)dyj with |wj(yj)− 1| ≤ 1/2. Pick any point

(yn+1, yn+2, . . .) ∈ W (−n). Pick any coordinate patch in a neighbourhood of each of the
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finite number of the yn+1, yn+2 . . . that fail to lie in the correct handle. By abuse of notation

let ωi = wi(yj)dyj be the representation of ωi in these patches too. With respect to these

coordinates the differential of µ(−n) is

dµ(−n)(y) = [~w(yn+1) ~w(yn+2) · · · ~w(yj) · · · ] (8.4)

where ~w(y) is the column vector whose ith row is wi(y). As we will use this derivative

frequently, we state a more general Lemma, only parts of which are needed in the proof of

Proposition 8.1.

Let L(V,V ′) denote the set of bounded linear operators from the Banach space cv

tothe Banach space V ′.

Lemma 8.3 Let O be an open subset of CN and O′ an open subset of W (−n′) with n′ > n.

Let

~uj(x, y) : O ×O′ → B j = n+ 1, . . . , n′

be analytic maps. Define the analytic family of linear operators

D : O ×O′ → L
(
B(−n), B

)

by

D(x, y)~λ =

n′∑

j=n+1

~uj(x, y)λi +

∞∑

j=n′+1

~w(yj)λj

where ~w(yj)dyj is the form ~ω(yj) represented in the local coordinates for Ỹj defined just

before (8.2). Then

(a) For each (x, y) ∈ O × O′, the operator D(x, y) is Fredholm of index n. That is, D(x, y)

has finite dimensional kernel and finite codimensional range with

codim (range D(x, y))− dim (ker(x, y)) = n

The range of D(x, y) is closed.

(b) Let r = min
(x,y)∈O×O′

dim (kerD(x, y)).The set on which dim (kerD(x, y)) > r is an analytic

variety of codimension least one.

(c) If r ≥ 1 and (x0, y0) ∈ O×O′ with dim (kerD(x0, y0)) = r = min
(x,y)∈O×O′

dim (kerD(x, y))

then there exist
~λ1(x, y), . . . , ~λr(x, y) ∈ kerD(x, y)

168



that are independent and analytic in a neighbourhood of (x0, y0)

(d) For any subset Σ ⊂ IN let

(PINrΣ
~λ) =

{
λj j 6∈ Σ
0 j ∈ Σ

be viewed as a map from B to the Banach space
{
~e ∈ B

∣∣ ej = 0 ∀j ∈ Σ
}

. If

dim (kerD(x0, y0)) = 0 then there exists Σ ⊂ IN with |Σ| = n such that PINrΣD(x, y) is

boundedly invertible for all (x, y) in a neighbourhood of (x0, y0).

(e) If r ≥ 0 and (x0, y0) ∈ O×O′ with dim (kerD(x0, y0)) = r = min
(x,y)∈O×O′

dim (kerD(x, y))

then there exist

`1(x, y), . . . , `n+r(x, y) ∈ B∗

that are independent and analytic at each (x, y) in a neighbourhood of (x0, y0) such that

b ∈ range (D(x, y))⇐⇒ 〈`i(x, y), b〉 = 0 for i = 1 . . . n+ r .

Proof: (a) Pick a neighbourhood N of y sufficiently small and an integer M > n′ sufficiently

large that y′j ∈ Ỹj(η) for all j ≥M and y′ ∈ N and such that

∑

j≥M
tηj | log tj | ≤

1

192
√
πC

(8.5)

where C is the constant in Theorem 6.4. Block

D =

[
U R
V 1l + S

]

where the left half consists of columns n+1 · · ·M and the upper half consists of rows 1 · · ·M .

First we show that

‖S‖ ≤ 3/4 for all y′ ∈ N (8.6)

By Proposition 6.16

|wi(yj)− δij | ≤
{

1/2 for i = j
48
√
π tηj

∥∥ωi
∣∣
Y ′j

∥∥
2

for i 6= j .

Consequently, the operator norm of S is at most

1

2
+ 48
√
π sup

i


 1

| log ti|
∑

j≥M
tηj
∥∥ωi
∣∣
Y ′j

∥∥
2
| log tj |


 ≤ 3

4
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Next we determine the range and kernel of D(x, y) in terms of the M × (M − n)

matrix d(x, y) = U − R(1l + S)−1V . Note that the matrix elements of d(x, y) are analytic

functions of (x, y). We have

kerD(x, y) =

{[
a
b

] ∣∣∣∣
[
U R
V 1l + S

] [
a
b

]
=

[
0
0

]}

=

{[
a
b

] ∣∣∣∣ Ua+ Rb = 0 , V a+ (1l + S)b = 0

}

=

{[
a
b

] ∣∣∣∣ b = −(1l + S)−1V a ,
[
U −R(1l + S)−1V

]
a = 0

}

(8.7)

In particular

dim (kerD(x, y)) = dim (ker d(x, y))

Let Γ(x, y) be a complementary subspace of the range of d(x, y). The vector
[
γ
δ

]
is the range

of D(x, y) if and only if
Ua+Rb = γ

V a+ (1l + S)b = δ

has a solution, or equivalently if and only if

b = (1l + S)−1(δ − V a)
[
U −R(1l + S)−1V

]
a = γ − R(1l + S)−1δ

has a solution. But there always exists γ ′ ∈ Γ and a such that

γ′ +
[
U −R(1l + S)−1V

]
a = γ − R(1l + S)−1δ

Thus given any
[
γ
δ

]
∈ B there exists

[
a
b

]
∈ B(−n) and γ′ ∈ Γ(x, y) such that

[
γ
δ

]
=

[
γ′

0

]
+

[
U
V

R
1l + S

] [
a
b

]

Furthermore, if
[
γ
δ

]
=
[

0
0

]
then γ′ +

[
U − R(1l + S)−1V

]
a = 0 forces γ′ = 0, since Γ is

complementary to the range of d(x, y). We have shown

B = range D(x, y)⊕
[

Γ(x, y)

0

]

and, in particular

codim (range D(x, y)) = codim (range d(x, y))

170



From this the Fredholm condition

codim (range D(x, y))− dim(kerD(x, y))

=codim (range d(x, y))− dim(ker d(x, y))

=M − dim (range d(x, y))− dim(ker d(x, y))

=M − (M − n)

=n

follows, since d(x, y) is an M × (M − n) matrix.

We now verify that the range of D(x, y) is closed. Let
[
γi
δi

]
be a sequence of vectors

in the range of D(x, y) that converges to
[
γ
δ

]
. Then γi−R(1l+S)−1δi is a sequence of vectors

in the range of the finite matrix
[
U − R(1l + S)−1V

]
that converges to γ − R(1l + S)−1δ.

Hence γ − R(1l + S)−1δ is in the range of
[
U −R(1l + S)−1V

]
so that

b = (1l + S)−1(δ − V a)
[
U −R(1l + S)−1V

]
a = γ − R(1l + S)−1δ

has a solution
[
a
b

]
. As we have already observed, this implies that

[
γ
δ

]
is in the range of

D(x, y).

(b) We have already observed that dim(kerD(x, y)) = dim(ker d(x, y)) on a neighbourhood

of any point (x, y) ∈ O × O′ for a suitable finite matrix d(x, y). The dimension of the

range of d(x, y) is strictly smaller than M − n − r if and only if the determinant of every

(M−n−r)×(M−n−r) minor of d(x, y) is zero. As the matrix elements of d(x, y) are analytic,

we have shown that {(x, y) | dim(kerD(x, y))} > r is an analytic subvariety of O × O′. By

hypothesis this subvariety does not cover all O×O′ and hence has codimension at least one.

(c) Suppose dim(kerD(x0, y0)) = r ≥ 1. Then the corresponding M × (M − n) matrix

d(x0, y0) has an (M −n− r)× (M−n− r) minor with nonzero determinant. By renumbering

rows and columns we may assume

M − n− r r

d(x0, y0) =

[
v(x0, y0) σ(x0, y0)
τ(x0, y0) u(x0, y0)

]
M − n− r
n+ r

with det v(x0, y0) 6= 0. By continuity, det v(x, y) 6= 0 for (x, y) in a neighbourhood of (x0, y0).

The vector a =
[
ϕ
ψ

]
is in the kernel of d(x, y) if and only if

ϕ = −v(x, y)−1σ(x, y)ψ
[
u(x, y)− τ(x, y)v(x, y)−1σ(x, y)

]
ψ = 0
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By hypothesis d(x, y) has kernel of dimension at least r. As v(x, y) is invertible its dimension

must be exactly r. Thus all ψ’s must satisfy [u − τv−1σ]ψ = 0. Setting for i = 1, . . . , r,

ψi = [ 0 · · · 0 1 0 · · · 0 ]
t

with the one in the `th row, we have

ϕi(x, y) = −v(x, y)−1σ(x, y)ψi

and

λi(x, y) =




−v(x, y)−1σ(x, y)ψi
ψi

−(1l + S(x, y)−1V (x, y)

[
−v(x, y)−1σ(x, y)ψi

ψi

]




(d) Let dim(kerD(x0, y0)) = 0. Then by (8.7) the M × (M − n) matrix U −R(1l + S)−1V =

d(x0, y0) has a trivial kernel. Consequently there exists Σ ⊂ {1 . . .M} with |Σ| = n such that

the matrix (d(x, y)ij) with indices
{

(i, j)
∣∣ 1 ≤ i ≤M, 1 ≤ j ≤M − n, i 6∈ Σ

}
is invertible

for all (x, y) in a neighbourhood of (x0, y0). So given any
[
γ
δ

]
∈
{
~e ∈ B

∣∣ ej = 0 ∀j ∈ Σ
}

there exists a with

PΣd(x, y)a = γ − PΣR(1l + S)−1δ

and
‖a‖ ≤ C

∥∥γ − PΣR(1l + S)−1δ
∥∥

≤ C
(
‖γ‖+ ‖R‖

∥∥(1l + S)−1
∥∥ ‖δ‖

)

≤ C
(
1 + ‖R‖

∥∥(1l + S)−1
∥∥)
∥∥∥
[γ
δ

]∥∥∥

Define b = (1l + S)−1(δ − V a) then

‖b‖ ≤
∥∥(1l + S)−1

∥∥ (‖δ‖+ ‖V ‖ ‖a‖)
≤
∥∥(1l + S)−1

∥∥ {1 + C‖V ‖
(
1 + ‖R‖

∥∥(1l + S)−1
∥∥)}

∥∥∥
[γ
δ

]∥∥∥

and
[
a
b

]
obeys

PΣUa+ PΣRb = γ

V a+ (1l + S)b = δ

and ∥∥∥
[a
b

]∥∥∥ ≤ const
∥∥∥
[γ
δ

]∥∥∥

(e) By part c) we may discard r columns of D(x, y) in such a way that the resulting operator

D̃(x, y) is injective and has the same range as D(x, y) for all (x, y) in a neighbourhood of

(x0, y0). (Discard the columns selected by the vectors [ 0 ψi 0 ]
t
, in the notation of part c).

The operator D̃(x, y) is still of the form specified in the statement of this Lemma and has

Fredholm index n+ r.
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By part d) there is a subset Σ ⊂ IN with |Σ| = n + r such that PNrΣD̃(x, y) is

boundedly invertible. Now

b ∈ rangeD(x, y) =⇒ b ∈ range D̃(x, y)

=⇒ ∃λ s.t. b = D̃(x, y)λ

=⇒ ∃λ s.t.

{
PINrΣb = PNrΣD̃(x, y)λ

PΣb = PΣD̃(x, y)λ

=⇒ ∃λ s.t.

{
λ =

(
PINrΣD̃(x, y)

)−1

PINrΣb

PΣb = PΣD̃(x, y)λ

=⇒ PΣb− PΣD̃(x, y)
(
PINrΣD̃(x, y)

)−1

PINrΣb = 0

The n+ r non zero rows of PΣ

(
1l− D̃(x, y)

(
IPINrΣD̃(x, y)

)−1

PINrΣ

)
block

Σ INr Σ

Σ
[

1l −D̃(x, y)
(
PINrΣD̃(x, y)

)−1
]

and give the dual vectors `1(x, y), · · · , `n+r(x, y).

Proof of Proposition 8.1c,d: Part (c) follows directly from Lemma 8.3a and (8.4). Finally,

to prove part (d) observe that the derivative of Pn ◦µ(−n) is the matrix of (8.4) with the first

n rows deleted. As in (8.6), one shows that this matrix is of the form 1l+S with the operator

norm of S bounded by 3/4 whenever n is sufficiently large.

Now fix lifts P̃ν of the paths Pν under the covering map π : X̃ → X such that

P̃1(0) = · · · = P̃m(0). For x ∈ X̃ we define
∫∞µ

x
~ω as

∫ P̃1(0)

x
~ω +

∫
P̃µ([0,∞])

~ω. Again put∫∞
x
~ω :=

∫∞1

x
~ω.

Theorem 8.4 (Riemann’s Vanishing Theorem) For each (y2, y3, . . .) ∈W (−1)

θ

((
ê−

∫ ∞

x̃1

~ω
)
−
∞∑

j=2

∫ yj

x̃j

~ω

)
= 0

Conversely, if e ∈ B is a point such that θ(e) = 0, but θ
(
e −

∫ x
∞ν

~ω
)

is not identically zero

for any ν = 1, · · · ,m, then there is (y2, y3, . . .) ∈W (−1) such that

e =

(
ê−

∫ ∞

x̃1

~ω

)
−
∞∑

j=2

∫ yj

x̃j

~ω (8.8)
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Furthermore the sequence π(y2), π(y3), . . . is uniquely determined by (8.8) up to permutation.

Finally, in this case for any x ∈ X with θ
(
e−

∫ x
∞ν

~ω
)
6= 0 for ν = 1, . . . ,m the points

x, π(y2), π(y3), are just the zeroes (counted with multiplicity) of θ
(
e+

∫ y
x
~ω
)
, considered as

a multivalued function of y.

The rest of the chapter is devoted to the proof of this Theorem. First we have

Proposition 8.5 (Continuity of the roots of θ with respect to B)

(a) Let e ∈ B such that θ(e− ê+ êν) 6= 0 for ν = 1, . . . ,m. There is y = (y1, y2, . . .) ∈ W (0)

such that
∞∑

j=1

∫ yj

x̃j

~ω = ê− e in B

and π(y1), π(y2) . . . are the zeroes of θ
(
e+

∫ x
∞ ~ω

)
.

(b) Suppose that yi = yj whenever π(yi) = π(yj). Let [y] be the image of y in S(0). Then

there is a neighbourhood U of [y] in S(0) and a neighbourhood V of ê− e in B such that j(0)

maps U biholomorphically onto V . For each [y′] ∈ U the zeroes of θ
(
ê− j(0)([y′]) +

∫ x
∞ ~ω

)

are π(y′1), π(y′2), . . ..

Proof: (a) By Theorem 7.16 there are η̃ > 0, y1, y2, . . . in X̃ such that yj ∈ Ỹj(η̃) for all

sufficiently big j and
∞∑

j=1

∫ yj

x̃j

~ω = ê− e in B

and π(y1), π(y2) . . . are the zeroes of θ
(
e+

∫ x
∞ ~ω

)
and

(∫ y1

x̃1

ω1,

∫ y2

x̃1

ω2, . . .

)
∈ B

(b) By Remark 7.13 and the first part of this Proposition there are E > 0, n > 0, η > 0 such

that for every e′ ∈ B with ‖e′‖ < E there is z(e′) ∈ W (0) such that zj(e
′) ∈ Ỹj(η) for j ≥ n

and
∞∑

j=1

∫ zj(e
′)

x̃j

~ω = ê− e− e′ (8.9)

π (z1(e′)), π (z2(e′)) , . . . are the roots of θ
(
e+ e′ +

∫ x
∞ ~ω

)
. After possibly shrinking η and en-

larging n we may assume that the conclusions of Proposition 8.1d hold. The point represented
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by (z1(e′), . . . , zn(e′)) ∈ X̃n/S depends analytically on e′. Now (8.9) implies that

Pn

( ∞∑
j=n+1

∫ zj(e
′)

x̃j

~ω

)
= Pn

(
ê− e− e′ −

n∑
j=1

∫ zj(e
′)

x̃j

~ω

)

so by Proposition 8.1d (zn+1(e′), . . .) ∈W (−n) also depends analytically on e′. So the map

ρ : ê− e− e′ 7→ (z1(e′), z2(e′), . . .) ∈ S(0)

is analytic. By (8.9)

j(0) ◦ ρ = id

Since dj(0) is Fredholm of index 0 and dj(0) ◦ dρ = id this implies that j(0) is locally biholo-

morphic and has ρ as its inverse.

Proof of Theorem 8.4: Let U resp. V be neighbourhoods of [x̃] in S(0) resp. ê in B

such that j(0) maps U biholomorphically onto V . Then for each [(y1, y2, . . .)] ∈ U the points

π(y1), π(y2), . . .) are zeroes of θ
(
ê− j(0)([y]) +

∫ x
∞ ~ω

)
. In other words

θ

(
ê−

∞∑
j=1

∫ yj

x̃j

~ω +

∫ yk

∞
~ω

)
= 0 for all k

So

θ

((
ê−

∫ ∞

x̃k

~ω
)
−
∞∑

j=1
j 6=k

∫ yj

x̃j

~ω

)
= 0

for all y = (y1, y2, . . .) in a neighbourhood of x̃. Since W (−1) is a connected B-manifold it

follows by analytic continuation that

θ

((
ê−

∫ ∞

x̃k

~ω
)
−
∞∑

j=1
j 6=k

∫ yj

x̃j

~ω

)
= 0 (8.10)

for all y ∈W (−1). Putting k = 1 we get the first part of the Theorem.

To prove the “Converse” part of Theorem 8.4, let e ∈ B such that θ(e) = 0,

θ
(
e−

∫ x
∞ν

~ω
)

is not identically zero for ν = 1, . . . ,m. By assumption there exists x0 ∈ X̃
such that

θ

(
e−

∫ x0

∞ν

~ω

)
6= 0 for ν = 1, · · · ,m
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Let (y1, y2, . . .) ∈W (0) such that π(y1), π(y2), . . . are the zeros of θ
(
e−

∫ x0

∞ ~ω +
∫ y
∞ ~ω

)
and

∞∑

j=1

∫ yj

x̃j

~ω = ê− e+

∫ x0

∞
~ω

Without loss of generality we may assume that y1 = x0. Then

e = ê−
∫ ∞

x̃1

~ω −
∞∑

j=2

∫ yj

x̃j

~ω

Finally, to prove uniqueness let (z2, z3, . . .) ∈W (−1) such that

e = ê−
∫ ∞

x̃1

~ω −
∞∑

j=2

∫ zj

x̃j

~ω

Then for k = 2, 3, · · · and u ∈ X̃

θ

(
e+

∫ u

x̃1

~ω

)
= θ

((
ê−

∫ ∞

x̃k

~ω
)
−
∑

j 6=1,k

∫ yj

x̃j

~ω +

∫ u

yk

~ω

)

= θ

((
ê−

∫ ∞

x̃k

~ω
)
−
∑

j 6=1,k

∫ zj

x̃j

~ω +

∫ u

zk

~ω

)

Hence, by (8.10),

θ

(
e+

∫ u

x̃1

~ω

)
= θ

((
e−

∫ x̃1

∞
~ω
)

+

∫ u

∞
~ω

)

is zero whenever u ∈ {y2, y3, . . .} or u ∈ {z2, z3, . . .} or u = x̃1. In the case that

θ
(
e−

∫ x̃1

∞ν
~ω
)
6= 0 for ν = 1, . . . ,m it follows from Theorem 7.11 that π(y2), π(y3), . . . and

π(z2), π(z3), . . . coincide up to finite permutations. In the other case, choose (x̃′1, x̃
′
2, . . .)

in W (0) close to (x̃1, x̃2, . . .) such that θ
(
e−

∫ x̃′1
∞ν

~ω
)
6= 0 for ν = 1, . . . ,m, and put

ê′ := µ(0)(x̃′1, x̃
′
2, . . .). Then by Proposition 8.5b

ê = ê′ −
∞∑

j=1

∫ x̃j

x̃′
j

~ω

and π(x̃′1), π(x̃′2), . . . are the zeroes of θ
(
ê′ +

∫ x
∞ ~ω

)
. So

e = ê′ −
∫ ∞

x̃′1

~ω −
∞∑

j=2

∫ yj

x̃′
j

~ω = ê′ −
∫ ∞

x̃′1

~ω −
∞∑

j=2

∫ zj

x̃j

~ω

and we can apply the previous argument with ê′ resp. (x̃′1, x̃
′
2, . . .) as new base points.
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§9 The Geometry of the Theta divisor

We define the Theta divisor of a Riemann surface X = Xcom ∪ Xreg ∪ Xhan

fulfilling the hypotheses (GH1-6) of §5, as

Θ :=
{
e ∈ B

∣∣ Θ(e) = 0
}

Furthermore for a sequence ν1, ν2, . . . , νn of integers between 1 and m put

Θ(ν1ν2...νn) :=
{
e ∈ Θ

∣∣∣ θ
(
e−

∫ x1

∞ν1

~ω − . . .−
∫ xn

∞νn

~ω
)

= 0 for all (x1, . . . , xn) ∈ X̃n
}

Θn :=
⋃

1≤ν1...νn≤m
Θ(ν1...νn)

Taking the limit xj →∞νj for j = k + 1 . . . n we see that

Θ(ν1...νk) ⊂ Θ(ν1...νk+1...νn)

for all n ≥ k ≥ 0.

Set

F(ν1...νn−1) : W (−n) −→B

y 7−→ê−
∫ ∞

x̃1

~ω −
n∑

j=2

∫ ∞νj−1

x̃j

~ω −
∞∑

j=n+1

∫ yj

x̃j

~ω

= ê−
∫ ∞

x̃1

~ω −
n∑

j=2

∫ ∞νj−1

x̃j

~ω − µ(−n)(y)

Since ∫ yj

x̃j

~ω +

∫ yk

x̃k

~ω −
∫ yk

x̃j

~ω −
∫ yj

x̃k

~ω =

∫ yj

yk

~ω +

∫ yk

yj

~ω = 0

F(ν1...νn−1)(y) is invariant under permutations of the yj ’s. Let

f(ν1...νn−1) : S(−n) → B

be the map induced by F(ν1...νn−1). In particular the maps F = F∅ : W (−1) → B and

f = f∅ : S(−1) → B were the subject of Theorem 8.4, Riemann’s vanishing theorem.

In the case of compact Riemann surfaces, F and f map W (−1) and S(−1) respectively

onto Θ [GH, p. 546]. Furthermore by Riemann’s singularity theorem e ∈ Θreg if and only if

the fibre F (−1)(e) is discrete. Due to the non-compactness of X, these results do not carry

over directly.
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This is the reason why we introduced the subsets Θ(ν1,...,νn) of Θ and the maps

f(ν1...νn−1). First observe that, because we use the universal covering π : X̃ → X of X, the

maps f(ν1...νn−1) cannot possibly be injective. If

yj = y′j ∀ j ≥ n+ 1, j 6= k, `

π(yk) = π(y′k)

π(y`) = π(y′`)

with the projections π(γk), π(γ`) to X of the paths

γk : [0, 1]→ X̃ with γk(0) = yk, γk(1) = y′k

γ` : [0, 1]→ X̃ with γ`(0) = y`, γ`(1) = y′`

obeying

π(γk) = −π(γ`) in H1(X,ZZ)

then

f(ν1...νn−1)([y]) = f(ν1...νn−1)([y
′]) (9.1)

Furthermore, if yj 6= yk, but π(yj) = π(yk) for some j 6= k then df(ν1...νn−1)([y]) must

have a nontrivial kernel since the jth and kth columns ~ω(yj) and ~ω(yk) of df(ν1...νn−1)([y]) are

equal. On the other hand, given any y ∈ S(−n) we can find, using (9.1), a z ∈ S(−n) such

that

zj = zk whenever π(zj) = π(zk)

f(ν1...νn−1)([y]) = f(ν1...νn−1)([z])

We shall see in Theorem 9.1, that the above discussion accounts for all the lack of injectiveness

in f(ν1...νn−1) over Θ(ν1...νn−1) rΘn

In this chapter we discuss the geometry of the Theta divisor. We have already

observed that

Θ ⊃ Θ1 ⊃ Θ2 ⊃ . . .

We shall show in Theorem 9.1 that, for every ν1 . . . νn−1, the map f(ν1...νn−1) almost provides

a global parametrization of Θ(ν1...νn−1) r Θn. The map f(ν1...νn−1) suffers from the “trivial”

lack of injectiveness discussed above. But, it is onto Θ(ν1...νn−1) r Θn and does provide

[Theorem 9.1b] local biholomorphisms to neighbourhoods of each e ∈ Θ(ν1...νn−1) rΘn.

In particular Θ(ν1...νn−1) r Θn is connected and smooth of codimension n in B

(despite the fact that θ
(
e−

∫ x1

∞ν1
~ω − · · · −

∫ xn−1

∞νn−1
~ω
)
≡ 0 contains, superficially infinitely

many conditions) and the tangent space to Θ(ν1...νn−1)rΘn at e = f(ν1...νn−1)([y]) is spanned
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by the columns of df(ν1...νn−1)([y]), provided we have choosen y so that yj = yk whenever

π(yj) = π(yk). For example, if π(yj) 6= π(yk) for all j 6= k, the tangent space is

span {~ω(yn+1), ~ω(yn+2), . . .}
When the yj ’s are not distinct the tangent space contains the derivatives ~ω(n)(yj),

n < #
{
k
∣∣ yk = yj

}
too.

Since

f(ν1...νk−1)([y]) = lim
yj→∞νj−1
n+1≤j≤k

f(ν1...νn−1) ([yn+1, · · · , yk, y])

for all k > n, all points of Θ(ν1...νn−1) r
∞⋂

k=n+1

[
m⋃

νn=1
. . .

m⋃
νk−1=1

Θ(ν1...νk−1)

]
are in the clo-

sure of Θ(ν1...νn−1) r
m⋃

νn=1
Θ(ν1...νn). (While the statement of Theorem 9.1 only claims

range(F(ν1...νn−1)) ⊃ Θ(ν1...νn−1) rΘn, the result

range(F(ν1...νn−1)) ⊃ Θ(ν1...νn−1) r
m⋃

νn=1

Θ(ν1...νn−1,νn)

is contained in the proof.)

The range of f(ν1...νn−1) can slop over into Θ(ν1...νn−1) ∩ Θn. By the discussion

above, all singular points of Θ(ν1...νn−1) lie in Θ(ν1...νn−1) ∩Θn. In general, we are not able to

give a description like the Riemann Singularity Theorem. See, however the discussion of the

hyperelliptic case in the following Section.

In Lemma 9.2 it is shown that, even at non-smooth points, Θ(ν1...νn−1) is of codi-

mension at least n in B. For the nonhyperelliptic case, we show in Corollary 9.7 and Propo-

sition 9.3 that Θ is smooth at all points of Θ r (Θ1 ∩ −Θ1) and that Θ1 ∩ (−Θ1) is of

codimension 2 in Θ.

S(−1)

S(−2)

S(−3)

f

f (ν)

f (ν,µ)

B

Θ

Θ(ν,µ)

Θ(ν)
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Theorem 9.1 The image of F(ν1...νn−1) contains Θ(ν1...νn−1) r Θn and is contained in

Θ(ν1...νn−1). If y ∈W (−n) such that e = F(ν1...νn−1)(y) ∈ Θ(ν1...νn−1) rΘn then

(a) For any (x1, . . . , xn) ∈ X̃n such that

θ

(
e−

n−1∑
j=1

∫ xj

∞νj

~ω −
∫ xn

∞µ

~ω

)
6= 0 for µ = 1, . . . ,m

the points π(yn+1), π(yn+2), . . . are the zeroes of θ
(
e−∑n−1

j=1

∫ xj
∞νj

~ω +
∫ x
xn
~ω
)

different from

π(x1), . . . , π(xn). In particular π(yn+1), π(yn+2), . . . are uniquely determined by e.

(b) If in addition yi = yj whenever π(yi) = π(yj) then f(ν1...νn−1) maps a neighbourhood of

[y] in S(−n) biholomorphically onto a neighbourhood of e in Θ(ν1...νn−1)

Proof: If y ∈ W (−n) then for (x1, . . . , xn−1) ∈ X̃(n−1)

θ

(
F(ν1...νn−1)(y)−

∫ x1

∞ν1

~ω − · · · −
∫ xn−1

∞νn−1

~ω

)

= θ

(
ê−

∫ ∞

x̃n

~ω −
n−1∑
j=1

∫ xj

x̃j

~ω −
∞∑

j=n+1

∫ yj

x̃j

~ω

)

= 0

by Riemann’s Vanishing Theorem. This shows that the image of F(ν1...νn−1) is contained in

Θ(ν1...νn−1).

Now fix any e ∈ Θ(ν1...νn−1) r Θn and choose (x1, . . . , xn) ∈ X̃(n) such that

Θ
(
e−∑n−1

j=1

∫ xj
∞νj

~ω −
∫ xn
∞µ

~ω
)
6= 0 for µ = 1, . . . ,m. Then

e′ = e−
n−1∑
j=1

∫ xj

∞νj

~ω

lies in Θ r Θ1 and we can apply Riemann’s Vanishing Theorem to it. So there is y =

(y2, y3, . . .) ∈W (−1) such that

e′ = ê−
∫ ∞

x̃n

~ω −
n−1∑
j=1

∫ yj+1

x̃j

~ω −
∞∑

j=n+1

∫ yj

x̃j

~ω

and such that π(xn), π(y2), π(y3), π(y4), . . . are the zeroes of θ
(
e′ +

∫ x
xn
~ω
)

. As for k =

1, . . . , n− 1

θ

(
e′ +

∫ xk

xn

~ω

)
= θ

(
e−

n−1∑
j=1
j 6=k

∫ xj

∞νj

~ω −
∫ xn

∞νk

~ω

)
= 0
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we may assume that xj = yj+1 for j = 1, . . . , n− 1. So

e−
n−1∑
j=1

∫ xj

∞νj

~ω = e′ = ê−
n−1∑
j=1

∫ xj

x̃j

~ω −
∫ ∞

x̃n

~ω −
∞∑

j=n+1

∫ yj

x̃j

~ω

or

e = F(ν1...νn−1) ((yn+1, yn+2, . . .))

If e = F(ν1,...,νn−1)((y
′
n+1, y

′
n+2, . . .)) then

e′ = ê−
∫ ∞

x̃n

~ω −
n−1∑
j=1

∫ xj

x̃j

~ω −
∞∑

j=n+1

∫ y′j

x̃j

~ω

Hence, by Riemann’s Vanishing Theorem applied to e′, the sequences π(yn+1), π(yn+2), . . .

and π(y′n+1), π(y′n+2), . . . agree up to finite permutations. This proves part (a) of the Theo-

rem. Part (b) follows from (a), as in Proposition 8.5b, since the inverse map to f(ν1...νn−1) is

locally given by taking roots of Θ
(
e′ +

∫ x
xn
~ω
)

.

Next we point out that Θn has codimension at least n in Θ, that is codimension at

least n+ 1 in B. A precise formulation of this fact is

Lemma 9.2 Let U be an open subset of CN × B(−n) for some N,n ∈ IN, g : U → B a

holomorphic map such that

dg(y) has bounded inverse and codim range dg(y) = k for all y ∈ U
g(U) ⊂ Θ(ν1,...,νn) for some νj ∈ {1, . . . ,m}

Then k ≥ n+ 1.

Proof: Consider the map

g̃ : U × X̃n −→ B

(y;x1, . . . , xn) 7−→ g(y)−
∫ x1

∞1

~ω − · · · −
∫ xn

∞n

~ω

Since g(U) ⊂ Θ(ν1,...,νn) we have θ (g̃(y;x1, . . . , xn)) ≡ 0. On the other hand the range of the

differential dg̃ at (y;x1, . . . , xn) is

range dg(y) + C~ω(x1) + . . .+ C~ω(xn)

Since the image of X under the canonical map κ defined in §4 is not contained in a hyperplane

one can choose x1, . . . , xn so that

codim (range dg(y) + C~ω(x1) + . . .+ C~ω(xn)) ≤ max(0, k − n)

If k ≤ n then range dg̃(y;x, . . . , xn) = B, so that the image of g̃ contains a neighbourhood of

g̃(y;x1, . . . , xn). Therefore Θ vanishes on an open subset of B. This implies that θ ≡ 0, in

contradiction to Theorem 7.1.
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Since the Theta function is even, Θ = −Θ. We use this to show that for non

hyperelliptic surfaces Θ1 ∩ (−Θ1) has codimension at least two in Θ.

Proposition 9.3 Assume that X is not hyperelliptic. Let U be an open non-empty subset of

Θ(ν) rΘ2, ν = 1, . . . ,m. Then there is no µ ∈ {1, . . . ,m} such that (−U) ⊂ Θ(µ) rΘ2.

Proof: Suppose that (−U) ⊂ Θ(µ) r Θ2. By Theorem 9.1 for every e ∈ U there are

(y3, y4, y5, y6, . . .) and (z3, z4, z5, z6 . . .) such that

e = ê−
∫ ∞ν

x̃1

~ω −
∫ ∞

x̃2

~ω −
∞∑
j=3

∫ yj

x̃j

~ω

= −
(
ê−

∫ ∞µ

x̃1

~ω −
∫ z2

x̃2

~ω −
∫ ∞

x̃3

~ω −
∞∑
j=4

∫ zj

x̃j

~ω

)

By shrinking U we may assume without loss of generality that (y3, y4, y5, y6, . . .) and

(z3, z4, z5, x6, . . .) run over open simply connected sets N resp. N ′ with the π(yj)’s all distinct

and the π(zj)’s distinct. So, for each y ∈ N , there exists z = z(y) ∈ N such that

F (z2(y), y3, y4 . . .) = ê−
∫ ∞ν

x̃1

~ω −
∫ z2(y)

x̃2

~ω −
∞∑

j=3

∫ yj

x̃j

~ω

= −
(
ê−

∫ ∞µ

x̃1

~ω −
∫ ∞

x̃2

~ω −
∫ ∞

x̃3

~ω −
∞∑
j=4

∫ zj(y)

x̃j

~ω

)

∈ −Θ(µ,1)

by Theorem 9.1. The derivative of f(z2(y), y3, y4 . . .), as a map from the tangent space of N
to B is Fredholm of index 2. If this derivative were injective its range would have codimen-

sion 2, violating Lemma 9.2, where it is shown that Θ(µ,1) has codimension 3. Therefore the

derivative of the map f : S(−1) → Θ has a nontrivial kernel at every point (z2(y), y3, y4 . . .)

with (y3, y4 . . .) ∈ N .

y = (y3, y4, · · ·) ∈ N

S(−1)

z2(y)

y2

182



The first step in deriving a contradiction is to show that, on (a possibly shrunken) N
~ω(z2(y)) ∈ span{~ω(y3), ~ω(y4) . . .} if z2(y) 6= yj for all j ≥ 3

~̇ω(z2(y)) ∈ span{~ω(y3), ~ω(y4) . . .} if z2(y) = yj for some j ≥ 3
(9.2)

Pick M ∈ ZZ sufficiently large and N sufficiently small that yj ∈ Ỹj(η) for all y ∈ N and

~ω(y3)

~ω(y4)

~ω(y5)

j ≥M , such that z2(y) 6∈ Ỹj for all y ∈ N and j ≥M and such that M is larger than the n0

of Lemma 8.1b. Let

ωi = wi(ξ)dξ

using the local coordinates defined just before (8.2) for Ỹj , j ≥ M and some arbitrary

coordinate patchs on {yj | y ∈ N} for j < M . We may choose coordinates in S(−1) such

that the tangent space to S(−1) at [(y2, y3 . . .)] is B(−1) and such that df(y2, y3 . . .) maps each

such tangent vector λ = (λ2, λ3, · · ·) to
∑∞
j=2 ~w(ξ(yj))λj ∈ B when y2 6= yj , j ≥ 3 and to

~̇w(ξ(y2))λ2 +
∑∞
j=3 ~w(ξ(yj))λj∈ B when y2 = yj for some j ≥ 3.

That df has a nontrivial kernel at (z2(y), y3, y4 . . .) then means that there exists

(λ2(y), λ3(y), . . .)∈ B(−1) such that

~w
(
ξ(z2(y))

)
λ2(y) +

∞∑

j=3

~w (ξ(yj))λj(y) = 0 if z2(y) 6∈ {yj | j ≥ 3}

~̇w
(
ξ(z2(y))

)
λ2(y) +

∞∑

j=3

~w (ξ(yj))λj(y) = 0 if z2(y) ∈ {yj | j ≥ 3}
(9.3)

To verify that ~ω(z2(y)), resp. ~̇ω(z2(y)) is in span{~ω(y3), ~ω(~y4), . . .} it now suffices

to verify that λ2(y) 6= 0. By Lemma 8.1c we know that

codim span{~w(ξ(yM)), ~w(ξ(yM+1)), . . .} = M − 1
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Since κ(X) is not contained in a hyperplane one has, for generic, y3, . . . , yM−1

codim
(

span{~w(ξ(yM)), ~w(ξ(yM+1)), . . .}+ C~w(ξ(y3)) + · · ·+ C~w(ξ(yM−1))
)

= 2

For these y3 . . . yM−1, λ2(y) 6= 0.

For nonhyperelliptic curves x 7→ [~ω(x)] is injective. So the statement (9.2) is in

contradiction to parts b) and a) respectively of

Lemma 9.4

(a) Let n1, n2, . . . , np, n ∈ IN obey n1 + n2 + · · ·+ np ≤ n. Then

M =

{
(x1, . . . , xp, y) ∈ X̃p ×W (−n)

∣∣∣∣

codim span
({
~ω(i)(xj)

∣∣ 1 ≤ j ≤ p, 0 ≤ i < nj
}
∪
{
~ω(yj)

∣∣ j ≥ n+ 1
})

= n

p∑

j=1

nj

}

is open and dense in X̃p ×W (−n).

(b) Let U ⊂ W (−2) be open and v(y) : U → X̃ be analytic. If, for all y ∈ U , [~ω(v(y))] 6∈
{[~ω(yj)] | j ≥ 3} then

{
y ∈ U | ~ω(v(y)) 6∈ span {~ω(y3), ~ω(y4), . . .}

}

is open and dense.

(c) Let U ⊂ W (−2) be open and v(y) : U → X̃ be analytic. If, for all y ∈ U one has

κ(v(y)) 6= κ(y3) then

{
y ∈ U |

{
~ω(v(y)), ~̇ω(v(y))

}
6⊂ span

{
~̇ω(y3), ~ω(y3), ~ω(y4), . . .

}}

is open and dense.

Remark. The analogs of Lemma 9.4 for compact Riemann surfaces are well known facts about

the canonical curve. Part (a) says that g−n points in general position on the canonical curve

span a linear subspace of codimension n. Part (b) corresponds to the fact that the subspace

spanned by g − 2 points in general position on the canonical curve contains no further point

of the canonical curve. Part (c) corresponds to the fact that for g − 2 points y3, · · · , yg in

general position on the canonical curve the hyperplane spanned by y4, · · · , yg and the tangent

line L to the canonical curve in the point y3 contains no tangent line to the canonical curve

apart from L.

184



Proof of Lemma 9.4: (a) By Lemma 8.3b it suffices to show that M is nonempty. Suppose

M is empty. To simplify the notation, suppose p = n1 = n2 = 2 and n ≥ 4. The argument

in general is identical to the one that follows. By Lemma 8.3c there exist (locally) analytic

functions
µi(x1, x2, y) 1 ≤ i ≤ 4

λi(x1, x2, y) i ≥ n+ 1

not all zero, such that, in local coordinates in some patch,

µ1 ~w(x1) + µ2 ~̇w(x1) + µ3 ~w(x2) + µ4 ~̇w(x2) +
∞∑

i=n+1

λi ~w(yi) = 0

If, for some (x̄1, x̄2, ȳ), there exists an ı̄ ≥ n + 1 with λı̄(x̄1, x̄2, ȳ) 6= 0 then for all yi in a

neighbourhood of ȳı̄,

~w(yı̄) =
1

λı̄


µ1 ~w(x̄1) + . . .+ µ4 ~̇w(x̄2) +

∑

i≥n+1
i6=ı̄

λi ~w(ȳi)




This contradicts the fact that ~w(y) is not contained in a hyperplane. Thus all λi, i ≥ n+ 1

are identically zero.

Some µi is not identically zero. Let ı̄ be the index of the not identically zero µi

associated to the ~w(j)(xi) of largest possible j. Suppose it is associated to ~w(j)(x1). If ı̄ = 1

we have

~w(x1) = − 1

µ1

[
µ3 ~w(x2) + µ4~̇ω(x2)

]

for (x1, x2) in some nonempty open ball. If ı̄ = 2 we have

~̇ω(x1) = − 1

µ2(x1, x2)

[
µ1(x1, x2)~w(x1) + µ3(x1, x2)~w(x2) + µ4(x1, x2)~̇ω(x2)

]

In the first case we have ~ω(x1) contained, for all x1, in the two dimensional space spanned

by ~ω(x2) and ~̇ω(x2) for some fixed x2. In the second case, by repeated differentiation, we

have ~ω(x1) contained for all x1 in span
{
~ω(x̄1), ~ω(x2), ~̇ω(x2)

}
for some fixed (x̄1, x2). In both

cases we have reached a contradiction.

(b) By part (a) U ′ =
{
y ∈ U | codim span {~ω(y3), ~ω(y4), . . .} = 2

}
is open and dense in U .

We now show that

V =
{
y ∈ U ′ | ~ω(v(y)) ∈ span {~ω(y3), ~ω(y4), . . .}

}

is not all of U ′. Then Lemma 8.3b implies that V is an analytic subvariety of U ′ of codimension

at least one.
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Suppose that V = U ′. Then by Lemma 8.3c there exist analytic functions λj(y),

j ≥ 3 such that, in local coordinates on a small ball in U ′

~w(v(y)) =
∑

j≥3

λj(y)~w(yj)

Suppose that v(y) is not constant. Then there is a k ≥ 3 such that ∂ v
∂yk

is non zero on some

nonempty neighbourhood. On this neighbourhood

~̇w(v(y))
∂ v

∂yk
=
∑

j≥3

∂λj
∂yk

~w(yj) + λk(y) ~̇w(yk)

implies

~̇w(v(y)) ∈ span
{
~̇w(yk), ~w(y3), ~w(y4), · · ·

}

Since [~ω(v(y))] 6∈ {[~ω(yj)] | j ≥ 3} there is a second p ≥ 3, p 6= k such that λp(y) 6= 0 on a

non empty subneighbourhood. Then

~w(yp) = − 1

λp(y)

(∑

j≥3
j 6=p

λj(y)~w(yj) + ~w(v(y))

)

By repeated differentiation, ~w(yp) and all the derivatives ~w(n)(yp), n ≥ 1 are in

H = span
{
~̇w(yk), ~w(v), ~w(yj)

∣∣ j ≥ 3, j 6= p
}

By analyticity this forces ~w(yp) to remain in the hyperplane H for all yp in some nonempty

open set, which is impossible. If v(y) is constant we see directly that ~w(yp) remains in

span {~w(v), ~w(yj) | j ≥ 3, j 6= p}.

(c) By part (a) U ′ =
{
y ∈ U

∣∣ codim span
{
~̇ω(y3), ~ω(y3), ~ω(y4) . . .

}
= 1

}
is open and dense.

By continuity

V =

{
y ∈ U ′ | ~ω(v(y)), ~̇ω(v(y)) ∈ span

{
~̇ω(y3), ~ω(y3), ~ω(y4) . . .

}}

is closed. So it only remains to show that V contains no nonempty open set V ′.
Suppose that V does contain a nonempty open set V ′. By Lemma 8.3c, applied

twice, there are analytic functions on some nonempty open subset of V ′ such that, in local

coordinates,

~w(v(y)) = λ2(y) ~̇w(y3) +
∑

j≥3

λj(y)~w(yj)

~̇w(v(y)) = µ2(y) ~̇w(y3) +
∑

j≥3

µj(y)~w(yj)
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on the subset.

If there is some λj0(y) with j0 ≥ 4 which is not identically zero, then (shrinking V ′)

~w(yj0) =
1

λj0(y)

{
− λ2(y) ~̇w(y3)−

∑

j≥3
j 6=j0

λj(y)~w(yj) + ~w(v(y))

}

Fix any ȳ ∈ V ′. Repeated differentiation with respect to yj0 , followed by evaluation at ȳ now

shows that ~w(n)(ȳj0), n ≥ 0, lies in span
{
~w(v(ȳ)), ~̇w(ȳ3), ~w(ȳj)

∣∣ j ≥ 3, j 6= j0
}
. But this

implies that ~w(yj0) lies in a hyperplane for yj0 in a neighbourhood of ȳj0 which is impossible.

On the other hand, if all λj(y), j ≥ 4 are identically zero, then

~w(v(y)) = λ2(y) ~̇w(y3) + λ3(y)~w(y3) .

To complete the proof of the lemma it suffices to show that some ∂ v
∂yj

, j ≥ 4, is non zero,

because from this it would follow that ~w(z) lies in span
{
~w(ȳ3), ~̇w(ȳ3)

}
for all z in a neigh-

bourhood of v(ȳ) which is impossible.

So suppose that λj(y) = 0 for all j ≥ 4 and v(y) is a function of y3, only. By

hypothesis λ2(y) is non zero. Differentiating with respect to y3 gives

~̇w(v(y))
∂ v

∂y3
=
∂λ3

∂y3
~w(y3) +

(
λ3 +

∂λ2

∂y3

)
~̇w(y3) + λ2 ~̈w(y3)

This combines with

~̇w(v(y)) = µ2(y) ~̇w(y3) +
∑

j≥3

µj(y)~w(yj)

to give that

codim span
{
w(y3), ~̇w(y3), ~̈w(y3), ~w(y4), ~w(y5) . . .

}
≥ 1 .

on some nonempty open set of W (−2), in contradiction to part a.

We now describe the tangent space of Θ at its regular points. The dual space B∗ to

B is

B∗ =
{
λ = (λ1, λ2, · · ·) ∈ C∞

∣∣ ‖λ‖B∗ =
∑

j

|λj || log tj | <∞
}

The derivative ∇θ(e) of θ at e is a map from B to B∗.

Put

Θreg := {e ∈ θ | ∇θ(e) 6= 0} Sing Θ := ΘrΘreg

We have
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Lemma 9.5

Θr
(
Θ1 ∩ (−Θ1)

)
⊂ Θreg

Proof: Since θ(e) is even it suffices to show ΘrΘ1 ⊂ Θreg. If e ∈ ΘrΘ1, then by Riemann’s

Vanishing Theorem θ
(
e+

∫ x
x0
~ω
)

has, for generic x0, the point x0 as a simple zero. Hence

∇θ(e) 6= 0.

Furthermore put

Ω̃ :=

{
∞∑
j=1

λjωj | (λ1, λ2, . . .) ∈ B∗
}

By Proposition 7.3ii every element of Ω̃ is a holomorphic differential form. In addition all

elements of Ω̃ are square integrable since, by Corollary 6.17,

‖∑
j
λjωj‖2 ≤

∑

j

|λj| ‖ωj‖2 ≤ const
∑

j

|λj |
√
| log tj |

≤ const ‖λ‖B∗

Let ψ : B∗ → Ω̃ be the map (λ1, λ2, . . .) 7→
∑∞
j=1 λjωj . It is bijective since

∫
Ai

(∑∞
j=1 λjωj

)
= λi. For y ∈W (−n) put

Ω̃(y) :=
{
ω ∈ Ω̃ | ω vanishes at yj with multiplicity at least ] {k | π(yk) = π(yj)}

}

and for a divisor D =
∑
mpp on X put

Ω̃(D) :=
{
ω ∈ Ω̃

∣∣ ω vanishes with muliplicity at least mp at p
}

Consider e ∈ Θ r Θ1. Recall that such an e has a representation e = F (y) with

y = (y2, y3, . . .) ∈ W (−1) obeying yi = yj whenever π(yi) = π(yj) and that {π(yi) | i ≥ 2}
is uniquely determined by e. We showed in Lemma 9.5 that ∇θ(e) 6= 0, i.e. Θ is smooth

at e. In Corollary 9.9 we will show that C∇θ(e), i.e. the “orthogonal complement” to

the tangent space TeΘ, is uniquely determined by the condition that the holomorphic form∑
k≥1∇θ(e)kωk(z) be zero for z = y2, y3, . . ..

Following Lemma (9.6) we will look at how TeΘ varies as e moves in directions

v ∈ TeΘ, i.e. study the Gauss map for θ. More precisely, we will look for directions v such

that TeΘ is stationary, in other words such that C∇Θe is stationary. Such pairs (e, v) are

given by the conditions

∇θ(e) 6= 0, ∇θ(e) · v = 0,
d

dλ
∇θ(e+ λv)

∣∣∣
z=0
∈ C∇Θe (9.4)
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In particular, when e = F (y) ∈ Θ r Θ1, we shall find in Proposition (9.8) necessary and

sufficient conditions that the set of v’s satisfying (9.4) is of dimension 1 and shall determine

precisely what the set is. The conditions are that the form ωe(z) =
∑
k≥1∇θ(e)kωk(z) have

a zero of precisely the right order, namely ] {i | π(yi) = π(yj)}, at each yj j ≥ 2 with one

exception, say yj = x. And that ωe(z) have one excess zero, in other words a zero of order

]{i | π(yi) = x} + 1, at z = x. Then the set of stationary directions v ∈ TeΘ is precisely

C~ω(x).

Note that the conditions (9.4) are stated purely in terms of the function θ. They do

not involve the Riemann surface that gave rise to θ. On the other hand the statement “the

set of stationary directions v ∈ TeΘ is precisely C~ω(x)” does involve the Riemann surface

and indeed assigns, in the nonhyperelliptic case, a unique point x ∈ X to the given e ∈ Θ.

In Proposition (9.10) we find, in the nonhyperelliptic case, a set E ⊂ Θ of such e’s.

The set E is dense in a subset of codimension 1 in Θ. Such points are ramification

points of the Gauss map. Furthermore, for x in a dense subset of X, the set {e ∈ E |
e is paired with x} is, roughly speaking, of codimesion 2 in Θ. The pairing of points e in E

with points x ∈ X is the principal ingredient in the Proof of the Torelli Theorem 11.1 for

the non hyperelliptic case. Of course since E and Θ1 are both of codimension 1 in Θ, there

is the danger that E ∩ Θ r Θ1 = ∅. However, if (e, v = ~ω(x)) obeys (9.4), then so does

(−e, v = ~ω(x)), since θ is an even function. As Θ1 ∩ (−Θ1) is of codimension 2 in Θ, most

of E must be outside it.

On the other hand, we shall show in Proposition 9.11 and Proposition 10.3 that

hyperelliptic curves are characterized by the existence, for each Weierstrass point b ∈ X, of

a set H(b) which is dense in a subset of codimension 1 in Θ with every point e ∈ H (b) paired,

as above, with b. We return to the hyperelliptic case in §10.

Lemma 9.6 Let y ∈W (−n). Then

ψ
(
(range df(ν1,...,νn−1)([y]))⊥

)
= Ω̃(y)

Proof: range df(ν1,...,νn−1)([y]) is generated by the vectors ~ω(yj), ~̇ω(yj), ~̈ω(yj), . . . ~ω
(kj−1)(yj)

where kj = ]{i | yi = yj}.

For e ∈ Θ put

ωe := ψ(∇θ(e)) =
∂θ

∂e1
(e)ω1 +

∂θ

∂e2
(e)ω2 + · · ·
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Corollary 9.7 Let e ∈ Θreg, and let y ∈W (−1) such that F (y) = e and f maps a neighbour-

hood of [y] biholomorphically onto a neighbourood of e in Θ. Then

Ω̃(y) = C · ωe

Proof: ∇Θ(e) clearly spans (range df([y]))
⊥

For each fixed e ∈ B denote by Hess(θ)(e) : B → B∗ the second derivative of Θ. If

e ∈ θreg let

TeΘ := ker ∇θ(e)
be the tangent space to Θ at e and let

H(e) :=

(
qe ◦Hess(θ)(e)

∣∣∣
TeΘ

)
: Teθ −→ B∗/C∇θ(e)

be the restriction of Hes(θ)(e) to Te(θ), composed with the projection qe from B∗ to

B∗/C∇θ(e).
For y = (yn+1, yn+2, . . .) ∈W (−n) and x ∈ X̃ let

v(x; y) :=

{
0 if x 6= yn+1, yn+2, . . .
]{i | π(yi) = π(x)} if x = yj for some j

be the multiplicity of π(x) in the sequence π(y2), π(y3), . . ..

Proposition 9.8 Let e ∈ Θreg. Let y ∈ W (−1) such that F (y) = e and such that f maps a

neighbourhood of [y] in S(−1) biholomorphically onto a neighbourhood of e in Θ. Let kj :=

multyjωe − v(yj, y) be the excess multiplicity of ωe in yj to the requirement that ωe ∈ Ω̃(y).

Then

kerH(e) = span
({
~ω(yj), ~̇ω(yj), . . . , ~ω

(`j)(yj) | j = 2, 3, . . .
})

where `j := min(kj ,multyiωe)− 1

Corollary 9.9 In the situation above

(a) H(e) is injective if and only if multyjωe = v(yj, y) for j = 2, 3, . . .

(b) dim kerH(e) = 1 if and only there is x ∈ {y2, y3, . . .} such that

multxωe = v(x; y) + 1 and

multyjωe = v(yj; y) whenever π(yj) 6= π(x)

In this case

kerH(e) = C~ω(x)
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Proof of Proposition 9.8: After reordering the entries of y we may assume that there

are integers 2 = jp < jp+1 < jp+2 < . . . such that ji+1 − ji = 1 for sufficiently big i

π(yji) 6= π(yji′ ) if i 6= i′

yji = yji+1
= · · · = yji+ni−1 where ni = ji+1 − ji = v(yji ; y)

Choose local coordinates ξi around yji such that ξi = 0 corresponds to the point yji . We

use as local coordinates around the point [(yji , yji, . . .)] ∈ X̃ni/Sni the coefficients of the

polynomial pi(ξi) = ξnii + a
(i)
ni−1ξ

ni−1
i + . . .+ a

(i)
0 =

ni−1∏
`=0

(
ξi − ξi(y′ji+`)

)
whose zero set is a

configuration of points
[
(y′ji , y

′
ji+1, . . . , y

′
ji+ni−1)

]
in X̃ni/Sni close to [(yji , . . . , yji)].

For e′ near e we write locally

ωe′ = w(ξi, e
′)dξi

Then w(ξi, e) vanishes at ξi = 0 with multiplicity ni + kji .

Now let t → e(t) be a holomorphic curve in Θ with e(0) = e, ė(0) 6= 0. The image

of this curve under f−1 can coordinatewise be described by

t 7→ Pi(ξi, t) = ξnii + a
(i)
ni−1(t)ξni−1

i + . . .+ a
(i)
0 (t)

Observe that pi(ξi, 0) = ξnii .

Put

ω̇e = d
dtωe(t)

∣∣
t=0

= ψ([Hess(θ)(e)](ė(0))

and write locally

~̇ωe = ẇ(ξi)dξi =
d

dt
w(ξi, e(t))

∣∣∣∣
t=0

dξi

We can, by the local Nullstellensatz, write

w(ξi, e(t)) = gi(ξi, t) · pi(ξi, t)

where gi is an analytic function of ξi and t such that gi(ξi, 0) has a zero of order kji at 0. By

differentiating this identity we get

ẇ(ξi) =

(
d

dt
gi(ξi, t)

∣∣∣
t=0

)
pi(ξi, 0) + gi(ξi, 0)

(
∂pi
∂t

(ξi, t)

)

t=0

The first term has a zero of order least ni at 0, while the order of the zero of the second term

at 0 is

kji + min
{
`
∣∣ d
dta

(i)
` (t)

∣∣
t=0
6= 0

}
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whenever the second term is not identically zero. Therefore

ẇ(ξi) has a zero of multiplicity at least ni at 0

m
d
dta

(i)
` (t)

∣∣∣
t=0

= 0 for ` = 0, . . . , ni − kji − 1 (9.5)

Now ė(0) lies in the kernel of H(e) if and only if ω̇e is proportional to ωe. By the Corollary

9.7 this is the case if and only if ω̇e ∈ Ω̃(y), i.e. if ẇ(ξi) has a zero of multiplicity at ξi = 0

of multiplicity at least ni. By (9.5) this happens if and only if

d

dt
a

(i)
` (t)

∣∣∣
t=0

= 0 for ` = 0, . . . , ni − kji − 1

The formula for the kernel now follows from the fact that

ė(0) =
∑

i

ni∑

`=1

α`,ni
∂`−1 ~w

∂ξ`−1
h

(0)ȧ
(i)
ni−`(0)

with some constants α`,n 6= 0. This proves the formula about the kernel.

Proposition 9.10 Let X be non hyperelliptic. There is an open dense subset M of X̃×W (−3)

such that each point of it has a neighbourhood U , for which the following holds: There is a

holomorphic map

ϕ : U → Θ

such that for all (x, y) ∈ U
codimB range dϕ(x; y) = 2

and for all (x, y) in a dense subset of U

∇θ(ϕ(x; y)) 6= 0

kerH(ϕ(x; y)) = C · ~ω(x)

Loosely speaking, the Proposition says that on a big part of the ramification set of

the Gauss map the kernel of the derivative of the Gauss map is of the form C · ~ω(x) with

some x ∈ X.

Proof of Proposition 9.10: We consider the map

Φ : X̃ ×W (−3) −→ Θ

(x; y4, y5, . . .) 7−→ F (x, x, y4, y5, . . .)
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By Lemma 8.3b and Lemma 9.4a the set M1 of (x; y) ∈ X̃ ×W (−3) at which the differential

dΦ(x; y) is injective and codimB range dΦ(x; y) = 2 is open and dense in X̃ ×W (−3). We

have the commutative diagram

Φ
X̃ ×W (−3) Θ

S(−1)

[(x, x, y4, · · ·)]

(x; y4, y5, · · ·)

Therefore for (x; y4, y5, . . .) ∈M1 the points π(x), π(y4), π(y5), . . . are pairwise different, for

otherwise the projection p : X̃ ×W (−3) → S(−1) would not have injective differential. Put

M2 := {(x, y) ∈M1 | df has maximal rank at p(x; y)}

As before one sees that M2 is open at dense in X̃ ×W (−3).

Now put

M3 := {(x; y) ∈M2 | Φ(x, y) ∈ Θr (Θ1 ∩ (−Θ1))}

Since codimB range dΦ(x; y) = 2 for all (x, y) ∈ M2 it follows from Proposition 9.3 and

Lemma 9.2 that Φ(M2) 6⊂ Θ1 ∩ (−Θ1). As Θ1 ∩ (−Θ1) is an analytic subvariety of Θ it

follows that M3 is open and dense in M2.

Corollary 9.7 applies to all the points Φ(x; y), (x, y) ∈M3. In particular ∇θ(Φ(x; y))

and hence ωΦ(x;y) is non zero and generates Ω̃(x, x; y4, y5, . . .).

Next we show that the set

M4 := {(x; y) ∈M3 | Φ(x, y) ∈ Θr (Θ1 ∪ (−Θ1))}

is open and dense in X̃ ×W (−3). Since Θ1 and (−Θ1) are closed analytic subvarieties of Θ

is suffices to show that Φ(M3) is not contained in any Θ(ν) or (−Θ(ν)) for any ν = 1, . . . ,m.

So assume that Φ(M3) ⊂ Θ(ν). Since codim range dΦ(x; y) = 2 for (x, y) ∈ M1 it follows

from Lemma 9.2 that Φ(M3) is not contained in Θ2. So there would be an open subset O
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of M3 such that Φ(O) ⊂ Θ(ν) − Θ2. By the condition defining M2 we may, after posssibly

shrinking O, assume that there is an open subset O′ of S(−1) containing p(O) such that f

maps O′ biholomorphically onto a neighbourhood of Φ(O) in Θ. After possibly shinking O

again there is for every z ∈ X̃ such that
∫ z
∞ν

~ω is small and every (x; y) ∈ O a unique point

[y′(x; y; z)] := [(y′2(x; y; z), y′3(x; y; z), y′4(x; y; z), . . .)]

in O′ such that

Φ(x; y)−
∫ z

∞ν

~ω = f ([y′(x; y; z)]) (9.6)

The maps (x, y, z) 7→ y′j(x; y; z) are holomorphic. For j ≥ 4, yj(x; y; z) → yj as
∫ z
∞ν

~ω → 0,

and the points {y′2(x; y; z), y′3(x; y; z)} go to x as
∫ z
∞ν

~ω → 0.

By Lemma 9.6

ψ
(
range(dΦ(x; y))⊥

)
= Ω̃(x, y4, y5, . . .)

For any fixed z the map

(x; y) 7→ Φ(x; y)−
∫ z

∞ν

~ω

has the same differential as Φ(x; y) at x, y. On the other hand

∇θ
(

Φ(x; y)−
∫ z

∞ν

~ω

)
= ∇θ (f(y′(x; y; z)))

annihilates the image of this differential. Therefore

ωf(y′(x;y;z)) ∈ Ω̃(x, y4, y5, . . .)

Fix any j ≥ 4. By Lemma 9.4a the set M ′j ⊂M3 on which ωΦ(x,y) has a zero of multiplicity

one at yj is open and dense in O. Therefore, for every z such that
∫ z
∞ν

~ω is small enough

ωf(y′(x;y;z)) ≈ ωΦ(x,y) has only one zero near yj . But yj itself is such a zero as is y′j(x; y; z) by

Lemma 9.6. Therefore y′j(x, y, z) = yj for (x; y) ∈ O ∩M ′j and
∫ z
∞ν

~ω small. By analyticity

y′j(x; y; z) ≡ yj for all (x, y) ∈ O , z ∈ X̃ , j ≥ 4

Similarly one sees that

x ∈ {y′2(x; y, z) , y′3(x; y; z)} for (x, y) ∈ O , z ∈ X̃

So may assume that y′3(x; y; z) ≡ x. Hence (9.6) gives

ê−
∫ ∞

x̃1

~ω−
∫ x

x̃2

~ω−
∫ x

x̃3

~ω−
∞∑

j=4

∫ yj

x̃j

~ω−
∫ z

∞ν

~ω = ê−
∫ ∞

x̃1

~ω−
∫ y′2(x;y;z)

x̃2

~ω−
∫ x

x̃3

~ω−
∞∑

j=4

∫ yj

x̃j

~ω
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so that ∫ y′2(x,y,z)

x̃2

~ω =

∫ x

x̃2

~ω +

∫ z

∞ν

~ω

Differentiating with respect to z yields

~ω(y′2(x; y; z)) · ∂y
′
2

∂z
= ~ω(z)

Since the canonical map κ is injective

y′2(x; y; z) = z

This forces ∫ x

x̃2

~ω =

∫ ∞ν

x̃2

~ω for all x

which is imposible. The case Φ(M3) ⊂ −Θ(ν) is treated in the same way.

Let M5 be the set of all points (x, y) ∈ M4 such that for generic u0 ∈ X̃ the map

X̃ → C, u 7→ θ
(

Φ(x; y)−
∫ u
u0
~ω
)

has π(x) as at most a double zero, all the other zeroes are

simple and one of the zeroes is diferent from π(u0), π(x), π(y4), π(y5) . . .. We claim that M5

is open and dense in X̃ ×W (−3). In fact, for (x, y) ∈M4, Φ(x; y) ∈ Θr (Θ1 ∪ −Θ1) so that

−Φ(x; y) ∈ Θr (Θ1 ∪ −Θ1) which implies, by Riemann’s Vanishing Theorem,

−Φ(x; y) = ê−
∫ ∞

x̃1

~ω −
∞∑

j=2

∫ zν

x̃j

~ω with (z2, z3, · · ·) ∈W (−1)

with π(u0), π(z2), π(z3), . . . being the zeroes of θ
(

Φ(x, y)−
∫ u
u0
~ω
)

. If U is any sufficiently

small open subset of M4 then, by Theorem 7.11, there is N > 0 such that for j ≥ N π(zi) ∈ Yj
if and only if i = j. So far, we have shown

− Φ(x; y) = ê−
∫ ∞

x̃1

~ω −
∞∑

j=2

∫ zj

x̃j

~ω (9.7)

π(u0), π(z2), π(z3), · · · are the roots of u 7→ θ

(
Φ(x; y)−

∫ u

u0

~ω

)

ωΦ(x;y) ∈ Ω̃(z)

π(zN ), π(zN+1) . . . are simple

We now show that the set U ′ of (x, y) ∈ U for which x is at most a double zero and the

remaining π(z2) . . . π(zN−1) are simple zeroes is open and dense in U .

Openness is an immediate consequence of the continuity of the zi(x, y). If U ′ is not

dense there is an open subset U ′ of U and a partition of {2, 3, · · · , N − 1} such that for all

(x, y) ∈ U ′′

195



- all π(zi)’s with i in one element of the partition, are equal

- π(zi) 6= π(zj) if i and j are in different elements of the partition.

- at least one element of the partition is of cardinality at least two with π(zi) 6= π(x)

for all i in that element and all (x, y) ∈ U ′′ or there is an element of cardinality at

least three with π(zi) = π(x) for all i in that element and all (x, y) ∈ U ′′.
Note that if an analytic function f(z) has a zero of order m at a point z0 of an open disk D

and if f(z) has no other zeroes in D then

z0 =
1

m

∫

∂D

z
f ′(z)
f(z)

dz .

Consequently z2(x, y) . . . zN−1(x, y) are analytic on U ′′.

A triple zero of θ
(

Φ(x, y)−
∫ u
u0
~ω
)

and hence, by Theorem 8.4, of ω−Φ(x,y) =

−ωΦ(x,y) at π(x) for all (x, y) ∈ U ′′ is ruled out by Lemma 9.4a. A double zero at

π(yj), j ≥ 4 is also ruled out by Lemma 9.4a. A double zero z1(x, y), z2(x, y) with

π(z1(x, y)) = π(z2(x, y)) 6∈ {π(x), π(y4) . . .} and zi(x, y) analytic on U ′′ is ruled out by

Lemma 9.4c.

Clearly

{
(x, y) ∈ U ′

∣∣∣∣ θ
(

Φ(x, y)−
∫ u

u0

~ω

)
has a zero different from π(u0), π(x), π(y4), π(y5), . . .

}

= U ′ ∩M5

is the complement of an analytic subvariety of U ′. It suffices to show that it is not empty.

Otherwise the sequences π(x), π(x), π(y4), π(y5), . . . and π(z2), π(z3), π(z4), . . . would agree

up to finite permutation, so we could asume that (x, x, y4, . . .) = z(x; y) for all (x; y) ∈ U ′.
But then (9.7) would yield

2Φ(x; y) = 0

for all (x; y) ∈ U ′, which is imposible.

Now put

M :=

{
(x, y) ∈M5

∣∣∣∣ for generic u0 ∈ X̃ there is a zero v of

u 7→ θ

(
Φ(x; y)−

∫ u

u0

~ω

)
such that π(v) 6= π(u0)

and ~ω(v) 6∈ span(~ω(x), ~ω(y4), ~ω(y5), . . .)

}

On U ′ ∩ M5 the zero v(x, y) can, locally, be chosen to depend analytically on (x, y), so

Lemma 9.4 b implies that M is open and dense in X̃×W (−3) whenever X is not hyperelliptic.
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Let U be a neighbourhood of a point in M . Then there is a holomorphic map U → X̃

(x; y) 7→ z2(x; y) such that for generic u0 ∈ X̃ the point z2(x; y) is a root of θ
(

Φ(x; y)−
∫ u
u0
~ω
)

and ~ω (z2(x; y)) 6∈ span
(
~ω(x), ~ω(y4), . . .

)
.

After possibly shrinking U we can find z3(x; y), z4(x, y), . . . depdending holomorphi-

cally on (x, y) ∈ Ũ such that

−Φ(x; y) = ê−
∫ ∞

x̃1

~ω −
∞∑

j=2

∫ zj(x;y)

x̃j

~ω

Put

ϕ(x; y) := ê−
∫ ∞

x̃1

~ω −
∫ x

x̃2

~ω −
∫ z2(x;y)

x̃3

~ω −
∞∑

j=4

∫ yj

x̃j

~ω

= F (x, z2(x; y), y4, y5, . . .)

We have the commutative diagram

ϕ
U Θ

W (−1)

(x, z2(x, y), y4, y5, · · ·)

(x; y)

The differential of the lower left arrow is injective and its range has codimension one. Fur-

thermore for each (x; y) ∈ U

range dF (x, z2(x; y), y4, . . .) = span(~ω(x), ~ω(z2(x; y)), ~ω(y4), · · ·)

has codimension one in B. Therefore dF (x, z2(x; y), y4, y5, . . .) is injective, and

codimB range dϕ(x; y) = 2

Furthermore by construction

ωϕ(x;y), ωΦ(x;y) = −ω−Φ(x;y) ∈ Ω̃(x, z2(x; y), y4, · · ·)
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By Lemma 9.4a,c there is a dense subset U ′ of U on which the differential ωΦ(x;y) vanishes

with multiplicity exactly two at x, and with multiplicity exactly one at z2(x; y), y4, y5, · · ·.
For all (x, y) ∈ U ′ with ∇θ(ϕ(x; y)) 6= 0 we have, by Corollary 9.7, that ωϕ(x;y) ∝ ωΦ(x;y)

also vanishes with multiplicity exactly two at x, and with multiplicity exactly one at

z2(x; y), y4, y5, · · ·.So by Corollary 9.9 we have

kerH(ϕ(x, y)) = C~ω(x)

for all (x, y) ∈ U ′ for which ∇θ(ϕ(x; y)) 6= 0. But ∇θ does not vanish outside the analytic

subvariety Θ1 ∩ (−Θ1) of codimension at least two in Θ (see Proposition 9.3 and Lemma 9.2)

so {(x, y) ∈ U ′ | ∇θ(ϕ(x, y)) 6= 0} is dense in U .

To distinguish hyperelliptic and non-hyperelliptic Riemann surfaces by their Theta

divisors we use

Proposition 9.11 Assume that there is a vector v 6= 0 in B, an open subset U of CN×B(−n)

for some n,N ∈ IN and a holomorphic map

g : U → Θreg

such that for all e′ ∈ U
codimB range dg(e′) = 2

and for all e′ in a dense subset of U

kerH(g(e′)) = Cv

Then X is hyperelliptic.

Remark. A converse statement will be proven in Proposition 10.5: If X is hyperelliptic

and x0 ∈ X̃ such that π(x0) is a Weierstrass point then one may take g(y3, y4, . . .) =

f(x0, y3, y4, . . .) for y ∈W (−2) and Cv = Cv(x0), independent of y = (y3, y4, . . .).

Proof: Assume that X is not hyperelliptic. By Proposition 9.3 and Lemma 9.2 we have

g(U) 6⊂ Θ1 or g(U) 6⊂ −Θ1. We discuss the first case, the second being similar. Then we may

shrink U so that g(U) ⊂ Θ r Θ1. By Corollary 9.7 and Corollary 9.9 we see that there is

x0 ∈ X̃ and a map g̃ : U → S(−2) such that

Cv = C~ω(x0) and for all e′ ∈ U
g(e′) = f

(
(x0, g̃(e

′))
)

Ω̃(x0, g̃(e
′)) = Ω̃(x0, x0, g̃(e

′))
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Since codim range dg(e′) = 2 it follows that g̃ is locally biholomorphic. Therefore there is

y ∈W (−2) such that π(yj) 6= π(yk) for j 6= k such that for all y′ near y

span(~ω(x0), ~ω(y′3), · · ·) = span(~ω(x0), ~̇ω(x0), ~ω(y′3), · · ·) ,

that is

~̇ω(x0) ∈ span(~ω(x0), ~ω(y′3), ~ω(y′4), · · ·)

for all y′ near y. We may assume that this space has codimension one in B for all such y′. If

~̇ω(x0) 6∈ C~ω(x0) then, by Lemma 8.3c there is n ≥ 0 such that

~̇ω(x0) 6∈ span(~ω(x0), ~ω(y′n), ~ω(y′n+1), · · ·)

Varying y′3, . . . , y
′
n−1 slightly we may the assume that

~̇ω(x0) 6∈ span
(
~ω(x0), ~ω(y′3), · · · , ~ω(y′n−1), ~ω(yn), · · ·

)

which is a contradiction. So ~̇ω(x0) ∈ C~ω(x0), i.e. x0 is a Weierstrass point. In particular, X

is hyperelliptic by (S5).

199



§10 Hyperelliptic Theta Divisors

In this section, we assume that the Riemann surface X = Xcom ∪Xreg ∪Xhan is

hyperelliptic. Then there is a proper map τ : X → IP1rM of degree 2 onto the complement

of a finite subset M of IP1 which ramifies over a discrete subset S of IP1 rM . Without loss

of generality, we may assume that ∞ ∈ M . Let i : X → X be the hyperelliptic involution.

Its fixed point set B = τ−1(S) consists of the ordinary Weierstrass points on X. Since

i∗(γ) = −γ for all γ ∈ H̃1(X,ZZ) one has

i∗(ωj) = −ωj for j = 1, 2, · · ·

and by (S.10ii),

C~ω(x) = C~ω(y)⇐⇒ x ∈ {y, i(y)}

for all x, y ∈ X.

We proved in §9 that f : S(−1) → B almost provides a global paramaterization of

Θ r Θ1. The “almost” is needed, first, because it is possible to have f([y]) = f([z]) with

y 6= z when π(yi) = π(zi) for all i, second, because df([y]) trivially fails to be invertible when

π(yi) = π(yj) but yi 6= yj for some i, j ≥ 2 and ,third, because the image of f can slop over

into Θ1. We also showed that Θ was smooth at all points of ΘrΘ1.

Now, in the hyperelliptic case, we improve these results. We show in Proposition 10.2

that e ∈ Θ r
∞⋂
k=1

Θk is a singular point of Θ if and only if e ∈ Θ(1,i(1)) = · · · = Θ(m,i(m)).

We show that any slop over of the range of f must be in Θ2 and not in Θ1 r Θ2. Indeed,

we show in (10.4) that f maps all points of the form (x, i(x), y4, y5, . . .) into Θ(1,i(1)) and,

provided yk = yj whenever π(yk) = π(yj), dim ker df([y]) = 0 if and only if π(yk) 6= iπ(yj)

for all k 6= j.

Proposition 9.10, that relates the ramification set of the Gauss map to the canonical

image of X, does not hold for hyperelliptic curves. In fact, we show in the remark after

Lemma 10.4 that the Gauss-map is unramified at all points e = F (y2, y3, · · ·) of Θreg where

y ∈W (−1) such that none of the points yj lies over a Weierstrass point of X. Consequently,

the strategy for the proof of Torelli’s theorem will be different in the hyperelliptic case. It

will use the special structure of the sets

H(b) =
{
F (b, y3, y4, · · ·)

∣∣ y ∈W (−2)
}
∩Θreg

We will see in Proposition 10.5 that the Gauss map is ramified at all points of H (b), and that

at generic points of H(b) the kernel of H is just C~ω(b). So, while in the non-hyperelliptic case

one can recover almost the whole image of X under the canonical map from an analysis of
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the spaces kerH(e), e ∈ Θreg, in the hyperelliptic case we can only identify the points C~ω(b)

where b runs through the Weierstrass points of X. The proof of the Torelli theorem in the

hyperelliptic case uses the image of X̃ under the map

g :X̃ −→ Θ

x 7−→ F (b, y3, y4, · · ·)−
∫ x

b

~ω = F (x, y3, y4, · · ·)

where π(b) is a Weierstrass point of X and (y3, y4, · · ·) ∈W (−2) is generic. By Corollary 9.7

ψ
(
∇θ(g(x))

)
∈ Ω̃(y) for all x ∈ X̃

In Proposition 10.5c we show that the curve g(X̃) is essentially characterized by this property.

This observation is the key point of the proof of Torelli’s Theorem for hyperelliptic curves.

Proposition 10.1 Let X be hyperelliptic. Then there is η > 0, N > 0 and there are closed

loops aj inside Yj(η) for j ≥ N such that

(i) i(aj) = aj, and aj represents Aj in H̃1(X,ZZ)

(ii) i has exactly two fixed points on aj, and these are the only points of Yj ∩B

(iii) Br
(
B ∩

∞⋃
j=N

Yj

)
consists of finitely many points.

(iv) If (zj)j≥N is a sequence of points in X such that zj ∈ aj for all j, then there is

a sequence (yj)j≥N in W (−N+1) such that π(yj) = zj for all j ≥ N .

Proof: Choose b0 ∈ X̃ such that π(b0) ∈ B and e ∈ B such that

θ

(
e− ê1 + êν +

∫ ∞

b0

~ω

)
6= 0, θ

(
−e− ê1 + êν +

∫ ∞

b0

~ω

)
6= 0

Then, by Theorems 8.4 and 7.11, there exist x resp. x′ in W (0) and η′ > 0 such that

π(x1), π(x2), . . . are the zeroes of

θ

(
e+

∫ x

b0

~ω

)
= θ

(
e+

∫ ∞

b0

~ω +

∫ x

∞
~ω

)

π(x′1), π(x′2), . . . are the zeroes of

θ

(
−e+

∫ x

b0

~ω

)
= θ

(
−e+

∫ ∞

b0

~ω +

∫ x

∞
~ω

)

xj , x
′
j ∈ Yj(η′) for all sufficiently big j and

ê− e−
∫ ∞

b0

~ω =
∞∑

j=1

∫ xj

x̃j

~ω

ê+ e−
∫ ∞

b0

~ω =

∞∑

j=1

∫ x′j

x̃j

~ω
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In particular

2e =

∞∑

j=1

∫ x′j

xj

~ω

Since i∗(~ω) = −~ω the zeroes of θ
(
−e+

∫ x
b
~ω
)

are the images, under the hyperellip-

tic involution i, of the zeroes of θ
(
e+

∫ x
b
~ω
)
. So {π(x′1), π(x′2), . . .} is a permutation of

{i(π(x1)), i(π(x2)), . . .}. By Proposition 6.16 and Theorem 6.4 one has for all j big enough

∣∣∣∣
ωk(π(xj))

ωj(π(xj))

∣∣∣∣ ≤
1

2
,

∣∣∣∣∣
ωk(π(x′j))

ωj(π(x′j))

∣∣∣∣∣ ≤
1

2
for k 6= j

Since
∣∣∣ωk(i(π(xj)))
ωj(i(π(xj)))

∣∣∣ =
∣∣∣ωk(π(xj))
ωj(π(xj))

∣∣∣ this implies that i(π(xj)) = π(x′j) for all j big enough. After

performing further finite permutations we may assume that

i(π(xj)) = π(x′j) for j = 1, 2, . . .

For all sufficiently big j the equations

∫ b+
j

xj

ωj =
1

2

∫ x′j

xj

ωj

∫ b−
j

xj

ωj =
1

2

∫ x′j

xj

ωj +
1

2

(10.1)

have unique solutions b+j resp. b−j in Ỹj
(

1
2
η′
)
. We claim that π(b+j ) and π(b−j ) are fixed

points of i. To verify this for π(b+j ) let γ be a path in Ỹj
(

1
2η
′) joining b+j to x′j such that for

all x ∈ γ ∣∣∣∣∣

∫ x

b+
j

ωj

∣∣∣∣∣ ≤
∣∣∣∣∣

∫ x′j

b+
j

ωj

∣∣∣∣∣

Then π(γ) is a path in Ỹj
(

1
2η
′) starting at π(b+j ) and ending at π(x′j). Then i(π(γ)) starts at

i(π(b+j )) and ends at i(π(x′j)) = π(xj), and also lies in Ỹj
(

1
2η
′) provided that j is big enough.

Let γ′ be the lift of the path i(π(γ)), ending at xj . Then

∫

γ′
ωj = −

∫

π(γ′)
i∗(ωj) = −

∫

π(γ)

ωj = −
∫ x′j

b+
j

ωj = −
∫ xj

b+
j

ωj +

∫ xj

x′
j

ωj

=
1

2

∫ xj

x′
j

ωj =

∫ xj

b+
j

ωj

Since γ′ ⊂ Ỹj
(

1
2
η′
)

and has endpoint xj its starting point is b+j (recall that x 7→
∫ x
xj
ωj is

a coordinate on Ỹj). This shows that i(π(b+j )) = π(b+j ). The fact that i(π(b−j )) = π(b−j ) is
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verified in the same way. Also observe that π(b+
j ) 6= π(b−j ) since

∫ b−
j

b+
j

ωj = 1
2 . Thus we have

shown that for j big enough ]
(
Yj
(

1
2
η′
)
∩B

)
≥ 2.

Now let aj be image of ãj :=
{
x ∈ Ỹj

∣∣ ∫ x
b+
j
ωj ∈ [0, 1]

}
under π. If j is bigger

than some constant N it is a closed loop in Yj
(

1
4η
′) that represents ±Aj in H̃1(X,ZZ). It

is obviously invariant under i and contains the points π(b+
j ), π(b−j ). So condition (i) of the

Proposition is fulfilled.

If (zj)j≥N is a sequence with zj ∈ aj let yj be a lift of zj in ãj. Since (xj)j∈IN

and (x′j)j∈IN lie in W (0) it follows that (b+j )j≥N ∈ W (−N+1). Now

∣∣∣∣
∫ yj
b+
j

ωj

∣∣∣∣ ≤ 1, so that also

(yj)j≥N ∈W (−N+1). This proves part (iv) of the Proposition.

Consider the exhaustion · · ·X(n) ⊂ X(n+1) ⊂ · · · ⊂ X of (7.6). Since aj is invariant

under the involution i and ∂X(n) does not meet aj then i(∂X(n)) also does not meet any of

the loops aj. Put

X̌(n) := X(n) ∪ i(X(n))

Clearly aj ∩ X̌(n) = aj whenever aj ∩ X̌(n)
j 6= ∅, and ∂X̌(n) is piecewise smooth consisting

of m closed loops. Furthermore

genus(X̌(n)) = (N − 1) + ]
{
j ≥ N

∣∣ aj ⊂ X̌(n)
}

for n� 0

So for n sufficiently big the topological Euler characteristic χ(X̌(n)) of X̌(n) is

2− 2]
{
j ≥ N

∣∣ aj ⊂ X̌(n)
}
− 2(N − 1)−m

Put

hn := ]
(
B ∩ X̌(n)

)

Clearly hn ≥ 2]
{
j ≥ N

∣∣ aj ⊂ X̌(n)
}

.

The topological Euler characteristic of the quotient X̌(n)/(i) fulfils

χ(X̌(n)/(i)) ≥ 2− ]
{
j ≥ N

∣∣ aj ⊂ X̌(n)
}
−N −m+

1

2
hn

Since χ(X̌(n) | (i)) ≤ 2 we get

hn ≤ 2(N +m) + 2]
{
j ≥ N

∣∣ aj ⊂ X̌(n)
}

Thus there is a constant such that

hn = const + 2]
{
j ≥ N

∣∣ aj ⊂ X̌(n)
}

for all sufficiently big n. This proves parts (ii) and (iii) of the Proposition.
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It follows from the preceeding discussion that for each ν ∈ {1, . . . ,m} there is a

unique i(ν) ∈ {1, . . . ,m} such that

i
(
X(ν)

reg rX(n)
)

) ∩X(i(ν))
reg 6= ∅ for n� 0

The map ν → i(ν) is an involution on {1, . . . ,m}. We may assume without loss of generality

that the starting point x(0) of the paths Pν of Lemma 7.5 is a fixed point of the hyperelliptic

involution i. Then for each ν = 1, . . . ,m there is `ν ∈ B∗, cν 6= 0 such that for all e ∈ B

Θ(e+ êν) = cνe
`ν (e)Θ(e− êi(ν)) (10.2)

To see this observe that, by Proposition 7.8, for all t sufficiently big there are paths γt

joining i(Pν(t)) to Pi(ν)(t) inside (X
i(ν)
reg ∩i(X(ν)

reg ))rX(n(t)) with lim
t→∞

∫
γt
~ω = 0, lim

t→∞
n(t) =∞.

Therefore there is a finite linear combination v
(ν)
B of B-cycles and that for all t� 0

the closed path consisting of i(Pν [0, t]), γt and Pi(ν)[t, 0] is homologous to v
(ν)
B modulo a

(t-dependent) finite linear combination of A-cycles.

Therefore by the transformation properties of the theta function

θ(e+ êν) = lim
t→∞

θ

(
e+

∫

Pν([0,t])

~ω

)

= lim
t→∞

θ

(
e−

∫

i(Pν [0,t])

~ω

)

= lim
t→∞

c′νe
`ν

(
e−
∫
i(Pν [0,t])

~ω
)
θ

(
e−

∫

Pi(ν)[0,t]

~ω −
∫

γt

~ω

)

with some `ν ∈ B∗, c′ν ∈ Cr {0} depending on v
(ν)
B only. Taking the limit we get the result.

For x ∈ X, ν = 1, . . . ,m, e ∈ B we say that θ
(
e+

∫ i(∞ν)

x
~ω
)

= 0 if θ
(
e+

∫
γ
~ω
)

= 0

for some path γ joining x to a point of i(Pν([0,∞])) and then following i(Pν([0,∞])) out to

infinity. Using (10.2) one easily sees that

θ

(
e+

∫ i(∞ν)

x

~ω

)
= 0 ⇐⇒ θ

(
e+

∫ ∞i(ν)

x

~ω

)
= 0 (10.3)

To study Sing Θ we use the prime form

Ee(x1, x2) := θ

(
e+

∫ x2

x1

~ω

)
(e ∈ B, x1, x2 ∈ X̃)

Proposition 10.2 Assume that X is hyperelliptic
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a) Θ(ν1,...,νm) = −Θ(i(ν1),...,i(νn)) for all ν1, . . . , νn ∈ {1, . . . ,m}

b)
{
e ∈ B

∣∣ Ee(x1, x2) = 0 ∀ x1, x2

}
= Θ(1,i(1)) = . . . = Θ(m,i(m)). This set is contained

in Sing Θ.

c) If e ∈ Θr
∞⋂
k=1

Θν then e ∈ Sing Θ if and only if Ee(x1, x2) is identically zero.

Remark. If i(ν) = ν for ν = 1, . . . ,m then, by the pigeonhole principle and b) every point

of Θm+1 lies in Sing Θ. So in this case

Sing Θ =
{
e ∈ B

∣∣ Ee(x1, x2) ≡ 0
}

Proof: (a) Let e ∈ B. Since i∗(~ω) = −~ω one has for x1, . . . , xn−1 ∈ X

θ

(
e−

∫ x1

∞ν1

~ω − . . .−
∫ xn

∞νn

i

)
= 0 ⇐⇒ θ

(
e+

∫ i(x1)

i(∞ν1
)

~ω + . . .+

∫ i(xn)

i(∞ν1
)

~ω

)
= 0

By (10.3) and the evenness of the Theta function this is the case if and only if

Θ

(
− e−

∫ i(x1)

∞i(ν1)

~ω − . . .−
∫ i(xn)

∞i(νn)

~ω

)
= 0

This shows that

e ∈ Θ(ν1,...,νn) =⇒ −e ∈ Θ(i(ν1),...,i(νn))

(b) Let e ∈ B. By (10.3), for any x1, x2 ∈ X, ν = 1, . . . ,m

θ

(
e+

∫ x2

x1

~ω

)
= 0 ⇐⇒ θ

(
e+

∫ ∞ν

x1

~ω +

∫ x2

∞ν

~ω

)
= 0

⇐⇒ θ

(
e−

∫ x1

∞ν

~ω −
∫ i(x2)

∞i(ν)

~ω

)
= 0

This shows that

{
e ∈ B

∣∣ Ee(x1, x2) ≡ 0
}

= θ(ν,i(ν)) for ν = 1, . . . ,m

For any e in this set the vectors ~ω(x) = d
dy

∫ y
x
~ω
∣∣
y=x

all lie in ker∇θ(e). As these vectors

span B, e ∈ Sing Θ.

(c) To verify (c) choose e ∈ Θ r Θk for some k such that Ee(x1, x2) is not identically zero.

There is n ≤ k, ν1, . . . , νn−1 ∈ {1, . . . ,m} such that

e ∈ Θ(ν1,...,νn−1) rΘn , νi 6= i(νj) for i 6= j
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By Theorem 9.1 there is y ∈W (−n) such that

e = F(ν1,...,νn−1)(y)

Choose z ∈ X̃ such that π(z) 6= π(yj) for j = n + 1, n + 2, . . . and such that x 7→ Ee(z, x)

is not identically zero on X̃. This is possible by the assumption that Ee(x1, x2) is not

identically zero. Let U be a bounded neighbourhood of π(z) in X containing none of the

points π(yn+1), π(yn+2), . . .. As xj goes to ∞νj the function

x 7→ θ

(
e−

n−1∑

j=1

∫ xj

∞νj

~ω +

∫ x

z

~ω

)

on U goes to x 7→ Ee(z, x). By Theorem 9.1, for generic x1, . . . , xn−1 the function above has

only one zero in U , namely π(z), and that zero is a simple zero. Therefore

x 7→ Ee(x, y) = θ

(
e+

∫ x

z

~ω

)

has z as a simple zero. So ∇θ(e) 6= 0, i.e. e 6∈ Sing Θ.

Observe that for any x ∈ X one has

∫ x

x̃2

~ω +

∫ i(x)

x̃3

~ω =

∫ ∞ν

x̃2

~ω +

∫ i(∞ν )

x̃3

~ω for all ν = 1, . . . ,m

Therefore

F (x, i(x), y4, y5, . . .) ∈ Θ(1,i(1)) ⊂ Sing Θ ∀ y ∈W (−3), x ∈ X̃ (10.4)

This is essentially the only way the image of F meets Θ1. Precisely,

Lemma 10.3 Let y ∈W (−1) such that F (y) 6∈ Sing Θ, F (y) 6∈ ⋂∞k=1 Θk. Then F (y) 6∈ Θ1.

Proof: Put e := F (y). Assume that e ∈ Θ1. Then there is n ≥ 2 and ν1, . . . , νn−1 ∈
{1, . . . , n} such that

e ∈ Θ(ν1,...,νn−1) rΘn, νi 6= i(νj) for i 6= j

Write

e = F (ν1,...,νn−1)(z)

206



with z ∈W (−n). For generic u, u1, . . . , un−1 the zeroes of

θ

(
e−

∫ u1

∞ν1

~ω − . . .−
∫ un−1

∞νn−1

~ω +

∫ x

u

~ω

)

are precisely π(u), π(u1), . . . , π(un−1), π(zn+1), π(zn+2), · · ·. By the previous Proposition we

can choose u such that

θ

(
e+

∫ x

u

~ω

)

is not identically zero. Taking the limit as uνj →∞νj , j = 1, . . . , n−1, we see that the zeroes

of θ
(
e+

∫ x
u
~ω
)

are precisely π(u), π(zn+1), · · ·.
On the other hand there is y′ ∈W (−1) arbitrarily close to y such that F (y′) ∈ ΘrΘ1.

For generic u and such y′ the function Θ
(
F (y′) +

∫ x
u
~ω
)

has π(u), π(y′2), . . . as zeroes. As y′

goes to y this function converges to θ
(
e+

∫ x
u
~ω
)
. Consequently this function has all the

points π(u), π(y2), π(y3), · · · as zeroes. Before we noticed that the zeroes of this function are

precisely π(u), π(zn+1), · · ·. Since n ≥ 2 this is a contradiction.

Lemma 10.4 Let i : X → X be the hyperelliptic involution. Let y = (y2, y3, . . .) ∈ W (−1)

be such that for all k 6= j one has π(yk) 6= i(π(yj)) and such that yk = y` whenever π(yk) =

π(y`).Then

a) df([y]) has corank one and dim Ω̃(y) = 1

b) The roots of a nonzero differential ω ∈ Ω̃(y) are precisely π(y2), i(π(y2)), π(y3), i(π(y3)), . . ..

Remark. Let y ∈ W (−1) be as in Lemma 10.4, and put e = F (y). If none of the points

π(yj) is a Weierstrass point, Corollary 9.9 shows that H(e) is injective. On the other hand,

if exactly one of the points π(yj) is a Weierstrass point b then H(e) has a one dimensional

kernel, namely C~ω(b).

Proof of Lemma 10.4: First let y′ = (y′2, y
′
3, . . .) be any element of W (−1) such that

π(y′k) 6= i(π(y′j)) for k 6= j and such that df([y′]) has corank one. By Lemma 9.6 one has

ψ
(

(range df([y′]))⊥
)

= Ω̃(y′), so dim Ω̃(y′) = 1.

Let ω be a generator of Ω̃(y′). Assume that ω has a zero z different from

π(y′2), i(π(y′2)), i(y′3), i(π(y′3)), . . . (counted with multiplicity). Since i∗(ω) = −ω, i(z) is also

a zero of ω different from π(y′2), i(π(y′2)), π(y′3), . . .. So

ω′(x) :=
1

τ(x)− τ(z)
ω(x)
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is a holomorphic differential which vanishes at y′j with multiplicity at least ]{k | y′k = y′j}.
Put

λ′j :=

∫

Aj

ω′

Clearly there is a constant C such that

|λ′j | ≤ C
∣∣∣∣∣

∫

Aj

ω

∣∣∣∣∣

Therefore the sequence (λ′j)j=1,2,··· lies in B∗ and ψ(λ′) =
∑∞
j=1 λ

′
jωj ∈ Ω̃. So

ω̃ := ω′ −
∞∑

j=1

λ′jωj

is square integrable. By construction
∫
Aj
ω̃ = 0 for all j, so that, by (S.8), ω̃ = 0 and

ω′ =

∞∑

j=1

λ′jωj

In particular ω′ ∈ Ω̃. Now clearly ω′ ∈ Ω̃(y), so ω′ and ω only differ by a multiplicative

constant. But this is impossible.

We have just proven Lemma 10.4 under the additional hypothesis that the range

of df([y]) has codimension one. We now prove that there is no y = (y2, y3, y4, . . .) ∈ W (−1)

obeying
yj = yk whenever π(yj) = π(yk)

π(yj) 6= i(π(yk)) for all j 6= k

codim range df([y]) ≥ 2

The proof is by induction on the excess multiplicity

M([y]) =
∑

z∈X̃

[
]
{
j ≥ 2

∣∣ yj = z
}
− 1
]

First suppose that M([y]) = 0, in other words the yj ’s on all distinct, and that

corank df([y]) = codim span[ω(y2), ω(y3), . . .] = n ≥ 2

Then, by Lemma 8.3a, df([y]) has a nontrivial kernel so that there is an m ≥ 2 with ω(ym) ∈
span[ω(ym+1), ω(ym+2) . . .]. There is a nonempty open subset U of X̃ that contains no element
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of
{
π−1(π(yj)), π

−1
(
i(π(yj))

) ∣∣ j ≥ 2
}

. Since {~ω(y) | y ∈ U} cannot be contained in a

hyperplane we can choose y′m ∈ U such that y′ = (y2, y3, · · · , 6 ym, y′m, ym+1, . . .) obeys

π(y′k) 6= π(ym) for all k ≥ 2

π(y′k) 6= π(y′j) for all k 6= j

π(y′k) 6= iπ(y′j) for all k 6= j

range df([y]) ⊂ range df([y′])

corank df([y′]) = n− 1

Repeating this process another n− 2 times we can find y′′ ∈W (−1) such that

π(y′′k) 6= π(ym) for all k ≥ 2

π(y′′k) 6= π(y′′j ) for all k 6= j

π(y′′k) 6= iπ(y′′j ) for all k 6= j

range df([y]) ⊂ range df([y′′])

corank df([y′′]) = 1

Then Ω̃(y) ⊃ Ω̃(y′′) 6= {0} and any non zero ω ∈ Ω̃(y′′) is zero at π(ym) as well as at

π(y′′2 ), i(π(y′′2 )), π(y′′3 ), i(π(y′′3 )), . . .. This contradicts the part of Lemma 10.4 proven earlier

and the proof of Lemma 10.4 for the case M([y]) = 0 is complete.

Finally, suppose that Lemma 10.4 has been proven for all y with M([y]) ≤ m and

consider y with M([y]) = m+ 1 and corank df([y]) = n > 1. We may permute the y’s so that

y2 = y3 = · · · = ym+3 and y2 6= yj for j ≥ m + 4. As above, we can move the (m + 3)th

component of y a bit to give a y′ ∈W (−1) obeying

M([y′]) = m

]{j ≥ 2 | y′j = y2} = m

y′j = y′k whenever π(y′j) = π(y′k)

π(y′j) 6= i(π(y′k)) for all j 6= k

There are three possibilities. Either corank df([y′]) = corank df([y]) > 1, which violates the

inductive hypothesis, or corank df([y′]) = corank df([y]) − 1 > 1, which also violates the

inductive hypothesis, or

corank df([y′]) = corank df([y])− 1 = 1

The last case arises only when n = 2 and

~ω(m+1)(y2) ∈ span
{
~ω(y2), · · · , ~ω(m)(y2), ~ω(ym+4) · · ·

}

But then range df([y′]) ⊃ range df([y]) implies Ω̃(y′) ⊂ Ω̃(y) and we get the same contradic-

tion as in the case M([y]) = 0.
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For b ∈ X̃ such that π(b) ∈ B we consider the map

F (b) : W (−2) −→ Θ

y 7−→ F (b, y3, y4, · · ·) ,

and the induced map f (b) : S(−2) → Θ. We denote by H(b) the intersection of the image

of F (b) with Θreg. Observe that by Lemma 9.6

(
range df (b)(y)

)⊥
= ψ−1(Ω̃(y)) (10.5)

Proposition 10.5

a) Let b ∈ X̃ such that π(b) ∈ B. Then there is an open dense subset Ub of W (−2) such that

F (b)(Ub) ⊂ ΘrΘ1. Furthermore

C~ω(b) ⊂ kerH(F (b)(y))

for all y ∈ W (−2) with F (b)(y) ∈ Θreg, and equality holds for all y in a dense subset of full

Baire category in W (−2). Finally for each e ∈ H(b) there is [y] ∈ S(−2) such that f (b)([y]) = e

and corank df (b)([y]) = 2.

b) Let O be an open subset of CN ×B(−n) for some N,n ∈ IN and g : O → B a holomorphic

map such that g(O) ⊂ Θreg, for all e′ ∈ O the linear map dg(e′) has corank two and is

boundedly invertible onto its range, and such that there is a non zero vector v ∈ B obeying

Cv ⊂ kerH(g(e′))

for all e′ ∈ O, with equality for some e′. Then

either g(O) ⊂ Θ(ν) for some ν = 1, . . . ,m, and v ∈ kerH(e) for all e ∈ (Θ(ν) rΘ2)∩Θreg

or there is an open dense subset O′ ⊂ O and b ∈ X̃ with π(b) ∈ B such that

g(O′) ⊂ H(b) rΘ1, Cv = C~ω(b)

c) Let b ∈ X̃ such that π(b) ∈ B, and let y = (y3, y4, . . .) ∈ Ub. Let Z be a connected Riemann

surface, z0 ∈ Z and

g : Z −→ Θreg with g(z0) = F (b)(y)

a holomorphic map such that for all z ∈ Z

ψ
(
∇θ(g(z))

)
∈ Ω̃(y)
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Then there is a subset Z ′ ⊂ Z which is the complement of a discrete set and a holomorphic

map

Φ′ : Z ′ −→ X̃

such that

g(z) = F (b)(y)−
∫ Φ′(z)

b

~ω for all z ∈ Z ′

Proof: If e = F (y2, y3, . . .) is a point of Θreg then by Lemma 10.4b and Proposition 9.8

dim kerH(e) = ]{j | π(yj) ∈ B}

and

kerH(e) = span
{
~ω(b)

∣∣ b ∈ B ∩ {π(y2), π(y3), . . .}
}

(10.6)

We will use this fact for the proof of the first two parts of the Proposition.

(a) By Lemma 9.2 there is an open dense subset Ub of W (−2) such that F (b)(y) 6∈ Θ2 for

y ∈ Ub. Then

F (b)(Ub) ⊂ ΘrΘ1

by Lemma 10.3. The fact that

C~ω(b) ⊂ kerH(F (b)(y))

for all y ∈ W (−2) with F (b)(y) ∈ Θreg and that equality holds on a set of full Baire category

follows directly from (10.6).

Finally let e ∈ H(b). Then there is y ∈ W (−2) such that e = F (b)(y), yk = yj

whenever π(yk) = π(yj). By (10.4) and Lemma 10.4 corank df (b)([y]) = 2.

(b) Assume that g(O) 6⊂ Θ(ν) for all ν = 1, . . . ,m. Then there is an open dense O′ of O
such that g(O′) ⊂ ΘrΘ1. The claim now is immediate from (10.6) and (10.4) and the fact

that for a point e ∈ Θ r Θ1 the representation y = F (e) is essentially unique (Riemann’s

Vanishing Theorem).

Now assume that g(O) ⊂ Θ(ν) for some ν ∈ {1, . . . ,m}. The function e 7→ 〈∇θ(e), v〉
is holomorphic and zero on the open subset g(O) of Θ(ν). Since dg has corank 2, g(O) 6⊂ Θ2.

As Θ(ν) r Θ2 is connected, this function is identically zero on Θ(ν) r Θ2 so that v ∈ Te(Θ)

for all e ∈ Θreg ∩ (Θ(ν) r Θ2). Similarly, for all e ∈ g(O), Hess(θ)(e)v ∈ C∇θ(e). Again, by

analyticity, Hess(θ)(e)v ∈ C∇θ(e) for all e ∈ Θreg ∩ (Θ(ν) rΘ2).

(c)

Z ′ :=
{
z ∈ Z

∣∣ g(z) 6∈ Θ1

}
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is the complement of a discrete subset of Z and contains the point z0, since y ∈ Ub. Let

π′ : Z̃ ′ → Z ′ be the universal covering of Z ′ and choose some z′0 ∈ (π′)−1(z0). By Riemann’s

Vanishing Theorem the range of f contains g(π′(Z̃ ′)). Since f , by Lemma 10.4b, is locally

invertible on (Θ r Θ1) ∩ Θreg and since Z̃ ′ is simply connected there exists a holomorphic

map

g̃ : Z̃ ′ → S(−1)

such that
g(π′(z′)) = f(g̃(z′)) for all z′ ∈ Z̃ ′

g̃(z′0) = [(b, y3, y4, . . .)]
(10.7)

By hypothesis

ωf(g̃(z′)) = ψ
(
∇θ
(
g(π′(z′))

))
⊂ Ω̃(y)

for all z′ ∈ Z̃ ′. Since f(g̃(z′)) ∈ Θreg, (10.4) implies that g̃(z′) = [y′2, y
′
3 . . .] satisfies the

hypotheses of Lemma 10.4. Hence yj ∈ {y′k, i(y′k) | k ≥ 2} for all j ≥ 3. Since g̃(z′) depends

analytically on z′ and g̃(z′0) = (b, y3, y4, . . .) we have, up to permutations, yj = y′j , j ≥ 3.

Call y′2 = Φ̃(z′). Thus

g(π′(z′)) = f
([

Φ̃(z′), y3, y4, · · ·
])

= F (b)(y)−
∫ Φ̃(z′)

b

~ω

Since g(π′(z′)) is holomorphic and ~ω 6= 0, the inverse function theorem implies that Φ̃(z′) is

holomorphic.

If z′, z′′ ∈ Z̃ ′ such that π′(z′) = π′(z′′) then by the formula above

∫ Φ̃(z′)

b

~ω =

∫ Φ̃(z′′)

b

~ω

so that Φ̃(z′) = Φ̃(z′′) by (S.4ii).

Therefore there is a map Φ : Z ′ → X̃ such that Φ̃ = Φ ◦ π′.
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§11 The Torelli Theorem

Theorem 11.1 Let X = Xcom ∪ Xreg ∪ Xhan and X ′ = X ′com ∪ X ′reg ∪ X ′han
be

Riemann surfaces that fulfil the hypothese (GH1-6) of §5. Denote their canonical homology

bases by A1, B1, A2, B2, · · · and A′1, B
′
1, A

′
2, B

′
2, · · ·. Let Rij resp. R′ij be the associated period

matrices. If Rij = R′ij for all i, j ∈ ZZ then there is a biholomorphic map F : X → X ′ and

ε ∈ {±1} such that for all j ∈ IN

F∗(Aj) = εA′j F∗(Bj) = εB′j

In the course of the proof we will mark objects belonging to the curve X ′ by a prime

e.g. W ′(−n)
, Θ′n etc.

By Corollary 6.17

B = B′

as sets of sequences, and the two norms ‖ · ‖ and ‖ · ‖′ are equivalent. Using this identity

throughout it follows that

θ = θ′ Θ = Θ′

To prepare for the proof of Torelli’s Theorem we note

Lemma 11.2 Assume that R = R′, and that either X and X ′ are both hyperelliptic or both

non hyperelliptic. Assume furthermore that there is a dense subset X1 of X and a holomorphic

map F1 : X1 → X ′ such that

C~ω(x) = C~ω(F1(x)) for all x ∈ X1,

and that F1(i(x)) = i′(F1(x)) in the hyperelliptic case. Then F1 can be extended to a biholo-

morphic map

F : X → X ′

such that there is ε ∈ {±1} with F∗(Aj) = εA′j, F∗(Bj) = εB′j for j = 1, 2, 3, · · ·.

Proof: Our first step is to extend F1 to a neighbourhood of X1. Without loss of generality

we may assume that X1 does not contain any Weierstrass points. Let x ∈ X1. Consider

the exhaustion of X by submanifolds X(n) constructed in (7.6). Choose n > 0 such that

x ∈ X(n), F1(x) ∈ X ′(n), and choose N > 0 such that

κN : X(n) −→ IPN−1

x 7−→ [ω1(x), . . . , ωN (x)]
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and

κ′N : X ′(n) −→ IPN−1

are well defined, and such that dκN (x) 6= 0, dκ′N (F1(x)) 6= 0. Then there are neigh-

bourhoods U of x, U ′ of F(x′) such that κN
∣∣
U

and κ′N
∣∣
U ′ are embeddings. Furthermore

κN (x′) = κ′N (F1(x′)) for all x′ ∈ U . Therefore we may assume that κN (U) = κ′N (U ′). We

can then extend F1 on U by (κ′N )−1 ◦ κN .

So we may assume without loss of generality that X1 is open and dense in X. Put

E =
{
x ∈ X

∣∣ [ωg′+1(x), ωg′+2(x), · · ·] = [σ′ν(g′ + 1), σ′ν(g′ + 2), · · ·] for some ν = 1, · · · ,m′

or ωg′+1(x) = ωg′+2(x) = · · · = 0
}

Here σ′ν(j) describes the leading part of Φ∗ν(ω′j) as in Proposition 6.18, and [· · ·] stands for

elements in projective space. The set E is discrete in X. Observe that lim sup
j→∞

|σ′ν(j)| =∞

if there are infinitely many handles joining X ′reg
ν to some X ′reg

µ with µ 6= ν. In this case,

there is no x ∈ X with [ωg′+1(x), ωg′+2(x), · · ·] = [σ′ν(g′+1), σ′ν(g′+2), · · ·] by Remark 6.15.

We first show that F1 can be extended holomorphically to X r E. So let x be

in X r X1 with x /∈ E. We show that F1 can be extended holomorphically to x. By the

definition of E and Remark 6.15, there is i0 ≥ g′ + 1 and a neighbourhood U of x in X such

that ωi0(y) 6= 0 for all y ∈ U and sup
y∈U, i∈IN

∣∣∣ ωi(y)
ωi0 (y)

∣∣∣ <∞. Choose a sequence (xn)n∈IN of points

in X1 ∩ U with lim
n→∞

xn = x. Then there is a constant C such that
∣∣∣ ωi(xn)
ωi0 (xn)

∣∣∣ ≤ C for all

i ≥ g′ + 1 , n ∈ IN. We can now apply Proposition 6.18 to the sequence (F1(xn))n∈IN in X ′

and see that it has an accumulation point x′ in X ′.

Choose N > 0 such that

κN : X −→ IPN−1

y 7−→ [ω1(y), ω2(y), · · · , ωN (y)]

κ′N : X ′ −→ IPN−1

y′ 7−→ [ω′1(y′), ω′2(y′), · · · , ω′N (y′)]

are well defined on neighbourhoods of x and x′ respectively, and that these maps are embed-

dings if the surfaces are non-hyperelliptic, resp. only factor over the hyperelliptic involution

in the hyperelliptic case. One easily sees that κN (x) = κ′N (x′), and as above one verifies

that F1 can be extended holomorphically to x with F1(x) = x′. Thus F1 is extended to a

holomorphic map F2 : X rE → X ′ such that

C~ω(x) = C~ω(F2(x)) for all x ∈ X r E (11.1)
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Now let x ∈ E. We want to extend F2 holomorphically to x. By (S.4i) and Remark

6.15 there is i0 ∈ IN and a neighbourhood U of x in X such that ωi0(y) 6= 0 for all y ∈ U and

sup
y∈U, j

∣∣∣ ωj(y)
ωi0(y)

∣∣∣ <∞. As E is discrete we may assume that U ∩E = {x}. If there is a sequence

(xn)n∈IN in U with lim
n→∞

xn = x such that the sequence (F2(xn)))n∈IN has an accumulation

point in X ′ then, as before, F2 can be extended holomorphically to x. So we assume that

this is not the case and will derive a contradiction. By Proposition 6.16 there is a finite set

J ⊂ IN such that F2(U r {x}) ∩ φ′j
({

(z1, z2) ∈ H(t′j)
∣∣ |z1|, |z2| ≤ 1

4

})
= ∅ for j /∈ J . As,

by assumption, there is no sequence (xn)n∈IN in U r {x} with lim
n→∞

xn = x such that F2(xn)

lies in the compact set
⋃
j∈J

Y ′j for all n ∈ IN, we may assume that

F2(U r {x}) ∩ φ′j
({

(z1, z2) ∈ H(t′j)
∣∣ |z1|, |z2| ≤ 1

4

})
= ∅ for all j ≥ g′ + 1

Similarly we may assume that

F2(U r {x}) ∩X ′com = ∅
So F2(U r {x}) ⊂ X ′reg

. As U r {x} is connected there is ν ∈ {1, · · · ,m′} such that

F2(U r {x}) ⊂ X ′reg
ν

We may assume that U has the form of a disc. That is, there is a biholomorphic map

φ :
{
z ∈ C

∣∣ |z| ≤ 1
}
→ U with φ(0) = x. Put

Cr = φ
({

z ∈ C
∣∣ |z| = r

})
and C′r = Φ−1

ν (F2(Cr))

C ′r is a closed curve in Cr
⋃
s∈S′ν

D′ν(s). Choose p′ ∈ CrΦ−1
ν (F2(U r {x})) such that C ′1 has

nonzero winding number around p′. Since S′ν is infinite and discrete, there is s′ ∈ S′ν such

that C ′1 has winding number zero around s′. Let Σ be the line segment joining p′ to s′.

p′

C ′1

Σ
s′

C ′r
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As C ′r ⊂ C r D′ν(s′) , all the curves C ′r, 0 < r ≤ 1 meet Σ. Therefore there is a sequence

of points xn in U with lim
n→∞

xn = x such that F2(xn) ∈ Σ for all n. This is a contradiction,

and so we have shown that F2 extends holomorphically to all of X.

Next we show that F is surjective. Since F is holomorphic and not constant the set

F(X) is open in X ′. We want to show that it is also closed. So let x′ ∈ F(X)rF(X). Choose

a sequence (x′i)i∈IN in F(X) with lim
i→∞

x′i = x′, and choose xi ∈ X with F(xi) = x′i. As above

one sees that the sequence (xi)i∈IN has an accumulation point x′. Clearly F(x) = x′. So

x′ ∈ F(X).

In the case that X ′ is not hyperelliptic κ′ is an embedding (see (S.10)) and (11.1)

implies that F is injective. So in this case F is biholomorphic. Now assume that X ′ is

hyperelliptic. Then κ′(X ′) is isomorphic to the complement of a finite set in IP1. The same

then holds for κ(X). So X and X ′ are both hyperelliptic. Let τ : X → IP1 r M resp.

τ ′ :→ IP1 rM ′ be the hyperelliptic projections. Then by (11.1) there is an isomorphism

ϕ : IP1 rM → IP1 rM ′ such that the diagram

X ′X

IP1 rM IP1 rM ′∼=
φ

Φ

τ τ ′

commutes. This implies that F is an isomorphism.

Finally (11.1) implies that there is a nowhere vanishing holomorphic function ε(x)

on X such that F∗(ω′j) = εωj for all j = 1, 2, · · ·. For every finite linear combination ω =∑∞
j=1 λjωj with λj = 0 for all but finitely many j we have

i

∫

X

(εω) ∧ (εω) = i

∫

X

F∗
( ∞∑
j=1

λjω
′
j

)
∧ F∗

( ∞∑
j=1

λjω
′
j

)

= i

∫

X′

( ∞∑
j=1

λjω
′
j

)
∧
( ∞∑
j=1

λjω′j

)

= λ∗(ImR′)λ
= λ∗(ImR)λ

= i

∫

X

ω ∧ ω̄

by Riemann’s Bilinear Relations.

So ω 7→ εω is a bounded linear map T on the Hilbert space Ω of square in-

tegrable holomorphic differential forms such that ‖Tω‖Ω = ‖ω‖Ω for all ω ∈ Ω. Here
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‖ω‖Ω =
(
i
∫
ω ∧ ω̄

)1/2
denotes the norm on Ω. Since T is surjective, the adjoint of T

T ∗ : Ω∗ → Ω∗

then also fulfills ‖T ∗`‖ = ‖`‖ for all ` ∈ Ω∗. For each x ∈ X let Lx be the linear subspace

of Ω∗ spanned by “the evaluation map”

ω 7−→ ω

dξ
(x)

where ξ is a local coordinate around x. Since

T ∗` = ε(x)` for all ` ∈ Lx

we conclude that |ε(x)| = 1 for all x ∈ X. Since ε is holomorphic the function ε is constant

and |ε| = 1.

As
∫
Ai

F∗(ω′j) =
∫

F∗(Ai)
ω′j = εδij it follows that ε ∈ {±1}, and F∗(Ai) = εA′i for all

i ∈ IN. Since Ai ·Bj = δij = A′i ·B′j it also follows that F∗(Bi) = εB′i for i ∈ IN.

Proof of Theorem 11.1: Assume first that X is not hyperelliptic. By Proposition 9.11

and Proposition 10.5a, X ′ is also not hyperelliptic. Put

X̃0 :=
{
x ∈ X̃

∣∣ {x} ×W (−3) ∩M 6= ∅
}

where M is the subset of X̃ ×W (−3) introduced in Proposition 9.10. Then X̃0 is open and

dense in X̃. Let x0 ∈ X̃0, and choose a neighbourhood U1 of x0 ∈ X̃0 and an open subset U2

in W (−3) such that U := U1 × U2 ⊂ M and the conclusions of Proposition 9.10 hold. Let

ϕ : U → Θ be a holomorphic map such that for all (x; y) ∈ U

codimB range dϕ(x; y) = 2

and for all (x, y) in subset of full Baire category Ud in U

∇Θ(ϕ(x; y)) 6= 0

kerH(ϕ(x; y)) = C~ω(x)

Put

U ′ :=
{

(x, y) ∈ U
∣∣ ϕ(x, y) 6∈ Θ′1 ∩ (−Θ′1)

}

By Proposition 9.3 and Lemma 9.2 the set U ′ is open and dense in U .
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Let (x, y) ∈ Ud ∩U ′. If ϕ(x, y) ∈ ΘrΘ′1, there is, by Corollary 9.9b a point x′ ∈ X ′
such that

C~ω(x) = C~ω′(x′)

If ϕ(x, y) ∈ Θ r (−Θ′1), then −ϕ(x.y) ∈ Θ r Θ′1 and we come to the same conclusion. As

π(U ′) is dense in U1 we conclude that

there is a dense subset X1 of X such that for all x ∈ X1

there is x′ ∈ X ′ such that C~ω(x) = C~ω′(x′).

As X ′ is non hyperelliptic, the point x′ above is unique. So there is a map

F1 : X1 −→ X ′

such that C~ω(x) = C~ω′(F1(x)) for all x ∈ X1. By Lemma 11.1 (X;A1, B1, . . .) and

(X ′;A′1, B
′
1, . . .) are isomorphic.

Now we consider the case that X is hyperelliptic. By Proposition 9.11 and Propo-

sition 10.5a the surface X ′ is also hyperelliptic. Denote by τ : X → IP1 r M , resp.

τ ′ : X ′ → IP1 rM ′ the hyperelliptic projections, by S ⊂ IP1 rM resp. S′ ⊂ IP+ rM ′

the set of branch points and put B = τ−1(S), B′ = (τ ′)−1(S′). By Proposition 10.5a, for

each b ∈ X̃ with π(b) ∈ B there is an open dense subset Ub of W (−2) such that

F (b)(Ub) ⊂ ΘrΘ1 ⊂ Θreg

and

C~ω(b) ⊂ kerH(F (b)(y))

for all y ∈ Ub with equality for y in a subset of full Baire category in Ub.

Now apply Proposition 10.5b to the hyperelliptic Riemann surfaces X ′ with O = Ub

and g = F (b). For each b, there are two possible conclusions to Proposition 10.5b. Let B0

be the set of b ∈ B for which F (b̃)(Ub̃) ⊂ Θ′(ν(b)) for some ν(b) ∈ {1, . . . ,m′}, b̃ ∈ X̃ with

π(b̃) = b.

Then C~ω(b) ⊂ kerH(e) for all b ∈ B0, e ∈ (Θ′(ν(b)) r Θ′2) ∩ Θreg. By Propo-

sition 10.5a, kerH(F (c)(y)) = C~ω(c̃) for generic y ∈ Uc̃, c̃ ∈ X̃ with π(c̃) ∈ B. Hence

C~ω(c) = C~ω(b) where b, c ∈ B0, ν(b) = ν(c). Consequently b 7→ ν(b) is injective and, in

particular, B0 contains at most m′ elements. For each b ∈ X̃ with π(b) ∈ BrB0, there is a

b′ ∈ X̃ ′ with π(b′) ∈ B′ such that

F (b)(Ũb) ⊂ H(b′) ∩ (ΘrΘ′1) ∩ (ΘrΘ1)

for some open subset Ũb of Ub.
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Choose b and b′ as in the last paragraph. By Proposition 10.5a, for each y ∈ Ũb,

there is y′ ∈ U ′b such that F ′(b
′)(y′) = F (b)(y). Therefore the tangent spaces to the ranges

of F ′(b)(y′) and F (b)(y) agree at corresponding points. Consequently the ranges of df ′(b
′)(y′)

and df (b)(y) agree at corresponding points so that by (10.5)

ψ−1
(

Ω̃(y)
)

= ψ′−1
(

Ω̃′(y′)
)

Consider the map

g : X̃ ′ −→ Θ

x′ 7−→ F ′(b
′)(y′)−

∫ x′

b′
~ω′ = F ′(x′; y′3, y

′
4 · · ·)

Then X̃ ′1 :=
{
x′ ∈ X̃ ′

∣∣ g(x′) ∈ Θreg

}
is the complement of a discrete set in X̃ ′. Clearly for

x′ ∈ X̃ ′1
ψ′(∇(θ(g(x′))) ∈ Ω̃′(x′, y′3, y

′
4, . . .) ⊂ Ω̃′(y′) , so

ψ′(∇(θ(g(x′))) ∈ Ω̃(y)

By Proposition 10.5c, applied to Z = X̃1, there is a holomorphic map F′ : X̃ ′2 −→ X̃, on the

complement X̃ ′2 of a discrete set in X̃ ′1, such that for all x′ ∈ X̃ ′2
∫ x′

b′
~ω′ =

∫ F′(x′)

b

~ω (11.2)

We claim that F′ induces a map F : X ′2 = π(X̃ ′2) → X. Indeed, if π(x′) = π(x′′)

then F′(x′) and F′(x′′) obey

∫ F′(x′′)

F′(x′)
~ω =

∫ x′′

x′
~ω =

∫

ΣniA′i+ΣmjB′j

~ω

for some finite integer linear combination of A- and B-cycles. Let y′ ∈ X̃ ′ be a point

with the property that the π′ projection of any curve from y′ to F′(x′) is homologous to

−(ΣniA
′
i + ΣmjB

′
j). Then π′(y′) = π′(F′(x′′)) and

∫ F′(x′′)
y′ ~ω = 0. So

∫ F′(x′′)
y′ ω = 0 for

all ω ∈ Ω′ and π(y′) = π′(F′(x′)) by (S.4ii), which is an application of the Riemann-Roch

Theorem.

Differentiating (11.2) we see that for all x′ ∈ X ′2

C~ω′(x′) = C~ω(F(x′))

Let γ′ be a path in X ′ from b′ to x′ and let γ be a path in X from b to F(x′) such that
∫

γ′
~ω′ =

∫

γ

~ω
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Since i ◦ γ′ is a path from b′ to i′(x′), i ◦ γ is a path from b to i(F(x′)) and

∫

i′◦γ′
~ω′ = −

∫

i′◦γ′
i′∗~ω′ = −

∫

γ′
~ω′ = −

∫

γ

~ω =

∫

i◦γ
~ω

so that we have i(F(x′)) = F(ix′). Lemma 11.2 implies that the marked Riemann surfaces

(X;A1, B1, . . .) and (X ′;A′1, B
′
1, . . .) are isomorphic.
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Part III: Examples
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Introduction to Part III

There is a simple and elegant theory of g × g matrices, g < ∞ , acting on Cg .

Indeed, from a few elementary concepts such as determinant, characteristic polynomial and

spectrum one quickly derives many basic and useful facts. The arguments are typically

algebraic and combinatorial.

The naive attempt to generalize the important concepts and results of linear algebra

to all ∞×∞ matrices immediately fails. First, C∞ must, at the very least, be replaced by

a topological vector space of sequences. To obtain more than the softest structure it must

be replaced by a Banach space or even a Hilbert space. Then, the class of matrices under

consideration must be restricted.

The most rigid, but nevertheless useful, extension of linear algebra is to trace class

perturbations of the identity acting on, for example, `2(IN) . There is a well defined “infinite

determinant” and “characteristic polynomial” and an analogue of most facts of matrix theory.

The trace class condition puts strong analytic constraints on the matrix elements. It may

be relaxed to Hilbert-Schmidt or to arbitrary von Neumann-Schatten without losing any

structure. If we consider general compact perturbations of the identity, there is no longer a

determinant but much of the structure survives.

By contrast, merely bounded operators can be extremely complicated. It is often

an almost hopeless task to extract information about the spectrum of even a bounded, self

adjoint operator.

There is an equally simple and elegant theory of compact Riemann surfaces X of

genus g marked with a canonical homology basis A1, B1, · · · , Ag, Bg . It begins with the

observation that there exists a unique frame of holomorphic one forms ω1, · · · , ωg on X

satisfying
∫

Aj

ωi = δij

Then, the associated Riemann matrix RX =
( ∫

Bj
ωi
)

, Jacobian variety and theta function

are introduced. The elementary theory culminates in the Torelli theorem stating that two

Riemann surfaces with the same Riemann matrix are biholomorphic.

To extend the geometry of finite genus surfaces to marked Riemann surfaces of

infinite genus we introduce the Hilbert space Ω(X) of all square integrable holomorphic

one forms. For any marked Riemann surface X one can prove that there is a sequence

ω1 , ω2 , · · · , of forms in Ω(X) normalized by
∫
Aj
ωi = δij for all i, j ≥ 1 . The naive

attempt to generalize finite genus constructions to all marked surfaces of infinite genus now
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fails. There are noncompact surfaces X with non constant holomorphic functions satisfying

∫

X

df ∧ ∗df < ∞

It follows that there are many normalized frames of square integrable one forms on a surface

X of this kind. The class of surfaces under consideration must be restricted.

In Part I we considered surfaces (X;A1, B1, · · ·) with an exhaustion function h of

bounded charge. That is, marked surfaces with a proper, nonnegative Morse function h that

satisfies

sup
t>s>0

∣∣∣
∫

Xt\Xs
d∗dh

∣∣∣ < ∞

and has the additional property that for each t > 0 , there is an n ≥ 1 such that the cycles

A1 , B1 , · · · , An , Bn

generate a maximal submodule of H1(Xt,ZZ) on which the intersection form is nondegenerate.

Here,

Xt = h−1([0, t])

We showed that for such surfaces there is a unique normalized frame of square integrable

holomorphic one forms and that the associated infinite Riemann matrix

RX =
(∫

Bi

ωj

)

is symmetric and ImRX is positive definite. We also showed, among other things, that for

every x ∈ X there is an ω ∈ X with ω(x) 6= 0 , and that the canonical map

x ∈ X −→ δx(ω) = ω(x) ∈ IP
(
Ω(X)∗

)

is injective whenever X is not hyperelliptic. Roughly speaking, the elementary structure

of compact Riemann surfaces, up to the existence of a theta function, extends to general

surfaces with an exhaustion function of bounded charge. It appears that this is the “natural”

class of surfaces with this property (see also [Ac1],[AS]).

The theta function and the geometry of its divisor are fundamental for the theory

of compact Riemann surfaces. Not surprisingly, there are marked Riemann surfaces with

exhaustion functions of bounded charge such that the associated theta series diverges. We

must again restrict the class of surfaces under consideration.

In Part II we introduced a class of marked surfaces of infinite genus obtained by

pasting plane domains and handles together subject to explicit geometric constraints. The
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theta series associated to surfaces in this class converge to entire functions on canonical

Banach spaces. The Riemann vanishing theorem and the Torelli theorem hold. That is,

there is an analogue of most facts of finite genus theory.

The class of surfaces introduced in Part II is a rigid extension of the classical theory.

We think of it in the context of Riemann surfaces as the counterpart of trace class perturba-

tions of the identity in operator theory. To justify this conviction we must show that the the

geometric constraints arise “naturally”.

To do this, we recall the relationship between Riemann surfaces of finite genus and

solutions of the Kadomcev-Petviashvilii equation. For any marked Riemann surface X of

genus g there exist vectors U, V,W ∈ Cg and a constant c such that for any D ∈ Cg the

function

u(x1, x2, t) = 2
∂2

∂x2
2

log θ(x1U + x2V + tW +D) + 2c

is a solution of the Kadomcev-Petviashvilii equation

ux1x1
= −2

3

(
ut − 3uux2

+ 1
2
ux2x2x2

)
x2

(see [K]). This property characterizes thetafunctions of Riemann surfaces among all possible

thetafunctions ([AC]).

This relationship can be made even more explicit when the initial data

u(x1, x2, 0) = 2
∂2

∂x2
1

log θ(x1U + x2V +D) + 2c

is periodic with respect to a lattice

Γ = (0, 2π)ZZ ⊕ (ω1, ω2)ZZ

In this case the Riemann surface X is the normalization of the “heat curve” H(u) consisting

of the points (ξ1, ξ2) ∈ C∗ × C∗ for which there is a nontrivial distributional solution

ψ(x1, x2) in L∞loc(IR
2) of the “heat equation”

(
∂

∂x1
− ∂2

∂x2
2

)
ψ + u(x1, x2, 0)ψ = 0

satisfying
ψ(x1 + ω1, x2 + ω2) = ξ1 ψ(x1, x2)

ψ(x1, x2 + 2π) = ξ2 ψ(x1, x2)

In [BEKT] it is shown that the set of Riemann surfaces of genus g which have such a heat

curve representation is dense in the moduli space. It can also be shown that for general

q ∈ L2(IR2/Γ) the corresponding H(q) is smooth and of infinite genus.
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It follows from the discussion above that any reasonable theory of Riemann surfaces

of infinite genus must treat all the curves H(q) for sufficiently regular q ∈ L2(IR2/Γ) , as

well as “small” deformations of them. One of the main results of Part III (Theorem 15.2) is

that for any smooth q the normalization of H(q) is either of finite genus or belongs to the

class of infinite genus Riemann surfaces introduced in Part II. The technique is to analyze

the singular curve H(0) and to show that the influence of q is to open the singularities into

handles that satisfy all the geometric constraints introduced in Part II. In this context, we

see a natural decomposition of H(q) into a regular piece and handles. Figuratively speaking,

H(q) is a “trace class” perturbation of H(0) . We expect that the theta function of H(q)

can be used to solve the initial value problem for the Kadomcev-Petviashvilii equation with

inital data q.

The class of Riemann surfaces introduced in Part II is quite rich. It includes Fermi

curves (Sections 16-18), rather general hyperelliptic curves (Section 12), and, we believe, the

spectral curve associated to any ordinary differential operator with sufficiently regular peridic

coefficients.
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§12 Hyperelliptic Surfaces

We start with a discrete subset S ⊂ C. Let p : X → C be the double cover ramified

at the points of S. Not all such hyperelliptic Riemann surfaces need fulfill (GH1-6). We

present cases where they do.

We assume that there is a finite subset S0 ⊂ S such that the complement S r S0

can be ordered v1, w1, v2, w2, · · · and that there are ρj > |vj −wj | such that for all j 6= j′ the

circle of radius 4ρj around

s(j) = 1
2 (vj + wj)

does not meet the circle of radius 4ρj′ around s(j′) and does not contain any point of S0.

We choose a canonical homology basis A1, B1, A2, B2, · · · of X such that there is n so that,

for all j ≥ 1, Aj+n is represented by the inverse image under p of the line segment joining vj

and wj .

Theorem 12.1 Assume that for all β > 0

∑

j

|vj − wj |β
ρβj

<∞ (12.1)

Assume that there exist 0 < ∆ < D such that

∑

j

1

|s(j)|D−4∆−3
<∞

and for all sufficiently big j

|vj − wj | <
1

3|s(j)|D ρj >
3

|s(j)|∆ (12.2)

Assume that

lim
j→∞

log |s(j)|
log
|vj−wj |

2ρj

= 0 (12.3a)

lim
j→∞

ρj log |s(j)|
min
j′ 6=j
|s(j)− s(j′)| = 0 (12.3b)

Then the hypotheses (GH1-6) of section 5 are fulfilled for the marked Riemann surface

(X;A1, B1, A2, B2, · · ·).
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Example 1 S consists of real numbers γ0 and 4π2n2 + γ±n for n ∈ IN with
∑
n |γ±n |

β
< ∞

for all β > 0. Such surfaces occur as spectral curves for Hill’s operators − d2

dx2 + q(x) with

q ∈ C∞IR (IR/ZZ), the space of smooth real-valued functions of period 1. See [MT1]. The

hypotheses of Theorem 12.1 are verified if one chooses vj = 4π2j2 +γ+
j , wj = 4π2j2 +γ−j and

ρj = 1. In particular, the Torelli theorem holds for Hill’s surfaces. This extends the results

of [MT2].

Example 2 S consists of real numbers n+ γ±n for n ∈ ZZ with
∑
n |γ±n |

β
<∞ for all β > 0.

The hypotheses of the Theorem are verified if one chooses vj = j + γ+
j , wj = j + γ−j and

ρj =
1

log2(2 + |j|)
.

The region lying over a connected open set that contains vj and wj will be used as a

handle as in (GH2). In the following Lemma we show that one can construct an isomorphism

between such a region and our model handle

H(t) =
{

(z1, z2) ∈ C2
∣∣ z1z2 = t, |zµ| ≤ 1

}

The regular piece of X is parametrized by the projection p if |S0| is even and by the square

root of the projection if |S0| is odd. In the Lemma we also analyze the resulting glueing

maps.

Lemma 12.2 Let v, w be different points of S and ρ > |v−w| be such that the disk of radius

ρ around

s = 1
2 (v + w)

intersects S only in v and w. Put

a = ρ


1 +

√
1− |v − w|

2

4ρ2


 t =

|v − w|2
4a2

Then there is an embedding

φ : H(t)→ X

such that with
p′ : H(t)→ C

(z1, z2) 7→ s+
a

2

v − w
|v − w|(z1 + z2)

the diagram
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φ
H(t) X

C

p

p′

s+ a
2
v−w
|v−w|(z1 + z2)

(z1, z2)

commutes.

A) If τ >
√
t, r > 0, R > 0 are real numbers with

a

2

(
4τ +

t

4τ

)
< r <

1

4
R <

a

2

(
1

4
− 4t

)
<
a

2

(
1

2
+ 2t

)
< R <

a

2
(1− t)

then for µ = 1, 2 and (z1, z2) ∈ H(t)

|p′(z1, z2)− s| < r if |zµ| = 4τ (12.4a)

|p′(z1, z2)− s| > R if |zµ| = 1 (12.4b)

|p′(z1, z2)− s| < R if |zµ| =
1

2
(12.4c)

|p′(z1, z2)− s| > R

4
if |zµ| =

1

4
(12.4d)

{
p′(z1, z2)

∣∣ |zµ| = 4τ
}

{
p′(z1, z2)

∣∣ |zµ| = 1/2
}

{
p′(z1, z2)

∣∣ |zµ| = 1
}

s

r

R
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The map p′ induces a biholomorphic map between

{
(z1, z2) ∈ H(t)

∣∣ |zµ| ≥ τ
}

and the elliptical ring between




z ∈ C

∣∣∣∣∣∣∣

(
Re |v−w|

v−w (z − s)
)2

a2
(
τ + t

τ

)2 +

(
Im |v−w|

v−w (z − s)
)2

a2
(
τ − t

τ

)2 = 4





and 


z ∈ C

∣∣∣∣∣∣∣

(
Re |v−w|

v−w (z − s)
)2

a2 (1 + t)
2 +

(
Im |v−w|

v−w (z − s)
)2

a2 (1− t)2 = 4





a
2 (τ − t

τ )

a
2
(τ + t

τ
)

a
2 (1− t)

a
2 (1 + t)

s

Denote this map by p′µ and define αµ(z) by

αµ(z) =
(
p′µ
)
∗

(
1

2πi

dzµ
zµ

)
− 1

2πi

dz

z − s

Then ∥∥∥αµ(z)dz
∣∣
{z∈C | r<|z−s|<R}

∥∥∥
2
≤ 1

and

R sup
|z−s|=R

|αµ(z)| ≤ 1

π

4t

1− 4t

B) Assume that ρ < |s|. Choose a branch of
√

outside of {λs | λ ≤ 0 }. If τ >
√
t, R >

4r > 0 are real numbers with

a

2

(
4τ +

t

4τ

)
< r(2

√
|s| − r)
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1

4
R(2
√
|s|+ 1

4
R) <

a

2

(
1

4
− 4t

)

a

2

(
1

2
+ 2t

)
< R(2

√
|s| − R) < R(2

√
|s|+ R) <

a

2
(1− t)

then for µ = 1, 2 and (z1, z2) ∈ H(t)

|
√
p′(z1, z2)−√s| < r if |zµ| = 4τ (12.5a)

|
√
p′(z1, z2)−√s| > R if |zµ| = 1 (12.5b)

|
√
p′(z1, z2)−√s| < R if |zµ| =

1

2
(12.5c)

|
√
p′(z1, z2)−√s| > R

4
if |zµ| =

1

4
(12.5d)

The map
√
p′ induces a biholomorphic map between

{
(z1, z2) ∈ H(t)

∣∣ |zµ| ≥ τ
}

and the preimage under the squareroot map of the elliptical ring between




z ∈ C

∣∣∣∣∣∣∣

(
Re |v−w|

v−w (z − s)
)2

a2
(
τ + t

τ

)2 +

(
Im |v−w|

v−w (z − s)
)2

a2
(
τ − t

τ

)2 = 4





and 


z ∈ C

∣∣∣∣∣∣∣

(
Re |v−w|v−w (z − s)

)2

a2 (1 + t)
2 +

(
Im |v−w|

v−w (z − s)
)2

a2 (1− t)2 = 4





Denote this map by gµ and define αµ(ζ) by

αµ(ζ) = (gµ)∗

(
1

2πi

dzµ
zµ

)
− 1

2πi

dζ

ζ −√s

Then ∥∥∥αµ(ζ)dζ
∣∣
{ζ∈C | r<|ζ−√s|<R}

∥∥∥
2
≤ 2π

√
|s|+ R√
|s| − R

and

R sup
|ζ−√s|=R

|αµ(ζ)| ≤ 1

2π

(
t

1
4 − t

4
√
|s|+ 3R

2
√
|s| − R

+
R

( 1
4
− t)(2

√
|s| − R)

)
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Proof: The map
p′′ : H(t)→ C

(z1, z2) 7→ a

2
(z1 + z2)

maps the circle |zµ| = λ,
√
t < λ ≤ 1 bijectively to the ellipse

(Re z)
2

a2
(
λ+ t

λ

)2 +
(Im z)

2

a2
(
λ− t

λ

)2 = 4

whose major semiaxis has length a
2

(
λ+ t

λ

)
and whose minor semiaxis has length a

2

(
λ− t

λ

)
.

Since (
1
2
(z1 + z2)

)2
+
(

1
2i

(z1 − z2)
)2

= t

p′′ ramifies precisely at the points with 1
2i

(z1 − z2) = 0, in other words at the points z1 =

z2 = ±
√
t. The images of these points are

±a
√
t = ±|v − w|

2

p′ is the composition of p′′ with the map z 7→ s+
v − w
|v − w|z. Therefore it is a double cover of

the ellipse

E =




z ∈ C

∣∣∣∣∣∣∣

(
Re |v−w|v−w (z − s)

)2

a2 (1 + t)
2 +

(
Im |v−w|

v−w (z − s)
)2

a2 (1− t)2 ≤ 4





ramified exactly over v and w. As
a

2
(1+ t) = ρ the ellipse E is contained in the disk of radius

ρ around s and contains no other points of S. Therefore we can lift p′ to an embedding φ as

in the statement of the Lemma. The statements (12.4) are obvious. The statements (12.5)

follow from the fact that the image of a circle of radius ε about
√
s under the map ζ 7→ z = ζ2

lies between the circles around s of radii ε(2
√
s− ε) and ε(2

√
s+ ε). It remains to prove the

statements about αµ.

A) Since

z = s+
a

2

v − w
|v − w|(zµ +

t

zµ
)

we have
dz

z − s =
z2
µ − t
z2
µ + t

dzµ
zµ

Therefore
dzµ
zµ
− dz

z − s =
2t

z2
µ + t

dzµ
zµ

=
2t

z2
µ − t

dz

z − s
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and

αµ(z) =
1

2πi(z − s)
2t

z2
µ − t

So

R sup
|z−s|=R

|αµ(z)| ≤ 1

2π

2t
1
4 − t

by (12.4c). Also, by (12.4a,b)

∥∥∥αµ(z)dz
∣∣
r≤|z−s|≤R

∥∥∥
2

=
∥∥∥(p′µ)∗

(
αµ(z)dz

)∣∣
p′−1
µ (r≤|z−s|≤R)

∥∥∥
2

≤ 1

2π

∥∥∥∥∥
2t

z2
µ + t

dzµ
zµ

∣∣∣∣
4
√
t≤|zµ|≤1

∥∥∥∥∥
2

≤ 1

for all t > 0.

B) As before

dz

z − s =
z2
µ − t
z2
µ + t

dzµ
zµ

Furthermore
dz

z − s =
2ζ

ζ +
√
s

dζ

ζ −√s
so

dzµ
zµ

=
z2
µ + t

z2
µ − t

2ζ

ζ +
√
s

dζ

ζ −√s
Therefore

αµ(ζ)dζ =
1

2πi

(
z2
µ + t

z2
µ − t

2ζ

ζ +
√
s
− 1

)
dζ

ζ −√s

and

αµ(ζ) =
1

2πi

(
z2
µ

(z2
µ − t)(ζ +

√
s)

+
t(3ζ +

√
s)

(z2
µ − t)(ζ +

√
s)(ζ −√s)

)

So

R sup
|ζ−√s|=R

|αµ(ζ)| ≤ 1

2π

(
t

1
4 − t

4
√
|s|+ 3R

2
√
|s| − R

+
R

( 1
4 − t)(2

√
|s| − R)

)

The L2 norm of the first term in 2παµ is

∥∥∥∥∥
z2
µ

(z2
µ − t)(ζ +

√
s)
dζ

∣∣∣∣
r≤|ζ−√s|≤R

∥∥∥∥∥
2

≤ 1

2
√
|s| − R

sup
4
√
t≤|zµ|≤1

∣∣∣∣∣
z2
µ

z2
µ − t

∣∣∣∣∣
∥∥∥dζ

∣∣
r≤|ζ−√s|≤R

∥∥∥
2

≤ 4

3

√
πR

2
√
|s| − R
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As in part A, the second term is bounded by

∥∥∥∥∥g
∗
µ

(
t(3ζ +

√
s)

(z2
µ − t)(ζ +

√
s)

dζ

ζ −√s

) ∣∣∣∣
4
√
t≤|zµ|≤1

∥∥∥∥∥
2

=

∥∥∥∥∥
t(3ζ +

√
s)

2ζ(z2
µ + t)

dzµ
zµ

∣∣∣∣
4
√
t≤|zµ|≤1

∥∥∥∥∥
2

≤ 4
√
|s|+ 3R

2
√
|s| − 2R

∥∥∥∥∥
t

z2
µ + t

dzµ
zµ

∣∣∣∣
4
√
t≤|zµ|≤1

∥∥∥∥∥
2

≤ π 4
√
|s|+ 3R

2
√
|s| − 2R

Proof of the Theorem: Fix g big enough and a simply connected subset K of C containing

0 and with smooth boundary ∂K such that

S0 ⊂ K
vj , wj ∈ K ∀j ≤ g
K ∩

{
z ∈ C

∣∣ |z − s(j)| ≤ ρj
}

= ∅ ∀j > g
{
z ∈ C

∣∣ |z − s(j)| ≤ ρj
}
∩
{
z ∈ C

∣∣ |z − s(j′)| ≤ ρj′
}

= ∅ ∀j, j′ > g, j 6= j′

Define

Xcom = p−1(K)

and, for j ≥ g + 1, set

aj = ρj

(
1 +

√
1− |vj − wj |

2

4ρ2
j

)

tj =
|vj − wj |2

4a2
j

Case A) S0 is even. Then K contains an even number of points of S. So the boundary

∂Xcom = p−1(∂K) consists of two components. Define

S =
{
s(j)

∣∣ j ≥ g + 1
}

D(j) =




z ∈ C

∣∣∣∣∣∣∣

(
Re
|vj−wj |
vj−wj (z − s(j))

)2

a2
j

(
τj +

tj
τj

)2 +

(
Im
|vj−wj |
vj−wj (z − s(j))

)2

a2
j

(
τj − tj

τj

)2 ≤ 4





G = Cr


intK ∪

⋃

j≥g+1

intD(j)




Xreg = p−1(G)
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and for µ = 1, 2

sµ(j) = s(j) Dµ(s(j)) = D(j)

vj sj wj

vj+1

sj+1

wj+1

D(j)

D(j + 1)

In this case Xreg consists of two components Xreg
1 , Xreg

2 . Let

Φν : G→ Xreg
ν

be the inverse of the biholomorphic map p
∣∣
Xreg
ν

. With these definitions hypothesis (GH1) is

trivially satisfied.

By Lemma 12.2, there exist embeddings

φj : H(tj)→ X

such that with
p′j : H(tj)→ C

(z1, z2) 7→ s(j) +
aj
2

vj − wj
|vj − wj |

(z1 + z2)

the diagram

φj
H(tj) X

C

p

p′j

s(j) +
aj
2

vj−wj
|vj−wj | (z1 + z2)

(z1, z2)
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commutes. Hypothesis (GH2) is satisfied. The only nontrivial condition in this hypothesis,

namely (GH2.iv) follows from the assumption (12.1).

Define
τµ(j) = 2

√
tj

rµ(j) = 3|vj − wj |
Rµ(j) = 1

3ρj

If g was chosen big enough, then for all j ≥ g + 1

aj
2

(
4τµ(j) +

tj
4τµ(j)

)
< rµ(j) <

<
1

4
Rµ(j) <

aj
2

(
1

4
− 4tj

)
<
aj
2

(
1

2
+ 2tj

)
< Rµ(j) <

aj
2

(1− tj)

By Lemma 12.2 hypothesis (GH3) is fulfilled. Hypothesis (GH4) is trivial and (GH6) is void.

We verify (GH5) part by part with d = D and δ = ∆. Part (i) is automatic from

the conditions on the ρj ’s. Part (ii) follows from (12.2). Observe that ν1(j) 6= ν2(j) for all j

so that the last condition of (GH5.ii) is void. Part (iii) is trivial because |s1(j)| = |s2(j)| for

all j. Parts (iv) and (v) follow from (12.3a,b). Part (vi) follows from Lemma 12.2.

Case B) S0 is odd. Then K contains an odd number of points of S. So the boundary

∂Xcom = p−1(∂K) consists of one component. Define

D(j) =




z ∈ C

∣∣∣∣∣∣∣

(
Re
|vj−wj |
vj−wj (z − s(j))

)2

a2
j

(
τj +

tj
τj

)2 +

(
Im
|vj−wj |
vj−wj (z − s(j))

)2

a2
j

(
τj − tj

τj

)2 ≤ 4





G′ = Cr


intK ∪

⋃

j≥g+1

intD(j)




Xreg = p−1(G′)

For j ≥ g + 1, let s1(j), s2(j) be the two square roots of s(j). Define

S =
{
sµ(j)

∣∣ j ≥ g + 1, µ = 1, 2
}

G =
{
ζ ∈ C

∣∣ ζ2 ∈ G′
}

and for µ = 1, 2 let Dµ(sµ(j)) be the component of
{
ζ ∈ C

∣∣ ζ2 ∈ D(j)
}

containing sµ(j).

In this case Xreg is connected and p
∣∣
Xreg : Xreg → G′ is an unramified double cover.

Therefore there exists a biholomorphic map

Φ : G→ Xreg

235



such that the diagram

Φ
ζ ∈ G Xreg

ζ2 ∈ G′

commutes. With these definitions hypothesis (GH1) is trivially satisfied.

Again by Lemma 12.2, there exist embeddings

φj : H(tj)→ X

such that with
p′j : H(tj)→ C

(z1, z2) 7→ s(j) +
aj
2

vj − wj
|vj − wj |

(z1 + z2)

the diagram

φj
H(tj) X

C

p

p′j

s(j) +
aj
2

vj−wj
|vj−wj | (z1 + z2)

(z1, z2)

commutes and such that the curve

Φ−1
(
φj
({

(z1, z2) ∈ H(tj)
∣∣ |zµ| = 1

}))

encloses sµ(j). Again hypothesis (GH2) is satisfied.

Define
τµ(j) = 2

√
tj

rµ(j) =
3|vj − wj |√
|s(j)|

Rµ(j) =
ρj

3
√
|s(j)|
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Observe that, by (12.3b),

lim
j→∞

Rµ(j)√
|s(j)|

lim
j→∞

ρj
|s(j)| = 0

If g was chosen big enough, then for all j ≥ g + 1 and µ = 1, 2

aj
2

(
4τµ(j) +

tj
4τµ(j)

)
< rµ(j)

(
2
√
|s(j)| − rµ(j)

)

1

4
Rµ(j)

(
2
√
|s(j)|+ 1

4
Rµ(j)

)
<
aj
2

(
1

4
− 4tj

)

aj
2

(
1

2
+ 2tj

)
< Rµ(j)

(
2
√
|s(j)| − Rµ(j)

)
< Rµ(j)

(
2
√
|s(j)|+ Rµ(j)

)
<
aj
2

(1− tj)

By Lemma 12.2 hypothesis (GH3) is fulfilled. Hypotheses (GH4) and (GH6) are trivial.

We verify (GH5) part by part with d = 2D+1 and δ = 2∆+1. Part (i) is automatic

from the conditions on the ρj’s. Part (ii) follows from (12.2). Part (iii) is trivial because

|s1(j)| = |s2(j)| for all j. Parts (iv) and (v) follow from (12.3a,b). Part (vi) follows from

Lemma 12.2.
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§13 Heat Curves : Basic Properties

Let

Γ = (0, 2π) ZZ ⊕ (ω1, ω2) ZZ

where ω1 > 0 , ω2 ∈ IR . The lattice dual to Γ is

Γ] =
{
b ∈ IR2

∣∣ < b, γ > ∈ 2πZZ for all γ ∈ Γ
}

=
(

2π
ω1
, 0
)

ZZ ⊕
(
−ω2

ω1
, 1
)

ZZ

Definition 13.1 The heat curve H(q) associated to q ∈ L2(IR2/Γ) is the set of all

points (ξ1, ξ2) ∈ C∗ × C∗ for which there is a nontrivial distributional solution ψ(x1, x2)

in L∞loc(IR
2) of the “heat equation”

(
∂

∂x1
− ∂2

∂x2
2

)
ψ + q(x1, x2)ψ = 0

satisfying
ψ(x1 + ω1, x2 + ω2) = ξ1 ψ(x1, x2)

ψ(x1, x2 + 2π) = ξ2 ψ(x1, x2)

The holomorphic map

k ∈ C2 −→ E(k) = (ei (ω1k1+ω2k2) , ei2πk2) ∈ C∗ × C∗

covers C∗ × C∗ with C2 . An element b of the covering group Γ] acts by translation

b · k = kb on C2 . Let

Ĥ(q) = E
−1 (H(q)) (13.1)

Then, Ĥ(q) is the set of all points k ∈ C2 for which there is a nontrivial distribution

φ(x1, x2) in L∞(IR2/Γ) satisfying

Hk φ + q(x1, x2)φ = 0

Here,

Hk = e−i<k,x>
(
∂

∂x1
− ∂2

∂x2
2

)
ei<k,x>

=
∂

∂x1
− 2ik2

∂

∂x2
− ∂2

∂x2
2

+ ik1 + k2
2
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Lemma 13.2

(i) For all p(x1) ∈ L2(IR/ω1ZZ) with
∫ ω1

0
p(x1) dx1 = 0 ,

H
(
q(x1, x2) + p(x1)

)
= H(q)

(ii) For all λ ∈ C ,

H (q−λ) =
{

(k1, k2) | (k1 + iλ, k2) ∈ Ĥ(q)
}/

Γ]

Proof: (i) Suppose
∫ ω1

0
p(x1) dx1 = 0 . Then, there is a solution f of

d

dx1
f(x1) + p(x1)f(x1) = 0

belonging to H1(R/ω1Z) . In this case,

(H + q)ψ(x1, x2) = 0 , ψ ∈ H2
k(R2)

is equivalent to

(H + q + p)f(x1)ψ(x1, x2) = 0, fψ ∈ H2
k(R2)

Therefore, H (q(x1, x2) + p(x1)) = H(q) .

(ii) Note that e−λx1ψ(x1, x2) belongs to H2
k(R2) if (k1iλ, k2) is a point on Ĥ(q)

and conversely.

The Fourier coefficient q̂(b) , b = ( 2π
ω1
mω2

ω1
n, n) ∈ Γ] , of q ∈ L2(R2/Γ) is defined

by

q̂(b) = < ei<b,x>, q >

where

< f, g > = 1
|R2/Γ|

∫
R2/Γ

f̄(x)g(x) dx

Concretely,

q̂(b) = 1
2πω1

∫ ω1

0

dx1

∫ 2π

0

dx2 q(x1, x2) e
−i ( 2π

ω1
m−ω2

ω1
n) x1 e−inx2

Write

q(x1, x2) = q̂(0) + p(x1) +
∑

b2 6=0

q̂(b) ei 〈b,x〉

239



with

p(x1) =
∑

m6=0

q̂( 2π
ω1
m, 0) ei

2π
ω1

mx1

By the second part of Lemma 13.2 , H(q) is biholomorphic to H
(
q − q̂(0)

)
. By the first

part,

H
(
q − q̂(0)

)
= H


∑

b2 6=0

q̂(b) ei 〈b,x〉




Thus, we may restrict our attention to q in

Q(Γ) =
{
q ∈ L2(R2/Γ)

∣∣
∫ 2π

0

q(x1, x2) dx2 = 0 for almost all x1

}

=
{
q ∈ L2(R2/Γ)

∣∣ q̂(b) = 0 for all b ∈ Γ] with b2 = 0
}

Lemma 13.3 The lift Ĥ(0) for q = 0 is the locally finite union
⋃
b∈Γ] Pb of parabolas

Pb =
{

(k1, k2) ∈ C2
∣∣Pb(k1, k2) = 0

}

Pb(k) = i(k1 + b1) + (k2 + b2)2.
(13.2)

In particular, the heat curve H(0) is a complex analytic curve in C2/Γ# .

Proof: For all k ∈ C2 the exponentials ei<b,x> , b ∈ Γ] are a complete set of eigenfunctions

for Hk in L2(R2/Γ) satisfying

Hk e
i<b,x> = Pb(k) ei<b,x>

Therefore,

Ĥ(0) =
⋃

b∈Γ]

Pb

Observe that only a finite number of the parabolas Pb can intersect any bounded subset of

C2 . Thus, the union is locally finite.
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k2

−ik1

P−b P0 Pb

Reducing by the dual lattice, Ĥ(0) looks like

k2

−ik1

Remark 13.4 The Weierstrass product construction yields

Ĥ(0) =
{

(k1, k2) ∈ C2
∣∣∣ P0(k)

∏

b∈Γ]

b6=0

Pb(k)
Pb(0) Rb(k) = 0

}

where

Rb(k) = e
−
(

2k2b2+P0(k)

Pb(0)

)
+ 1

2

(
2k2b2+P0(k)

Pb(0)

)2

The parabolas Pb and Pc , b 6= c , intersect transversely at the point with
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coordinates

k1 = −b1 + i(k2 + b2)2 = −c1 + i(k2 + c2)2

and

k2 = −b2 + c2
2

− i

2

b1c1
b2c2

Note that, b2 = c2 forces b = c . In particular, Pb and P0 , b 6= 0 intersect at

k1 = i
1

4

(
b2 − i

b1
b2

)2

− b1

k2 = −1

2

(
b2 + i

b1
b2

)

= −1

2

(
n+ i

2πmω2n

ω1n

)

The translate c · Pb of Pb by c ∈ Γ] is Pb+c and

c · (Pb ∩ Pd) = c · Pb ∩ c · Pd = Pb+c ∩ Pd+c

We have

E (Pb ∩ P0) = E

(
− b · (Pb ∩ P0)

)
= E (P0 ∩ P−b)

Conversely, E (Pb ∩ P0) = E (Pc ∩ P0) implies that there is a d ∈ Γ] with

Pb ∩ P0 = d · (Pc ∩ P0) = Pc+d ∩ Pd

It follows that {c + d , d} = {b , 0} , since Pb ∩ Pc ∩ Pd = ∅ when b , c and d are distinct.

Hence, c = b and d = 0 , or c = −b and d = b .

For each b ∈ Γ] , set

zb = −1

2

(
b2 + i

b1
b2

)
(13.3)

Note that

z−b = −1

2

(
−b2 + i

b1
b2

)

is the reflection of zb across the real axis and for each n ∈ ZZ , there is a “picket fence”

{
z( 2π
ω1
m
ω2
ω1
n,n) = − 1

2
n+ i

(
ω2

2ω1

π
ω1

m
n

) ∣∣ m ∈ ZZ
}

242



of points lying on the line Re z = − 1
2n at intervals of length π

ω1

1
n . In the special case of

the square lattice Γ = 2πZZ2 (that is, ω1 = 2π and ω2 = 0 ) we have Γ] = ZZ2 and

z(m,n) = − 1
2

(
n+ i m

n

)

P(m,n) ∩ P0 =
(
i 1

4

(
nim

n

)2 −m, z(m,n)

)

Im z

Re z

z(4,3)

Also,

E
(
P(m,n) ∩ P0

)
= E(iz2

(m,n), z(m,n)) =

(
(−1)me−

π
2 (n2+m2

n2 ) , (−1)neπ
m
n

)

The last three paragraphs are summarized in

Lemma 13.5 The composition

z ∈ C −→ (iz2, z) ∈ Ĥ(0) −→ E(iz2, z) ∈ H(0)

is a biholomorphism between Cr
{
zb | b ∈ Γ]

}
and H(0)r

{
E(iz2

b , zb) | b ∈ Γ]
}

. It collapses

the pair {zb , z−b} to the ordinary double point E(iz2
b , zb) on H(0) . Thus, the curve H(0)

is isomorphic to the variety obtained from C by identifying zb with its reflection z−b for

all b ∈ Γ] .
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Proof: If E(iz2, z) = E(iw2, w) , there is a b ∈ Γ] with (iw2, w) = b · (iz2, z) . That

is, (iz2, z) ∈ Pb ∩ P0 and consequently, z = zb . Hence, the composition is a bijective

holomorphic map between Cr
{
zb | b ∈ Γ]

}
and H(0)r

{
E(iz2

b , zb) | b ∈ Γ]
}

. The remaining

statements follow from the discussion above.

To show, for general q ∈ Q(Γ) , that H(q) is a complex analytic curve in C2 we

proceed as in [KT] and first obtain an analytic equation for Ĥ(q) ∩
(
C2 rH(0)

)
.

Lemma 13.6 Let q ∈ Q(Γ) . For all k ∈ C2 r Ĥ(0)

(Hk + q) H−1
k − 1 = q H−1

k

is a Hilbert-Schmidt operator on L2(R2/Γ) with matrix elements

< ei<b,x>, q H−1
k ei<c,x> > =

q̂(bc)

Pc(k)
=

q̂(bc)

i(k1 + c1) + (k2 + c2)2
, b, c ∈ Γ]

with respect to the orthormal basis of exponentials ei<b,x> , b ∈ Γ] . Furthermore, the

regularized determinant

det2

(
(Hk + q) H−1

k

)

is analytic on
(
C2 − Ĥ(0)

)
×Q(Γ) . In fact, the finite determinants

det

(
δb,c +

q̂(bc)

Pc(k)
: |b|, |c| ≤ r

)

converge to det2

(
(Hk + q) H−1

k

)
uniformly on closed bounded subsets of

(
C2rĤ(0)

)
×Q(Γ).

Finally,

Ĥ(q) ∩
(
C2 rH(0)

)
=
{

(k1, k2)
∣∣ det2

(
(Hk + q) H−1

k

)
= 0

}

Recall that the determinant of 1 + A , when A is a trace class operator on a

Hilbert space, is given by the convergent sum

det (1 +A) =
∑

n≥0

trΛn (A)

where Λn (A) , n ≥ 0, is the nth exterior power of A . If A is Hilbert-Schmidt,

(1 +A) e−A − 1
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is trace class and one defines the regularized determinant

det2 (1 +A) = det
(
(1 + A) e−A

)

The regularized determinant has the property that det2 (1 + A) 6= 0 if and only if 1 + A

is invertible. Equivalently, by the Fredholm alternative, det2 (1 + A) = 0 if and only if

Af = −f has a solution in the Hilbert space.

Proof: The product q H−1
k is Hilbert-Schmidt for all k ∈ C2 r Ĥ(0) since

∑

b,c ∈Γ]

∣∣< ei<b,x>, q H−1
k ei<c,x> >

∣∣2 =
∑

b,c ∈Γ]

∣∣∣∣
q̂(bc)

i(k1 + c1) + (k2 + c2)2

∣∣∣∣
2

= ‖q‖2
∑

b ∈Γ]

∣∣∣∣
1

i(k1 + c1) + (k2 + c2)2

∣∣∣∣
2

< ∞

Therefore, det2

(
(Hk + q) H−1

k

)
is well-defined for k ∈ C2 r Ĥ(0) .

Suppose k ∈ C2 r Ĥ(0) and

det2

(
(Hk + q) H−1

k

)
= 0

It follows from the remarks made directly before the proof of the lemma that there is a

nontrivial f ∈ L2(IR2/Γ) with

(Hk + q) H−1
k f = 0

Observe that the function φ = H−1
k f belongs to L∞(IR2/Γ) since

∣∣ (H−1
k f

)
(x)
∣∣ ≤

∑

c ∈Γ]

∣∣∣∣∣
f̂(c)

i(k1 + c1) + (k2 + c2)2

∣∣∣∣∣

≤ ‖f‖


∑

c ∈Γ]

∣∣i(k1 + c1) + (k2 + c2)2
∣∣−2




1
2

< ∞

Therefore, k ∈ Ĥ(q) ∩
(
C2 r Ĥ(0)

)
.

Conversely, suppose k ∈ Ĥ(q) ∩
(
C2 r Ĥ(0)

)
. By definition, there is a nontrivial

distribution φ(x1, x2) in L∞(IR2/Γ) satisfying

Hk φ + q(x1, x2)φ = 0
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We have, Hk φ = −q φ ∈ L2(IR2/Γ) and (Hk + q) H−1
k (Hk φ) = 0 . This implies, again

by the remarks above, that det2

(
(Hk + q) H−1

k

)
= 0 Thus,

Ĥ(q) ∩
(
C2 r Ĥ(0)

)
=
{

(k1, k2) ∈ C2 r Ĥ(0)
∣∣det2

(
(Hk + q) H−1

k

)
= 0
}

Let πr be the orthogonal projection onto the subspace of L2(R2/Γ) spanned by

ei<b,x> , |b| ≤ r . The truncated operator

1 + πr q H
−1
k πr

has matrix elements {
δb,c + q̂(b−c)

Pc(k)
, |b|, |c| ≤ r

δb,c , |b| or |c| > r

It is the direct sum of a principal minor of q H−1
k and an identity matrix. We have

det2

(
1 + πr q H

−1
k πr

)
= det

(
1 + πr q H

−1
k πr

)
exp

{
− q̂(0)

∑

|b|≤r

1
i(k1+b1)+(k2+b2)2

}

= det

(
δb,c +

q̂(bc)

Pc(k)
: |b|, |c| ≤ r

)

since q̂(0) = 0 and

det2 (1 + A) = det (1 +A) exp (−trA)

The right truncated operator

1 + q H−1
k πr

has matrix elements {
δb,c + q̂(b−c)

Pc(k)
, |c| ≤ r

δb,c , |c| > r
.

The columns for |c| > r have a single nonzero entry, namely δc c = 1 . By adding multiples

of these columns to those with |c| < r , this matrix can be reduced to that of 1+πr q H
−1
k πr.

In a finite number of dimensions, we would have

det2

(
1 + q H−1

k πr
)

= det

(
δb,c +

q̂(bc)

Pc(k)
: |b|, |c| ≤ r

)

To verify the last identity, first notice that for s > r

det2

(
1 + πs q H

−1
k πr

)
= det

(
δb,c + q̂(b−c)

Pc(k) ; |b| ≤ s, |c| ≤ r : δb,c; |b| < s, r < |c| ≤ s
)

= det
(
δb,c + q̂(b−c)

Pc(k)
: |b|, |c| ≤ r

)
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by column reduction for finite matrices. Next, we recall the estimate

∣∣ det2 (1 +A)− det2 (1 + B)
∣∣ ≤ ‖A−B‖HS exp

{
α
(
‖A‖HS + ‖B‖HS + 1

)2
}

where α > 0 is a universal constant. In other words, det2 (1 + A) is Lipschitz with respect

to the Hilbert-Schmidt norm. Our identity now follows from

‖q H−1
k πr − πs q H−1

k πr‖2HS =
∑

|b|>s
|c|≤r

∣∣∣∣
q̂(bc)

Pc(k)

∣∣∣∣
2

since the right hand side tends to zero as s goes to infinity.

Applying the Lipschitz estimate once again

∣∣ det2

(
(Hk + q) H−1

k

)
− det

(
δb,c + q̂(b−c)

Pb(k)
: |b|, |c| ≤ r

) ∣∣2

=
∣∣ det2

(
(Hk + q) H−1

k

)
− det2

(
1 + q H−1

k πr
) ∣∣2

≤ ‖q‖22
( ∑
|c|>r

1
|Pc(k)|2

)
exp

{
α
(
2‖q H−1

k ‖HS + 1
)2}

The remaining statements made in the lemma follow at once because

det
(
δb,c + q̂(b−c)

Pb(k) : |b|, |c| ≤ r
)

is holomorphic on
(
C2 − Ĥ(0)

)
×Q(Γ) , and

‖q‖22
∑
|c|>r

1
|Pc(k)|2

tends uniformly to zero on closed bounded subsets of
(
C2−Ĥ(0)

)
×Q(Γ) while ‖q H−1

k ‖HS

is uniformly bounded on them.

For each finite subset B of Γ] set

C2
B = C2 r

⋃

b∈Γ]rB
Pb

For example,

C2
∅ = C2 r Ĥ(0)

These sets are an open cover of C2 . Also, let πB be the orthogonal projection onto the

subspace spanned by ei<b,x> , b ∈ B , and define a partial inverse (Hk)
−1
B for k ∈ C2

B

by

(Hk)
−1
B = πB +H−1

k (1− πB)
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Its matrix elements are

< ei<b,x>, (Hk)
−1
B ei<c,x> > =

{
δb,c , c ∈ B
δb,c

1
Pc(k) , c /∈ B

and

(Hk + q) (Hk)
−1
B = 1 + q (Hk)

−1
B + (Hk − 1)πB

Lemma 13.7 Let q ∈ Q(Γ) and B a finite subset of Γ] . Then,

e|B| det

(
δb,c +

q̂(bc)

Pc(k)
: |b|, |c| ≤ r

) ∏

b ∈B
Pb(k)e−Pb(k)

for r > max
{
|b| | b ∈ B

}
, converges uniformly on closed bounded subsets of C2

B × Q(Γ)

to

det2

(
(Hk + q) (Hk)

−1
B

)

In particular,

det2

(
(Hk + q) (Hk)

−1
B

)
= e|B| det2

(
(Hk + q) H−1

k

) ∏

b ∈B
Pb(k)e−Pb(k)

is analytic on C2
B ×Q(Γ) . Furthermore,

Ĥ(q) ∩ C2
B =

{
(k1, k2) ∈ C2

B

∣∣ det2

(
(Hk + q) (Hk)

−1
B

)
= 0

}

Proof: We have

det2

(
1 + πr

(
q (Hk)

−1
B + (Hk − 1)πB

)
πr

)
= e|B| det

(
δb,c + q̂(b−c)

Pc(k)
: |b|, |c| ≤ r

)

×
∏

b ∈B
Pb(k)e−Pb(k)

All statements, but the last, now follow as in the proof of Lemma 13.6. For the last, ob-

serve that the partial inverse (Hk)
−1
B is defined so that k ∈ Ĥ(q) ∩ C2

B if and only if

(Hk + q) (Hk)
−1
B is not invertible.
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Multiplying det2

(
(Hk + q)H−1

k

)
by the function P0(k)

∏
b∈Γ]

b6=0

Pb(k)
Pb(0)Rb(k) of Re-

mark 13.4 we get an entire function whose zero set is Ĥ(q). As in [KT, Theorem 2] one checks

that it is of finite order.

We summarize the discussion above in

Theorem 13.8 For all q in Q(Γ) the “lifted” heat curve Ĥ(q) is a one-dimensional

complex analytic subvariety of C2 . It is the zero set of an entire function of finite order.

The intersection of Ĥ(q) with C2
B is given by

Ĥ(q) ∩ C2
B =

{
(k1, k2) ∈ C2

B

∣∣ det2

(
(Hk + q) (Hk)

−1
B

)
= 0
}

The heat curve H(q) = Ĥ(q)/Γ] is an analytic subvariety of C2/Γ] .

Lemma 13.9 Suppose k ∈ Ĥ(q) . Then there is a nontrivial distribution φ] in L∞loc(IR
2/Γ)

satisfying the adjoint equation

−2ik̄2 φ
]
x2

= φ]x1
+ φ]x2x2

−
(
− ik̄1 + k̄2

2 + q̄
)
φ]

Proof: By hypothesis, there is a distribution φ ∈ L∞loc(IR
2/Γ) satisfying the equation

2ik2 φx2
= φx1

− φx2x2
+
(
ik1 + k2

2 + q
)
φ

Let B be a finite subset of Γ] such that k ∈ Ĥ(q) ∩ C2
B . We have

(H∗k)
−1
B (H∗k + q) =

(
(Hk + q) (Hk)

−1
B

)∗

By Theorem 13.8,

det2

(
(H∗k )

−1
B (H∗k + q)

)
= det2

(
(Hk + q) (Hk)

−1
B

)
= 0

Hence there exists an f ∈ L2(IR2/Γ) with

(H∗k )
−1
B (H∗k + q) f = 0

or equivalently,

P b(k) f̂(b) = −
∑

c∈Γ]

q̂(cb) f̂(c) (13.4)
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for all b ∈ Γ] . To complete the proof it suffices to show that f̂ ∈ `1 since then f ∈ L∞.

By Lemma 13.6 the operator ̂̄q(c−b)
P b(k)

is Hilbert-Schmidt. Hence we can choose B

finite but sufficiently large that

∑

b,c∈Γ#rB

∣∣∣∣
̂̄q(c− b)
P b(k)

∣∣∣∣
2

≤ 1

2
(13.5a)

sup
c∈Γ#

∑

b∈Γ#rB

∣∣∣∣
̂̄q(c− b)
P b(k)

∣∣∣∣ ≤ ‖q̂‖2

√√√√ ∑

b∈Γ#rB

∣∣∣∣
1

P b(k)

∣∣∣∣
2

≤ 1

2
(13.5b)

Define the operators

RGB =

(̂̄q(c− b)
P b(k)

)

b/∈B,c∈B

RGG =

(
δb,c +

̂̄q(c− b)
P b(k)

)

b/∈B,c/∈B

and the vectors

f̂B =
(
f̂(c)

)
c∈B

f̂G =
(
f̂(c)

)
c/∈B

Then, by (13.4)

RGB f̂B + RGGf̂G = 0

so that

f̂G = −R−1
GGRGB f̂B

Now, f̂B only has finitely many components and so is trivially in `1(B). By (13.5b), RGB

maps `1(B) into `1(Γ# r B). Also by (13.5b), RGG − 1l has norm at most 1
2 as an operator

on `1(Γ# r B) so that R−1
GG is a bounded operator on `1(Γ# r B). Hence fG ∈ `1(Γ# rB).

There are horizontal and vertical projections of Ĥ(q) onto the k1 and k2 axes of

C2 . A vertical germ
(
h(z, q), D

)
of the heat curve H(q) is a holomorphic function of z

on the domain D ⊂ C such that

(
h(z, q) , z

)
∈ Ĥ(q)
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for all z ∈ D . If k ∈ Ĥ(p) ∩ C2
B and

∂

∂k1
det2

(
(Hk + q) (Hk)

−1
B

)
6= 0

Then, by the implicit function theorem, there is a holomorphic function h(z, q) on an open

subset of C×Q(Γ) satisfying

det2

(
(Hk + q) (Hk)

−1
B

)∣∣∣
k=(h(z,q),z)

= 0

and

k1 = h(k2, p)

Consequently, there is a holomorphic family of vertical germs.

Lemma 13.10 Let
(
h(z, q), D

)
be a differentiable family of vertical germs and suppose that

φ = φ(x, k, q) , where k = (h(z, q), z) , is the unique solution of

(Hk + q)φ = 0

Then,
∂

∂q(x)
h(z, q) = i

φ](x, k)φ(x, k)〈
φ, φ]

〉
∣∣∣
k=(h(z,q),z)

Here, φ] = φ](x, k, q) satisfies

(Hk + q)∗φ] = 0

Recall that the gradient is defined by the Riesz representation theorem through the

identity
∂

∂ε
F (q + εv)

∣∣∣
ε=0

=

〈
∂

∂q(·)F (q) , v

〉

for all v ∈ L2(IR2/Γ) .

Proof: By hypothesis, φ = φ(x, k, q + εv) , where k = (h(z, q + εv), z) , is the unique

solution of

(Hk + q + εv)φ = 0

It follows from a familiar perturbative argument that φ(x, k, q + εv) is a differentiable

function of ε . Differentiating the equation for φ at ε = 0 and using the notation

• =
∂

∂ε

∣∣∣
ε=0
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one obtains

(H•k + v)φ = −(Hk + q)φ•

Taking the inner product of both sides of the last equation with φ] ,

〈
φ] , (H•k + v)φ

〉
= −

〈
φ] , (Hk + q)φ•

〉

= −
〈
(Hk + q)∗φ] , φ•

〉

= 0

or
〈
φ] , H•k φ

〉
= −

〈
φ] , v φ

〉

We have

H•k =
( ∂

∂x1
− 2iz

∂

∂x2
− ∂2

∂x2
2

+ ih(z, q + εv) + z2
)•

= i
∂

∂ε
h(z, q + εv)

∣∣∣
ε=0

Therefore,

i
〈
φ] , φ

〉 〈 ∂

∂q(·)h(z, q) , v

〉
= −

〈
φ]φ , v

〉

The rest of this section is devoted to the relationship between heat curves and the

Kadomcev-Petviashvilli equation.

For each u ∈ L2(IR2/Γ) define the function I(u) by

I(u)(x1, x2) =

∫ x2

0

u(x1, s) ds− 1
2π

∫ 2π

0

dt

∫ t

0

u(x1, s) ds

The Kadomcev-Petviashvilli equation is

ut = 3uux2
− 1

2 ux2x2x2
− 3

2 I (ux1x1
) (KP)

If one differentiates both sides of (KP) with respect to x2 one recovers the standard KPII

equation (see, for example, [K])

(
ut − 3uux2

+ 1
2
ux2x2x2

)
x2

+ 3
2
ux1x1

= 0
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Lemma 13.11 Suppose, u(x, t) is a classical solution of the KP equation with

u(x1, x2 + 2π, t) = u(x1, x2, t)

for all x1 x2 and t . Then,

∂

∂t

∫ 2π

0

dx2 u(x1, x2, t) = 0

for all x1 and t . In particular, if the initial data u(x, 0) satisfies
∫ 2π

0
dx2 u(x1, x2, 0) = 0

for all x1 , then
∫ 2π

0
dx2 u(x1, x2, t) = 0 for all x1 and t 6= 0 .

Proof: We have

∂

∂t

∫ 2π

0

dx2 u(x1, x2, t) =

∫ 2π

0

dx2 3uux2
− 1

2 ux2x2x2
− 3

2 I (ux1x1
)

=
(

3
2 u

2 − 1
2 ux2x2

)∣∣2π
0
−
∫ 2π

0

dx2 I(ux1x1
)

= 0

since, ∫ 2π

0

dx2 I(v)(x1, x2) = 0

for any function v .

Let U(Γ) ⊂ Q(Γ) be the space of all real valued functions u(x1, x2) in C∞(IR2/Γ)

satisfying ∫ 2π

0

u(x1, x2) dx2 = 0

for all x1 . It follows from Lemma 13.9 that the initial value problem

ut = 3uux2
− 1

2 ux2x2x2
− 3

2 I (ux1x1
)

u(x, 0) = u0(x)

can be posed in U(Γ) .

Suppose u = u(x, t) is a solution of the initial value problem for the KP equation

with intial data u0 ∈ U(Γ) . There is an associated family H
(
u(·, t)

)
, −∞ < t < ∞ , of

heat curves. We will show that for all −∞ < t <∞ ,

H
(
u(·, t)

)
= H

(
u0

)
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as subsets of C∗ × C∗ .

Let u ∈ U(Γ) . Define operators Lu and Ju by

Lu = u
∂

∂x2
+

∂

∂x2
u− 1

2

∂3

∂x3
2

Ju = Lu − 3
2

∂2

∂x2
1

I

and set

H(u) = 1
2

∫

IR2/Γ

u2(x)

Lemma 13.12 Let u , v and w belong to U(Γ) . Then,

(i)

I(u)(x) =
∑

b∈Γ]

b2 6=0

1
i b2

û(b) ei<b,x>

(ii)
〈u, I(v)〉 = −〈I(u), v〉
〈v, Luw〉 = −〈Luv, w〉
〈v, Juw〉 = −〈Juv, w〉

(iii)

Ju
∂

∂u(x)
H(u) = Juu = 3uux2

− 1
2 ux2x2x2

− 3
2 I (ux1x1

)

Proof: (i) In general,

∫ x2

0

u(x1, s) ds = x2

∑

b∈Γ]

b2=0

û(b1, 0) eib1x1 +
∑

b∈Γ]

b2 6=0

1
i b2

û(b)
(
ei<b,x> − eib1x1

)

Specializing to U(Γ) and integrating,

∫ 2π

0

dt

∫ t

0

u(x1, s) ds = −
∑

b∈Γ]

b2 6=0

1
i b2

û(b) eib1x1

Consequently,

I(u) =
∑

b∈Γ]

b2 6=0

1
i b2

û(b)
(
ei<b,x> − eib1x1

)
+
∑

b∈Γ]

b2 6=0

1
i b2

û(b) eib1x1
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for u ∈ U(Γ) .

Part (ii) is proved by using Parseval’s identity to manipulate

〈u, I(v)〉 =
∑

b∈Γ]

b2 6=0

û(b) 1
i b2

v̂(b) = −
∑

b∈Γ]

b2 6=0

1
i b2

û(b) v̂(b) = −〈I(u), v〉

For the remaining assertions, note that Lu is a skew symmetric ordinary differential operator.

For (iii), recall that the gradient of H(u) is defined by

〈
∂

∂u(x)
H(u) , v

〉
=

d

dε
H(u + εv)

∣∣
ε=0

=

∫

IR2/Γ

dx u(x)v(x)

so that
∂

∂u(x)
H(u) = u(x)

Now observe that

Luu = 3uux2
− 1

2 ux2x2x2

Lemma 13.13 Let u ∈ U(Γ) . Suppose that φ ∈ C∞(IR2/Γ) satisfies (Hk +u)φ = 0 and

φ] ∈ C∞(IR2/Γ) satisfies (Hk + u)∗φ] = 0 . Then,

(i)

Lu
(
φ]φ
)

= 2ik1

(
φ]φ
)
x2
− ik2

(
φ]φ
)
x1

+ 1
2

(
φ]x1x2

φ− φ]φx1x2

)
+ 3

2

(
φ]x1

φx2
− φ]x2

φx1

)

(ii)
(
φ]φ
)
x1

= −2ik2

(
φ]φ
)
x2

+
(
φ]φx2

− φ]x2
φ
)
x2

(iii) 〈(
φ]x1x2

φ− φ]φx1x2

)
, u
〉

= 0
〈
φ]φ , ux1

〉
= 0

〈
φ]φ , ux2

〉
= 0

(iv) 〈
φ]φ , 3uux2

− 1
2 ux2x2x2

− 3
2 I (ux1x1

)
〉

= 0

255



Proof: The first two parts of the lemma are verified by direct calculation, using the equations

−2ik2 φx2
= φx1

− φx2x2
+
(
− ik1 + k

2

2 + u
)
φ

−2ik2 φ
]
x2

= φ]x1
+ φ]x2x2

−
(
− ik1 + k

2

2 + u
)
φ]

to reduce derivatives.

We now derive the first statement of (iii). Multiply the equation for φ by φ]x1x2

and the equation for φ] by φx1x2
and then add to obtain,

−2ik2

(
φ]x2

φx2

)
x1

=
(
− ik1 + k

2

2 + u
)(
φ]x1x2

φ− φ]φx1x2

)

+ φ]x2x2
φx1x2

− φ]x1x2
φx2x2

+
(
φ]x1

φx1

)
x2

Integrating over IR2/Γ ,

∫

IR2/Γ

dx u(x)
(
φ]x1x2

φ− φ]φx1x2

)
= −

(
− ik1 + k

2

2

) ∫

IR2/Γ

dx
(
φ]x1x2

φ− φ]φx1x2

)

−
∫

IR2/Γ

dx
(
φ]x2x2

φx1x2
− φ]x1x2

φx2x2

)

= 0

by partial integration.

For the second statement multiply the equation for φ by φ]x1
and the equation

for φ] by φx1
and then subtract to obtain,

(
− ik1 + k

2

2 + u
)(
φ]φ
)
x1

= 2ik2

(
φ]x2

φx1
− φ]x1

φx2

)
−
(
φ]x1

φx2x2
+ φ]x2x2

φx1

)

Again, integrate over IR2/Γ and then integrate by parts to complete the derivation.

To prove part (iv) we apply Lemma 13.12 and find

〈
φ]φ , 3uux2

− 1
2
ux2x2x2

− 3
2
I (ux1x1

)
〉

=
〈
φ]φ , Juu

〉

= −
〈
Lu
(
φ]φ
)
, u
〉
− 3

2

〈
φ]φ , I(ux1x1

)
〉

= −
〈
Lu
(
φ]φ
)
, u
〉

+ 3
2

〈 (
φ]φ
)
x1
, I(ux1

)
〉

By (i) and (iii),

−
〈
Lu
(
φ]φ
)
, u
〉

= − 3
2

〈 (
φ]x1

φx2
− φ]x2

φx1

)
, u
〉

and by (ii),

3
2

〈 (
φ]φ
)
x1
, I(ux1

)
〉

= 3
2

〈
− 2ik2

(
φ]φ
)
x2

+
(
φ]φx2

− φ]x2
φ
)
x2
, I(ux1

)
〉
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Applying Lemma 3.12 (ii) again,

3
2

〈 (
φ]φ
)
x1
, I(ux1

)
〉

= − 3
2

〈
I
(
− 2ik2

(
φ]φ
)
x2

+
(
φ]φx2

− φ]x2
φ
)
x2

)
, ux1

〉

= − 3
2

〈
− 2ik2

(
φ]φ
)

+
(
φ]φx2

− φ]x2
φ
)
, ux1

〉

= − 3
2

〈 (
φ]φx2

− φ]x2
φ
)
, ux1

〉

= 3
2

〈(
φ]x1

φx2
− φ]x2

φx1

)
, u
〉

+ 3
2

〈 (
φ]φx1x2

− φ]x1x2
φ
)
, u
〉

= 3
2

〈(
φ]x1

φx2
− φ]x2

φx1

)
, u
〉

To pass from the first to the second line, note that

〈I(fx2
) , g〉 =

〈
f −

∑

(b1,0)∈Γ]

f̂(b1, 0) eib1x1 , g

〉

= 〈f, g〉
for all f ∈ C∞(IR2/Γ) and g ∈ Q(Γ) . Combining terms,

〈
φ]φ , 3uux2

− 1
2 ux2x2x2

− 3
2 I (ux1x1

)
〉

= 0

Theorem 13.14 Suppose u = u(x, t) ∈ U(Γ) is a solution of the initial value problem for

the Kadomcev-Petviashvilli equation

ut = 3uux2
− 1

2
ux2x2x2

− 3
2
I (ux1x1

)

with initial data

u(x, 0) = u0(x)

Let H
(
u(·, t)

)
, −∞ < t < ∞ , be the associated family of heat curves. Then, for all

−∞ < t <∞ ,

H
(
u(·, t)

)
= H

(
u0

)

as subsets of C∗ × C∗ .

Proof: Let h(z, t) , sε < t < s + ε , be any smooth family of vertical germs for H
(
u(·, t)

)
.

By Lemma 13.10 , Lemma 13.13 and the chain rule,

∂

∂t
h(z, t) =

〈
∂

∂q(·) h(z, t) ,
∂

∂t
u(·, t)

〉

=

〈
i
φ](x, k)φ(x, k)〈

φ, φ]
〉

∣∣∣
k=(h(z,t),z)

, 3uux2
− 1

2
ux2x2x2

− 3
2
I (ux1x1

)

〉

= 0
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§14 Heat Curves: Asymptotics

In this section, we show that Ĥ(q) is close to Ĥ(0) when the imaginary parts of

k1 and k2 are large. For ε > 0 and b ∈ Γ] define the (ε -)tube about Pb by

Tb =
{
k ∈ C2

∣∣ |Pb(k)| < ε
}

=
{
k ∈ C2

∣∣ |i(k1 + b1) + (k2 + b2)2| < ε
}
.

(14.1)

The pairwise intersection T b ∩T b′ is compact whenever b 6= b′ . Indeed, if k ∈ T b ∩T b′ then

∣∣i(b1 − b′1) + 2k2(b2 − b′2) + b22 − b′2
2∣∣ = |Pb(k)− Pb′(k)| ≤ 2ε.

Assuming the intersection is nonempty, b 6= b′ and ε is small enough, then b2 and b′2 must be

different and
∣∣∣∣k2 +

b2 + b′2
2

+
i

2

b1 − b′1
b2 − b′2

∣∣∣∣ ≤
ε

|b2 − b′2|
≤ ε. (14.2)

If ε is chosen small enough, we also have T b ∩ T b′ ∩ T b′′ = ∅ for all distinct elements

b, b′, b′′ of Γ] . We shall asymptotically confine k ∈ Ĥ(q) to the union of the tubes

Tb , b ∈ Γ] .

For ρ > 0 define

Kρ =
{
k ∈ C2

∣∣ |Im k1|+ 2|Im k2|2 ≤ ρ
}

Furthermore let pr : C2 → C be the projection (k1, k2) 7→ k2.

Theorem 14.1 Let q ∈ L2(IR2/Γ) obey ‖bq̂(b)‖1 :=
∑
b∈Γ# |bq̂(b)| < ∞ and q̂(0) = 0, and

let ε > 0. Then there is a constant ρ, which depends only on ‖bq̂(b)‖1 and ε, such that

a)

{
k ∈ Ĥ(q)

∣∣ k /∈ Kρ
}
⊂
⋃

b∈Γ#

Tb
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k2

−ik1

T−b T0 Tb

Tb ∩ T−b
P0 PbP−b

T0 ∩ T−b T0 ∩ Tb

b) The projection pr induces a biholomorphic map between

(
Ĥ(q) ∩ T0

)
r


Kρ ∪

⋃

b∈Γ#

b2 6=0

Tb




and its image in C. This image contains

{
z ∈ C

∣∣ |z|2 > 2ρ and |z − zb| > ε
|b2| for all b ∈ Γ# with b2 6= 0

}

and is contained in

{
z ∈ C

∣∣ |z − zb| > ε
4|b2| for all b ∈ Γ# with b2 6= 0

}

where, as in §13, zb = − 1
2

(
b2 + i b1b2

)

Clearly Kρ is invariant under the Γ#-action and Kρ/Γ# is compact. So the image

of Ĥ(q) ∩ Kρ under the exponential map E : Ĥ(q) → H(q) is compact in H(q). It will

essentially play the role of Xcom in the decomposition of H(q) that we need to apply the

results of part II.
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Since c · Tb = Tb+c for every b, c ∈ Γ# the complement of E
(
Ĥ(q) ∩ Kρ

)
in H(q) is

the disjoint union of

E

((
Ĥ(q) ∩ T0

)
r
(
Kρ ∪

⋃

b∈Γ#

b2 6=0

Tb

))

and ⋃

b∈Γ#

b2 6=0

E

(
Ĥ(q) ∩ T0 ∩ Tb

)

Basicly the first of the two sets will be the regular piece of H(q), while the second sets will

be the handles. The map Φ parametrizing the regular part will be the composition of E with

the inverse of the map discussed in part (b) of Theorem 14.1. For the handles we will use

Theorem 14.2 Let ε > 0 be sufficiently small and let β ≥ 4. Assume that q ∈ L2(IR2/Γ)

obeys q̂(0) = 0 and ‖ |b|β q̂(b)‖1 <∞. Then there are constants such that for every sufficiently

large d = (d1, d2) ∈ Γ# r {0} with d2 6= 0 there is a map

φ̂d :
{

(z1, z2) ∈ C2
∣∣ |z1| ≤ ε

2 , |z2| ≤ ε
2

}
→ T0 ∩ Td

and a complex number t̂d with |t̂d| ≤
const

|d|2β such that

(i) φ̂d is biholomorphic to its image. The image contains

{
k ∈ C2

∣∣ |P0(k)| ≤ ε
8
, |Pd(k)| ≤ ε

8

}

Furthermore

Dφ̂d =
1

2id2

(
2z−d −2zd
−i i

){
1l +O

(
1

|d2zd|

)}

and ∣∣∣φ̂d(0)− (iz2
d, zd)

∣∣∣ ≤ const

|d2zd|

(
1,

1

|zd|

)

(ii)

φ̂−1
d

(
T0 ∩ Td ∩ Ĥ(q)

)
=
{

(z1, z2) ∈ C2
∣∣ z1z2 = t̂d, |z1| ≤ ε

2 , |z2| ≤ ε
2

}

(iii)

φ̂d(z1, z2) = φ̂−d(z2, z1)− d

As pointed out in Lemma 13.2 we may, for the proof of these Theorems, assume

that q̂(b) = 0 for all b ∈ Γ# with b2 = 0. To facilitate the discussion below write k ∈ C2 as

k1 = u1 + i(v1 − v2
2) , k2 = u2 + iv2 (14.3a)
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where u1, u2, v1 and v2 are real. Then

Pb(k) =
(
(u2 + b2)2 − v1

)
+ i (u1 + b1 + 2(u2 + b2)v2) . (14.3b)

In particular, Pb(k) = 0 if and only if

v1 = (u2 + b2)2 , v2 = −1

2

u1 + b1
u2 + b2

. (14.4)

By definition k is in Ĥ(q) if Hk + q has a nontrivial kernel in L2(IR2/Γ). To study

the part of the curve in the intersection of ∪d∈GTd and C2 \ ∪b6∈GTb for some finite subset G

of Γ] it is natural to look for a nontrivial solution of

(Hk + q)ψG + (Hk + q)ψG′ = 0

or equivalently of

(Hk + q)φG + (1l + qH−1
k )φG′ = 0 (14.5)

where
ψG, φG ∈ L2

G := span
{
ei<b,x> | b ∈ G

}−

ψG′ , φG′ ∈ L2
G′ := span

{
ei<b,x> | b ∈ Γ] \G

}−
.

We shall shortly show that, for k in the region under consideration, RG′G′ , the restriction of

1l + qH−1
k to L2

G′ , has a bounded inverse. Then the projection of (14.5) on L2
G′ is equivalent

to

φG′ = −R−1
G′G′qφG.

Substituting this into the projection on L2
G yields

πG
(
Hk + q − qH−1

k R−1
G′G′q

)
φG = 0.

Here πG is the obvious projection operator. This has a nontrivial solution if and only if the

|G| × |G| determinant

det
[
πG
(
Hk + q − qH−1

k R−1
G′G′q

)
πG
]

= 0,

or equivalently, expressing all operators as matrices in the basis
{
ei<b,x> | b ∈ Γ]

}
,

det


Pd(k)εd,d′ + q̂(d− d′)−

∑

b,c∈G′

q̂(d− b)
Pb(k)

(
R−1
G′G′

)
b,c
q̂(c− d′)



d,d′∈G

= 0. (14.6)

In general we define the operator RBC to have matrix elements

(RBC)b,c =

[
δb,c +

q̂(b− c)
Pc(k)

]

b∈B,c∈C
. (14.7)

Our analysis of (14.6) is based on two Lemmas. The first gives a collection of

properties of Pb(k). The second uses these to derive a number of properties of the operators

RBC .
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Lemma 14.3 (a) There is a constant such that, for all α > 2, k ∈ C,

∑

b∈Γ]

|Pb(k)|>α

1

|Pb(k)|2 ≤ const
lnα√
α

(b)

Dε = sup
B⊂Γ]

sup
k∈C2\

⋃
b∈B Tb

(∑

b∈B

1

|Pb(k)|2

) 1
2

< ∞

(c) If b, c ∈ Γ] obey b2 6= c2 and

|Pb(k)| , |Pc(k)| < 1

4

[√
|v1|+ max{|k2 + b2|, |k2 + c2|}

]

then

|b− c| > 1

8

[√
|v1|+ max{|k2 + b2|, |k2 + c2|}

]
.

(d) Let b, d ∈ Γ] obey b2 6= 0 , |b| ≤ 1
8

[√
|v1|+ |k2 + d2|

]
and |Pd(k)| ≤ ε ≤ 1. Then

∣∣∣∣
1

Pb+d(k)
+

1

P−b+d(k)

∣∣∣∣ ≤ 100
b22[

1 +
√
|v1|+ |k2 + d2|

]2 .

(e) Let d ∈ Γ] obey |Pd(k)| < 1
4

[√
|v1|+ |k2 + d2|

]
. Let q̂(b1, 0) = 0 for all b1. Then




∑

b∈Γ]

|Pb(k)|≥ε

∣∣∣∣
q̂(d− b)
Pb(k)

∣∣∣∣
2




1
2

<
13

ε

‖bq̂(b)‖2√
|v1|+ |k2 + d2|

(f) Let |Pd(k)| < ε and |Pd+b(k)| ≥ ε for all b ∈ Γ] \ {0}. Let q̂(b1, 0) = 0 for all b1. Then

∣∣∣∣∣∣
∑

b∈Γ]\{0}

q̂(b)q̂(−b)
Pb+d

∣∣∣∣∣∣
≤ 164

ε

‖bq̂(b)‖22[√
|v1|+ |k2 + d2|

]2 .

Remark. We shall, for convenience, retain the terms
√
|v1| that appear in the above bounds.

However, they do not strengthen the bounds. By (14.3b)

v1 = (u2 + d2)2 − RePd(k).
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Consequently, whenever |Pd(k)| ≤ 1
4

[√
|v1|+ |k2 + d2|

]
we have

const (1 + |k2 + d2|) ≤ 1 +
√
|v1|+ |v2|

≤ 1 +
√
|v1|+ |k2 + d2|

≤ const (1 + |k2 + d2|) .
(14.8)

To see the first inequality in (14.8), consider the cases |u2 + d2| ≤ |v2| and |u2 + d2| > |v2|
separately. In the case |u2 + d2| > |v2|

|Pd(k)| ≤ 1

4

√
|v1|+

1

2
|u2 + d2|

which implies that

|u2 + d2|2 ≤ |v1|+
1

4

√
|v1|+

1

2
|u2 + d2|

and hence

|u2 + d2| ≤ const
√
|v1|

when |u2 + d2| ≥ 1. To see the last inequality of (14.8) observe that

|v1| ≤ |k2 + d2|2 +
1

4

[√
|v1|+ |k2 + d2|

]

which implies
3

4
|v1| ≤ |k2 + d2|2 +

1

4
|k2 + d2| ≤ const |k2 + d2|2

when |v1| ≥ 1.

Proof of (a): We are to bound the sum

∑

b∈Γ]

|Pb(k)|>α

1

|Pb(k)|2 =
∑

b∈Γ]

|Pb(k)|>α

1

(v1 − (u2 + b2)2)
2

+ (u1 + b1 + 2(u2 + b2)v2)
2

=
∑

s∈Z+u2

∑

t∈ 2π
ω1

Z−(s−u2)
ω2
ω1

+u1+2sv2

(v1−s2)2+t2>α2

1

(v1 − s2)2 + t2

≤ 2
∑

s∈Z+u2

∑

t∈ 2π
ω1

Z−(s−u2)
ω2
ω1

+u1+2sv2

(v1−s2)2+t2>α2

1

(v1 − s2)2 + t2 + α2

≤ const
∑

s∈Z+u2

[∫
dt

1

(v1 − s2)2 + α2 + t2
+

1

(v1 − s2)2 + α2

]

≤ const
∑

s∈Z+u2

1√
(v1 − s2)2 + α2

≤ const
∑

s∈Z+u2

1

|s2 − v1|+ α
.
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In the event that v1 ≤ 0 we have

∑

s∈Z+u2

1

|s2 − v1|+ α
≤

∑

s∈Z+u2

1

s2 + α
≤ const√

α

so it suffices to consider v1 > 0. It also suffices to consider s ≥ 0. The terms with s ≥ √v1

are bounded by

∑

s∈Z+u2
s≥√v1

1

|s2 − v1|+ α
=

∑

σ∈Z+u2−
√
v1

σ≥0

1

(σ +
√
v1)2 − v1 + α

=
∑

σ∈Z+u2−
√
v1

σ≥0

1

σ2 + 2σ
√
v1 + α

≤
∑

σ∈Z+u2−
√
v1

σ≥0

1

σ2 + α
≤ const√

α
.

The terms with 0 ≤ s ≤ √v1 are bounded by

∑

s∈Z+u2
0≤s≤√v1

1

v1 − s2 + α
=

∑

σ∈Z−u2+
√
v1

0≤σ≤√v1

1

2σ
√
v1 − σ2 + α

≤
∑

σ∈Z−u2+
√
v1

0≤σ≤√v1

1

σ
√
v1 + α

.

When v1 ≤ α this last sum is bounded by const
1+
√
v1

α ≤ const√
α
. Finally, when v1 > α it is

bounded by

const

[
1

α
+

1√
v1

∫ √v1

1

dσ
1

σ

]
= const

[
1

α
+

ln
√
v1√
v1

]
≤ const

lnα√
α

Proof of (b): It suffices to apply (a) with α = 3 and observe that there are only finitely

many points in Γ] with |Pb(k)| ≤ 3 and hence with |k1 + b1| ≤ 3 and |k2 + b2| ≤
√

3. The

number of such points is bounded independent of k ∈ C2.

Proof of (c): First consider the case
√
|v1| ≤ max{|k2 + b2|, |k2 + c2|}. Assume, without

loss of generality, that |k2 + b2| ≥ |k2 + c2|. Then

|Pb(k)− Pc(k)| < |k2 + b2|.
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Now suppose, contrary to the statement of the Lemma, that |b− c| ≤ 1
2 |k2 + b2|. Since

Pb(k)− Pc(k) = 2(b2 − c2)k2 + b22 − c22 + i(b1 − c1)

= 2(b2 − c2)

(
k2 +

b2 + c2
2

)
+ i(b1 − c1)

(14.9)

and b2 − c2 ∈ Z− {0} we have

|Pb(k)− Pc(k)| ≥ 2

{
|k2 + b2| −

1

2
|b2 − c2|

}
− |b1 − c1|

≥ 2× 3

4
|k2 + b2| −

1

2
|k2 + b2|

= |k2 + b2|

which is a contradiction.

Next consider the case
√
|v1| ≥ max{|k2 + b2|, |k2 + c2|} ,

√
|v1| ≥ 4. Then the

real parts, (u2 + b2)2− v1, (u2 + c2)2− v1 of Pb(k), Pc(k) are both smaller in magnitude than
1
2

√
|v1| ≤ 1

8 |v1|. This implies that v1 is positive and

|(u2 + b2)2 − (u2 + c2)2| <
√
|v1| , (u2 + b2)2 >

3

4
|v1| , (u2 + c2)2 >

3

4
|v1|

so that
∣∣|u2 + b2| − |u2 + c2|

∣∣ =

∣∣∣∣∣
(u2 + b2)2 − (u2 + c2)2

√
(u2 + b2)2 +

√
(u2 + c2)2

∣∣∣∣∣

≤
√
|v1|√

3
2

√
|v1|+

√
3

2

√
|v1|

< 1.

Thus u2 + b2 and u2 + c2 must be nonzero and of opposite sign. Consequently

|b2 − c2| = |(u2 + b2)− (u2 + c2)|
= |u2 + b2|+ |u2 + c2|

≥
√

3

2

√
|v1|+

√
3

2

√
|v1|

≥
√

3

2

[√
|v1|+ max{|k2 + b2|, |k2 + c2|}

]

as desired.

Finally, if 4 >
√
|v1| ≥ max{|k2 + b2|, |k2 + c2|}

|b2 − c2| ≥ 1 ≥ 1

8

[√
|v1|+ max{|k2 + b2|, |k2 + c2|}

]
.
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Proof of (d): This is a simple consequence of part (c) and

1

Pb+d(k)
+

1

P−b+d(k)
=
Pb+d(k) + P−b+d(k)

Pb+d(k)P−b+d(k)

=
2Pd(k) + (Pb+d(k)− Pd(k)) + (P−b+d(k)− Pd(k))

Pb+d(k)P−b+d(k)

=
2Pd(k) + 2b22

Pb+d(k)P−b+d(k)
.

(14.10)

The numerator is bounded by 4b22 and each factor in the denominator is at least

1

4

[√
|v1|+ |k2 + d2|

]
≥ 1

5

[
1 +

√
|v1|+ |k2 + d2|

]

since [√
|v1|+ |k2 + d2|

]
≥ 8|b| ≥ 8.

Proof of (e): Define

B =

{
b ∈ Γ]

∣∣ |Pb(k)| ≥ 1

4

[√
|v1|+ |k2 + d2|

] }

and

S =

{
b ∈ Γ]

∣∣ ε ≤ |Pb(k)| < 1

4

[√
|v1|+ |k2 + d2|

] }
.

Then, by part (c),

∑

b∈Γ]

|Pb(k)|≥ε

∣∣∣∣
q̂(d− b)
Pb(k)

∣∣∣∣
2

=
∑

b∈S

∣∣∣∣
q̂(d− b)
Pb(k)

∣∣∣∣
2

+
∑

b∈B

∣∣∣∣
q̂(d− b)
Pb(k)

∣∣∣∣
2

≤
∑

|d−b|≥ 1
8

[√
|v1|+|k2+d2|

]

∣∣∣∣
q̂(d− b)

ε

∣∣∣∣
2

+
∑

b

∣∣∣∣∣
q̂(d− b)

1
4 [
√
|v1|+ |k2 + d2|]

∣∣∣∣∣

2

≤
(

64

ε2
+ 16

)
[
√
|v1|+ |k2 + d2|]−2

∑

b

(b2|q̂(b)|2 + |q̂(b)|2).

Proof of (f): Define

N =

{
b ∈ Γ]

∣∣ 0 < |b| ≤ 1

8

[√
|v1|+ |k2 + d2|

] }
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and

F =

{
b ∈ Γ]

∣∣ |b| > 1

8

[√
|v1|+ |k2 + d2|

] }
.

Then, by b→ −b symmetry

∣∣∣∣∣
∑

b∈N

q̂(b)q̂(−b)
Pb+d

∣∣∣∣∣ =
1

2

∣∣∣∣∣
∑

b∈N
q̂(b)q̂(−b)

[
1

Pb+d
+

1

P−b+d

]∣∣∣∣∣

≤ 100
‖bq̂(b)‖2

[√
|v1|+ |k2 + d2|

]2

by part (d). The sum over F is controlled as in part (e).

Lemma 14.4 Let k ∈ C2. Let
√
|v1|+ |v2| > 8 and

S ⊂
{
b ∈ Γ]

∣∣ ε ≤ |Pb(k)| < 1

4

[√
|v1|+ |v2|

] }

B ⊂
{
b ∈ Γ]

∣∣ |Pb(k)| ≥ 1

4

[√
|v1|+ |v2|

] }

Then, if q̂(b1, 0) = 0 for all b1,

(a)

‖RSS − πS‖ ≤
8

ε

‖bq̂(b)‖1√
|v1|+ |v2|

‖RBB − πB‖ ≤ 4
‖q̂(b)‖1√
|v1|+ |v2|

‖RSB‖ ≤ 4
‖q̂(b)‖1√
|v1|+ |v2|

‖RBS‖ ≤
1

ε
‖q̂(b)‖1

(b)

‖RSS − πS‖HS ≤ const
‖bq̂(b)‖2√
|v1|+ |v2|

‖RBB − πB‖HS ≤ const ‖q̂(b)‖2




ln
(√
|v1|+ |v2|

)

√√
|v1|+ |v2|




1/2

‖RSB‖HS ≤ const ‖q̂(b)‖2




ln
(√
|v1|+ |v2|

)

√√
|v1|+ |v2|




1/2

‖RBS‖HS ≤ const ‖q̂(b)‖2
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(c) Let
√
|v1|+ |v2| ≥ max

{
8 , 16

ε

(
‖bq̂(b)‖1 + ‖q̂(b)‖21

) }
. The operator

(
RSS RSB
RBS RBB

)

has a bounded inverse. The norm
∥∥∥∥∥

(
RSS RSB
RBS RBB

)−1

−
(

πS 0
RBS πB

)∥∥∥∥∥ ≤ const
1 + ‖bq̂(b)‖31√
|v1|+ |v2|

(d) Let
√
|v1|+ |v2| ≥ const . Then

∣∣∣∣det2

(
RSS RSB
RBS RBB

)
− 1

∣∣∣∣ ≤ const (1 + ‖q̂(b)‖2) ‖bq̂(b)‖2




ln
(√
|v1|+ |v2|

)

√√
|v1|+ |v2|




1/2

Proof of (a): In the case of RSB and RBB − πB it suffices to observe that, for b ∈ B,

|Pb(k)|−1 ≤ 4
[√
|v1|+ |v2|

]−1

and that the convolution operator |q̂(b− c)| has operator norm bounded by ‖q̂‖1. In the case

of ‖RBS‖
|Pb(k)|−1 ≤ 1

ε

is used instead. Finally

∣∣∣(RSS − πS)b,c∈S

∣∣∣ =

∣∣∣∣
q̂(b− c)
Pc(k)

∣∣∣∣

≤ 8
|b− c|[√
|v1|+ |v2|

]
∣∣∣∣
q̂(b− c)

ε

∣∣∣∣

by Lemma 14.3.c. We may now continue as in the other cases.

Proof of (b): In the first case

‖RSS − πS‖2HS =
∑

b,c∈S

∣∣∣∣
q̂(b− c)
Pc(k)

∣∣∣∣
2

≤
∑

b,c

(
8
|b− c|√
|v1|+ |v2|

)2 ∣∣∣∣
q̂(b− c)
Pc(k)

∣∣∣∣
2

≤ const

(
‖bq̂‖2√
|v1|+ |v2|

)2

.
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We have used Lemma 14.3.c in the first inequality and Lemma 14.3.b in the second. The

next two cases may be treated at the same time.

‖RBB − πB‖2HS , ‖RSB‖2HS ≤
∑

b∈S∪B,c∈B

∣∣∣∣
q̂(b− c)
Pc(k)

∣∣∣∣
2

≤ ‖q̂‖22
∑

c∈B

1

|Pc(k)|2

≤ const ‖q̂‖22
ln
(√
|v1|+ |v2|

)

√√
|v1|+ |v2|

by Lemma 14.3.a. The final case is similar, but Lemma 14.3.b must be used in place of

Lemma 14.3.a.

Proof of (c): Define

R = RSS − RSBR−1
BBRBS.

Then, by explicit calculation,

(
RSS RSB
RBS RBB

)−1

=

(
R−1 −R−1RSBR

−1
BB

−R−1
BBRBSR−1 R−1

BB + R−1
BBRBSR−1RSBR

−1
BB

)
(14.11)

By part (a)

‖R − πS‖ ≤
8

ε

‖bq̂(b)‖1 + ‖q̂(b)‖21√
|v1|+ |v2|

provided 4‖q̂‖1
[√
|v1|+ |v2|

]−1

≤ 1
2 . This together with repeated applications of part (a)

give the desired result.

Proof of (d): Write the matrix
(
RSS RSB
RBS RBB

)
=

(
πS 0
RBS πB

)
+

(
RSS − πS RSB

0 RBB − πB

)

=

(
πS 0
RBS πB

)
(1l + E)

where

E =

(
πS 0
RBS πB

)−1 (
RSS − πS RSB

0 RBB − πB

)

=

(
πS 0
−RBS πB

)(
RSS − πS RSB

0 RBB − πB

)

=

(
RSS − πS RSB

RBS(πS −RSS) RBB − πB − RBSRSB

)
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First consider the case that B and S are finite sets. Then,

det2

(
RSS RSB
RBS RBB

)
= det

(
RSS RSB
RBS RBB

)

since RSS and RBB both agree exactly with 1l on the diagonal. consequently,

det2

(
RSS RSB
RBS RBB

)
= det(1l + E) = det2(1l + E)etrE

= 1 +O(‖E‖HS + trE)

= 1 +O (‖RSS − πS‖HS + ‖RSB‖HS + ‖RBS‖ ‖(πS − RSS)‖HS)

+ O (‖RBB − πB‖HS + ‖RBS‖HS‖RSB‖HS)

= 1 +O


(1 + ‖q̂(b)‖2) ‖bq̂(b)‖2




ln
(√
|v1|+ |v2|

)

√√
|v1|+ |v2|




1/2



The bound when B or S are infinite is gotten by taking limits.

It is now a simple matter to use the estimates of Lemmas 14.3,4 to analyse the

asymptotic behavior of the heat curve. Recall that q̂(b1, 0) = 0 for all b1. Define

R = max
{

8 ,
16

ε

(
‖bq̂(b)‖1 + ‖q̂(b)‖21

) }
(14.12a)

and

K = {k ∈ C2
∣∣√|v1|+ |v2| ≤ R} (14.12b)

Then K ⊂ Kρ for some ρ > 0.

Proof of Theorem 14.1a: Let k ∈ C2 r
(
K ∪ ⋃b∈Γ# Tb

)
. Use (14.5) with G = ∅ as a

test for when k ∈ Ĥ(q). By Lemma 14.4.c with

S =

{
b ∈ Γ]

∣∣ ε ≤ |Pb(k)| < 1

4

[√
|v1|+ |v2|

] }

B =

{
b ∈ Γ]

∣∣ |Pb(k)| ≥ 1

4

[√
|v1|+ |v2|

] }

φG′ must be zero. That is, there is no nontrivial solution of (14.5).
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To prove the rest of Theorem 14.1 and Theorem 14.2 we use

Proposition 14.5 Let k ∈ C2 \ K.

a) Let k ∈ Ta \ ∪b6=aTb. Then k ∈ Ĥ(q) if and only if

Pa(k) = A(k)

where

A(k) =
∑

b,c∈A

q̂(a− b)
Pb(k)

(
R−1
AA

)
b,c
q̂(c− a) , A = Γ] \ {a}

and obeys

|A(k)| ≤ const (‖bq̂(b)‖1)

1 + |k2 + a2|2
.

Here const (‖bq̂(b)‖1) denotes that the constant const depends only on ε and the norm

‖bq̂(b)‖1.

b) Let k ∈ Td(1) ∩ Td(2) . Then k ∈ Ĥ(q) if and only if

(Pd(1)(k)−D(k)1,1) (Pd(2)(k)−D(k)2,2)=
(
q̂(d(1)−d(2))−D(k)1,2

)(
q̂(d(2)−d(1))−D(k)2,1

)

where

D(k)i,j =
∑

b,c∈D

q̂(d(i) − b)
Pb(k)

(
R−1
DD

)
b,c
q̂(c− d(j)) , D = Γ] \ {d(1), d(2)}

and obeys

|D(k)i,j| ≤ min
i=1,2

const (‖bq̂(b)‖1)

1 + |k2 + d
(i)
2 |2

.

Proof of a): For the region in question Ĥ(q) is given by (14.6) with G = {a} and G′ = A.

This is precisely the desired equation. We now estimate A(k). Lemma 14.4.c with

S = A ∩
{
b ∈ Γ]

∣∣ ε ≤ |Pb(k)| < 1

4

[√
|v1|+ |v2|

] }

B = A ∩
{
b ∈ Γ]

∣∣ |Pb(k)| ≥ 1

4

[√
|v1|+ |v2|

] }

together with Lemma 14.3.e and (14.8) gives the desired bound for the contribution from

(
RSS RSB
RBS RBB

)−1

−
(

πS 0
RBS πB

)
.
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The two remaining contributions are

∑

b∈A

q̂(a− b)q̂(b− a)

Pb(k)
+

∑

b∈B,c∈S

q̂(a− b)
Pb(k)

(RBS)b,c q̂(c− a).

The first is estimated by Lemma 14.3.f. The second is estimated using Lemma 14.3.e, Lemma

14.4.a and Lemma 14.3.c (with the last used to show that |c − a| ≥
√
|v1| + |v2|). This

discussion yields the bound

|A(k)| ≤ const (‖bq̂(b)‖1)
[√
|v1|+ |v2|

]2 .

But by (14.8) √
|v1|+ |v2| ≥ const (1 + |k2 + a2|).

Proof of b): For the most part it suffices to repeat the above argument withG = {d(1), d(2)},
G′ = D and

S = D ∩
{
b ∈ Γ]

∣∣ ε ≤ |Pb(k)| < 1

4

[√
|v1|+ |v2|

] }

B = D ∩
{
b ∈ Γ]

∣∣ |Pb(k)| ≥ 1

4

[√
|v1|+ |v2|

] }
.

The one exception is the contribution

∑

b∈D

q̂(d(i) − b)q̂(b− d(j))

Pb(k)

Note that, by (14.2),

k2 + d
(i)
2 =

d
(i)
2 − d

(j)
2

2
− i

2

d
(1)
1 − d

(2)
1

d
(1)
2 − d

(2)
2

+ O(ε)

so that ∣∣∣k2 + d
(i)
2

∣∣∣ ≤ 1

2

∣∣∣d(1) − d(2)
∣∣∣+ O(ε).

First consider i = j = 1. Then

∑

b∈D

q̂(d(1) − b)q̂(b− d(1))

Pb(k)
=

∑

b6=0,d(2)−d(1)

q̂(b)q̂(−b)
Pb+d(1)(k)

=
∑

b6=0,±(d(2)−d(1))

q̂(b)q̂(−b)
Pb+d(1)(k)

+
q̂(d(1) − d(2))q̂(d(2) − d(1))

P2d(1)−d(2)(k)
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The sum is bounded as in Lemma 14.3.f. The last term∣∣∣∣
q̂(d(1) − d(2))q̂(d(2) − d(1))

P2d(1)−d(2)(k)

∣∣∣∣ ≤
‖bq̂(b)‖2∞

ε|d(1) − d(2)|2

≤ const
‖bq̂(b)‖2∞

[1 + |k2 + d
(1)
2 |]2

The case i = j = 2 is similar, so let i 6= j . The contribution from S is bounded

by
∑

b∈S

q̂(d(i) − b)q̂(b− d(j))

Pb(k)
≤

∑

b

|b−d(1)|,|b−d(2)|> 1
8 [
√
|v1|+|v2|]

∣∣q̂(d(i) − b)q̂(b− d(j)
∣∣)

ε

≤ const
‖bq̂(b)‖22[√
|v1|+ |v2|

]2

while that from B is bounded by

∑

b∈B

q̂(d(i) − b)q̂(b− d(j))

Pb(k)
≤
∑

b

4

∣∣q̂(d(i) − b)q̂(b− d(j)
∣∣)√

|v1|+ |v2|

≤ const
∑

b

{|d(i) − b|+ |b− d(j)|}q̂(d(i) − b)q̂(b− d(j))
∣∣d(1) − d(2)

∣∣
[√
|v1|+ |v2|

]

≤ const
2‖bq̂(b)‖2‖q̂(b)‖2[√
|v1|+ |v2|

]2 .

To show that the curve does not wiggle too much we will also need bounds on the

derivatives of A and D. These are provided in

Lemma 14.6 Under the hypotheses of Proposition 14.5, if m+ n = 1∣∣∣∣
∂n+m

∂kn1 ∂k
m
2

A(k)

∣∣∣∣ ≤
const (‖bq̂(b)‖1)

[1 + |k2 + a2|]2−m∣∣∣∣
∂n+m

∂kn1 ∂k
m
2

D(k)i,j

∣∣∣∣ ≤ min
i=1,2

const (‖bq̂(b)‖1)
[
1 + |k2 + d

(i)
2 |
]2−m

and if m+ n ≥ 2 ∣∣∣∣
∂n+m

∂kn1 ∂k
m
2

A(k)

∣∣∣∣ ≤
const

(
‖b2q̂(b)‖1

)

[1 + |k2 + a2|]3−m∣∣∣∣
∂n+m

∂kn1 ∂k
m
2

D(k)i,j

∣∣∣∣ ≤ min
i=1,2

const
(
‖b2q̂(b)‖1

)
[
1 + |k2 + d

(i)
2 |
]3−m
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Proof: Use QGG′ to denote the matrix [q̂(b− c)]b∈G,c∈G′. Then A and D are given by

QGG′H
−1
k (RG′G′)

−1
QG′G with G = {a} and G = {d(1), d(2)} respectively. Hence their first

derivatives are given by

∂

∂ki
A(k),

∂

∂ki
D(k) = −QGG′H−1

k

∂Hk

∂ki
H−1
k (RG′G′)

−1
QG′G

+QGG′H
−1
k (RG′G′)

−1
QG′G′H

−1
k

∂Hk

∂ki
H−1
k (RG′G′)

−1
QG′G

= −QGG′H−1
k (RG′G′)

−1 ∂Hk

∂ki
H−1
k (RG′G′)

−1
QG′G

since

QG′G′H
−1
k = RG′G′ − 1l.

Hence the derivatives are bounded by

∥∥QGG′H−1
k

∥∥
∥∥∥(RG′G′)

−1
∥∥∥
∥∥∥∥
∂Hk

∂ki
H−1
k (RG′G′)

−1
QG′G

∥∥∥∥

By Lemma 14.3.e and Lemma 14.4.c,a

∥∥QGG′H−1
k

∥∥
∥∥∥(RG′G′)

−1
∥∥∥ ≤ const√

|v1|+ |v2|

When i = 1,
(
∂Hk
∂k1

)
b,c

= iδb,c and

∥∥∥∥
∂Hk

∂k1
H−1
k (RG′G′)

−1
QG′G

∥∥∥∥ ≤
∥∥H−1

k πG′
∥∥
∥∥∥(RG′G′)

−1 − 1l− RBS
∥∥∥ ‖QG′G‖

+
∥∥H−1

k QG′G
∥∥+

∥∥H−1
k πG′

∥∥ ‖RBSQSG‖

≤ const√
|v1|+ |v2|

.

(14.131)

The first term was controlled by Lemma 14.4.c, the second by Lemma 14.3.e and the third

by Lemmas 14.4.a and 14.3.c.

When i = 2,
(
∂Hk
∂k2

)
b,c

= 2(k2 + b2)δb,c and

∥∥∥∥
∂Hk

∂k2
H−1
k πG′

∥∥∥∥ ≤ const
[√
|v1|+ |v2|

]

∥∥∥∥
∂Hk

∂k2
H−1
k QG′G

∥∥∥∥ ≤ const

because

Pb(k) ≥ 1

4

[√
|v1|+ |k2 + b2|

]
⇒
∣∣∣∣
2(k2 + b2)

Pb(k)

∣∣∣∣ ≤ 8 (14.14a)
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and

ε ≤ Pb(k) <
1

4

[√
|v1|+ |k2 + b2|

]
⇒





∣∣∣ 2(k2+b2)
Pb(k)

∣∣∣ ≤
const

[
1+
√
|v1|+|v2|

]
ε

dist(b,G) ≥ 1
8

[√
|v1|+ |v2|

] (14.14b)

by (14.8) and Lemma 14.3.c. Thus for i = 2 (16.131) is replaced by

∥∥∥∥
∂Hk

∂k2
H−1
k (RG′G′)

−1
QG′G

∥∥∥∥ ≤
∥∥∥∥
∂Hk

∂k2
H−1
k πG′

∥∥∥∥
∥∥∥(RG′G′)

−1 − 1l− RBS
∥∥∥ ‖QG′G‖

+

∥∥∥∥
∂Hk

∂k2
H−1
k QG′G

∥∥∥∥+

∥∥∥∥
∂Hk

∂k2
H−1
k πG′

∥∥∥∥ ‖RBSQSG‖

≤ const .
(14.132)

To complete the argument when one derivative is taken it suffices to use (14.8) to convert√
|v1|+ |v2|’s into 1 + |k2 + a2|’s or 1 + |k2 + d

(i)
2 |’s.

All higher derivatives are given by finite linear combinations of terms of the form

QGG′
∏

j

{
H−1
k (RG′G′)

−1 ∂
njHk

∂k
nj
ij

}
H−1
k (RG′G′)

−1
QG′G (14.15)

where the sum of the nj ’s for which ij =1 (resp. 2) is n (resp. m). This is easily seen if A
and D are written in the form

QGG′(Hk +Q)−1QG′G

with the operator Hk +Q being restricted to L2
G′ .

The proof will involve expanding each R−1 =
(
R−1 − 1l−RBS

)
+ 1l + RBS and

applying

∥∥QGG′H−1
∥∥ ≤ const√

|v1|+ |v2|∥∥∥∥QGG′
∂Hk

∂ki
H−1
k

∥∥∥∥ ≤ const
[√
|v1|+ |v2|

]−1+δi,2

∥∥∥∥∥QGG′
(
∂Hk

∂ki
H−1
k

)2
∥∥∥∥∥ ≤ const

[√
|v1|+ |v2|

]−2+2δi,2

∥∥∥∥QGG′
∂Hk

∂ki
H−2
k

∥∥∥∥ ≤ const
[√
|v1|+ |v2|

]−2+δi,2
,

(14.16)
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the analogous bounds on RBS

∥∥H−1RBS
∥∥ ≤ const√

|v1|+ |v2|∥∥∥∥
∂Hk

∂ki
H−1
k RBS

∥∥∥∥ ≤ const
[√
|v1|+ |v2|

]−1+δi,2

∥∥∥∥∥

(
∂Hk

∂ki
H−1
k

)2

RBS

∥∥∥∥∥ ≤ const
[√
|v1|+ |v2|

]−2+2δi,2

∥∥∥∥
∂Hk

∂ki
H−2
k RBS

∥∥∥∥ ≤ const
[√
|v1|+ |v2|

]−2+δi,2
,

(14.17)

and ∥∥∥(RG′G′)
−1 − 1l− RBS

∥∥∥ ≤ const
[√
|v1|+ |v2|

]−1

(14.18)

∥∥∥∥
∂Hk

∂k2
H−1
k πG′

∥∥∥∥ ≤ const
[√
|v1|+ |v2|

]δi,2.
(14.19)

(The const ’s on the right hand side of (14.16, 17) depend on ‖b2q̂‖1.) The moral of this long

list of bounds is that we get a factor of
[√
|v1|+ |v2|

]−1

for each H−1
k that is

- a nearest or second nearest neighbor to a terminatingQGG′ orQG′G(with intervening
∂Hk
∂ki

’s but no intervening (RG′G′)
−1 − 1l− RBS ’s or RBS ’s allowed)

- a nearest or second nearest neighbor on the left of an RBS (with the same interven-

tion rules)

and for each (RG′G′)
−1 − 1l − RBS and that we get a

[√
|v1|+ |v2|

]
for each ∂Hk

∂k2
. Thus it

suffices to check that we always get at least three decay factors
[√
|v1|+ |v2|

]−1

.

Expand the leftmost R−1 in (14.15). Selecting either the R−1 − 1l− RBS or the 1l

yields two decay factors right away and we can always get a third one from the H−1R−1Q

on the far right hand end.

That leaves QGG′H
−1RBS on the left end. Since

dist(S,G) ≥ 1

8

[√
|v1|+ |v2|

]

we can get two decay factors from the q̂’s in QGG′H
−1RBS . As usual we can always get the

third from the far right hand end.

Proof of Theorem 14.1b: For z ∈ C put

Fz = pr−1(z) ∩
(
T0 r

⋃

b∈Γ#

b6=0

Tb

)
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Observe that

Fz =





{
(k1, z) ∈ C2

∣∣ |k1 − iz2| ≤ ε
}

if |z − zb| ≥ ε
b2

for all b ∈ Γ#, b2 6= 0{
(k1, z) ∈ C2

∣∣ |k1 − iz2| ≤ ε and
∣∣k1 − i

(
z2 + 2d2(z − zd)

)∣∣ > ε
}

if |z − zd| < ε
b2

iz2

i(z2 + 2d2(z − zd))

ε

ε

Fz

By Proposition 14.5 (k1, z) lies in Ĥ(q) if and only if

ik1 + z2 = P0(k1, z) = A(k1, z) (14.20)

for an analytic function A obeying

|A(k1, z)| ≤
const

1 + |z|2∣∣∣∣
∂

∂k1
A(k1, z)

∣∣∣∣ ≤
const

1 + |z|2

by Lemma 14.6. This shows, that for z big enough, the equation (14.20) has at most one

solution in Fz, and that this solution is simple. Furthermore any such solution fulfils

|k1 − iz2| ≤ const

1 + |z|2

So there is no solution in Fz, if

{
k1 ∈ C

∣∣ |k1 − iz2| ≤ const
1+|z|2

}
⊂
{
k1 ∈ C

∣∣ ∣∣k1 − i
(
z2 + 2d2(z − zd)

)∣∣ ≤ ε
}

that is, if

2d2|z − zd|+
const

1 + |z|2 ≤ ε
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or equivalently,

|z − zd| ≤
ε

2d2
− const

2d2(1 + |z|2)

Similarly equation (14.20) has a solution in Fz, if

|z − zd| >
ε

2d2
+

const

2d2(1 + |z|2)

Proof of Theorem 14.2: First we perform the coordinate change

x1 = P0(k)−D1,1 = ik1 + k2
2 −D1,1

x2 = Pd(k)−D2,2 = i(k1 + d1) + (k2 + d2)2 −D2,2

k2 =
x2 − x1

2d2
+ zd +

D2,2 −D1,1

2d2

k1 = −ix1 − iD1,1 + i

(
x2 − x1

2d2
+ zd +

D2,2 −D1,1

2d2

)2

(14.21)

where D(k)i,j are given by Proposition 14.5. The Jacobean of this map is

( ∂x1

∂k1

∂x1

∂k2
∂x2

∂k1

∂x2

∂k2

)
=


 i+O

(
1
|zd|2

)
2k2 +O

(
1
|zd|

)

i+O
(

1
|zd|2

)
2(k2 + d2) + O

(
1
|zd|

)



=


 i+O

(
1
|zd|2

)
2zd + O

(
1
|d2|

)

i+O
(

1
|zd|2

)
2z−d + O

(
1
|d2|

)



=

(
i 2zd
i 2z−d

)(
1l + O

(
1

|d2zd|

))

(14.22a)

since, by (14.2), |k2 − zd| ≤ ε
|d2| . Its inverse is

( ∂k1

∂x1

∂k1

∂x2
∂k2

∂x1

∂k2

∂x2

)
=

1

2id2

(
2z−d −2zd
−i i

)(
1l +O

(
1

|d2zd|

))
(14.22b)

The derivative of the inverse

∂2 km
∂xi∂xj

= −
∑

α,β

∂km
∂xα

∂

∂xi

(
∂xα
∂kβ

)
∂kβ
∂xj

= −
∑

α,β,γ

∂km
∂xα

∂2 xα
∂kγ∂kβ

∂kγ
∂xi

∂kβ
∂xj

=
∑

α,β,γ

O

(
1

|d2|3
|zd|δm,1+δγ,1+δβ,1

(
2δβ,2δγ,2 +

1

|zd|3−δβ,2−δγ,2
))

= O

( |zd|δm,1
|d2|3

)
.
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In these coordinates

(P0 −D1,1) (Pd −D2,2)− (q̂(d)−D1,2) (q̂(−d)−D2,1) = x1x2 + h(x1, x2)

where

h(x1, x2) = − (q̂(d)−D1,2) (q̂(−d)−D2,1) .

In Lemma 14.8 below we will improve the estimates of Lemmma 14.6 to
∣∣∣∣
∂n+m

∂kn1 ∂k
m
2

D(k)1,2

∣∣∣∣ ,
∣∣∣∣
∂n+m

∂kn1 ∂k
m
2

D(k)2,1

∣∣∣∣ ≤ const
|d|m

(1 + |d|)β

In terms of the x-variables, when r 6= s
∣∣∣∣
∂Dr,s
∂ xi

(x1, x2)

∣∣∣∣ ≤
∑

m=1,2

∣∣∣∣
∂Dr,s
∂km

∂km
∂xi

∣∣∣∣

≤
∑

m

|d|δm,2 const

(1 + |d|)β
const

|d2|
|zd|δm,1

≤ const

(1 + |d|)β−1

and
∣∣∣∣
∂2Dr,s
∂xi∂xj

(x1, x2)

∣∣∣∣ ≤
∑

m,n=1,2

∣∣∣∣
∂2Dr,s
∂km∂kn

∂km
∂xi

∂kn
∂xj

∣∣∣∣+
∑

m=1,2

∣∣∣∣
∂Dr,s
∂km

∂2 km
∂xi∂xj

∣∣∣∣

≤
∑

m,n

|d|δm,2+δn,2
const

(1 + |d|)β
const

d2
2

|zd|δm,1+δn,1 +
∑

m

|d|δm,2 const

(1 + |d|)β const
|zd|δm,1
|d2|3

≤ const

(1 + |d|)β−2

so that,

|h(0, 0)| ≤ const

(1 + |d|)2β

and
∣∣∣∣
∂ h

∂xi
(x1, x2)

∣∣∣∣ ≤
const

(1 + |d|)β−1

(
|q̂(d)|+ |q̂(−d)|+ const

(1 + |d|)β
)
≤ const

(1 + |d|)2β−1

∣∣∣∣
∂2 h

∂xi∂xj
(x1, x2)

∣∣∣∣ ≤
const

(1 + |d|)2β−2

By the quantitative Morse Lemma in the appendix, with a = const
(1+|d|)2β−1 and b =

const
(1+|d|)2β−2 , there is a biholomorphism ψ defined on

{
(z1, z2) ∈ C2

∣∣ |z1| ≤ ε
2
, |z2| ≤ ε

2

}
with

range containing
{

(x1, x2) ∈ C2
∣∣ |x1| ≤ ε

4 , |x2| ≤ ε
4

}
and with

‖Dψ − 1l‖ ≤ const

(1 + |d|)2β−2
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(x1x2 + h) ◦ ψ = z1z2 − t̂d

|t̂d| ≤
const

(1 + |d|)2β

|ψ(0)| ≤ const

(1 + |d|)2β−1

It now suffices to compose

φ̂d(z1, z2) =
(
k1(ψ(z1, z2)), k2(ψ(z1, z2))

)

with k(x) being the map of (14.21).

Conclusion (ii) of the Theorem, as well as the first part of (i), is immediate. The

Jacobean

Dφ̂d =
∂k

∂x
Dψ

=
1

2id2

(
2z−d −2zd
−i i

){
1l +O

(
1

(1 + |d|)2β−2
)

)}{
1l + O

(
1

|d2zd|

)}

=
1

2id2

(
2z−d −2zd
−i i

){
1l +O

(
1

|d2zd|

)}
.

The centre is
φ̂d(0) = k (ψ(0))

= k
(
O( 1

(1+|d|)2β−1 ))
)

with

k2

(
O( 1

(1+|d|)2β−1 ))
)

= zd + O

(
1

|d2z2
d|

)
.

To prove part (iii) observe that T−d ∩ T0 ∩ Ĥ(q) is mapped to T0 ∩ Td ∩ Ĥ(q) by

translation by −d. For d2 > 0 define φ̂d by the above construction. For d2 < 0 define φ̂d by

φ̂d(z1, z2) = φ̂−d(z2, z1)− d

We now look more closely at the extent to which double points open up for various

classes of potentials. Let f be a function on IR+ satisfying

i) f ≥ 1, f(0) = 1

ii) f(s)f(t) ≥ f(s+ t) for all s, t ≥ 0

iii) f increases monotonically
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One may, for example , use f(t) = eβt or f(t) = (1 + t)β for any β ≥ 0. Define, for

operators on `2(Γ#), the norm

‖A‖f = max



 sup
b∈Γ#

∑

c∈Γ#

|Ab,c|f(|b− c|), sup
c∈Γ#

∑

b∈Γ#

|Ab,c|f(|b− c|)



 .

In particular for the convolution operator q̂(b− c)
‖q̂‖f =

∑

b∈Γ#

|q̂(b)|f(|b|).

By [FKT, (3.4)], the norm obeys

‖A‖ ≤ ‖A‖f≡1 ≤ ‖A‖f
‖AB‖f ≤ ‖A‖f‖B‖f

‖(1l + A)−1‖f ≤ (1− ‖A‖f )−1 if ‖A‖f < 1

|Ab,c| ≤
1

f(|b− c|)‖A‖f .

(14.23)

The analogue of Lemma 14.4 for this norm is

Lemma 14.7 Let k ∈ C2 and

S ⊂
{
b ∈ Γ]

∣∣ ε ≤ |Pb(k)| < 1

4

[√
|v1|+ |v2|

] }

B ⊂
{
b ∈ Γ]

∣∣ |Pb(k)| ≥ 1

4

[√
|v1|+ |v2|

] }

Then, if q̂(b1, 0) = 0 for all b1

(a)

‖RSS − πS‖f ≤
8

ε

‖bq̂(b)‖f√
|v1|+ |v2|

‖RBB − πB‖f ≤ 4
‖q̂(b)‖f√
|v1|+ |v2|

‖RSB‖f ≤ 4
‖q̂(b)‖f√
|v1|+ |v2|

‖RBS‖f ≤
1

ε
‖q̂(b)‖f

(b) Let
√
|v1|+ |v2| ≥ max

{
8 , 16

ε

(
‖bq̂(b)‖f + ‖q̂(b)‖2f

) }
. The operator

(
RSS RSB
RBS RBB

)

has a bounded inverse. The norm∥∥∥∥∥

(
RSS RSB
RBS RBB

)−1

−
(

πS 0
RBS πB

)∥∥∥∥∥
f

≤ const
‖bq̂(b)‖f

(
1 + ‖q̂‖2f

)
√
|v1|+ |v2|
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Proof of a): In the case of RSB and RBB − πB it suffices to observe that, for b ∈ B,

|Pb(k)|−1 ≤ 4
[√
|v1|+ |v2|

]−1

and that the convolution operator |q̂(b− c)| has norm ‖q̂‖f . In the case of RBS

|Pb(k)|−1 ≤ 1

ε

is used instead. Finally
∣∣∣(RSS − πS)b,c∈S

∣∣∣ =

∣∣∣∣
q̂(b− c)
Pc(k)

∣∣∣∣

≤ 8
|b− c|[√
|v1|+ |v2|

]
∣∣∣∣
q̂(b− c)

ε

∣∣∣∣

by Lemma 14.3.c. We may now continue as in the other cases.

Proof of b): As in Lemma 14.3
(
RSS RSB
RBS RBB

)−1

=

(
R−1 −R−1RSBR

−1
BB

−R−1
BBRBSR−1 R−1

BB + R−1
BBRBSR−1RSBR

−1
BB

)

where

R = RSS − RSBR−1
BBRBS.

By part (a)

‖R − πS‖f ≤
8

ε

‖bq̂(b)‖f + ‖q̂(b)‖2f√
|v1|+ |v2|

provided 4‖q̂‖f
[√
|v1|+ |v2|

]−1

≤ 1
2 . This together with repeated applications of part (a)

give the desired result.

The principal quantity that determines the degree of opening of the double point

(iz2
d, zd) i.e. that determines the t̂d of Theorem 14.2, is (q̂(d)−D1,2) (q̂(−d)−D2,1). The

next Lemma provides the estimates required to control it. Define

Kf =
{
k ∈ C2

∣∣∣
√
|v1|+ |v2| ≤ max

{
8 , 16

ε (‖bq̂(b)‖f + ‖q̂(b)‖2f )
}}

Lemma 14.8 Let k ∈ Td(1) ∩ Td(2) ∩ {C \ Kf}. Then there is a constant, depending only on

m, n and ‖bq̂(b)‖f , such that
∣∣∣∣
∂n+m

∂kn1 ∂k
m
2

D(k)1,2

∣∣∣∣ ,
∣∣∣∣
∂n+m

∂kn1 ∂k
m
2

D(k)2,1

∣∣∣∣ ≤ const ‖q̂‖2f
∣∣d(1) − d(2)

∣∣m 1

f(|d(1) − d(2)|)
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Remark. The const is bounded on compacts. The ‖q̂‖2f has significance only for small q.

Proof: The bound for m = n = 0 is an immediate consequence of (14.23) and

∥∥∥∥∥∥
∑

b,c∈D

q̂(d− b)
Pb(k)

(
R−1
DD

)
b,c
q̂(c− d′)

∥∥∥∥∥∥
f

≤ 1

ε
‖q̂‖f‖R−1

DD‖f‖q̂‖f

≤ const ‖q̂‖2f .

By (14.15) all derivatives are given by finite linear combinations of terms of the form

QdD
∏

j

{
H−1
k (RDD)

−1 ∂
njHk

∂ k
nj
ij

}
H−1
k (RDD)

−1
QDd′

where the sum of the nj’s for which ij =1 (resp. 2) is n (resp. m). Apply

‖Q‖f = ‖q‖f
‖R−1

DD‖f ≤ const

‖H−1
k ‖f ≤

1

ε∥∥∥∥
∂nHk

∂ kni
H−1
k πD

∥∥∥∥
f

≤
{

const
[√
|v1|+ |v2|

]
i = 2, n = 1

2/ε otherwise

Recall that Hk and its derivatives are diagonal operators and that, for diagonal operators,

the operator norm and f -norm agree. So far we have
∥∥∥∥∥∥
QdD

∏

j

{
H−1
k (RDD)

−1 ∂
njHk

∂ k
nj
ij

}
H−1
k (RDD)

−1
QDd′

∥∥∥∥∥∥
f

≤ const ‖q̂‖2f
[√
|v1|+ |v2|

]m

By (14.8) √
|v1|+ |v2| ≤ const (1 + |k2 + d

(2)
2 |)

and, by (14.2) ∣∣∣∣∣k2 +
d

(1)
2 + d

(2)
2

2
+
i

2

d
(1)
1 − d

(2)
1

d
(1)
2 − d

(2)
2

∣∣∣∣∣ ≤ ε

for k ∈ Td(1) ∩ Td(2) . Hence

√
|v1|+ |v2| ≤ const

(
1 +

∣∣∣∣∣
d

(1)
2 − d

(2)
2

2
+
i

2

d
(1)
1 − d

(2)
1

d
(1)
2 − d

(2)
2

∣∣∣∣∣

)

≤ const
∣∣d(1) − d(2)

∣∣ .
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To conclude this section we note the following application of Theorem 14.1

Theorem 14.9 Let q ∈ L2(IR2/Γ) with ‖bq̂(b)‖1 <∞. Then H(q) is a reduced and irreducible

one dimensional complex analytic variety.

Proof: Without loss of generality we may assume that q̂(0) = 0. Let ε > 0 be a small

number, and choose ρ such that Theorem 14.1 holds. By part (ii) of this Theorem there is a

reduced component C of Ĥ(q) such that

(
Ĥ(q) ∩ T0

)
r


Kρ ∪

⋃

b∈Γ#

b2 6=0

Tb


 = (C ∩ T0)r


Kρ ∪

⋃

b∈Γ#

b2 6=0

Tb




Clearly E(C) is a reduced component ofH(q). Assume thatH(q) has a component K different

from E(C). Then every component C ′ of E−1(K) lies in

Kρ ∪
⋃

b,c∈Γ#

Tb ∩ Tc

In particular the complement of pr(C ′) contains an open subset of C.

On the other hand the indicator of growth ([LG] 3.6) of Ĥ(q) is of finite order, since

by Theorem 13.8 Ĥ(q) is the zero-set of an entire function of finite order. Therefore the

indicator of growth of C ′ is also of finite order, and hence by the solution of the “Cousin

problem with finite order” ([LG] 3.30) C ′ is also the zero set of an entire function of finite

order. Therefore by [LG] 3.44 the set
{
z ∈ C

∣∣ pr−1(z) ∩ C ′ = ∅
}

is either C itself or

discrete. Since its complement contains an open set, it is in fact discrete. As C ′ is irreducible

it follows that this set consists of one point z0. So C ′ ⊂ C × {z0}. If we now apply the

same argument with the projection (k1, k2) 7→ k1 we conclude tha C ′ is a point, which is

impossible. So H(q) = E(C) is irreducible and reduced.
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§15 Heat Curves: Verification of the Geometric Hypotheses

Let q ∈ C∞(IR2/Γ). Fix ε > 0 sufficiently small. We construct a decomposition of

H(q) into H(q)com ∪H(q)reg ∪ H(q)han such that the geometric hypotheses of §5 hold.

First, we refine Theorem 14.2 to get control of the handles. For d ∈ Γ# sufficiently

large with d2 6= 0, let

φ̂d :
{

(z1, z2) ∈ C2
∣∣ |z1| ≤ ε

2 , |z2| ≤ ε
2

}
→ T0 ∩ Td

be the map of Theorem 14.2 and t̂d the number such that

φ̂−1
d

(
T0 ∩ Td ∩ Ĥ(q)

)
=
{

(z1, z2) ∈ C2
∣∣ z1z2 = t̂d, |z1| ≤ ε

2
, |z2| ≤ ε

2

}

holds. Recall that

|t̂b| ≤
const (β′)
|b|2β′ (15.1a)

for all β′ > 0 so that ∑

b

|t̂b|β <∞ (15.1b)

for all β > 0. Put

sd = pr
(
φ̂d(0)

)

Then

|sd − zd| ≤ const
|d2z2

d
| (15.2)

Put

τd =
1

|zd|13
rd =

2ε

|d2|
1

|zd|14
Rd =

ε

6|d2|
1

|zd|

ĝd :
{
ζ ∈ C

∣∣ ε
2|zd|τd ≤ |ζ| ≤

ε
2

}
−→ C

ζ 7−→ pr
(
φ̂d
(
ζ, t̂d

ζ

))

Lemma 15.1 If |d| is big enough, then

a) ĝd is biholomorphic onto its image. Furthermore

∣∣ĝd
(

2ε
|zd| τde

iθ
)
− sd

∣∣ < rd
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and ∣∣ĝd
(

ε
2|zd|e

iθ
)
− sd

∣∣ > Rd >
∣∣ĝd
(

ε
4|zd|e

iθ
)
− sd

∣∣
∣∣ĝd
(

ε
8|zd|e

iθ
)
− sd

∣∣ > 1
4
Rd

∣∣ĝd
(
ε
2e
iθ
)
− sd

∣∣ > ε
6|d2|

for all 0 ≤ θ ≤ 2π.

b) Define αd(z) by

αd(z)dz = (ĝd)∗
(

1
2πi

dζ
ζ

)
+ sgnd2

2πi
1

z−sd dz

Then

sup
d

∥∥∥αd(z)dz
∣∣
{z∈C | rd<|z−sd|<Rd}

∥∥∥
2
<∞

and

lim
d→∞

Rd sup
|z−sd|=Rd

|αd(z)| = 0

Proof: Write

φ̂d(z1, z2) =
(
k1(z1, z2), k2(z1, z2)

)

By the estimates in Theorem 14.2(i), we have, for all ζ with 2
ε
|t̂d| ≤ |ζ| ≤ ε

2

k2

(
ζ, t̂dζ

)
− sd =

(
k2(ζ, 0)− sd

)
+
(
k2

(
ζ, t̂dζ

)
− k2(ζ, 0)

)

=

∫ ζ

0

∂k2

∂z1
(ξ, 0)dξ +

∫ t̂d/ζ

0

∂k2

∂z2
(ζ, ξ)dξ

=
−ζ
2d2

+
t̂d

2d2ζ
+

(
|ζ|+ |t̂d||ζ|

)
O

(
1

|d2
2zd|

)

Therefore ∣∣∣∣ĝd(ζ)− sd +
1

2d2

(
ζ − t̂d

ζ

)∣∣∣∣ ≤
const

|d2
2zd|

(
|ζ|+ |t̂d||ζ|

)
(15.3)

and the estimates of part a) are obeyed.

To see that ĝd is biholomorphic onto its range, we first estimate its derivative. Again

by part (i) of Theorem 14.2

dĝd
dζ

(ζ) =
∂k2

∂z1

(
ζ,
t̂d
ζ

)
− t̂d
ζ2

∂k2

∂z2

(
ζ,
t̂d
ζ

)

= − 1

2d2

(
1 +

t̂d
ζ2

)(
1 +O

(
1

|d2zd|

))

In particular, ∣∣∣∣
dĝd
dζ

+
1

d2

∣∣∣∣ ≤
const

|d2
2zd|

(15.4)
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Therefore, if d is big enough, its derivative vanishes nowhere. It remains to show that ĝd is

injective. Let ζ and ζ ′ be two distinct points in the annulus
{
ξ ∈ C

∣∣ ε
2τd ≤ |ξ| ≤ ε

2

}
.

Connect ζ and ζ ′ by a path γ in this annulus with length at most π
2 |ζ − ζ ′| . By (15.4)

|ĝd(ζ ′)− ĝd(ζ)| =
∣∣∣∣
∫

γ

dĝd
dζ

dξ

∣∣∣∣ ≥
(

1

|d2|
− const

|d2
2zd|

π

2

)
|ζ − ζ ′|

so that ĝd(ζ) and ĝd(ζ
′) are different if d is sufficiently large. This concludes the proof of part

(i) of the Lemma.

To prove part (ii) we observe that, by (15.3,4),

dĝd
ĝd(ζ)− sd

− dζ

ζ
=

1 + t̂d/ζ
2

ζ − t̂d/ζ
dζ

(
1 +O

(
1

|d2zd|

))
− dζ

ζ

=
2t̂d/ζ

2

ζ − t̂d/ζ
dζ +

1 + t̂d/ζ
2

ζ − t̂d/ζ
dζ O

(
1

|d2zd|

)

=
2t̂d

ζ2(1 + t̂d/ζ2)

dĝd
ĝd(ζ)− sd

(
1 + O

(
1

|d2zd|

))
+

dĝd
ĝd(ζ)− sd

O

(
1

|d2zd|

)

Applying
(
ĝd
)
∗

dz

z − sd
−
(
ĝd
)
∗

(
dζ

ζ

)
=

dz

z − sd

(
2t̂d

ζ2 + t̂d
+ O

(
1

|d2zd|

))

Therefore

|αd(z)| ≤ const
1

|z − sd|
1

|d2zd|

since |ζ|2 ≥ ε2

4|zd|26 . Now part (ii) of the Lemma follows easily.

We now define the data appearing in the geometric hypotheses and verify (GH1-6).

Fix ρ > 0 such that the conclusions of Theorem 14.1 hold with ε replaced by ε/8. Let K be

a simply connected subset of C with smooth boundary that is symmetric with respect to the

imaginary axis, such that {
z ∈ C

∣∣ |z| < ρ
}
⊂ K

such that for all d ∈ Γ# with d2 6= 0

either
{
z ∈ C

∣∣ |z − zd| < ε
|d2|

}
⊂ K

or
{
z ∈ C

∣∣ |z − zd| < ε
|d2|

}
∩K = ∅

and such that Lemma 15.1 holds for all d obeying the second alternative. Put

Ĥ(q)com = Ĥ(q) ∩
(
Kρ ∪

(
pr−1(K) ∩ T0

))
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Then

H(q)com = E

(
Ĥ(q)com

)

is a compact subset of H(q) whose boundary is diffeomorphic to ∂K.

Let

Γ#
K =

{
b ∈ Γ#

∣∣ b2 6= 0, zb ∈ K
}

For each b ∈ Γ#
K , let Db be the region enclosed by the curve ĝb

({
( ε

2|zb| τbe
iθ
∣∣ 0 ≤ θ < 2π

})
.

Define

G = Cr
(
K ∪

⋃

b∈Γ#
K

Db

)

and

Ĥ(q)reg =
{
k ∈ Ĥ(q) ∩

(
T0 r

⋃

b6=0

Tb

) ∣∣∣ pr(k) ∈ G
}

∪
⋃

b∈Γ#
K

φ̂b

({
(z1, z2) ∈ C2

∣∣ z1z2 = t̂b,
ε

2|zb|τb ≤ |z1| ≤ ε
2

})

By Theorem 14.1 and Lemma 15.1a, pr induces a biholomorphic map from Ĥ(q)reg onto G.

Since two points k and k′ of T0 are identified by the map E if and only if there is a b ∈ Γ#

with b2 6= 0 such that k ∈ T−b ∩ T0, k
′ ∈ T0 ∩ Tb and k′ = k − b, the map E induces a

biholomorphism between Ĥ(q)reg and

H(q)reg = E
(
Ĥ(q)reg

)

Define

Φ : G −→ H(q)reg

as the composition of
(
pr
∣∣
Ĥ(q)reg

)−1

and E. If we put

S =
{
sb
∣∣ b ∈ Γ#

K

}

D(sb) = Db

then (GH1) and (GH4) are fulfilled.

Next put, for b ∈ Γ#
K , b2 > 0

Yb = E

(
φ̂b

({
(z1, z2) ∈ C2

∣∣ z1z2 = t̂b, |z1|, |z2| ≤ ε
2|zb|

}))

tb =
(

2|zb|
ε

)2

|t̂b|

Then
φb : H(tb) −→ Yb

(z1, z2) 7−→ E

(
φ̂b

(
2|zb|
ε

t̂b
|t̂b|z1,

2|zb|
ε
z2

))
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is a biholomorphic map. Observe that tb 6= 0 for all b ∈ Γ# if H(q) is smooth. In this case

choose a homology basis of H(q) such that Yb represents an A cycle. By construction and

(15.1) hypothesis (GH2) holds.

Theorem 15.2 Let q ∈ C∞(IR2/Γ) be such that H(q) is smooth. Then the marked Riemann

surface H(q) = H(q)com ∪H(q)reg ∪H(q)han obeys the geometric hypotheses (GH1)-(GH6) of

§5. One pair of handles looks like

Proof: We have already verified (GH1), (GH2) and (GH4). Define, for all b ∈ Γ#
K with

b2 > 0

τ(b) = τb

s1(b) = sb s2(b) = s−b

Rµ(b) = Rb rµ(b) = rb

Then (GH3) follows from Lemma 15.1a.

Part (i) of (GH5) is trivial. With δ = 2 and d = 14 hypothesis (GH5ii) follows from

the summability of 1
|zb|4 . The summability of 1

|b2z3
b
| together with (15.2) yield (GH5iii). Part

(iv) of (GH5) follows from (15.1). Part (v) follows from the definition of Rb and the fact

that min s∈S
s6=sb
|s− sb| = O

(
1
|b2|
)

. Lemma 15.1b implies (GH5vi).

Finally (GH6) follows from the fact that |sb − s−b| = O(|b2|).

Remark 15.3 If tb = 0 for some b then Φ can be extended to a map from G ∪Db ∪D−b to

the normalization of H(q). In this way one sees that the normalization of H(q) always fulfills

the geometric hypotheses whenever tb 6= 0 for infinitely many b. If, on the other hand, tb = 0
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for all but finitely many b, then the normalization of H(q) has finite genus and q is a “finite

gap” potential [K].

Remark 15.4 Denote by Γ#
+ =

{
b ∈ Γ#

∣∣ b2 > 0
}

and by
{
ωb
∣∣ b ∈ Γ#

+

}
the basis of L2

holomorphic differential forms dual to the A cycles

∫

Ab

ωc = δb,c

This crucial set of forms can be constructed as residues. First define, for each b ∈ Γ#
+

ρ̂b =
b2
π
resĤ(q)


∑

c∈Γ]

1

PcPc+b


 dk1 ∧ dk2

det2(1l + qH−1
k )

and let ρb be the corresponding form on H(q). One can show that for any vector in the space

`2w =
{ (

λb
)
b∈Γ#

+

∣∣ ∑
b∈Γ#

+
|b2z2

bλb|2 <∞
}

the linear combination 〈λ, ρ〉 =
∑
b∈Γ#

+
λbρb is an

L2 holomorphic differential form on H(q), at least when 〈λ, ρ〉 has only finitely many nonzero

A periods. One can also show that the matrix

Mb,c =

∫

Ac

ρb

is boundedly invertible on `2w and that

ωc =
∑

b∈Γ#
+

M−1
c,bρb

The technical details are available from the authors.
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§16 Fermi Curves: Basic Properties

Let Γ be a lattice in IR2 and q a real valued function in L2(IR2/Γ). For each k in

IR2 the self-adjoint boundary value problem

(−∆ + q)ψ = λψ

ψ(x+ γ) = ei〈k,γ〉 for all γ ∈ Γ

has a discrete spectrum customarily denoted by

E1(k) ≤ E2(k) ≤ E3(k) ≤ · · ·

The eigenvalue En(k), n ≥ 1, defines a function of k called the nth band function. It is

continuous and periodic with respect to the lattice

Γ# =
{
b ∈ IR2

∣∣ 〈b, γ〉 ∈ 2πZZ for all γ ∈ Γ
}

dual to Γ.

The (real “lifted”) Fermi curve for energy λ is defined as

F̂λ,IR(q) =
{
k ∈ IR2

∣∣ En(k) = λ for some n ∈ IN
}

(16.1)

If we define

Hk = −(∆ + 2ik · ∇ − k2)

then

F̂λ,IR(q) =
{
k ∈ IR2

∣∣ (Hk + q − λ)φ = 0 for some 0 6= φ ∈ H2(IR2/Γ)
}

(16.2)

As we may replace q by q − λ, we only discuss the case λ = 0 and write F̂IR(q) in place of

F̂0,IR(q) . Clearly Γ# acts on F̂IR(q). We put

FIR(q) = F̂IR(q)/Γ#

FIR(q) is a curve in the torus IR2/Γ#.

We consider the complexifications of F̂IR(q) and FIR(q)

F̂(q) =
{
k ∈ C2

∣∣ (Hk + q)φ = 0 for some 0 6= φ ∈ H2(IR2/Γ)
}

F(q) = F̂(q)/Γ#

We call F(q) the Fermi curve of q. It is the image of F̂(q) under

E : C2 −→ C∗ × C∗

k 7−→
(
ei〈k,γ1〉, ei〈k,γ2〉

)

where γ1, γ2 is a basis of Γ. These definitions make sense for any complex valued q in

L2(IR2/Γ).

291



Lemma 16.1 The curve F̂(0) for q = 0 is the locally finite union
⋃

b∈Γ]

ν=1,2

Nν(b) of lines

Nν(b) =
{

(k1, k2) ∈ C2
∣∣ Nb,ν(k1, k2) = 0

}

Nb,ν(k) = (k1 + b1) + i(−1)ν(k2 + b2)
(16.3)

In particular, the Fermi curve F(0) is a complex analytic curve in C2/Γ# .

Proof: Put

Nb(k) = Nb,1(k)Nb,2(k) = (k1 + b1)2 + (k2 + b2)2

Nb = N1(b) ∪ N2(b)

For all k ∈ C2 the exponentials ei<b,x> , b ∈ Γ] are a complete set of eigenfunctions for

Hk in L2(IR2/Γ) satisfying

Hk e
i〈b,x〉 = Nb(k) ei〈b,x〉

Therefore,

F̂(0) =
⋃

b∈Γ]

Nb

Observe that only a finite number of the line pairs Nb can intersect any bounded subset of

C2 . Thus, the union is locally finite.

Observe that

Nν(b) ∩ Nν(c) = ∅ if b 6= c

N1(0) ∩N2(b) =
{ (
iz1(b), z1(b)

) }

N1(−b) ∩N2(0) =
{ (
− iz2(b), z2(b)

)}

where

zν(b) = 1
2

(
(−1)νb2 + ib1

)

and that the map k 7→ k + b maps N1(0) ∩ N2(b) to N1(−b) ∩N2(0).
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ik2

k1

N1(−b) N1(0)

N1(b)

N2(−b)N2(0)

N2(b)

For each finite subset B of Γ] set

C2
B = C2 r

⋃

b∈Γ]rB
Nb

Also, let πB be the orthogonal projection onto the subspace spanned by ei〈b,x〉 , b ∈ B ,

and define a partial inverse (Hk)
−1
B for k ∈ C2

B by

(Hk)
−1
B = πB +H−1

k (1− πB)

Its matrix elements are
〈
ei〈b,x〉, (Hk)

−1
B ei〈c,x〉

〉
=

{
δb,c if c ∈ B
δb,c

1
Nc(k)

if c /∈ B

and

(Hk + q) (Hk)
−1
B = 1l + q (Hk)

−1
B + (Hk − 1)πB

In [KT] it is shown that q (Hk)
−1
B is a Hilbert-Schmidt operator and that

Theorem 16.2 For all q in L2(IR2/Γ) the “lifted” Fermi curve F̂(q) is a one-dimensional

complex analytic subvariety of C2 . It is the zero set of an entire function of finite order.

The intersection of F̂(q) with C2
B is given by

F̂(q) ∩ C2
B =

{
(k1, k2) ∈ C2

B

∣∣ det2

(
(Hk + q) (Hk)

−1
B

)
= 0

}
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The Fermi curve F(q) = F̂(q)/Γ] is an analytic subvariety of C2/Γ] .
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§17 Fermi Curves: Asymptotics

In this section, we show that F̂(q) is close to F̂(0) when the imaginary parts of

k1 and k2 are large. To facilitate the discussion write k ∈ C2 as

k1 = u1 + iv1 , k2 = u2 + iv2

where u1, u2, v1 and v2 are real. Then

Nb,ν(k) = (k1 + b1) + i(−1)ν(k2 + b2)

= i
(
v1 + (−1)ν(u2 + b2)

)
−
(
(−1)νv2 − (u1 + b1)

) (17.1)

so that

|Nb,ν(k)| = |v + (−1)ν(u+ b)⊥|

where

(w1, w2)⊥ = (w2,−w1)

Recall that Nb(k) = Nb,1(k)Nb,2(k). Hence Nb(k) = 0 if and only if

v = (u+ b)⊥ or v = −(u+ b)⊥ (17.2)

Let 2Λ be the length of the shortest nonzero vector in Γ#. Then there is at most one b ∈ Γ#

with |v + (u+ b)⊥| < Λ and at most one b ∈ Γ# with |v − (u+ b)⊥| < Λ.

For min{1, Λ
6 }>ε>0 and b ∈ Γ] define the (ε-)tube about Nb=

{
k ∈ C2

∣∣Nb(k)=0
}

by
Tb = T1(b) ∪ T2(b)

Tν(b) =
{
k ∈ C2

∣∣ |Nν(b)| = |v + (−1)ν(u+ b)⊥| < ε
1+|v|1−ε

} (17.3a)

Since [v+(u+b)⊥]+[v−(u+b)⊥] = 2v at least one of the factors |v+(u+b)⊥|, |v−(u+b)⊥|
in |Nb(k)| must always be at least |v|. If k ∈ Tb one of the factors is bounded by ε

1+|v|1−ε and

the other must lie within ε
1+|v|1−ε of |2v|. Thus

k /∈ Tb =⇒ |Nb(k)| ≥ ε|v|
1 + |v|1−ε (17.3b)

k ∈ Tb =⇒ |Nb(k)| ≤ ε(2|v|+ ε)

1 + |v|1−ε (17.3c)

The pairwise intersection T b ∩ T b′ is compact whenever b 6= b′ . Indeed, T ν(b) ∩ T ν(b′) = ∅
if b 6= b′ since |(u+ b)⊥ − (u+ b′)⊥| ≥ 2Λ. If k ∈ T 1(b) ∩ T 2(b′) then, we have

∣∣u+ 1
2 (b+ b′)

∣∣ = 1
2 |v − (u+ b)⊥ − v − (u+ b′)⊥| ≤ ε

1+|v|1−ε
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and ∣∣v − 1
2 (b− b′)⊥

∣∣ ≤ ε
1+|v|1−ε

We also have T b ∩ T b′ ∩ T b′′ = ∅ for all distinct elements b, b′, b′′ of Γ] . We shall

asymptotically confine k ∈ F̂(q) to the union of the tubes Tb , b ∈ Γ] .

For ρ > 0 define

Kρ =
{
k ∈ C2

∣∣ |v| ≤ ρ
}

Furthermore let pr : C2 → C be the projection (k1, k2) 7→ k2.

Theorem 17.1 Let q ∈ L2(IR2/Γ) obey ‖q̂(b)‖1 :=
∑
b∈Γ# |bq̂(b)| <∞ and let min{1,Λ} >

ε > 0. Then there is a constant ρ, which depends only on ‖bq̂(b)‖1, Λ and ε, such that

a) {
k ∈ F̂(q)

∣∣ k /∈ Kρ
}
⊂
⋃

b∈Γ#

Tb

b) For ν = 1, 2 the projection pr induces a biholomorphic map between

(
F̂(q) ∩ Tν(0)

)
r
(
Kρ ∪

⋃

b∈Γ#

b6=0

Tb

)

and its image in C. This image component contains

{
z ∈ C

∣∣ |z| > 2ρ and |z − zν(b)| > ε
|b|1−ε for all b ∈ Γ# with b 6= 0

}

and is contained in

{
z ∈ C

∣∣ |z − zν(b)| > ε
2|b|1−ε for all b ∈ Γ# with b 6= 0

}

where zν(b) = 1
2

((−1)νb2 + ib1).

Clearly Kρ is invariant under the Γ#-action and Kρ/Γ# is compact. So the image of

F̂(q)∩Kρ under the exponential map E : F̂(q)→ F(q) is compact in F(q). It will essentially

play the role of Xcom in the decomposition of F(q) that we need to apply the results of part

II.

Since c · Tb = Tb+c for every b, c ∈ Γ# the complement of E
(
F̂(q) ∩ Kρ

)
in F(q) is

the disjoint union of

E

((
F̂(q) ∩ T0

)
r
(
Kρ ∪

⋃

b∈Γ#

b2 6=0

Tb

))
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and ⋃

b∈Γ#

b2 6=0

E

(
F̂(q) ∩ T0 ∩ Tb

)

Basicly the first of the two sets will be the regular piece of F(q), while the second sets will

be the handles. The map Φ parametrizing the regular part will be the composition of E with

the inverse of the map discussed in part (b) of Theorem 17.1. For the handles we will use

Theorem 17.2 Let ε > 0 be sufficiently small and let β ≥ 1. Assume that q ∈ L2(IR2/Γ)

obeys ‖ |b|β q̂(b)‖1 <∞. There are constants such that for every sufficiently large d ∈ Γ#r{0}
there are maps

φ̂d,1 :
{

(z1, z2) ∈ C2
∣∣ |z1| ≤ ε

2|d|1−ε , |z2| ≤ ε
2|d|1−ε

}
→ T1(0) ∩ T2(d)

φ̂d,2 :
{

(z1, z2) ∈ C2
∣∣ |z1| ≤ ε

2|d|1−ε , |z2| ≤ ε
2|d|1−ε

}
→ T1(−d) ∩ T2(0)

and a complex number t̂d with |t̂d| ≤
const

|d|2β+2
such that

(i) φ̂d,ν is biholomorphic to its image. The image contains
{
k ∈ C2

∣∣ |k1 + i(−1)νk2| ≤ ε
8|d|1−ε , |k1 + (−1)ν+1d1 − i(−1)ν(k2 + (−1)ν+1d2)| ≤ ε

8|d|1−ε
}

Furthermore

Dφ̂d,ν =
1

2

(
1 1

−i(−1)ν i(−1)ν

){
1l +O

(
1

|d|2
)}

and

φd,ν(0) =
(
(−1)ν+1izν(d), zν(d)

)
+ q̂(0)

( −id2

d2
1 + d2

2

,
id1

d2
1 + d2

2

)
+

const

|d|2−ε

(ii)

φ̂−1
d,1

(
T1(0) ∩ T2(d) ∩ F̂(q)

)
=
{

(z1, z2) ∈ C2
∣∣ z1z2 = t̂d, |z1| ≤ ε

2|d|1−ε , |z2| ≤ ε
2|d|1−ε

}

φ̂−1
d,2

(
T1(−d) ∩ T2(0) ∩ F̂(q)

)
=
{

(z1, z2) ∈ C2
∣∣ z1z2 = t̂d, |z1| ≤ ε

2|d|1−ε , |z2| ≤ ε
2|d|1−ε

}

(iii)

φ̂d,1(z1, z2) = φ̂d,2(z2, z1)− d

By definition k is in F̂(q) if Hk + q has a nontrivial kernel in L2(IR2/Γ). To study

the part of the curve in the intersection of ∪d∈GTd and C2 \ ∪b6∈GTb for some finite subset G

of Γ] it is natural to look for a nontrivial solution of

(Hk + q)ψG + (Hk + q)ψG′ = 0
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or equivalently of

(Hk + q)φG + (1l + qH−1
k )φG′ = 0 (17.4)

where
ψG, φG ∈ L2

G := span
{
ei<b,x> | b ∈ G

}−

ψG′ , φG′ ∈ L2
G′ := span

{
ei<b,x> | b ∈ Γ] \G

}−
.

We shall shortly show that, for k in the region under consideration, RG′G′ , the restriction of

1l + qH−1
k to L2

G′ , has a bounded inverse. Then the projection of (17.4) on L2
G′ is equivalent

to

φG′ = −R−1
G′G′qφG.

Substituting this into the projection on L2
G yields

πG
(
Hk + q − qH−1

k R−1
G′G′q

)
φG = 0.

Here πG is the obvious projection operator. This has a nontrivial solution if and only if the

|G| × |G| determinant

det
[
πG
(
Hk + q − qH−1

k R−1
G′G′q

)
πG
]

= 0,

or equivalently, expressing all operators as matrices in the basis
{
ei<b,x> | b ∈ Γ]

}
,

det


Nd(k)δd,d′ + q̂(d− d′)−

∑

b,c∈G′

q̂(d− b)
Nb(k)

(
R−1
G′G′

)
b,c
q̂(c− d′)



d,d′∈G

= 0 (17.5)

In general we define the operator RBC to have matrix elements

(RBC)b,c =

[
δb,c +

q̂(b− c)
Nc(k)

]

b∈B,c∈C
(17.6)

Our analysis of (17.5) is based on two Lemmas. The first gives of properties of

Nb(k). The second uses these to derive a number of properties of the operators RBC .

Lemma 17.3

(a) If |b+ (u+ v⊥)| ≥ Λ and |b+ (u− v⊥)| ≥ Λ then

(|v|+ |u+ b|)2 ≥ |Nb(k)| ≥ Λ

2
(|v|+ |u+ b|)

If |v| > 2Λ and k ∈ T0, then |Nb(k)| ≥ Λ
2

(|v|+ |u + b|) for all but at most one b 6= 0. This

exceptional b̃ obeys |b̃| ≥ |v| and
∣∣|u+ b̃| − |v|

∣∣ < Λ. If |v| > 2Λ and k ∈ T0 ∩ Td with d 6= 0,

then |Nb(k)| ≥ Λ
2 (|v|+ |u+ b|) for all b 6= 0, d. Furthermore |d| ≥ |v|.
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(b) There is a constant such that, for all k ∈ C,

∑

b∈Γ]

|b−(u±v⊥)|≥Λ

1

|Nb(k)|2 ≤ const
ln |v|
|v|2

(c) If k ∈ T0 r
(⋃

b∈Γ#r{0}

)
with |v| > max{1, 2Λ} then there is a constant depending only

on ε and Λ such that

∣∣∣∣∣∣
∑

b6=0

q̂(−b)q̂(b)
Nb(k)

∣∣∣∣∣∣
≤ const

|v|2
(
|N0(k)| ‖q̂‖22 + ‖bq̂(b)‖22

)

If k ∈ T0 ∩ Td with d 6= 0 and |v| > 2Λ then there is a constant depending only on Λ such

that for d′ ∈ {0, d}
∣∣∣∣∣∣
∑

b6=0,d

q̂(d′ − b)q̂(b− d′)
Nb(k)

∣∣∣∣∣∣
≤ const

|v|2
(
|Nd′(k)| ‖q̂‖22 + ‖bq̂(b)‖22

)

Proof of (a): By hypothesis both factors in

|Nb(k)| = |v + (u+ b)⊥| |v − (u+ b)⊥|

are at least Λ. Suppose |v| ≥ |u+ b|. The other case is similar. Then, since [v + (u+ b)⊥] +

[v − (u+ b)⊥] = 2v at least one of the factors must be at least |v| ≥ 1
2
[|v|+ |u+ b|].

If k ∈ T0, then by (17.3c)

|N0(k)| ≤ ε(2|v|+ ε) < 3ε|v| < Λ

2
|v|

for |v| > ε and ε < 1
6Λ. Thus one of |u ± v⊥| < Λ. Suppose |u + v⊥| < Λ. The other case

is similar. There is no b ∈ Γ# r {0} obeying |b + (u + v⊥)| < Λ and there is at most one

b̃ ∈ Γ# r {0} obeying |b̃+ (u− v⊥)| < Λ. For this b̃

|b̃| = |2v⊥ − (u+ v⊥) + (b̃+ u− v⊥)| ≥ 2|v| − 2Λ ≥ |v|

for |v| ≥ 2Λ.

If k ∈ T0 ∩ Td, then d must be the exceptional b̃ of the last paragraph.
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Proof of (b): The sum is bounded by

∑

b∈Γ]

|Nb(k)|>Λ

1

|Nb(k)|2 ≤ const

∫
|x+(u+v⊥)|≥Λ

|x+(u−v⊥)|2|≥Λ

dx1 dx2

|x+ (u+ v⊥)|2 |x+ (u− v⊥)|2

= const

∫
|x|≥Λ

|x+(u−v⊥)|≥Λ

dx1 dx2

|x|2 |x+ 2v⊥|2

≤ const
ln |v|
|v|2

Proof of (c): By part (a) we have that, for all but one exceptional value of b, |Nb(k)| ≥ Λ
2 |v|.

The exceptional b̃ obeys |b̃| ≥ |v| and |Nb̃(k)| ≥ ε
2

by (17.3b). Hence
∣∣∣∣∣∣
∑

b6=0

q̂(−b)q̂(b)
Nb(k)

∣∣∣∣∣∣
≤
∣∣∣∣∣
q̂(−b̃)q̂(b̃)
Nb̃(k)

∣∣∣∣∣+

∣∣∣∣∣
q̂(−b̃)q̂(b̃)
N−b̃(k)

∣∣∣∣∣+

∣∣∣∣∣∣
∑

b6=0,±b̃

q̂(−b)q̂(b)
Nb(k)

∣∣∣∣∣∣

≤ 2
2

ε

1

|v|2 ‖bq̂(b)‖
2
2 +

∣∣∣∣∣∣
1

2

∑

b6=0,±b̃

q̂(−b)q̂(b)
(

1

Nb(k)
+

1

N−b(k)

)∣∣∣∣∣∣

=
4

ε|v|2 ‖bq̂(b)‖
2
2 +

∣∣∣∣∣∣
∑

b6=0,±b̃

q̂(−b)q̂(b) N0(k) + b2

Nb(k)N−b(k)

∣∣∣∣∣∣

≤ 4

ε|v|2 ‖bq̂(b)‖
2
2 +

4

Λ2|v|2
(
|N0(k)| ‖q̂‖22 + ‖bq̂(b)‖22

)

When k ∈ T0 ∩ Td and d′ ∈ {0, d}
∣∣∣∣∣∣
∑

b6=0,d

q̂(d′ − b)q̂(b− d′)
Nb(k)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

b6=−d′,d−d′

q̂(−b)q̂(b)
Nb+d′(k)

∣∣∣∣∣∣

≤
∣∣∣∣

q̂(−d)q̂(d)

N−d(k)δd′,0 +N2d(k)δd′,d

∣∣∣∣+

∣∣∣∣∣∣
∑

b6=0,±d

q̂(−b)q̂(b)
Nb+d′(k)

∣∣∣∣∣∣

≤ 2

Λ

1

|v|3 ‖bq̂(b)‖
2
2 +

∣∣∣∣∣∣
1

2

∑

b6=0,±d
q̂(−b)q̂(b)

(
1

Nb+d′(k)
+

1

N−b+d′(k)

)∣∣∣∣∣∣

=
2

Λ|v|3 ‖bq̂(b)‖
2
2 +

∣∣∣∣∣∣
∑

b6=0,±d
q̂(−b)q̂(b) Nd′(k) + b2

Nb+d′(k)N−b+d′(k)

∣∣∣∣∣∣

≤ 2

Λ|v|3 ‖bq̂(b)‖
2
2 +

4

Λ2|v|2
(
|Nd′(k)| ‖q̂‖22 + ‖bq̂(b)‖22

)
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Remark. Note that if k ∈ Td then
∣∣|v| − |u+ d|

∣∣ < ε

1 + |v|1−ε
so that

|k2 + d2| ≤ |u+ d|+ |v| ≤ ε+ 2|v| (17.7)

Lemma 17.4 Let k ∈ C2. Let |v| > 4Λ and

S ⊂
{
b ∈ Γ]

∣∣ ε|v|
1+|v|1−ε ≤ |Nb(k)| < Λ

2 |v|
}

B ⊂
{
b ∈ Γ]

∣∣ |Nb(k)| ≥ Λ
2
|v|
}

(a)

‖RSS − πS‖ ≤
1

ε|v|ε ‖q̂(b)‖1

‖RBB − πB‖ ≤
2‖q̂(b)‖1

Λ|v|

‖RSB‖ ≤
2‖q̂(b)‖1

Λ|v|

‖RBS‖ ≤
1

ε|v|ε ‖q̂(b)‖1

(b)

‖RSS − πS‖HS ≤ const
1

ε|v|ε ‖q̂(b)‖2

‖RBB − πB‖HS ≤ const ‖q̂(b)‖2
√

ln |v|
|v|

‖RSB‖HS ≤ const ‖q̂(b)‖2
√

ln |v|
|v|

‖RBS‖HS ≤ const
1

ε|v|ε ‖q̂(b)‖2

(c) Let |v| ≥ max

{
4‖q̂(b)‖1

Λ ,
(

4‖q̂(b)‖1
ε

)1/ε
}

. The operator

(
RSS RSB
RBS RBB

)

has a bounded inverse. The norm∥∥∥∥∥

(
RSS RSB
RBS RBB

)−1

−
(
πS 0
0 πB

)∥∥∥∥∥ ≤ const
‖q̂(b)‖1
ε|v|ε

(d) Let |v| ≥ const . Then
∣∣∣∣det2

(
RSS RSB
RBS RBB

)
− 1

∣∣∣∣ ≤ const
‖q̂(b)‖2
ε|v|ε
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Proof of (a): It suffices to observe that,

b ∈ S =⇒ |Nb(k)|−1 ≤ 1

ε|v|ε

b ∈ B =⇒ |Nb(k)|−1 ≤ 2

Λ|v|
and that the convolution operator |q̂(b− c)| has operator norm bounded by ‖q̂‖1.

Proof of (b): The two cases with “second argument B” may be treated at the same time.

‖RBB − πB‖2HS , ‖RSB‖2HS ≤
∑

b∈S∪B,c∈B

∣∣∣∣
q̂(b− c)
Nc(k)

∣∣∣∣
2

≤ ‖q̂‖22
∑

c∈B

1

|Nc(k)|2

≤ const ‖q̂‖22
ln |v|
|v|2

by Lemma 17.3.b. The other two cases are similar, but
∑

c∈S

1

|Nc(k)|2
≤ 2

ε2|v|2ε

is used in place of Lemma 17.3.b.

Proof of (c): Write the matrix
(
RSS RSB
RBS RBB

)
= 1l +E

where

E =

(
RSS − πS RSB
RBS RBB − πB

)

and expand (1l + E)−1 as a geometric series in E.

Proof of (d): Again write the matrix
(
RSS RSB
RBS RBB

)
= 1l +E

Then,

det2

(
RSS RSB
RBS RBB

)
= 1 + O(‖E‖HS)

= 1 + O (‖RSS − πS‖HS + ‖RSB‖HS + ‖RBS‖HS + ‖RBB − πB‖HS)

= 1 + O

(‖q̂(b)‖2
ε|v|ε

)
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It is now a simple matter to use the estimates of Lemmas 17.3,4 to analyse the

asymptotic behavior of the Fermi curve. Define

R = max
{

1 , 2Λ , 4‖q̂(b)‖1
Λ

,
(

4‖q̂(b)‖1
ε

)1/ε }
(17.9a)

and recall that

KR =
{
k ∈ C2

∣∣ |v| ≤ R
}

(17.9b)

Proof of Theorem 17.1a: Let k ∈ C2 r
(
KR ∪

⋃
b∈Γ# Tb

)
. Use (17.4) with G = ∅ as a

test for when k ∈ F̂(q). By Lemma 17.4.c with

S =
{
b ∈ Γ]

∣∣ ε|v|
1+|v|1−ε ≤ |Nb(k)| < Λ

2 |v|
}

B =
{
b ∈ Γ]

∣∣ |Nb(k)| ≥ Λ
2
|v|
}

φG′ must be zero. That is, there is no nontrivial solution of (17.4).

To prove the rest of Theorem 17.1 and Theorem 17.2 we use

Proposition 17.5 Let k ∈ C2 \ KR.

a) Let k ∈ T0 \ ∪b6=0Tb. Then k ∈ F̂(q) if and only if

N0(k) = A(k)

where

A(k) = −q̂(0) +
∑

b,c∈A

q̂(−b)
Nb(k)

(
R−1
AA

)
b,c
q̂(c) , A = Γ] \ {0}

and obeys

|A(k) + q̂(0)| ≤
const

(
‖b̂q(b)‖1

)

1 + |k2|2
(1 + |N0(k)|).

Here const (‖bq̂(b)‖1) denotes that the constant const depends only on ε and the norm

‖bq̂(b)‖1.

b) Let k ∈ T0 ∩ Td. Then k ∈ F̂(q) if and only if

(N0(k) + q̂(0)D(k)1,1) (Nd(k) + q̂(0)D(k)2,2) = (q̂(−d)D(k)1,2)(q̂(d)D(k)2,1)

303



where d(1) = 0, d(2) = d and

D(k)i,j =
∑

b,c∈D

q̂(d(i) − b)
Nb(k)

(
R−1
DD

)
b,c
q̂(c− d(j)) , D = Γ] \ {0, d}

and obeys

|D(k)i,j| ≤ min
`=1,2

const (‖bq̂(b)‖1)

1 + |k2 − d(`)
2 |2

(1 + |Nd(j)(k)|δi,j).

Proof of a): For the region in question F̂(q) is given by (17.5) with G = {0} and G′ = A.

This is precisely the desired equation. We now estimate A(k) = q̂(0) using Lemma 17.4 with

S = A ∩
{
b ∈ Γ]

∣∣ ε|v|
1+|v|1−ε ≤ |Nb(k)| < Λ

2 |v|
}

B = A ∩
{
b ∈ Γ]

∣∣ |Nb(k)| ≥ Λ
2 |v|

}

By Lemma 17.3a S contains at most one element b̃ and it must obey |b̃| ≥ |v|. Write

R−1
AA = 1l +R−1

AA(1l− RAA)

The contribution from 1l is ∑

b∈A

q̂(a− b)q̂(b− a)

Nb(k)

and is estimated by Lemma 17.3c. The other contribution is

∣∣∣
∑

b,c,c′∈A

q̂(−b)
Nb(k)

(
R−1
AA

)
b,c

(1l−RAA)c,c′ q̂(c
′)
∣∣∣ ≤

∥∥∥∥
q̂(−b)
Nb(k)

∥∥∥∥
∥∥R−1

AA

∥∥ ‖(1l− RAA)q̂‖

≤ const

∥∥∥∥
q̂(−b)
Nb(k)

∥∥∥∥
2

(
‖(πB −RBB − RSB)‖ ‖q̂‖2 + ‖(πS − RSS − RBS)‖ |q̂(b̃)|2

)

≤ const

∥∥∥∥
q̂(−b)
Nb(k)

∥∥∥∥
2

(
4‖q̂‖1
Λ|v| ‖q̂‖2 +

1

2
|q̂(b̃)|

)
by Lemma 17.4a

≤ const

(
2

Λ|v| ‖q̂‖2 +
∣∣∣ q̂(−b̃)
Nb̃(k)

∣∣∣
)(

4‖q̂‖1
Λ|v| ‖q̂‖2 +

1

2
|q̂(b̃)|

)

≤ const

(
2

Λ|v|‖q̂‖2 +
2

ε|v| ‖bq̂(b)‖1
)(

4‖q̂‖1
Λ|v| ‖q̂‖2 +

1

2|v|‖bq̂(b)‖1
)

It now suffices ot apply (17.7).

Proof of b): In this case the two exceptional b’s of Lemma 17.3a must be 0 and d so that

S = D ∩
{
b ∈ Γ]

∣∣ ε|v|
1+|v|1−ε ≤ |Nb(k)| < Λ

2 |v|
}

= ∅
B = D ∩

{
b ∈ Γ]

∣∣ |Nb(k)| ≥ Λ
2 |v|

}
= D
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As |Nb(k)|−1 ≤ 2
Λ|v| for all b ∈ D and, by Lemma 17.4a, ‖R−1

BB − 1l‖ ≤ const
|v| it suffices to

bound ∑

b∈D

q̂(d(i) − b)q̂(b− d(j))

Nb(k)

The cases ∑

b∈D

q̂(−b)q̂(b)
Nb(k)

and
∑

b∈D

q̂(d− b)q̂(b− d)

Nb(k)

are bounded in Lemma 17.3c. Finally, let i 6= j . We have

∑

b∈D

q̂(d(i) − b)q̂(b− d(j))

Nb(k)
≤
∑

b

2

∣∣q̂(d(i) − b)q̂(b− d(j)
∣∣)

Λ|v|

≤ const
∑

b

{|d(i) − b|+ |b− d(j)|}q̂(d(i) − b)q̂(b− d(j))∣∣d(1) − d(2)
∣∣ |v|

≤ const
2‖bq̂(b)‖2‖q̂(b)‖2

|v|2

To show that the curve does not wiggle too much we will also need bounds on the

derivatives of A and D. These are provided in

Lemma 17.6 Under the hypotheses of Proposition 17.5,

∣∣∣∣
∂n+m

∂kn1 ∂k
m
2

A(k)

∣∣∣∣ ≤
const (‖bq̂(b)‖1)

[1 + |k2|]
if m+ n = 1

∣∣∣∣
∂n+m

∂kn1 ∂k
m
2

D(k)i,j

∣∣∣∣ ≤ min
i=1,2

const (‖q̂(b)‖1)[
1 + |k2 + d

(i)
2 |
] if m+ n ≥ 1

Proof: Use QGG′ to denote the matrix [q̂(b− c)]b∈G,c∈G′. Then A+ q̂(0) and D are given

by QGG′H
−1
k (RG′G′)

−1
QG′G with G = {0} and G = {0, d} respectively. Hence their first

derivatives are given by

∂

∂ki
A(k),

∂

∂ki
D(k) = −QGG′H−1

k

∂Hk

∂ki
H−1
k (RG′G′)

−1
QG′G

+QGG′H
−1
k (RG′G′)

−1
QG′G′H

−1
k

∂Hk

∂ki
H−1
k (RG′G′)

−1
QG′G

= −QGG′H−1
k (RG′G′)

−1 ∂Hk

∂ki
H−1
k (RG′G′)

−1
QG′G
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since

QG′G′H
−1
k = RG′G′ − 1l

All higher derivatives are given by finite linear combinations of terms of the form

QGG′
∏

j

{
H−1
k (RG′G′)

−1 ∂
njHk

∂k
nj
ij

}
H−1
k (RG′G′)

−1
QG′G (17.10)

where the sum of the nj ’s for which ij =1 (resp. 2) is n (resp. m). This is easily seen if A
and D are written in the form

QGG′(Hk +Q)−1QG′G

with the operator Hk +Q being restricted to L2
G′ .

The first step in bounding these derivatives is to compute

(
∂njHk

∂k
nj
ij

H−1
k

)

b,c

= δb,c
1

Nb(k)





2(kij + bij ) if nj = 1
2 if nj = 2
0 if nj ≥ 3

Since |ki + bi| ≤ |ui + bi|+ |vi| ≤ |v|+ |u+ b|, Lemma 17.3a implies

∥∥∥∂
njHk

∂k
nj
ij

H−1
k πAr{b̃}

∥∥∥,
∥∥∥∂

njHk

∂k
nj
ij

H−1
k πD

∥∥∥ ≤ 4

Λ

As
∥∥ (RG′G′)

−1 ∥∥ ≤ const

‖QGG′‖, ‖QG′G‖ ≤ ‖q̂(b)‖1
∥∥H−1

k πAr{b̃}
∥∥,
∥∥H−1

k πD
∥∥ ≤ 2

Λ|v|

the bound on D follows and the bound on A is reduced to terms containing πS.

We now return to A with m+ n = 1. To bound

QGG′H
−1
k (RG′G′)

−1 ∂Hk

∂ki
H−1
k (RG′G′)

−1
QG′G
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we observe that

‖QGG′H−1
k ‖ ≤ ‖QGSπSH−1

k ‖+ ‖QGBπBH−1
k ‖

≤ ‖bq̂(b)‖1|v|
1

ε|v|ε + ‖q̂(b)‖1
2

Λ|v|∥∥ (RG′G′)
−1 ∥∥ ≤ const

∥∥∥∂Hk

∂ki
H−1
k πB (RG′G′)

−1
QG′G

∥∥∥ ≤ 2

Λ
const ‖q̂(b)‖1

∥∥∥∂Hk

∂ki
H−1
k πS (RG′G′)

−1
QG′G

∥∥∥ ≤
∥∥∥∂Hk

∂ki
πS

∥∥∥
∥∥H−1

k πS
∥∥ ∥∥πS (RG′G′)

−1
QG′G

∥∥

≤ 2|v| 1

ε|v|ε
∥∥πS (RG′G′)

−1
QG′G

∥∥

∥∥πS (RG′G′)
−1
QG′G

∥∥ ≤
∥∥πS (RG′G′)

−1
πB
∥∥‖q̂(b)‖1 +

∥∥πS (RG′G′)
−1
πS
∥∥‖bq̂(b)‖1
|v|

∥∥πS (RG′G′)
−1
πB
∥∥ ≤

∞∑

`=1

∥∥πS (1l−RG′G′)` πB
∥∥

≤
∞∑

`=1

1

2`−1

4‖q̂(b)‖1
Λ|v| by Lemma 17.4a

≤ 4‖q̂(b)‖1
Λ|v|

Proof of Theorem 17.1b: We give the proof for the case ν = 1. Recall that k ∈ T1(0) if

and only if

|k1 − ik2| = |u+ v⊥| < ε
1+|v|1−ε

Since k2 = u2 + iv2 = v1 + iv2 + u2 − v1 = v1 + iv2 + (u+ v⊥)2 we have that in T1(0)

∣∣|v| − |k2|
∣∣ ≤ ε

1+|v|1−ε ≤ ε

so that
ε

1+(|k2|+ε)1−ε ≤ ε
1+|v|1−ε ≤

{ ε
1+(|k2|−ε)1−ε if |k2| ≥ ε
ε if |k2| ≤ ε

If k ∈ T1(0) ∩ T2(d) then

|k1 − ik2| < ε
1+|v|1−ε and |k2 + 1

2 (d2 − id1)| < 2ε
1+|v|1−ε

Conversely, if

|k1 − ik2| < ε/2
1+|v|1−ε and |k2 + 1

2 (d2 − id1)| < ε/2
1+|v|1−ε
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then k ∈ T1(0) ∩ T2(d).

For z ∈ C put

F (z) = pr−1(z) ∩
(
T1(0)r

⋃

b∈Γ#

b6=0

Tb

)
∩
{

(k1, z) ∈ C2
∣∣ |k1 − iz| < ε

}

Observe that if |z| > 2ε and |z + 1
2 (b2 − ib1)| ≥ 2ε

1+|v|1−ε for all b ∈ Γ#, b 6= 0 then

F(z) =
{

(k1, z) ∈ C2
∣∣ |k1 − iz| < ε

1+|v|1−ε
}

while if |z| > 2ε and |z + 1
2(d2 − id1)| < 2ε

1+|v|1−ε for some d ∈ Γ# r {0} then

F (z) =
{

(k1, z) ∈ C2
∣∣ |k1 − iz| < ε

1+|v|1−ε and |k1 + d1 + i(z + d2)| ≥ ε
1+|v|1−ε

}

iz

−i(z + d2) + d1

ε
1+|v|1−ε

Fz

By Proposition 17.5 (k1, z) lies in F̂(q) if and only if

k2
1 + z2 = N0(k1, z) = A(k1, z)

for an analytic function A obeying

|A(k1, z) + q̂(0)| ≤ const

1 + |z|2
(
1 + |N0(k1, z)|

)
≤ const

1 + |z|2 |z|
ε

∣∣∣∣
∂

∂k1
A(k1, z)

∣∣∣∣ ≤
const

1 + |z|

by Lemmas 17.5,6. For (k1, z) ∈ F (z) with |z| > 2ε

k1 − iz =
1

k1 + iz
A(k1, z) (17.11)
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with ∣∣∣∣
1

k1 + iz
A(k1, z)

∣∣∣∣ ≤ const
q̂(0)

1 + |z| +
const

1 + |z|2
(
1 + |k1 − iz|

)

∣∣∣∣
∂

∂k1

(
1

k1 + iz
A(k1, z)

)∣∣∣∣ ≤
const

1 + |z|2
This shows, that for z big enough, the equation (17.11) has at most one solution in F (z),

and that this solution is simple. Furthermore any such solution fulfils

|k1 − iz| ≤
const

1 + |z|
So there is no solution in F (z), if for some d ∈ Γ# r {0}

{
k1 ∈ C

∣∣ |k1 − iz| ≤ const
1+|z|

}
⊂
{
k1 ∈ C

∣∣ ∣∣k1 − iz + 2i(z − z1(d))
∣∣ ≤ ε

1+|v|1−ε
}

that is, if

2|z − z1(d)|+ const

1 + |z| ≤
ε

1 + |v|1−ε
which is certainly the case if

|z − z1(d)| ≤ 1

2

[
ε

1 + (|z|+ ε)1−ε −
const

1 + |z|

]
≈ 1

2

ε

( 1
2
|d|)1−ε

Similarly equation (17.11) has a solution in F (z), if for all d ∈ Γ# r {0}

2|z − z1(d)| > ε

1 + |v|1−ε +
const

1 + |z|

Proof of Theorem 17.2: We first construct the maps φ̂d,1. For notational simplicity

define
X1 = k1 − ik2

Y1 = k1 + ik2

X2 = k1 + d1 + i(k2 + d2)

Y2 = k1 + d1 − i(k2 + d2)

and observe that, for |k1 − ik2| ≤ ε
1+|v|1−ε , |k1 + d1 + i(k2 + d2)| ≤ ε

1+|v|1−ε

X1 = O
(

1
|d|1−ε

)

Y1 = 2iz1(d) +O
(

1
|d|1−ε

)

X2 = O
(

1
|d|1−ε

)

Y2 = −2iz2(d) + O
(

1
|d|1−ε

)
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First we perform the coordinate change

x1 = X1 +
q̂(0)

Y1
− 1

Y1
D1,1

x2 = X2 +
q̂(0)

Y2
− 1

Y2
D2,2

k1 = 1
2
(X1 +X2) + iz1(d)

=
x1 + x2

2
+ iz1(d)− q̂(0)

(
1

2Y1
+

1

2Y2

)
+
D1,1

2Y1
+
D2,2

2Y2

k2 =
i

2
(X1 −X2) + z1(d)

=
i

2
(x1 − x2) + z1(d)− i

2

(
q̂(0)

Y1
− q̂(0)

Y2
− D1,1

Y1
+
D2,2

Y2

)

(17.12)

where D(k)i,j are given by Proposition 17.5. The Jacobean of this map is

( ∂x1

∂k1

∂x1

∂k2
∂x2

∂k1

∂x2

∂k2

)
=


 1 + O

(
1
|d|2
)
−i+O

(
1
|d|2
)

1 + O
(

1
|d|2
)

i+O
(

1
|d|2
)



=

(
1 −i
1 i

)(
1l + O

(
1
|d|2
))

(17.13a)

Its inverse is ( ∂k1

∂x1

∂k1

∂x2
∂k2

∂x1

∂k2

∂x2

)
=

1

2

(
1 1
i −i

)(
1l +O

(
1
|d|2
))

(17.13b)

The derivative of the inverse

∂2 km
∂xi∂xj

= −
∑

α,β

∂km
∂xα

∂

∂xi

(
∂xα
∂kβ

)
∂kβ
∂xj

= −
∑

α,β,γ

∂km
∂xα

∂2 xα
∂kγ∂kβ

∂kγ
∂xi

∂kβ
∂xj

= O
(

1
|d|2
)

In these coordinates

1

Y1Y2
[(N0 + q̂(0)D1,1) (Nd + q̂(0)D2,2)− (q̂(d)D1,2) (q̂(−d)D2,1)] = x1x2 + h(x1, x2)

where

h(x1, x2) = − 1

Y1Y2
(q̂(d)−D1,2) (q̂(−d)−D2,1) .

In Lemma 17.8 below we will improve the estimates of Lemmma 17.6 to

∣∣∣∣
∂n+m

∂kn1 ∂k
m
2

D(k)1,2

∣∣∣∣ ,
∣∣∣∣
∂n+m

∂kn1 ∂k
m
2

D(k)2,1

∣∣∣∣ ≤
const

|d|β+1
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In terms of the x-variables, when r 6= s

∣∣∣∣
∂Dr,s
∂ xi

(x1, x2)

∣∣∣∣ ≤
∑

m=1,2

∣∣∣∣
∂Dr,s
∂km

∂km
∂xi

∣∣∣∣

≤ const

|d|β+1

and ∣∣∣∣
∂2Dr,s
∂xi∂xj

(x1, x2)

∣∣∣∣ ≤
∑

m,n=1,2

∣∣∣∣
∂2Dr,s
∂km∂kn

∂km
∂xi

∂kn
∂xj

∣∣∣∣+
∑

m=1,2

∣∣∣∣
∂Dr,s
∂km

∂2 km
∂xi∂xj

∣∣∣∣

≤ const

|d|β+1

so that,

|h(0, 0)| ≤ const
1

|d|2
(
|q̂(d)|+ const

|d|β+1

)(
|q̂(−d)|+ const

|d|β+1

)

≤ const

|d|2β+2

and

∣∣∣∣
∂ h

∂xi
(x1, x2)

∣∣∣∣ ≤ const
1

|d|3
(

1

|d|β +
1

|d|β+1

)2

+ const
1

|d|2
1

|d|β+1

(
1

|d|β +
1

|d|β+1

)

≤ const

|d|2β+3

∣∣∣∣
∂2 h

∂xi∂xj
(x1, x2)

∣∣∣∣ ≤
const

|d|2β+3

By the quantitative Morse Lemma in the appendix, with a = b = const
|d|2β+3 , and δ =

2ε
3|d|1−ε there is a biholomorphism ψ defined on

{
(z1, z2) ∈ C2

∣∣ |z1| ≤ ε
2|d|1−ε , |z2| ≤ ε

2|d|1−ε
}

with range containing
{

(x1, x2) ∈ C2
∣∣ |x1| ≤ ε

4|d|1−ε , |x2| ≤ ε
4|d|1−ε

}
and with

‖Dψ − 1l‖ ≤ const

|d|2β+3

(x1x2 + h) ◦ ψ = z1z2 − t̂d

|t̂d| ≤
const

|d|2β+2

|ψ(0)| ≤ const

(1 + |d|)2β+3

It now suffices to compose

φ̂d,1(z1, z2) =
(
k1(ψ(z1, z2)), k2(ψ(z1, z2))

)
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with k(x) being the map of (17.12).

Conclusion (ii) of the Theorem, as well as the first part of (i), is immediate. The

Jacobean

Dφ̂d,1 =
∂k

∂x
Dψ

=
1

2

(
1 1
i −i

){
1l +O

(
1

|d|2β+3
)

)}{
1l + O

(
1

|d|2
)}

=
1

2

(
1 1
i −i

){
1l +O

(
1

|d|2
)}

The centre is
φ̂d,1(0) = k (ψ(0))

= k
(
O( 1
|d|2β+3 ))

)

with

k2

(
O( 1

(1+|d|)2β+3 ))
)

= z1(d)− i

2

(
q̂(0)

2iz1(d)
− q̂(0)

−2iz2(d)

)
+O

(
1

|d|2−ε
)

= z1(d)− q̂(0)

4

(
1

z1(d)
+

1

z2(d)

)
+O

(
1

|d|2−ε
)

= z1(d) + iq̂(0)
d1

d2
1 + d2

2

+ O

(
1

|d|2−ε
)

The computation of k1

(
O( 1

(1+|d|)2β+3 ))
)

is similar.

To prove part (iii) observe that T1(0)∩T2(d)∩F̂(q) is mapped to T1(−d)∩T2(0)∩F̂(q)

by translation by d. If we define φ̂d,2 by

φ̂d,2(z1, z2) = φ̂d,1(z2, z1) + d

then Theorem 17.2 holds.

We now look more closely at the extent to which double points open up for various

classes of potentials. As in §14 let f be a function on IR+ satisfying

i) f ≥ 1, f(0) = 1

ii) f(s)f(t) ≥ f(s+ t) for all s, t ≥ 0

iii) f increases monotonically

and define, for operators on `2(Γ#), the norm

‖A‖f = max
{

sup
b∈Γ#

∑

c∈Γ#

|Ab,c|f(|b− c|), sup
c∈Γ#

∑

b∈Γ#

|Ab,c|f(|b− c|)
}

In particular for the convolution operator q̂(b− c)

‖q̂‖f =
∑

b∈Γ#

|q̂(b)|f(|b|).

The part of the analogue of Lemma 17.4 for this norm that we need for our analysis of D is
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Lemma 17.7 Let k ∈ C2 and B ⊂
{
b ∈ Γ]

∣∣ |Nb(k)| ≥ Λ
2 |v|

}
Then

‖RBB − πB‖f ≤ 2
‖q̂(b)‖f

Λ|v|

Proof: It suffices to observe that, for b ∈ B,

|Nb(k)|−1 ≤ 2

Λ|v|

and that the convolution operator |q̂(b− c)| has norm ‖q̂‖f .

The principal quantity that determines the degree of opening of the double

point (−i(−1)νzν(d), zν(d)) in other words that determines the t̂d of Theorem 17.2, is

(q̂(d)−D1,2) (q̂(−d)−D2,1). The next Lemma provides the estimates required to control

it. Define

Kf =
{
k ∈ C2

∣∣ |v| ≤ max
{

1 2Λ ,
4‖q̂(b)‖f

Λ

} }

Lemma 17.8 Let k ∈ T0∩Td ∩{C\Kf}. Then there is a constant, depending only on m+n

and Λ, such that for all m,n ∈ IN

∣∣∣∣
∂n+m

∂kn1 ∂k
m
2

D(k)1,2

∣∣∣∣ ,
∣∣∣∣
∂n+m

∂kn1 ∂k
m
2

D(k)2,1

∣∣∣∣ ≤ const ‖q̂‖2f
1

|d|f(|d|)

Proof: The bound for m = n = 0 is an immediate consequence of (14.23) and

∥∥∥∥∥∥
∑

b,c∈D

q̂(d− b)
Nb(k)

(
R−1
DD

)
b,c
q̂(c− d′)

∥∥∥∥∥∥
f

≤ 2

Λ|v| ‖q̂‖f‖R
−1
DD‖f‖q̂‖f

≤
4‖q̂‖2f
Λ|v|

By (17.10) all derivatives are given by finite linear combinations of terms of the form

QdD
∏

j

{
H−1
k (RDD)

−1 ∂
njHk

∂ k
nj
ij

}
H−1
k (RDD)

−1
QDd′
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where the sum of the nj’s for which ij =1 (resp. 2) is n (resp. m). Apply

‖Q‖f = ‖q‖f
‖R−1

DD‖f ≤ 2

‖H−1
k πD‖f ≤

2

Λ|v|
∥∥∥∥
∂nHk

∂ kni
H−1
k πD

∥∥∥∥
f

≤ 4

Λ

{
1 if n = 1
1/|v| if n = 2
0 otherwise

Recall that Hk and its derivatives are diagonal operators and that, for diagonal operators,

the operator norm and f -norm agree. So far we have

∥∥∥QdD
∏

j

{
H−1
k (RDD)

−1 ∂
njHk

∂ k
nj
ij

}
H−1
k (RDD)

−1
QDd′

∥∥∥
f
≤ const ‖q̂‖2f

1

|v|

Finally, as we observed at the beginning of the proof of Theorem 17.1b, on T0 ∩ Td we have

const |d| ≤ |v| ≤ const |d|

To conclude this section we note the following application of Theorem 17.1

Theorem 17.9 Let q ∈ L2(IR2/Γ) with ‖bq̂(b)‖1 < ∞. Then F(q) is a reduced one dimen-

sional complex analytic variety, which consists of at most two components. If F(q) is smooth

then it is irreducible.

Proof: Let ε > 0 be a small number and choose ρ such that Theorem 17.1 holds. By part

(ii) of this Theorem and part (iii) of Theorem 17.2 there are reduced components C1, C2 of

F̂(q) such that

(
F̂(q) ∩ T0

)
r
(
Kρ ∪

⋃

b∈Γ#

b2 6=0

Tb

)
=
(
(C1 ∪ C2) ∩ T0

)
r
(
Kρ ∪

⋃

b∈Γ#

b2 6=0

Tb

)

Clearly E(C1) and E(C2) are reduced components of F(q). Assume that F(q) has a component

K not contained in E(C1) ∪ E(C2). Then every component C ′ of E−1(K) lies in

Kρ ∪
⋃

b,c∈Γ#

Tb ∩ Tc
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In particular the complement of pr(C ′) contains an open subset of C.

On the other hand the indicator of growth ([LG] 3.6) of F̂(q) is of finite order, since

by Theorem 13.8 F̂(q) is the zero-set of an entire function of finite order. Therefore the

indicator of growth of C ′ is also of finite order, and hence by the solution of the “Cousin

problem with finite order” ([LG] 3.30) C ′ is also the zero set of an entire function of finite

order. Therefore by [LG] 3.44 the set
{
z ∈ C

∣∣ pr−1(z) ∩ C ′ = ∅
}

is either C itself or

discrete. Since its complement contains an open set, it is in fact discrete. As C ′ is irreducible

it follows that this set consists of one point z0. So C ′ ⊂ C × {z0}. If we now apply the

same argument with the projection (k1, k2) 7→ k1 we conclude tha C ′ is a point, which is

impossible. So F(q) = E(C1) ∪ E(C2) consists of at most two components and is reduced.

If F(q) is smooth then the constants t̂d of Theorem 17.2 are all different from zero.

Therefore C1 and C2 can be connected by an arc inside the set of smooth points of F̂(q).

Thus C1 = C2 and F(q) is irreducible.

Corollary 17.10 Let q be a real valued function in L2(IR2/Γ) with ‖bq̂(b)‖1 <∞. Then the

maxima and minima of the band functions En(k) are all isolated.

Proof: Assume that the nth band function En(k) has a non-isolated extremum with extremal

value µ. After replacing q by q − µ we may assume that µ = 0.

In [KT] there was constructed, for each finite subset B of Γ#, an analytic function

FB on {
(k, λ) ∈ C2 × C

∣∣ Nb(k)− λ 6= 0 for all b ∈ Γ# rB
}

whose zero set is the Bloch-variety

B(q) =
{

(k, λ) ∈ C2 × C
∣∣ ∃ψ ∈ H2

loc(IR
2) such that ψ 6= 0,

(−∆ + q)ψ = λψ and ψ(x+ γ) = ei〈k,γ〉ψ(x) ∀γ ∈ Γ
}

and such that FB(k, 0) = 0 is the equation of F̂(q) discussed in §16. Since 0 is the value

of En at a non-isolated extremum there is a curve γ in IR2 such that the plane IR2 × {0} is

tangent to the real Bloch variety

B(q) ∩ IR2 × IR = ∪m∈IN

{
(k, λ) ∈ IR2 × IR

∣∣ Em(k) = λ
}

along γ×{0}. After possibly shrinking Γ we can find a finite subset B of Γ# with γ∩C2
B = ∅ .

Clearly γ ⊂ F̂(q) and all partial derivatives of FB(k, 0) vanish at all points of γ. By analytic

continuation all partial derivatives of FB(k, 0) vanish along every component of F̂(q) that

contains an open subset of γ. Therefore there is at least one component of F̂(q) that is not

reduced, in contradiction to Theorem 17.9.
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§18 Fermi Curves: Verification of the Geometric Hypotheses

Let q ∈ C∞(IR2/Γ). Fix ε > 0 sufficiently small. We construct a decomposition of

F(q) into F(q)com ∪ F(q)reg ∪ F(q)han such that the geometric hypotheses of §5 hold.

First, we refine Theorem 17.2 to get control of the handles. For d ∈ Γ# r {0}
sufficiently large, let

φ̂d,1 :
{

(z1, z2) ∈ C2
∣∣ |z1| ≤ ε

2|d|1−ε , |z2| ≤ ε
2|d|1−ε

}
→ T1(0) ∩ T2(d)

φ̂d,2 :
{

(z1, z2) ∈ C2
∣∣ |z1| ≤ ε

2|d|1−ε , |z2| ≤ ε
2|d|1−ε

}
→ T1(−d) ∩ T2(0)

be the maps of Theorem 17.2 and t̂d the number such that

φ̂−1
d,1

(
T1(0) ∩ T2(d) ∩ F̂(q)

)
=
{

(z1, z2) ∈ C2
∣∣ z1z2 = t̂d, |z1| ≤ ε

2|d|1−ε , |z2| ≤ ε
2|d|1−ε

}

φ̂−1
d,2

(
T1(−d) ∩ T2(0) ∩ F̂(q)

)
=
{

(z1, z2) ∈ C2
∣∣ z1z2 = t̂d, |z1| ≤ ε

2|d|1−ε , |z2| ≤ ε
2|d|1−ε

}

holds. Recall that

|t̂b| ≤
const (β)

|b|β (18.1a)

for all β > 0 so that ∑

b

|t̂b|β <∞ (18.1b)

for all β > 0. Put

sν(d) = pr
(
φ̂d,ν(0)

)

Then ∣∣∣∣sν(d)− zν(d)− q̂(0)
id1

d2
1 + d2

2

∣∣∣∣ ≤
const

|d|2−ε (18.2)

Put

τd =
1

|d|5−ε rd =
2ε

|d|5 Rd =
ε

6|d|ε

ĝd,ν :
{
ζ ∈ C

∣∣ ε
2|d|ε τd ≤ |ζ| ≤ ε

2|d|1−ε
}
−→ C

ζ 7−→ pr
(
φ̂d,ν

(
ζ, t̂dζ

))

Lemma 18.1 If |d| is big enough, then

a) ĝd is biholomorphic onto its image. Furthermore

∣∣ĝd,ν
(

2ε
|d|ε τde

iθ
)
− sd

∣∣ < rd
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and ∣∣ĝd
(

ε
2|d|ε e

iθ
)
− sd

∣∣ > Rd >
∣∣ĝd
(

ε
4|d|ε e

iθ
)
− sd

∣∣
∣∣ĝd
(

ε
8|dε|e

iθ
)
− sd

∣∣ > 1
4
Rd

∣∣ĝd
(

ε
2|d|1−ε e

iθ
)
− sd

∣∣ > ε
6|d|1−ε

for all 0 ≤ θ ≤ 2π.

b) Define αd(z) by

αd(z)dz = (ĝd)∗
(

1
2πi

dζ
ζ

)
+ sgnd2

2πi
1

z−sd dz

Then

sup
d

∥∥∥αd(z)dz
∣∣
{z∈C | rd<|z−sd|<Rd}

∥∥∥
2
<∞

and

lim
d→∞

Rd sup
|z−sd|=Rd

|αd(z)| = 0

Proof: Write

φ̂d,ν(z1, z2) =
(
k1(z1, z2), k2(z1, z2)

)

By the estimates in Theorem 17.2(i), we have, for all ζ with 2
ε
|t̂d| ≤ |ζ| ≤ ε

2

k2

(
ζ, t̂d

ζ

)
− sν(d) =

(
k2(ζ, 0)− sν(d)

)
+
(
k2

(
ζ, t̂d

ζ

)
− k2(ζ, 0)

)

=

∫ ζ

0

∂k2

∂z1
(ξ, 0)dξ +

∫ t̂d/ζ

0

∂k2

∂z2
(ζ, ξ)dξ

=
(−1)νi

2

(
−ζ +

t̂d
ζ

)
+

(
|ζ|+

∣∣∣∣
t̂d
ζ

∣∣∣∣
)
O

(
1

|d|2
)

Therefore ∣∣∣∣ĝd,ν(ζ)− sν(d) +
(−1)νi

2

(
ζ − t̂d

ζ

)∣∣∣∣ ≤
const

|d|2|

(
|ζ|+ |t̂d||ζ|

)
(18.3)

and the estimates of part a) are obeyed.

To see that ĝd,ν is biholomorphic onto its range, we first estimate its derivative.

Again by part (i) of Theorem 17.2

dĝd,ν
dζ

(ζ) =
∂k2

∂z1

(
ζ,
t̂d
ζ

)
− t̂d
ζ2

∂k2

∂z2

(
ζ,
t̂d
ζ

)

= − (−1)νi

2

(
1 +

t̂d
ζ2

)(
1 + O

(
1

|d|2
))

In particular, ∣∣∣∣
dĝd,ν
dζ

+
(−1)νi

2

∣∣∣∣ ≤
const

|d|2 (18.4)
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Therefore, if d is big enough, its derivative vanishes nowhere. The fact that ĝd,ν is injective

is proven as in §15.

To prove part (ii) we observe that, by (18.3,4),

dĝd,ν
ĝd,ν(ζ)− sν(d)

− dζ

ζ
=

1 + t̂d/ζ
2

ζ − t̂d/ζ
dζ

(
1 + O

(
1

|d|2
))
− dζ

ζ

=
2t̂d/ζ

2

ζ − t̂d/ζ
dζ +

1 + t̂d/ζ
2

ζ − t̂d/ζ
dζ O

(
1

|d|2
)

=
2t̂d

ζ2(1 + t̂d/ζ2)

dĝd,ν
ĝd,ν(ζ)− sν(d)

(
1 +O

(
1
|d|2
))

+
dĝd,ν

ĝd,ν(ζ)− sν(d)
O
(

1
|d|2
)

Applying
(
ĝd,ν

)
∗

dz

z − sν(d)
−
(
ĝd,ν

)
∗

(
dζ

ζ

)
=

dz

z − sν(d)

(
2t̂d

ζ2 + t̂d
+ O

(
1

|d|2
))

Therefore

|αd(z)| ≤ const
1

|z − sd|
1

|d|2

Now part (ii) of the Lemma follows easily.

We now define the data appearing in the geometric hypotheses and verify (GH1-6).

Fix ρ > 0 such that the conclusions of Theorem 17.1 hold with ε replaced by ε/8. For ν = 1, 2

let Kν be simply connected subsets of C with smooth boundary such that

{
z ∈ C

∣∣ |z| < ρ
}
⊂ Kν

and such that for all d ∈ Γ# r {0}

either
{
z ∈ C

∣∣ |z − zν(d)| < ε
|d|1−ε

}
⊂ Kν for both ν = 1, 2

or
{
z ∈ C

∣∣ |z − zν(d)| < ε
|d|1−ε

}
∩Kν = ∅ for both ν = 1, 2

and such that Lemma 18.1 holds for all d obeying the second alternative. Put

F̂(q)com = F̂(q) ∩
(
Kρ ∪

(
pr−1(K1) ∩ T1(0)

)
∪
(
pr−1(K2) ∩ T2(0)

))

Then

F(q)com = E

(
F̂(q)com

)

is a compact subset of F(q) whose boundary is diffeomorphic to ∂K1 ∪ ∂K2.
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Let

Γ#
K =

{
b ∈ Γ#

∣∣ z1(b) ∈ K1

}
=
{
b ∈ Γ#

∣∣ z2(b) ∈ K2

}

For each b ∈ Γ#
K , let Dν(b) be the region enclosed by the curve

ĝb,ν

({
( ε

2|b|ε τbe
iθ
∣∣ 0 ≤ θ < 2π

})

Define

Gν = Cr
(
Kν ∪

⋃

b∈Γ#
K

Dν(b)
)

and

F̂(q)reg
ν =

{
k ∈ F̂(q) ∩

(
Tν(0)r

⋃

b6=0

Tb

) ∣∣∣ pr(k) ∈ Gν
}

∪
⋃

b∈Γ#
K

φ̂b,ν

({
(z1, z2) ∈ C2

∣∣ z1z2 = t̂b,
ε

2|b|ε τb ≤ |z1| ≤ ε
2|b|1−ε

})

By Theorem 17.1 and Lemma 18.1a, pr induces a biholomorphic map from F̂(q)reg
ν onto Gν .

Since two points k and k′ of T0 are identified by the map E if and only if there is a b ∈ Γ#

such that k ∈ T1(0) ∩ T2(b), k′ ∈ T1(−b) ∩ T2(0) and k = k′ − b, or conversely, the map E

induces a biholomorphism between F̂(q)reg
ν and

F(q)reg
ν = E

(
F̂(q)reg

ν

)

Define

Φν : Gν −→ F(q)reg
ν

as the composition of
(
pr
∣∣
F̂(q)reg

ν

)−1

and E. If we put

Sν =
{
sν(b)

∣∣ b ∈ Γ#
K

}

then (GH1) and (GH4) are fulfilled.

Next put, for b ∈ Γ#
K

Yb = E

(
φ̂b,1

({
(z1, z2) ∈ C2

∣∣ z1z2 = t̂b, |z1|, |z2| ≤ ε
2|b|ε

}))

= E

(
φ̂b,2

({
(z1, z2) ∈ C2

∣∣ z1z2 = t̂b, |z1|, |z2| ≤ ε
2|b|ε

}))

tb =
(

2|b|ε
ε

)2

|t̂b|
Then

φb : H(tb) −→ Yb

(z1, z2) 7−→ E

(
φ̂b,1

(
2|b|ε
ε

t̂b
|t̂b|z1,

2|b|ε
ε
z2

))
= E

(
φ̂b,2

(
2|b|ε
ε
z2,

2|b|ε
ε

t̂b
|t̂b|z1

))

is a biholomorphic map. Observe that tb 6= 0 for all b ∈ Γ# if F(q) is smooth. In this case

choose a homology basis of F(q) such that Yb represents an A cycle. By construction and

(18.1) hypothesis (GH2) holds.
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Theorem 18.2 Let q ∈ C∞IR (IR2/Γ) be such that F(q) is smooth. Then the marked Riemann

surface F(q) = F(q)com ∪F(q)reg ∪F(q)han obeys the geometric hypotheses (GH1)-(GH6) of

§5. It looks like

Proof: We have already verified (GH1), (GH2) and (GH4). Define, for all b ∈ Γ#
K

τµ(b) = τb

νµ(b) = µ

Rµ(b) = Rb rµ(b) = rb

Then (GH3) follows from Lemma 18.1a.

Part (i) of (GH5) is trivial. With δ = 2ε and d = 5 hypothesis (GH5ii) follows from

the summability of 1
|b|3−8ε . Since q̂(0) is real

∣∣∣∣z1(b) + q̂(0)
ib1

b21 + b22

∣∣∣∣ =

∣∣∣∣z2(b) + q̂(0)
ib1

b21 + b22

∣∣∣∣

By (18.2) ∣∣|s1(b)| − |s2(b)|
∣∣ = O

(
1

|b|2−ε
)

This yields (GH5iii). Part (iv) of (GH5) follows from (18.1). Part (v) follows from the

definition of Rb and the fact that min s∈S
s6=sb
|s− sb| = O

(
1
)

. Lemma 18.1b implies (GH5vi).

Finally (GH6) is void.
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Remark 18.3 If tb = 0 for some b then Φν can be extended to a map from Gν ∪ Dν(b) to

the normalization of F(q). In this way one sees that the normalization of F(q) always fulfills

the geometric hypotheses whenever tb 6= 0 for infinitely many b. If, on the other hand, tb = 0

for all but finitely many b, then the normalization of F(q) has finite genus and q is a “finite

gap” potential [K].

Remark 18.4 If q ∈ C∞(IR2/Γ) and q̂(0) 6∈ IR then hypothesis (GH5iii) fails, but all the

other geometric hypotheses of §5 hold. One can modify the construction of the exhaustion

function of bounded charge given in Lemma 5.3 replacing log |z| by log |z| − Im
Im q̂(0)

2z2
on

one of the sheets. Using this construction one can show that all the results of part II hold for

q ∈ C∞(IR2/Γ).
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Appendix: A Quantitative Morse Lemma

Lemma A.1 Let

f(x1, x2) = x1 x2 + h (x1, x2)

be a holomorphic function on

Dδ =
{

(x1, x2) ∈ C2
∣∣ |x1| ≤ δ and |x2| ≤ δ

}
, δ < 1

where h is a function that fulfils the estimates

∣∣∣∣
∂h

∂xi
(x)

∣∣∣∣ ≤ a ,
∥∥∥∥
∂2 h

∂xi ∂xj
(x)

∥∥∥∥ ≤ b for x ∈ Dδ

with constants a, b > 0 such that

a < δ, b <
1

30

Then f has unique critical point ξ = (ξ1, ξ2) in Dδ, and

|ξ1| ≤ a |ξ2| ≤ a

Put s = max(|ξ1| , |ξ2|). Then there is a biholomorphic map Φ from D(δ−s)(1−10b) to a

neighbourhood of ξ in Dδ that contains
{

(z1, z2) ∈ C2
∣∣ |zi − ξi| < (δ − s) (1− 30b)

}
such

that

f ◦ Φ (z1, z2) = z1 z2 + c

with a constant c ∈ C fulfilling |c− h(0, 0)| ≤ a2. The differential DΦ fulfils

‖DΦ− 1l‖ ≤ 12b

In the case that
∂h

∂x1
(0, 0) =

∂h2

∂x2
(0, 0) = 0 one has ξ = 0 and s = 0.

Proof: Without loss of generality we may assume that h(0, 0) = 0. Put

Ci =
{

(x1, x2) ∈ Dδ
∣∣ ∂f
∂xi

(x) = 0
}

To prove the first claim, we show that C1 and C2 have a unique point of intersection. Observe

that
∂f

∂x1
= x2 +

∂h

∂x1
(x1, x2)
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By Rouché’s theorem for each x1 with |x1| < δ the equation ∂f
∂x1

(x1, x2) = 0 has a unique

solution x̃2(x1). By the estimate on ∂h
∂x1

and on ∂2 h
∂x1∂x2

this solution fulfils

|x̃2(x1)| ≤ a,
∣∣∣∣
∂x̃2

∂x1

∣∣∣∣ ≤
b

1− b

Similarly one can parametrise the curve C2 by a map x2 7→ (x̃1(x2) , x2) fulfilling

|x̃1(x2)| ≤ a ,

∣∣∣∣
∂x̃1

∂x2

∣∣∣∣ ≤
b

1− b

Therefore the curves C1 and C2 intersect in a unique point (ξ1, ξ2) , and this point fulfils

x̃1(ξ2) = ξ1, x̃2(ξ1) = ξ2. So |ξ1| ≤ a and |ξ2| ≤ a. Now write

f(x1, x2) = (x1 − ξ1)(x2 − ξ2) + h̃(x1 − ξ1, x2 − ξ2)

where h̃(x′1, x
′
2) is a function defined in Dδ−s with h̃(0, 0) = ξ1ξ2, ∂h̃

∂x1
(0, 0) = ∂h̃

∂x2
(0, 0) = 0,

and one still has the bound ∥∥∥∥∥

(
∂2 h̃

∂xi∂xj

)∥∥∥∥∥ ≤ b

This shows that it suffices to prove the Lemma in the special case that h(0, 0) =
∂h
∂x1

(0, 0) = ∂h
∂x2

(0, 0) = 0 and then replace δ by δ − s. In this case put

ft(x1, x2) = x1x2 + t h(x1, x2)

We construct a t-dependent vector field X t on Dδ(1−4b) such that

h(x1, x2) +∇ft ·Xt = 0 (A.1)

‖Xt(x)‖ ≤ 5b(|x1|+ |x2|) ≤ 10bδ (A.2)
∥∥∥ ∂
∂xi

Xt(x)
∥∥∥ ≤ 8b for i = 1, 2 (A.3)

Integrating Xτ from 0 to t (0 ≤ τ ≤ 1) gives a map

Φτ : Dδ(1−10b) −→ C2

x 7−→ x+

∫ τ

0

Xt(x)dt

which is biholomorphic into its image, fulfils

Φ0(x) = x
d

dτ
fτ (Φτ (x)) = 0
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‖Φτ (x)− x‖ ≤ 5b(|x1|+ |x2|) ≤ 10bδ

‖Dx Φt − 1l‖ ≤
√

2

∫ t

0

sup
x

(∥∥∥ ∂
∂x1

Xτ (x)
∥∥∥ ,
∥∥∥ ∂
∂x2

Xτ (x)
∥∥∥
)
dτ ≤ 12b

Φ = Φ1 then has the desired properties, since f1 ◦ Φ1 = f0 and the image of Φ contains

Dδ(1−30b).

To construct Xt observe that equation (A.1) is

h(x1, x2) +

〈(
x2 + t ∂h

∂x1
(x)

x1 + t ∂h
∂x2

(x)

)
,

(
Xt

1(x)
Xt

2(x)

)〉
= 0 (A.4)

By the assumptions on h ∣∣∣∣
∂h

∂xi
(x)

∣∣∣∣ ≤ b (|x1|+ |x2|) (A.5)

and hence

|h(x)| ≤ b (|x1|+ |x2|)2

Therefore, for 0 ≤ t ≤ 1, the map

Pt : Dδ −→ C2

(x1, x2) 7−→
(
x2 + t

∂h

∂x1
(x), x1 + t

∂h

∂x2
(x)

)

is biholomorphic into its image. Furthermore

∥∥∥∥Dx Pt −
(

0 1
1 0

)∥∥∥∥ =

∥∥∥∥ t
∂2 h

∂xi ∂xj

∥∥∥∥ ≤ t b , (A.6)

so that the image contains Dδ(1−2b) and

∥∥∥∥DP−1
t −

(
0 1
1 0

)∥∥∥∥ ≤
tb

1− tb (A.7)

To solve (A.4) we first solve the equation

g(y1, y2) =

〈(
y1

y2

)
,

(
Y t1 (y)
Y t2 (y)

)〉

on Dδ(1−2b) , where g(y) = −h ◦ P−1
t (y). This is done by putting

Y t1 (y) =
1

y1
g(y1, 0)

Y t2 (y) =
1

y2
(g(y1, y2)− g(y1, 0))
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Observe that by (A.5) the change of variables

y = Pt (x) =

(
x2 + t

∂h

∂x1
(x) , x1 + t

∂h

∂x2
(x)

)

fullfils

(1− 2b) (|x1|+ |x2| ) ≤ |y1|+ |y2| ≤ (1 + 2b) (|x1|+ |x2| ). (A.8)

By the chain rule and (A.5), (A.7)

∣∣∣∣
∂g

∂yi

∣∣∣∣ ≤ b (|x1|+ |x2|)
(

1 +

√
2b

1− b

)
≤ b

1 + 2b

1− 2b
(|y1|+ |y2|)

Therefore

|g(y1, y2)| ≤ b

2

1 + 2b

1− 2b
(|y1|+ |y2|)2

which shows that Y t1 , Y
t
2 are holomorphic. Furthermore we see that

∣∣Y t1 (y)
∣∣ ≤ b

2

1 + 2b

1− 2b
|y1|

∣∣∣∣
∂

∂y1
Y1 (y)

∣∣∣∣ ≤
3b

2

1 + 2b

1− 2b
,

∂

∂y2
Y1 (y) = 0

To get estimates for Y2 we discuss regions |y2| ≥ |y1| and |y2| ≤ |y1| separately.

If |y2| ≥ |y1| then

∣∣Y t2 (y)
∣∣ ≤ 1

|y2|
(|g(y1, y2)|+ |g(y1, 0)|) ≤ b1 + 2b

1− 2b

(|y1|+ |y2|)2

|y2|

≤ 2b
1 + 2b

1− 2b
(|y1|+ |y2|)

and similarly

∣∣∣∣
∂

∂y1
Y t2 (y)

∣∣∣∣ ≤
1

|y2|

(∣∣∣∣
∂g

∂y1
(y1, y2)

∣∣∣∣+

∣∣∣∣
∂g

∂y1
(y1, 0)

∣∣∣∣
)
≤ 4b

1 + 2b

1− 2b∣∣∣∣
∂

∂y2
Y t2 (y)

∣∣∣∣ ≤
1

|y2|
∣∣Y t2 (y)

∣∣+ 1

|y2|

∣∣∣∣
∂g

∂y2
(y1, y2)

∣∣∣∣ ≤ 6b
1 + 2b

1− 2b

This estimate holds in particular for |y1| = |y2|. For fixed y1 we can now apply the maximum

principle on the functions Y2(y1, · ) and
∂

∂yi
Y2(y1, · ) in the disc |z| ≤ |y1| to get

∣∣Y t2 (y1, z)
∣∣ ≤ 2b

1 + 2b

1− 2b
(|y1|+ |y2|) ≤ 4b

1 + 2b

1− 2b
(|y1|+ |z|)

325



and similarly ∣∣∣∣
∂

∂y1
Y2(y1, z)

∣∣∣∣ ≤ 4b
1 + 2b

1− 2b
,

∣∣∣∣
∂

∂y2
Y2(y1, z)

∣∣∣∣ ≤ 6b
1 + 2b

1− 2b

Putting everything together we get for all y ∈ Dδ(1−2b)

∥∥Y t(y)
∥∥ ≤

√
16 1

4
b
1 + 2b

1− 2b
(|y1|+ |y2|) (A.9)

∥∥∥∥
∂

∂yi
Y t(y)

∥∥∥∥ ≤ 6 b
1 + 2b

1− 2b
(A.10)

Now put Xt = Y t ◦ Pt. By construction Xt satisfies the equation (A.4) on P−1
t (Dδ(1−2b)).

By (A.5) this region contains Dδ(1−4b). Furthermore we get from (A.9), (A.10) and (A.6),

(A.8) the desired estimates

∥∥Xt(x)
∥∥ ≤

√
16 1

4 b
(1 + 2b)2

1− 2b
(|x1|+ |x2|) < 5b(|x1|+ |x2|)

∥∥∥∥
∂

∂xi
Xt(x)

∥∥∥∥ ≤ 6b
(1 + 2b)2

1− 2b
< 8b
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Part IV: The Kadomcev Petviashvilli Equation
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Introduction to Part IV

The Schrödinger spectral curve S(q) associated to q ∈ L2
IR

(
IR/2πZZ

)
is the set

of all points (ξ, λ) ∈ C∗ × C for which there is a nontrivial distributional solution ψ(x) in

L∞loc(IR) of the Schrödinger equation

− d2

dx2
ψ + q(x)ψ = λψ

satisfying

ψ(x+ 2π) = ξ ψ(x)

for all x ∈ IR . For generic q ∈ L2
IR

(
IR/2πZZ

)
, the curve S(q) is a Riemann surface of infinite

genus and we showed (Theorem 12.1, Example 1) that it satisfies the Geometric Hypotheses

of §5.

Suppose u(x, t) , −∞ < t < ∞ , is a solution to the initial value problem for the

Korteweg-deVries equation

ut = 3uux − 1
2uxxxx

with initial data u(x, 0) = u0(x) ∈ C∞IR

(
IR/2πZZ

)
. It is well known that

S
(
u(·, t)

)
= S

(
u0(·)

)

as subsets of C∗ × C for all −∞ < t < ∞ (see [McK1], or Theorem 13.14). In [MT1], this

fact was used to prove that every spatially periodic solution of the Korteweg-deVries equation

propagates almost periodically in time. In [MT2], the theta function for S(q) was used to

give an “explicit” solution to the initial value problem. The technique of [MT1] and [MT2]

relies on the explicit realization of S(q) , by projection onto the λ plane, as a branched

double cover of C . Riemann surfaces of infinite genus that are finite sheeted branched covers

of C have been used to study several other integrable 1 + 1 dimensional partial differential

equations. See, for example, [BKM], [EM], [McK2] and [Sch].

Let

Γ = (0, 2π) ZZ ⊕ (ω1, ω2) ZZ

where ω1 > 0 , ω2 ∈ IR . Recall that the heat curve H(q) associated to q ∈ L2(IR2/Γ) is

the set of all points (ξ1, ξ2) ∈ C∗×C∗ for which there is a nontrivial distributional solution

ψ(x1, x2) in L∞loc(IR
2) of the “heat equation”

(
∂

∂x1
− ∂2

∂x2
2

)
ψ + q(x1, x2)ψ = 0
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satisfying
ψ(x1 + ω1, x2 + ω2) = ξ1 ψ(x1, x2)

ψ(x1, x2 + 2π) = ξ2 ψ(x1, x2)

If q ∈ C∞(IR2/Γ) and H(q) is smooth, then, by Theorem 15.2, it satisfies the Geometric

Hypotheses of §5. There is no natural realization of a heat curve as a branched finite cover of

C . For this reason heat curves are intrinsically more complicated than Schrödinger spectral

curves.

For each u ∈ L2(IR2/Γ) define the function I(u) by

I(u)(x1, x2) =

∫ x2

0

u(x1, s) ds− 1
2π

∫ 2π

0

dt

∫ t

0

u(x1, s) ds

The Kadomcev-Petviashvilli equation is

ut = 3uux2
− 1

2
ux2x2x2

− 3
2
I (ux1x1

) (KP)

If one differentiates both sides of (KP) with respect to x2 one recovers the standard KPII

equation (see, for example, [K])

(
ut − 3uux2

+ 1
2 ux2x2x2

)
x2

+ 3
2ux1x1

= 0

Suppose u = u(x1, x2, t) is a solution of the initial value problem for the (KP)

equation with intial data u0 ∈ C∞IR (IR2/Γ) . As above, there is an associated family

H
(
u(·, t)

)
, −∞ < t <∞ , of heat curves. By Theorem 13.14,

H
(
u(·, t)

)
= H

(
u0

)

as subsets of C∗ × C∗ for all −∞ < t < ∞ . In this paper (Theorem 21.1), we use the

theta function on H
(
u0

)
, when u0 ∈ CωIR(IR2/Γ) , to give an explicit formula for the solution

u(x1, x2, t) . This formula is used to show (Corollary 21.3) that spatially periodic solutions

of the Kadomcev-Petviashvilli equation propagate almost periodically in time.
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§19. The Formula for the Solution

We return to the discussion of sections 13,14,15 and want to solve the initial value

problem for the periodic KP-equation

ut = 3uux2
− 1

2ux2 x2 x2
− 3

2I(ux1 x1
) (KP)

for given initial data q. It has been shown by I. Krichever [K] that for q ∈ Cω
(
IR2/Γ) the

initial value problem is well posed and can be solved for all time. J. Bourgain [B] demonstrated

the more difficult fact that the initial value problem is well posed on H1(IR2/Γ) . Here we

show that for real analytic q the solution is almost periodic in time. This is done by giving

a formula for the solution in terms of theta functions associated to heat curves.

Such a formula is well known in the case that the normalization of the heat curve

H(q) has finite genus. Such potentials q are often called finite zone potentials. We recall

the procedure to solve the initial value problem for the KP-equation for initial data q that

are finite zone potentials (see [K, chap II] and [MII, chapt. IIIb,§4].

In this case the normalization of H(q) is the complement of one point P∞ on a

compact Riemann surface X(q). A local coordinate around P∞ is ζ = i/k2 (see Theorem

14.1). Let A1, B1, · · ·Ag, Bg be a canonical homology basis for X(q), and let ω1, · · ·ωg be

the holomorphic one forms on X(q) satisfying
∫
Ai
ωj = δij . Furthermore denote by θ the

associated thetafunction. The expansions of the forms ωj at P∞ define vectors U, V,W ∈ Cg

by

ωj = Uj dζ + Vj ζdζ + 1
2Wj ζ

2dζ + O(ζ3) near P∞

Finally

{(ξ1, ξ2) ∈ H(q)
∣∣ (ξ1, ξ2) is a smooth point of H(q) and the nontrivial solution ψ

of
(

∂
∂x1
− ∂2

∂x2
2

+ q
)
ψ = 0 vanishes at the point x1 = x2 = 0}

defines a divisor of D of degree g on X(q). This divisor is non-special, so by Riemann’s

Vanishing Theorem there is Z ∈ Cg such that D is the zero divisor of

x 7−→ θ(Z +

∫ x

P∞

~ω)

on X(q). Then there is a constant c such that

u(x1, x2, t) = −2
∂2

∂x2
2

log θ(Ux2 + V x1 − 1
2 Wt+ Z ) + c (19.1.a)
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solves KP, and that

u(x1, x2, 0) = q(x1, x2) (19.1.b)

In addition the constant c is zero if q ∈ U(Γ) , that is if
∫ 2π

0
q(x1, x2)dx2 = 0 (see Lemma

13.11).

Observe that for real valued q the heat curveH(q) has an antiholomorphic involution

induced by (k1, k2) 7−→ (,−k1,−k2) . The local coordinate i/k2 is real with respect to this

involution. If the canonical homology basis is compatible with the antiholomorphic involution

then the vectors U, V,W are real. Also Z is then invariant under the induced antiholomorphic

involution on the Jacobian of X(q)

The purpose of this Chapter is to generalize formula (19.1) to initial data for which

the heat curve has infinite genus. More precisely we assume from now on that q ∈ C∞(IR2/Γ)

and that
∫ 2π

0
q(x1, x2)dx2 = 0 . For simplicity we again assume that H(q) is smooth. The

results of the Sections 5,6,7 and 15 show that H(q) has a canonical homology basis Ab, Bb

indexed by the set Γ#
+ of all b ∈ Γ# with b2 > 0, a basis (ωb)b∈Γ#

+
of the Hilbert space of

square integrable holomorphic one forms with

∫

Ab

ωc = δbc

such that the thetafunction associated to the Riemann period matrix

Rbc =

∫

Bb

ωc

converges on the Banachspace

B =
{

(zb)b∈Γ#
+

∣∣ ∑ |zb|
| log tb|

<∞
}

Here, tb are positive constants satisfying (15.1).

To generalize formula (19.1) we have to define analogues of the vectors U, V,W and

the divisor D (resp. the associated vector Z). First we discuss the vectors U, V,W .

Consider a marked Riemann surface (X;A1, B1, · · ·) that satisfies the geometric

hypotheses of §5 with m = 1. By Proposition 6.12 the restriction wj(z)dz of the differential

ωj to the regular piece can be written in the form

wj(z) = wj,com(z) +
∑

s∈S
wj,s(z)
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where

wj,s(z) = − 1
2πi

∫

|ζ−s|=r(s)

wj(ζ)

ζ − z dζ

wj,com(z) = − 1
2πi

∫

∂K

wj(ζ)

ζ − z dζ

Furthermore each wj,s(z) and wj,com(z) is holomorphic outside a bounded subset of C and

decays as z → ∞ . Therefore we can consider the expansions of the forms wj,s(z) dz and

wj,com(z) dz at infinity with respect to the variable i/z

wj,s(z) dz = w
(1)
j,s

(
−dz
z

)
+ w

(2)
j,s

(
−idz
z2

)
+ w

(3)
j,s

(
dz

z3

)
+ w

(4)
j,s

(
i
dz

z4

)
+O(1/|z|5)

wj,com(z) dz = w
(1)
j,com

(
−dz
z

)
+ w

(2)
j,com

(
−idz
z2

)
+ w

(3)
j,com

dz

z3
+ i w

(4)
j,com

dz

z4
+ O(1/|z|5)

with constants w
(i)
j,s, w

(i)
j,com . By Proposition 6.12 wj,s decays quadratically if s 6= s1(j), s2(j)

so that in this case w
(1)
j,s = 0 . Also by Proposition 6.12

w
(1)
j,s1(j) + w

(1)
j,s2(j) = 0 and w

(1)
j,com = 0

For the next terms we have

Proposition 19.1 Let (X;A1, B1, · · ·) be a marked Riemann surface that satisfies the geo-

metric hypotheses (GH1)-(GH6) of Section 5 with m = 1 . Then the sums

Uj = w
(2)
j,com +

∑

s∈S
w

(2)
j,s

Vj = w
(3)
j,com +

∑

s∈S
w

(3)
j,s

Wj = w
(4)
j,com +

∑

s∈S
w

(4)
j,s

converges absolutely. Furthermore there is a numerical constant const independent of j such

that for all j ≥ 1 ∣∣Uj + 1
2π (s1(j)− s2(j))

∣∣ ≤ const
∣∣Vj + 1

2πi

(
s1(j)2 − s2(j)2

)∣∣ ≤ const
∣∣Wj − 1

2π

(
s1(j)3 − s2(j)3

)∣∣ ≤ const

Proof:

wj,s(z) =
1

2πi

∫

|ζ−s|=r(s)

wj(ζ)

z − ζ dζ =
1

2πi

∫

|ζ−s|=r(s)

1

z
· wj(ζ)

1− ζ/z dζ

=

4∑

n=1

1

2πi

1

zn

∫

|ζ−s|=r(s)
ζn−1wj(ζ)dζ + O( 1

|z|5 )
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Therefore

w
(n)
j,s =

−(i)1−n

2πi

∫

|ζ−s|=r(s)
ζn−1wj(ζ)dζ (19.2)

Similarly

w
(n)
j,com =

−(i)1−n

2πi

∫

∂K

ζn−1wj(ζ)dζ (19.3)

For s 6= s1(j), s2(j) we have

w
(n)
j,s =

−(i)1−n

2πi

∫

|ζ−s|=4r(s)

[
sn−1 + (n−1

1 ) sn−2 (ζ − s) + · · · (ζ − s)n−2
]
wj(ζ)dζ

=
−(i)1−n

2πi

n−1∑

r=1

(n−1
r ) sn−r

∫

|ζ−s|=4r(s)

(ζ − s)r wj(ζ)dζ

Therefore by the estimate of Proposition 6.12 we get for n ≤ 4

∣∣∣w(n)
j,s

∣∣∣ ≤ const ·
n−1∑

r=1

|s|n−r r(s)r ‖wjdz
∣∣
A(s)
‖2

So for n ≤ 5 and s 6= s1(j), s2(j)

∣∣∣w(n)
j,s

∣∣∣ ≤ const r(s) |s|n−2 ‖wjdz
∣∣
A(s)
‖2

Similarly, for s = sµ(j)

∣∣∣∣∣w
(n)
j,s −

−(i)1−n

2πi

∫

|ζ−s|=r(s)

(−1)µ+1ζn−1

2πi(ζ − s) dζ

∣∣∣∣∣

≤ const r(s) |s|n−2 ‖
(
wj −

(−1)µ+1

2πi

1

z − s

)
dz
∣∣
A(s)
‖2

so that for n ≥ 5

∣∣∣∣w
(n)
j,sµ(j) + (i)1−n (−1)µ+1

2πi
sµ(j)n−1

∣∣∣∣ ≤ const r(s) |s|n−2 ‖
(
wj −

(−1)µ+1

2πi

1

z − s

)
dz
∣∣
A(s)
‖2

Therefore by (6.15b)

∑

s∈S
s6=s1(j),s2(j)

∣∣∣w(n)
j,s

∣∣∣+
∣∣∣w(n)
j,s1(j) + w

(n)
j,s2(j) − (i)1−n ( 1

2πis1(j)n−2 − 1
2πis2(j)n−2

)∣∣∣

≤ const
∑

i

(
r1(i)|s1(i)|n−1 + r2(i)|s2(i)|n−1

) (
Ωji + δijℵj

) (19.4)
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where, as in (6.18)

Ωji =




‖ωj
∣∣
Y ′
i

‖ for i 6= j

‖
(
ωj − (φj)∗

(
dz1

2πiz1

)) ∣∣
Y ′
i

‖ for i = j

and ℵj is as in Lemma 6.3. In paricular the sequence of the ℵj is bounded in j. By Theorem

6.4 the norm of
(

Ωji

)
i≥g+1

is bounded in j. Thus the right hand side of (19.4) is finite and

bounded uniformly in j if ∑

s∈S
r(s)2|s|2n−4

is finite. By (GH 5ii)

∑

s∈S
r(s)2|s|2n−4 ≤

∑

s∈S

1

|s|2d+4−2n
< ∞

for n ≤ 4. In a similar way one sees that
∣∣∣w(n)
j,com

∣∣∣ is bounded uniformly in j for all n ≤ 4.

Remark 19.2: Let q ∈ C∞(IR2/Γ) and H(q) be the normalization of the associated heat

curve. If H(q) has finite genus then the definition of U, V,W in Proposition 19.1 agrees with

the one used in formula (19.1).

If H(q) is smooth one has for every γ > 0

tb ≤ const
(
‖ |b|γ+2|q̂(b)| ‖1

)
· 1

|b|2γ

(see Theorem 14.2 and 15.2). In particular
∑
tβb < ∞ for β > 1/γ. In the formula for the

solution of the periodic KP-equation we use the theta function on the subspace generated by

U, V,W . We will apply Proposition 4.15, so it is useful to note the estimate

|Ub|t
1−2β′

2k
b , |Vb|t

1−2β′

2k
b , |Wb|t

1−2β′

2k
b ≤ const

(
‖ |b|γ+2|q̂(b)| ‖1

)
· 1

|b|γ
1−2β′

k −3

(19.5)

which follows directly from the Proposition above.
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§20 Approximations

In this section we formalize what it means for two marked Riemann surfaces that

fulfill the geometric hypotheses of §5 to be close to each other. For notational simplicity,

we consider only the single sheet case m = 1. The definition is such that the corresponding

period matrices and theta functions are also close. Then we show that every surface fulfilling

the hypotheses of §5 can be approximated by surfaces of finite genus. This approximation

result is in turn used to show that (19.1.a) is always a solution of the differentiated version

(20.16) of the KP equation.

Definition 20.1 Recall that H(t) =
{

(z1, z2) ∈ C2
∣∣ z1z2 = t and |z1|, |z2| ≤ 1

}
is a

model handle. Let K ≥ 2, 1 − 28
15K ≥

√
t and let Ŷ ⊂ H(t) be diffeomorphic to an annulus

and contain
{

(z1, z2) ∈ H(t)
∣∣ |z1|, |z2| ≤ 1− 1

K

}
. Similarly, let Ŷ ′ ⊂ H(t′) be diffeomorphic

to an annulus and contain
{

(z1, z2) ∈ H(t′)
∣∣ |z1|, |z2| ≤ 1− 1

K

}
. A diffeomorphism

f : Ŷ −→ Ŷ ′

is said to be K–quasiconformal with distortion at most ε if, firstly, f is holomorphic on

|z1| ≥ 1 − 28
15K and on |z2| ≥ 1 − 28

15K , secondly,
∣∣∣
∣∣∣ f(z1,z2)µ

zµ

∣∣∣− 1
∣∣∣ < min

{
ε, 1

15K

}
for at least

one point of Ŷ for each of µ = 1, 2 and, thirdly, the pull-back

f∗
(
dz1
z1

)
= a(z1, z2)dz1z1 + b(z1, z2)dz̄1z̄1

obeys ∣∣a(z1, z2)− 1
∣∣ ≤ min

{
ε, 1

150K

} (
|z1|+ |z2|

)
∣∣b(z1, z2)

∣∣ ≤ min
{
ε, 1

150K

} (
|z1|+ |z2|

)
∣∣ ∂
∂z̄1

a(z1, z2)
∣∣ ≤ min

{
ε, 1

150K

} (
|z1|+ |z2|

)

Ŷ
|z1| = 1− 28

15K

|z2| = 1− 28
15K

Ŷ ′

f

A diffeomorphism F between two marked Riemann surfaces X and X ′ of genus g is called

K–quasiconformal with distortion at most ε if there are t1, · · · , tr, t′1, · · · , t′r > 0, sets
{

(z1, z2) ∈ H(t)
∣∣ (1− 1

K

)−1
t ≤ |z1| ≤ 1− 1

K

}
⊂ Ŷj ⊂ H(tj)

{
(z1, z2) ∈ H(t)

∣∣ (1− 1
K

)−1
t ≤ |z1| ≤ 1− 1

K

}
⊂ Ŷ ′j ⊂ H(t′j)

335



and maps φj : H(tj) −→ X, φ′j : H(t′j) −→ X ′, 1 ≤ j ≤ r that are biholomorphic onto their

images such that

• φ′j−1 ◦ F ◦ φj � Ŷj is K–quasiconformal with distortion at most ε for 1 ≤ j ≤ r
• The sets φj

(
H(tj)

)
are pairwise disjoint and F induces a biholomorphic map be-

tween

X \
r⋃

j=1

φj
(
Ŷj
)

and X ′ \
r⋃

j=1

φ′j
(
Ŷ ′j
)

• φj
({

(z1, z2) ∈ H(tj)
∣∣ |z1| =

√
tj
})

is homologous to a linear combination of

Ai, 1 ≤ i ≤ g.

Remark. Recall that, by definition, a smooth map U : S → S ′ between Riemann surfaces

is quasiconformal with Beltrami coefficient at most ε if, for every x ∈ S, there exists a

holomorphic coordinate z around x and a holomorphic coordinate u around U(x) such that

u(z) = u−1 ◦ U ◦ z obeys

|uz̄(z)| ≤ ε|uz(z)|
Observe that an K–quasiconformal diffeomorphism with distortion at most ε < 1

4
is quasi-

conformal with Beltrami coefficient at most 4ε. We choose this stronger definition, which

restricts the second as well as first derivatives of F , so as to be able to convert L2 bounds on

differential forms into pointwise bounds.

Definition 20.2 Let X = Xcom∪Xreg∪Xhan and X ′ = X ′com∪X ′reg ∪X ′han
be marked

Riemann surfaces fulfilling (GH1)-(GH5) with the number of sheets m of X reg and m′ of

X ′reg
both being one. In what follows we mark all the objects associated to X ′ with a prime.

Furthermore let X0 resp. X ′0 be such that

Xcom ⊂ X0 X ′
com ⊂ X ′0

∂X0 ⊂ Xreg ∂X ′0 ⊂ X ′
reg

Yj ⊂ X0 if Yj ∩X0 6= ∅ Y ′j ⊂ X ′0 if Y ′j ∩X ′0 6= ∅
Let 0 < ε < 1

8 , K ≥ 2. We say that the pair (X,X0) is (ε,K)–close to (X ′, X ′0) if the

following holds.

(i) The set J =
{
j
∣∣ Yj ⊂ X0

}
agrees with

{
j
∣∣ Y ′j ⊂ X ′0

}
. There are compact,

simply connected sets D̂
(
sµ(j)

)
, j ∈ J , µ = 1, 2 obeying

D
(
sµ(j)

)
∪D′

(
s′µ(j)

)
⊂ D̂

(
sµ(j)

)
⊂
{
z ∈ C

∣∣ |z − sµ(j)| < rµ(j)
}

Φ
(
∂D̂
(
sµ(j)

))
⊂ φj

({
(z1, z2) ∈ H(tj)

∣∣ τµ(j) ≤ |zµ| ≤ 2τµ(j)
})

Φ′
(
∂D̂
(
sµ(j)

))
⊂ φ′j

({
(z1, z2) ∈ H(t′j)

∣∣ τ ′µ(j) ≤ |zµ| ≤ 2τ ′µ(j)
})
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and a diffeomorphism

F : X0 → X ′0

such that

Φ′−1 ◦ F = Φ−1 on
{
x ∈ X0

∣∣∣Φ−1(x) /∈
⋃

j∈J
µ=1,2

D̂
(
sµ(j)

)}

For each j ∈ J
F ◦ φj(Y (◦)

j ) = φ′j
(
Y (◦)′

j

)

and φ′−1
j ◦F ◦φj �Y (◦)

j is 2–quasiconformal with distortion at most ε. The restriction

of F to Xcom is a K–quasiconformal diffeomorphism between Xcom and X ′com
with

distortion at most ε. Furthermore

F∗(Aj) = A′j

for all 1 ≤ j ≤ g = g′.

(ii) For all j ∈ J and µ = 1, 2

sµ(j) = s′µ(j) rµ(j) = r′µ(j) Rµ(j) = R
′
µ(j)

(iii)

‖A‖ ≤ K ‖A′‖ ≤ K
∑

s∈S

1

|s|d−4δ−2
≤ K

∑

s′∈S′

1

|s′|d′−4δ′−2
≤ K

and, for all j,
Oj ≤ K2 O′j ≤ K2

ℵj ≤ K ℵ′j ≤ K
(
τ1(j)2 + τ2(j)2

)
ln τ1(j)τ2(j)

tj
≤ K
| ln tj |2

Here, A, Oj and ℵj were defined just before Lemma 6.3. All the other data were

defined in (GH1-5).

(iv) For j /∈ J
Oj ≤ ε2 O′j ≤ ε2

tj ≤ ε t′j ≤ ε
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Furthermore,

∥∥∥(Ai,j) i/∈J
j∈J

∥∥∥ ≤ ε
∥∥∥∥
(
A′i,j

)
i/∈J
j∈J

∥∥∥∥ ≤ ε
∥∥∥(Ai,j) i>g

j 6∈J

∥∥∥ ≤ ε
∥∥∥∥
(
A′i,j

)
i>g
j 6∈J

∥∥∥∥ ≤ ε

and, for j ∈ J ∥∥∥∥
(

Ω̃ji

)
i/∈J

∥∥∥∥
2

≤ ε
∥∥∥∥
(

Ω̃′ji

)
i/∈J

∥∥∥∥
2

≤ ε

where Ω̃ was defined in (6.13).

(v) There exists a γ > 0, a collar T of Φ−1(∂Xcom) that is contained in Φ−1(X0∩Xreg)

and a curve Γ in Φ−1(Xreg ∩X0) of length at most K such that

• for every j > g, the points s1(j) and s2(j), can be connected by a curve in{
z ∈ G

∣∣ dist(z,T )2

1+|z|2 ≥ γ
K

}
. So can the points s′1(j) and s′2(j).

• for any holomorphic function w on T obeying
∫

Φ−1(∂Xcom)
w(ζ) dζ = 0

∣∣∣∣∣
1

2πi

∫

Φ−1(∂Xcom)

w(ζ)
ζ−z dζ

∣∣∣∣∣ ≤
γ

dist (z,T )2

∥∥w
∣∣
T

∥∥
2

• Φ(Γ) decomposes X into a compact connected component X(Γ) containing

Xcom ∪ Φ(T ) and a noncompact component such that for all j ≥ g + 1 either

Y
(◦)
j ⊂ X(Γ) or Y

(◦)
j ∩X(Γ) = ∅

• Let J (Γ) =
{
i ∈ J

∣∣ Y (◦)
i ⊂ X(Γ)

}
.

∥∥(Ai,k
)
i/∈J (Γ)
k≥g+1

∥∥ < 1/8
∥∥(A′i,k

)
i/∈J (Γ)
k≥g+1

∥∥ < 1/8

∑

µ=1,2
i≥g+1
i/∈J (Γ)

Rµ(i)2

dist (sµ(i), T )4
<

1

210π2γ2

∑

µ=1,2
i≥g+1
i/∈J (Γ)

R
′
µ(i)2

dist (s′µ(i), T )4
<

1

210π2γ2
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•

length(Γ) sup
j≥g+1
z∈Γ

( ∑

µ=1,2

3rµ(j)

|z − sµ(j)|2ℵj +
1

2π

1

|z − s1(j)| +
1

2π

1

|z − s2(j)|

)
≤ K

length(Γ) sup
j≥g+1
z∈Γ

( ∑

µ=1,2

3r′µ(j)

|z − s′µ(j)|2ℵ
′
j +

1

2π

1

|z − s′1(j)| +
1

2π

1

|z − s′2(j)|

)
≤ K

length(Γ) sup
j≥g+1
j /∈Jc
z∈Γ

( ∑

µ=1,2

3rµ(j)

|z − sµ(j)|2ℵj +
1

2π

1

|z − s1(j)| +
1

2π

1

|z − s2(j)|

)
≤ ε

length(Γ) sup
j≥g+1
j /∈Jc
z∈Γ

( ∑

µ=1,2

3r′µ(j)

|z − s′µ(j)|2ℵ
′
j +

1

2π

1

|z − s′1(j)| +
1

2π

1

|z − s′2(j)|

)
≤ ε

•
dist (Γ, T )2 ≥ 4γ length (Γ)

•
length (Γ)2

∑

k

sup
µ=1,2

36rµ(k)2

dist (sµ(k),Γ)4 ≤ 1
16

(vi) For each 1 ≤ i ≤ g there exist Li, δi with Li
δi
≤ K2 and a quasiconformal

diffeomorphism ui, with Beltrami coefficient bounded by 1
2
, from U = IR/LiZZ×[0, δi]

into Xcom with ui(IR/LiZZ× {0}) = Bi.

First we observe that every marked Riemann surface X = Xcom ∪Xreg ∪Xhan is

close to one of finite genus.

Proposition 20.3 Let X = Xcom ∪Xreg ∪Xhan be a marked Riemann surface with m = 1

fulfilling (GH1)-(GH5) such that

sup
j

(
τ1(j)2 + τ2(j)2

)
| ln tj |2 ln τ1(j)τ2(j)

tj
<∞

Then there is K > 0 such that for every compact subset Z of X and any ε > 0 there is

a submanifold X0 of X with boundary

a marked Riemann surface X ′ of genus genus (X0) and

a compact submanifold X ′0 ⊂ X ′
such that X0 contains Z and (X ′, X ′0) is (ε,K)–close to (X,X0) and the K–quasiconformal

diffeomorphism F is biholomorphic on Xcom.
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Proof: By Lemma 6.9b there is a collar T of Φ−1(∂Xcom) and a constant γ such that the

second bullet of condition (v) in Definition 20.2 is satisfied. By Lemma 6.1, there exists a

curve Γ in φ−1(Xreg) satisfying the third, fourth, sixth and seventh bullets of (v). By Lemma

6.3 and (GH5ii) there is K ≥ 0 such that the conditions (iii) in Definition 20.2 are fulfilled

for X. It is clearly also possible to choose K large enough that the first bullet and the first

half of the fifth bullet of (v) are satisfied. Again possibly enlarging K, it is possible to choose

Li, δi, µi > 0, 1 ≤ i ≤ g, and quasiconformal diffeomorphisms ui, 1 ≤ i ≤ g satisfying

condition (vi).

By Lemma 6.3 and (GH2iv) it is possible to choose n so that condition (iv) and the

second part of the fifth bullet of (v) are satisfied for j > n. Choose X0 such that Z ⊂ X0

and Yj ⊂ X0 for all g < j ≤ n. This can be done by putting X0 = X(Γ′) for a suitable Γ′ as

in Lemma 6.1. Put J =
{
j
∣∣ Yj ⊂ X0

}
. We define X ′ as the Riemann surface obtained by

glueing X0 to C \
(
K ∪⋃ j∈J

µ=1,2
intD(sµ(j))

)
along X0 ∩Xreg resp. Φ−1(X0 ∩Xreg) using Φ

as a glueing map. Furthermore, define X ′0 to be the part of X ′ corresponding to X0 in this

construction and F : X0 → X ′0 to be the identity map. Conditions (i) and (ii) are trivially

satisfied and the required bounds on primed quantities are inherited from the corresponding

bounds on unprimed quantities.

Theorem 20.4 Let X = Xcom ∪Xreg ∪Xhan and X ′ = X ′com ∪X ′reg ∪X ′han be marked

Riemann surfaces with m = m′ = 1 fulfilling (GH1)-(GH5) and let X0 ⊂ X, X ′0 ⊂ X ′ be

compact submanifolds with boundary in X and X ′ respectively. Assume that (X,X0) and

(X ′, X ′0) are (ε,K)–close, with ε smaller than some strictly positive universal constant. Let

F : X0 → X ′0 be a diffeomorphism as in part (i) of Definition 20.2. Then there is a numerical

constant const independent of ε,K,X and X ′ such that

a) For all j ∈ J
|tj − t′j | ≤ const εtj

b) Define Jc =
{
i
∣∣ Yi ⊂ X0

}
∪ {1, · · · , g}. For i, j ∈ Jc

∣∣∣
∫

Bi

ωj −
∫

B′
i

ω′j

∣∣∣ ≤ const εK4

c) For every compact subset K in the universal covering π : X̃0 → X0 there is a

constant CK which depends only on K, not on X ′, such that for all x1, x2 ∈ K and

all j ∈ Jc = J ∣∣∣
∫ x2

x1

(
ωj − F ∗ω′j

)∣∣∣ ≤ εK6CK
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d) Consider the quantities U, V,W of Proposition 19.1. Then for j ∈ Jc

|Uj − U ′j | ≤ const εK5

|Vj − V ′j | ≤ const εK5

|Wj −W ′j | ≤ const εK6

and for j /∈ Jc
|Uj + 1

2π

(
s1(j)− s2(j)

)
| ≤ const εK3

|Vj + 1
2πi

(
s1(j)2 − s2(j)2

)
| ≤ const εK3

|Wj − 1
2π

(
s1(j)3 − s2(j)3

)
| ≤ const εK4

To prepare for the proof we first note the following

Lemma 20.5 (Modification of Lemma 6.8) Let
√
t < a < A < 1. Let f be a differentiable

function on a neighbourhood of the annulus
{
z ∈ C

∣∣ t ≤ |z| ≤ 1
}

. Let C1 and C2 be curves

(without self-intersection) of winding number one in the outer annulus
{
z ∈ C

∣∣ A ≤ |z| ≤ 1
}

and inner annulus
{
z ∈ C

∣∣ t ≤ |z| ≤ t/A
}

respectively. Suppose that

∫

C1

f(ζ)dζζ = 0

Then, for all t/a ≤ |z| ≤ a

|f(z)| ≤ |z|
2π(A−a)

∫

C1

∣∣∣f(ζ)dζ
ζ

∣∣∣+ t
2π(A−a)|z|

∫

C2

∣∣∣f(ζ)dζ
ζ

∣∣∣+ 1
2π

∣∣∣
∫

R12

fz̄(ζ)
ζ−z dζ ∧ dζ̄

∣∣∣

where R12 is the region between C1 and C2.

|z| = 1

C1

C2

|z| = t

R12
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Proof: By Cauchy’s integral formula

f(z) = 1
2πi

(∫

C1

f(ζ) dζ
ζ−z −

∫

C2

f(ζ) dζ
ζ−z +

∫

R12

fz̄(ζ)
ζ−z dζ ∧ dζ̄

)

= 1
2πi

(∫

C1

f(ζ)dζζ + z

∫

C1

1
ζ−z f(ζ)dζζ −

∫

C2

ζ
ζ−z f(ζ)dζζ +

∫

R12

fz̄(ζ)
ζ−z dζ ∧ dζ̄

)

For t/a ≤ |z| ≤ a we have
1
|ζ−z| ≤ 1

A−a if ζ ∈ C1
∣∣∣ ζ
ζ−z

∣∣∣ ≤ t
|z|(A−a)

if ζ ∈ C2

As
∫
C1
f(ζ)dζζ = 0 we get the desired estimate.

For the proof of Theorem 20.4, we define

Ωji =

∥∥∥∥
(
ωj − δij 1

2πi

(
φj
)
∗
(
dz1
z1

))∣∣∣
Y

(◦)
i

∥∥∥∥
2

and we define Ω′ji analogously. Recall that Y
(◦)
i is the cylinder in Yi bounded by the curves

Φ
({

z ∈ C
∣∣ |z − sµ(i)| = Rµ(i)

})
, µ = 1, 2. Furthermore write

Φ∗(ωj) = wj(z)dz

Φ′∗(ω′j) = w′j(z)dz

We plan to mimic the proof of Theorem 6.4. We put, for i ∈ J , j ∈ Jc

Dj
i = 2π max

µ=1,2
Rµ(i) sup

|z−sµ(i)|=Rµ(i)

|wj(z)− w′j(z)|

and define Y
(◦◦)
i to be the cylinder in Yi bounded by the curves

Φ
({

z ∈ C
∣∣ |z − sµ(i)| = 4rµ(i)

})
, µ = 1, 2

Y (◦◦) Y (◦)
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Lemma 20.6 There is a numerical constant const independent of X and X ′ such that for

i ∈ J , j ∈ Jc ∥∥∥∥
(
ωj − F ∗ω′j

)∣∣∣
Y

(◦◦)
i

∥∥∥∥
2

≤ Dj
i + ε constK

(
Ω′ji + δij

)
(20.1)

More precisely, if one writes on the model handle H(ti)

φ∗i
(
ωj − F ∗ω′j

)
= α

(i)
j (z1, z2)dz1z1 + β

(i)
j (z1, z2)dz̄1z̄1

Then on φ−1
i (Y

(◦◦)
i )

|α(i)
j (z1, z2)| ≤ 3

π
(|z1|+ |z2|)Dj

i + const εK
| ln ti|

(
Ω′ji + δij

)

|β(i)
j (z1, z2)| ≤ ε const (|z1|+ |z2|)

(
Ω′ji + δij

) (20.2)

α
(i)
j is holomorphic outside

{
(z1, z2) ∈ H(ti)

∣∣ |z1| ≤ 2τi and |z2| ≤ 2τi
}

and β
(i)
j is zero

outside this set.

Proof: Clearly (20.1) follows from (20.2), so it suffices to prove (20.2). To simplify the

notation we delete the sub and superscripts i and j whenever convenient, write F̂ for φ′−1
i ◦

F ◦φi, z for the variable z1 on H(ti) and u = u(z) for the first component of F̂ (z, ti/z). With

this notation
du
u = a(z) dzz + b(z) dz̄z̄ (20.3)

On φ−1
i

({
x ∈ Xreg

∣∣ Φ−1(x) /∈ D̂
(
s1(i)

)
∪ D̂

(
s2(i)

) })
the function a(z) is holomorphic and

b(z) is zero. By part (i) of Definition 20.2 and Definition 20.1

d ln u
z

= du
u
− dz

z
= [a(z)− 1] dz

z
+ b(z) dz̄

z̄

and, on Y (◦), ∣∣[a(z)− 1] dz
z

∣∣ ≤ ε[|dz1|+ |dz2|]
∣∣b(z)dz̄

z̄

∣∣ ≤ ε[|dz1|+ |dz2|]
Consequently ln u

z
varies by at most 4πε over the handle. Since, by the second requirement

of Definition 20.1, we have that 1− ε ≤
∣∣u
z

∣∣ ≤ 1 + ε for at least one z ∈ Y (◦) there is a ϕ ∈ IR

such that ∣∣u
z − eiϕ

∣∣ ≤ const ε (20.4)

Part a) of Theorem 20.4 follows from (20.4) and its analogue,
∣∣∣u2

z2
− e−iϕ

∣∣∣ ≤ const ε

since
|ti − t′i| = |z1z2 − u1u2| ≤

∣∣z1e
iϕ − u1

∣∣|z2|+ |u1|
∣∣z2e

−iϕ − u2

∣∣

≤ const ε|z1z2|+ const |u1|ε|z2| ≤ const ε|z1||z2| = const ε ti
(20.5)
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Write

φ′∗i ω
′
j = g′(u)duu φ∗iωj = g(z) dzz

By Lemma 6.8, scaled to the handle H(4t) as in Proposition 6.16,

∣∣∣g′(u)− δij
2π

∣∣∣ ≤ const
(
|u|+ t′

|u|

)
Ω′ji (20.6a)

∣∣∣g(z)− δij
2π

∣∣∣ ≤ const
(
|z|+ t

|z|

)
Ωji (20.6b)

for 3t′ ≤ |u| ≤ 1
3

and 3t ≤ |z| ≤ 1
3
. Now

φ∗i ωj − φ∗iF ∗ω′j = g(z) dz
z
− g′(u)

(
a(z)dz

z
+ b(z) dz̄

z̄

)
= α(z) dz

z
+ β(z)dz̄

z̄

with
α(z) = g(z)− g′(u)a(z)

β(z) = −g′(u)b(z)

Clearly β(z) is zero on
{

(z1, z2) ∈ H(ti)
∣∣ |z1| > 2τ1 or |z2| > 2τ2

}
. By (20.6a), part (i) of

Definition 20.2 and Definition 20.1

|β(z)| ≤ const ε
(
|z|+ t

|z|

)(
Ω′ji + δij

)

To bound |α(z)| we apply Lemma 20.5 to f(z) = α(z),

C1 =
{
z ∈ H(ti)

∣∣ |gi1(z1)− s1(i)| = R1(i)
}

C2 =
{
z ∈ H(ti)

∣∣ |gi2(z2)− s2(i)| = R2(i)
}

On C1, β(z) = 0 so that the hypothesis
∫
C1

α(z)
z dz =

∫
C1
φ∗iωj − φ∗iF ∗ω′j = 0 is satisfied.

The bounds on the first two terms in the conclusion of Lemma 20.5 are

3|z|
π

∫

C1

∣∣∣α(ζ)dζζ

∣∣∣ ≤ 3|z|
π

∫

|ξ−s1(i)|=R1(i)

∣∣wj(ξ)− w′j(ξ)
∣∣|dξ| ≤ 3|z|

π Dj
i

3tj
π|z|

∫

C2

∣∣∣α(ζ)dζ
ζ

∣∣∣ ≤ 3tj
π|z|

∫

|ξ−s2(i)|=R2(i)

∣∣wj(ξ)− w′j(ξ)
∣∣|dξ| ≤ 3tj

π|z|D
j
i

To bound the third term, we observe that

αz̄ = − (g′uuz̄a+ g′az̄)

= −
(
u
z̄ g
′
uab+ g′az̄

)

by (20.3), since g(z) and g′(u) are holomorphic. By Cauchy’s estimate and (20.6a)

|g′u| ≤ const
(

1 + t′

|u|2
)

Ω′ji
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for 6t′ ≤ |u| ≤ 1
6 . By (GH3) and Definition 20.2(i), the support of b and az̄ is contained in{

z ∈ C
∣∣ t

2τ2
≤ |z| ≤ 2τ1

}
⊂
{
z ∈ C

∣∣ 6t′ ≤ |u| ≤ 1
6

}
. Therefore,

∫

R12

∣∣∣ αz̄ζ−zdζ ∧ dζ̄
∣∣∣ ≤ ε const

(
Ω′ji + δij

)∫

t
2τ2
≤|ζ|≤2τ1

[(
|ζ|+ t

|ζ|

)2
1
|ζ| +

(
|ζ|+ t

|ζ|

)] ∣∣∣dζ∧dζ̄ζ−z

∣∣∣

≤ ε const
(

Ω′ji + δij

)∫ 2τ1

t
2τ2

dr
[
r + t

r
+ t2

r3

] ∫ π

−π
dφ r
||z|−reiφ|

Since ∫ π

−π
dφ 1
||z/r|−eiφ| ≤ const

(
1 +

∣∣ ln ||z| − r|
∣∣+ | ln r|

)

we get, using Definition 20.2(iii)

∫

R12

∣∣∣ αz̄ζ−zdζ ∧ dζ̄
∣∣∣ ≤ ε const

(
Ω′ji + δij

) (
τ2
1 + τ2

2

)
ln τ1τ2

t2

≤ ε const
(

Ω′ji + δij

) K

| ln t|

We shall first prove Theorem 20.4 under the additional hypotheses that X com =

X ′com = ∅ and ‖A‖, ‖A′‖ < 1
4 .

Lemma 20.7 Assume that Xcom = X ′com = ∅ and ‖A‖, ‖A′‖ < 1
4

. Then

‖Ωj‖2, ‖Ω′j‖2 ≤ 3K for all j

‖Ωj‖2, ‖Ω′j‖2 ≤ 3εK for j /∈ J∥∥∥
(
Ωji
)
i/∈J

∥∥∥
2
,
∥∥∥
(
Ω′ji
)
i/∈J

∥∥∥
2
≤ 9εK for all j

‖Dj‖2 ≤ const εK2 for j ∈ J

Proof: By the inequality following (6.17)

‖Ωj‖2 ≤ 2
(√
Oj +

∥∥(Aijℵj
)
i>g

∥∥
)

and one has the same inequality for the primed objects. So the assertions of the first two

lines of the Lemma follow from parts (iii) and (iv) of Definition 20.2.

Inequality (6.16a) yields for j ∈ J
∥∥∥
(
Ωji
)
i/∈J

∥∥∥
2
≤
∥∥∥
(
Ω̃ji
)
i/∈J

∥∥∥
2
+ℵj

∥∥∥
(
Ai,j

)
i/∈J

∥∥∥
2
+
∥∥∥
(
Ai,k

)
i/∈J
k∈J

∥∥∥‖Ωj‖2 +
∥∥∥
(
Ai,k

)
i/∈J
k/∈J

∥∥∥
∥∥∥
(
Ωjk
)
k/∈J

∥∥∥
2
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So the third assertion of the Lemma follows from the preceeding ones and part (iv) of Defi-

nition 20.2.

As in Proposition 6.5 we write

wj(z) =
∑

s∈S
wj,s(z) (20.7a)

with

wj,s(z) = − 1

2πi

∫

|ζ−s|=r(s)

wj(ζ)

ζ − z dζ

Define w′j,s′ in the same way so that

w′j(z) =
∑

s′∈S′
w′j,s′(z) (20.7b)

By estimate (6.9) in Proposition 6.5, we have for i, j ∈ J , k /∈ J
2π max

µ=1,2
Rµ(i) sup

|z−sµ(i)|=Rµ(i)

∣∣wj,s1(k)(z) + wj,s2(k)(z)
∣∣

≤ 24π max
µ,τ=1,2

Rµ(i)rτ (k)
1

|sµ(i)− sτ (k)|2 Ωjk

≤ Ai,kΩjk

(20.8a)

and similarly

2π max
µ=1,2

Rµ(i) sup
|z−sµ(i)|=Rµ(i)

∣∣w′j,s′1(k)(z) + w′j,s′2(k)(z)
∣∣ ≤ A′i,kΩ′jk (20.8b)

Furthermore, by Lemma 6.9c, for k ∈ J
∣∣wj,sτ (k)(z)− w′j,sτ (k)(z)

∣∣ ≤ 3rτ (k)

|z − sτ (k)|2
∥∥∥
(
ωj − F ∗ω′j

)∣∣
Y ◦◦
k

∥∥∥
2

if |z − sµ(i)| = Rµ(i) for some i ∈ J and µ = 1, 2. Therefore

2π max
µ=1,2

Rµ(i) sup
|z−sµ(i)|=Rµ(i)

∣∣∣∣∣
2∑

τ=1

wj,sτ (k)(z)− w′j,sτ (k)(z)

∣∣∣∣∣ ≤ Ai,k

∥∥∥
(
ωj − F ∗ω′j

)∣∣
Y ◦◦
k

∥∥∥
2

(20.9)

Inserting (20.7), (20.8), (20.9) in the definition of Dj
i we get

Dj
i ≤

∑

k∈J
Ai,k

∥∥∥
(
ωj − F ∗ω′j

)∣∣
Y ◦◦
k

∥∥∥
2

+
∑

k/∈J

(
Ai,kΩjk + A′i,kΩ′jk

)
(20.10)

In this inequality we insert the first statement of Lemma 20.6 and get, for i, j ∈ J

Dj
i ≤

∑

k∈J
Ai,kD

j
k +

∑

k/∈J

(
Ai,kΩjk + A′i,kΩ′jk

)
+ ε constK

∑

k∈J
Ai,k

(
Ω′jk + δjk

)

As ‖A‖ < 1/4 we get

‖Dj‖2 ≤ 2‖A‖
∥∥∥
(
Ωjk
)
k/∈J

∥∥∥
2

+ 2‖A′‖
∥∥∥
(
Ω′jk
)
k/∈J

∥∥∥
2

+ ε constK‖A‖
(
‖Ω′j‖+ 1

)

≤ const εK2

by the first and third lines of this Lemma.
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Lemma 20.6 and Lemma 20.7 combined give pointwise bounds on (ωj − F ∗ω′j)
∣∣
Y ◦◦
i

for i, j ∈ J . Pointwise bounds on the regular pieces are given by

Lemma 20.8 Assume that Xcom = X ′com = ∅ and ‖A‖, ‖A′‖ < 1
4

.

a) Define

UR =
{
z ∈ C

∣∣ |z − s| ≥ R(s), |z − s′| ≥ R(s′) for all s ∈ S, s′ ∈ S′
}

Ur =
{
z ∈ C

∣∣ |z − s| ≥ 4r(s), |z − s′| ≥ 4r(s′) for all s ∈ S, s′ ∈ S′
}

There is a universal constant independent of X,X ′ etc. such that for all j ∈ J , z ∈ UR

|wj(z)− w′j(z)| ≤ const
εK3

1 + |z|2

If z ∈ Ur \ UR then there exists an s ∈ S and/or an s′ ∈ S′ such that |z − s| ≤ R(s) and/or

|z − s′| ≤ R(s′). Then, for all j ∈ J

|wj(z)− w′j(z)| ≤ const εK2

(
r(s)

|z − s|2 +
r′(s′)
|z − s′|2

)
+ const

εK3

1 + |z|2

b) For j /∈ J
∣∣∣∣wj(z)−

1

2πi

1

z − s1(j)
+

1

2πi

1

z − s2(j)

∣∣∣∣ ≤ const
εK2

1 + |z|2

if |z − s| ≥ R(s) for all s ∈ S. If for some s ∈ S, 4r(s) ≤ |z − s| ≤ R(s) then

∣∣∣∣wj(z)−
1

2πi

1

z − s1(j)
+

1

2πi

1

z − s2(j)

∣∣∣∣ ≤ const εK

(
r(s)

|z − s|2
)

+ const
εK2

1 + |z|2

Similar bounds apply to w′j(z).

c) For i ∈ J , j /∈ J

∣∣∣∣
φ∗i (ωj)
dz1/z1

∣∣∣∣ ≤ const εK(|z1|+ |z2|) if |z1|, |z2| ≤ 1/4

∣∣∣∣
φ∗iF

∗ω′j
dz1/z1

∣∣∣∣ ≤ const εK(|z1|+ |z2|) if |z1|, |z2| ≤ 1/4
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Proof: a) By Lemma 6.9.c and Proposition 6.5

|wj(z)− w′j(z)| ≤
∑

k∈J
µ=1,2

|wj,sµ(j)(z)− w′j,sµ(j)(z)|+
∑

k/∈J
µ=1,2

|wj,sµ(j)(z)|+
∑

k/∈J
µ=1,2

|w′j,s′µ(j)(z)|

≤
∑

k∈J
µ=1,2

3rµ(k)

|z − sµ(k)|2
∥∥∥
(
ωj − F ∗ω′j

)∣∣
Y ◦◦
k

∥∥∥
2

+
∑

k/∈J
µ=1,2

3rµ(k)

|z − sµ(k)|2 Ωjk

+
∑

k/∈J
µ=1,2

3r′µ(k)

|z − s′µ(k)|2 Ω′jk

≤ const εK2

(∑

s∈S

r(s)

|z − s|2 +
∑

s′∈S′

r′(s′)
|z − s′|2

)

by Lemmas 20.6 and 20.7. As in (6.3), but using part (iii) of Definition 20.2,

∑

s∈S

r(s)

|z − s|2 +
∑

s′∈S′

r′(s′)
|z − s′|2 ≤ const

K

1 + |z|2

The claim follows.

b) follows from Proposition 6.5 and Lemma 20.7.

c) The first line follows from Lemma 6.8, applied to the scaled handleH(4ti), and Lemma 20.7.

To prove the second line observe that φ∗iF
∗ω′j = g′(u1)

(
a(z1)dz1z1 + b(z1)dz̄1z̄1

)
with g′(u1)

estimated in (20.6a). Definition 20.2 (i) and Definition 20.1 provide bounds on a(z1) and

b(z1).

Proof of Theorem 20.4 - simple single sheet case: We now prove Theorem 20.4 under

the additional hypotheses that Xcom = X ′com = ∅ and ‖A‖, ‖A′‖ < 1
4
. Part (a) has been

proven in (20.5). For part (b), observe that, for each i ∈ J , the cycle Bi can be represented

as the union of

hi = φi
({

(z1, z2) ∈ H(ti)
∣∣ z1 > 0

})
∩ Y (◦)

i

and Φ(bi), where bi is a path in
{
z ∈ C

∣∣ |z−s| ≥ R(s) for s ∈ S, |z′−s′| ≥ R
′(s′) for s′ ∈ S′

}

with the property that

length
{
z ∈ bi

∣∣ |z| ≤ ρ
}
≤ const ρ for all ρ > 0

By the first statement of Lemma 20.8(a)
∣∣∣∣∣

∫

Φ(bi)

ωj −
∫

Φ′(bi)
ω′j

∣∣∣∣∣ ≤
∫

bi

∣∣(wj(z)− w′j(z)
)
dz
∣∣ ≤ const εK3
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By the second statement of Lemma 20.8(a)

∣∣∣∣∣

∫

hi\Y (◦◦)
i

(ωj − F ∗ω′j)
∣∣∣∣∣ ≤ const εK2

2∑

µ=1

∫ Rµ(j)

rµ(j)

rµ(j)
dt

t2
+ const εK3 ≤ const εK3

Furthermore, by the pointwise estimate of Lemma 20.6 and the estimate on Dj
i of Lemma

20.7 ∣∣∣∣∣

∫

hi∩Y (◦◦)
i

(ωj − F ∗ω′j)
∣∣∣∣∣ ≤ const εK2

This proves part (b) of the Theorem. Part (c) is proven in the same way.

We prove the bound of part (d) on |Wj −W ′j |, j ∈ J . The remaining bounds are

proven similarly. Recall from Proposition 19.1 and (19.2) that

Wj =
∑

s∈S
w

(4)
j,s

where

w
(n)
j,s = − i1−n2πi

∫

|ζ−s|=r(s)
ζn−1wj(ζ)dζ

For j ∈ J write

Wj −W ′j =
∑

i∈J
µ=1,2

[
w

(4)
j,sµ(i)

− w′(4)
j,sµ(i)

]
+
∑

i/∈J
µ=1,2

w
(4)
j,sµ(i)

−
∑

i/∈J
µ=1,2

w
′(4)
j,s′

µ(i)

If s = sµ(i) for some i ∈ J then

∣∣∣w(n)
j,s − w

′(n)
j,s

∣∣∣ ≤ 1
2π

∣∣∣∣∣

∫

|ζ−s|=4r(s)

ζn−1
[
wj(ζ)− w′j(ζ)

]
dζ

∣∣∣∣∣

= 1
2π

∣∣∣∣∣

∫

|ζ−s|=4r(s)

[
ζn−1 − sn−1

] [
wj(ζ)− w′j(ζ)

]
dζ

∣∣∣∣∣

≤ r(s)(n− 1)[|s|+ 4r(s)]n−2

∫

|ζ−s|=4r(s)

∣∣wj(ζ)− w′j(ζ)
∣∣ |dζ|

≤ constnεK
3r(s)|s|n−2

∫

|ζ−s|=4r(s)

(
r(s)

|ζ − s|2 +
1

1 + |ζ|2
)
|dζ|

≤ constn εK
3 r(s)|s|n−2

[
1 + r(s)|s|−2

]

≤ constn εK
3 r(s)|s|n−2
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by Lemma 20.8(a). Similarly, by Lemma 6.9(a) followed by Lemma 20.7 if s = sµ(i) and

s′ = s′µ(i) for i /∈ J then

∣∣∣w(n)
j,s

∣∣∣ ≤ 1
2π

∣∣∣∣∣

∫

|ζ−s|=r(s)
ζn−1wj(ζ)dζ

∣∣∣∣∣

= 1
2π

∣∣∣∣∣

∫

|ζ−s|=r(s)

[
ζn−1 − sn−1

]
wj(ζ)dζ

∣∣∣∣∣

≤
∥∥∥
[
ζn−1 − sn−1

]
wj(ζ)

∣∣
r<|ζ−s|<2r

∥∥∥
2

≤ constn r(s)|s|n−2Ωji

≤ constn εK r(s)|s|n−2

and ∣∣∣w′(n)
j,s′

∣∣∣ ≤ constn εK r(s)|s|n−2

Consequently

|Wj −W ′j | ≤ const εK3
[∑

r(s)|s|2 +
∑

r′(s′)|s′|2
]
≤ const εK4

by (GH5) part (ii) and Definition 20.2 part (iii).

We now wish to prove Theorem 20.4, allowing Xcom to be nonempty and deleting

the simplifying assumption ‖A‖ < 1/4. We start with three general Lemmata.

Lemma 20.9 Let U : S → S′ be a quasiconformal diffeomorphism with Beltrami coefficient

at most ε < 1. Let ω′ be any form on S′. Then

‖U∗ω′‖L2(S) ≤
√

1+ε
1−ε‖ω′‖L2(S′)

Write U∗ω′ = α+ β with α of type (1, 0) and β of type (0, 1). Then, if ω′ is of type (1, 0),

‖β‖L2(S) ≤ ε√
1−ε2 ‖ω

′‖L2(S′)

Proof: Locally, let ω′ = a(u)du+ b(u)dū. Then

U∗ω′ ∧ ∗U∗ω′ = i
{[
|a|2 + |b|2

][
|uz|2 + |uz̄|2

]
+ 4Re [ab̄uzuz̄]

}
dz ∧ dz̄

U∗
(
ω′ ∧ ∗ω′

)
= i
[
|a|2 + |b|2

][
|uz|2 − |uz̄|2

]
dz ∧ dz̄
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The first claim follows from

[
|a|2 + |b|2

][
|uz|2 − |uz̄|2

]
≥
[
|a|2 + |b|2

]
|uz|2(1− ε2)

[
|a|2 + |b|2

][
|uz|2 + |uz̄|2

]
+ 4|ab̄uzuz̄| ≤

[
|a|2 + |b|2

]
|uz|2(1 + ε2 + 2ε)

For the second observe that

β ∧ ∗β = i|auz̄|2dz ∧ dz̄ =
∣∣∣uz̄uz
∣∣∣
2
[
1−

∣∣∣uz̄uz
∣∣∣
2
]−1

U∗
(
ω′ ∧ ∗ω′

)

Lemma 20.10 Let S be a Riemann surface with boundary ∂S and canonical homology basis

A1, · · · , Ag, B1, · · · , Bg. Suppose that α and β are differential forms of type (1, 0) and (0, 1)

respectively on S such that

d(α+ β) = 0∫

Ai

(α+ β) = 0 for i = 1, · · · , g
∫

∆

(α+ β) = 0 for all components ∆ of ∂S

Then

‖α+ β‖L2(S) ≤
√

2 ‖β‖L2(S) +

∫

∂S

|α+ β|

Proof: Put

ω = α+ β

We have
∗ω = ∗α+ ∗β = −iα+ iβ

∗ω̄ = iᾱ− iβ̄ = iω̄ − 2iβ̄

Hence

‖ω‖2L2(S) =

∫

S

ω ∧ ∗ω̄ = i

∫

S

ω ∧ ω̄ − 2i

∫

S

ω ∧ β̄

We apply Lemma 2.8, the Riemann period relations, with ω = ω and η = ω̄ to bound the

first term. Both ω and η are closed. By hypothesis the integral of ω around each component

of ∂S is zero. Therefore there is a single-valued C∞ function f , defined on a neighbourhood
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of ∂S, such that ω = df on that neighbourhood and f has a zero on each component of ∂S.

Hence by Lemma 2.8 and the vanishing of the A periods,

∫

S

ω ∧ ω̄ =

g∑

k=1

(∫

Ak

ω

∫

Bk

ω̄ −
∫

Bk

ω

∫

Ak

ω̄
)

+

∫

∂S

fω̄ =

∫

∂S

fω̄

Consequently ∣∣∣∣
∫

S

ω ∧ ω̄
∣∣∣∣ ≤

[∫

∂S

|ω|
]2

Since α ∧ β̄ = 0 we have

−i
∫

S

ω ∧ β̄ = −i
∫

S

β ∧ β̄ =

∫

S

β ∧ ∗β̄ = ‖β‖2L2(S)

Therefore

‖ω‖2L2(S) ≤
[∫

∂S

|ω|
]2

+ 2 ‖β‖2L2(S)

which implies that

‖ω‖L2(S) ≤
√

2 ‖β‖L2(S) +

∫

∂S

|ω|

Lemma 20.11 Let U be either IR/LZZ × [0, δ] or [0, L] × [0, δ] with the natural complex

structures. Denote by Ut the subset of U consisting of those points whose second component

is t. Let u : U → X be a quasiconformal diffeomorphism into a Riemann surface X whose

Beltrami coefficient is bounded by µ < 1. Let ω be a closed one form on u(U). In the event

that U = [0, L] × [0, δ], assume that ω(u(0,t))
dt and ω(u(L,t))

dt are bounded in absolute value by

CB. Then
∣∣∣∣∣

∫

u(U0)

ω

∣∣∣∣∣ ≤
√

L
δ

√
1+µ
1−µ

∥∥∥ω
∣∣
u(U)

∥∥∥
2

+

{
0 if U = IR/LZZ× [0, δ]
δCB if U = [0, L]× [0, δ]

Proof: Let ω′ = u∗ω = S(s, t)ds+T (s, t)dt be the pull-back of ω by u. By Stokes’ Theorem,

for every τ ∈ [0, δ]

∫

u(U0)

ω =

∫

U0

ω′

=

∫

{0}×[0,τ ]

ω′ +
∫

Uτ
ω′ −

∫

{L}×[0,τ ]

ω′

=

∫ L

0

S(s, τ) ds+

∫ τ

0

T (0, t) dt−
∫ τ

0

T (L, t) dt
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Averaging over τ

∫

u(U0)

ω =
1

δ

∫ δ

0

∫ L

0

S(s, τ) ds dτ +
1

δ

∫ δ

0

[∫ τ

0

T (0, t) dt−
∫ τ

0

T (L, t) dt

]
dτ

If U = IR/LZZ× [0, δ], the second term is exactly zero, while if U = [0, L]× [0, δ], it is bounded

by

1

δ

∫ δ

0

∫ τ

0

2CB dt dτ =
1

δ

∫ δ

0

2CBτ dτ = CBδ

By the Cauchy-Schwarz inequality the first term is bounded by

1

δ

∫ δ

0

∫ L

0

S(s, τ) ds dτ ≤ 1

δ
‖S‖L2(U)

√
Lδ

≤
√
L/δ‖ω′‖L2(U)

≤
√
L/δ

√
1+µ
1−µ‖ω‖L2(u(U))

by Lemma 20.9.

For j ∈ Jc = J ∪ {1. · · · , g} and i ∈ J , define

M j
i =

∥∥∥(ωj − F ∗ω′j)
∣∣
Y ◦◦
i

∥∥∥
2

M j
com =

∥∥(wj − w′j)dz
∣∣
T

∥∥
2

Dj
Γ = sup

z∈Γ
|wj(z)− w′j(z)|

Lemma 20.12

‖Ωj‖2, ‖Ω′j‖2 ≤ constK2 for all j ≥ 1

‖ωj‖L2(Xcom), ‖ω′j‖L2(X′com) ≤ constK2 for all j ≥ 1

‖Ωj‖2, ‖Ω′j‖2 ≤ const εK for j /∈ Jc∥∥∥
(
Ωji
)
i/∈J

∥∥∥
2
,
∥∥∥
(
Ω′ji
)
i/∈J

∥∥∥
2
≤ const εK2 for all j ≥ 1

‖M j‖2 ≤ const εK3 for j ∈ Jc
∥∥(ωj − F ∗ω′j

)∣∣
X(Γ)

∥∥
2
≤ const εK3 for j ∈ Jc
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Proof: We first prove the first two lines for 1 ≤ j ≤ g. Let uj be the quasiconformal map

of Definition 20.2 part (vi). By the Riemann period relations and Lemma 20.11

‖ωj‖2 = Im

∫

Bj

ωj ≤
√

Lj
δj

√
3/2
1/2
‖ωj‖ ≤

√
3K‖ωj‖

Therefore

‖ωj‖ ≤
√

3K

which give the first two lines for ωj . To get the first two lines for ω′j , it suffices to replace

ωj by ω′j , Bj by B′j and uj by uj ◦ F in the above argument. Note that, since uj and F

are quasiconformal with Beltrami coefficents at most 1
2

and 1
4

respectively, the composition

uj ◦ F is quasiconformal with Beltrami coefficent at most 6
7 .

Next we prove the first three lines for j ≥ g+ 1. The bounds on the first line follow

from (6.24) and Definition 20.2 parts (iii,v) via

‖Ω̄j‖ ≤ |Ω̃jΓ|+ 2
(
‖Ω̃j‖+

∥∥(Aijℵj
)
i>g

∥∥
)

≤ K + 2(K +K2) ≤ 4K2

‖Ωj‖ ≤ 3|Ω̃jΓ|+ 2
(
‖Ω̃j‖+

∥∥(Aijℵj
)
i>g

∥∥
)

≤ 3K + 2(K +K2) ≤ 6K2

and the analogous bounds on the primed quantities. We have used ‖Ω̃j‖ =
√
Oj ≤ K. The

third line follows similarly using part (iv) of Definition 20.2.

To get the second line we apply (6.22) to give

‖ωj‖L2(X com) ≤ ‖ωj‖L2(X(Γ))

≤ |Ω̃jΓ|+ 1
2‖Ωj‖

≤ K + 4K2 ≤ 5K2

We now move on to the fourth line for j ∈ Jc. By (6.18), for j ∈ J and the

analogous inequality for 1 ≤ j ≤ g
∥∥∥
(
Ωji
)
i/∈J

∥∥∥
2
≤
∥∥∥
(
Ai,k

)
i/∈J
k∈J

∥∥∥
∥∥∥
(
Ωjk
)
k∈J

∥∥∥
2

+
∥∥∥
(
Ai,k

)
i/∈J
k/∈J

∥∥∥
∥∥∥
(
Ωjk
)
k/∈J

∥∥∥
2

+

{
0 if 1 ≤ j ≤ g∥∥∥
(
Ω̃ji
)
i/∈J

∥∥∥
2

+ |ℵj|
∥∥∥
(
Ai,j

)
i/∈J

∥∥∥
2

if j ∈ J

≤ 8εK2 + 1
4

∥∥∥
(
Ωjk
)
k 6∈J

∥∥∥
2

+ ε+Kε
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Here i, k /∈ J includes i, k = com. For the second term we used the fact that i /∈ J implies

Y
(◦)
i ∩X(Γ) = ∅. The desired result follows.

That just leaves the last two lines. Recall that, by (20.1) of Lemma 20.6

M j
i ≤ Dj

i + ε constK
(

Ω′ji + δij

)
(20.11)

for all i ∈ J , j ∈ Jc. As in (6.16), (6.18) and (20.10)

Dj
i ≤ Ai,comM

j
com +

∑

k∈J
Ai,kM

j
k +

∑

k/∈J
Ai,kΩjk +

∑

k/∈J
A′i,kΩ′jk (20.12)

Dj
Γ ≤ AΓ,comM

j
com +

∑

k∈J
AΓ,kM

j
k +

∑

k/∈J
AΓ,kΩjk +

∑

k/∈J
A′Γ,kΩ′jk (20.13)

where we recall that

Ai,com = sup
µ=1,2

4πγRµ(i)
dist (sµ(i),T )2

and define
AΓ,com = γ

dist (Γ,T )2

AΓ,k = sup
µ=1,2

6rµ(k)
dist (sµ(k),Γ)2

As in (6.20)

(
M j

com

)2
+

∑

i≥g+1

Y
(◦)
i
⊂X(Γ)

(
M j
i

)2

≤
∥∥(ωj − F ∗ω′j

)∣∣
X(Γ)

∥∥2

2

Let β be the (0, 1) part of ωj −F ∗ω′j . It is the same as the (0, 1) part of −F ∗ω′j and vanishes

on Xreg ∩X0. By Lemma 20.10, Lemma 20.9 and Lemma 20.6

∥∥(ωj − F ∗ω′j
)∣∣
X(Γ)

∥∥
2
≤ 2
∥∥β
∥∥
L2(X(Γ))

+

∫

Γ

|wj − w′j | |dz|

≤ 2

[∥∥β
∥∥2

L2(Xcom)
+

∑

i≥g+1

Y
(◦)
i
⊂X(Γ)

∥∥β
∥∥2

L2(Y
(◦)
i

)

]1/2

+

∫

Γ

|wj − w′j | |dz|

≤ const ε

[∥∥ω′j
∥∥2

L2(X′com)
+

∑

i≥g+1

Y
′(◦)
i
⊂X′(Γ)

(
Ω′ji + δij

)2
]1/2

+ length (Γ)Dj
Γ

≤ length(Γ)Dj
Γ + const εK2 (20.14)

by the first two lines of the current Lemma.
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As in §6, we use V to denote the vector having components Vcom and Vi with

i ≥ g+1, Y
(◦)
i ⊂ X(Γ) and V̄ to denote the vector having components Vi with i ∈ J , Y ′(◦)i ∩

X(Γ) = ∅. In this notation, the conclusion of the last paragraph is that

‖M j‖ ≤ length(Γ)Dj
Γ + const εK2

By (20.11) and the first line of the current Lemma

‖M̄ j‖ ≤ ‖D̄j‖+ const εK3

Definition 20.2 (v) implies that ‖AV ‖ ≤ 1
4‖V ‖. So, by (20.12) and (20.13)

‖D̄j‖ ≤ 1
4‖M j‖+ const εK3

length (Γ)Dj
Γ ≤ 1

2
‖M j‖+ const εK2

Hence
‖M j‖ ≤ const εK3

∥∥(ωj − F ∗ω′j
)∣∣
X(Γ)

∥∥
2
≤ const εK3

Lemma 20.13

a) Define

UR =
{
z ∈ Φ−1(Xreg)

∣∣ dist(z,T )2

1+|z|2 ≥ γ
K and |z − s| ≥ R(s), |z − s′| ≥ R(s′) ∀ s ∈ S, s′ ∈ S′

}

Ur =
{
z ∈ Φ−1(Xreg)

∣∣ dist(z,T )2

1+|z|2 ≥ γ
K and |z − s| ≥ 4r(s), |z − s′| ≥ 4r(s′) ∀ s ∈ S, s′ ∈ S′

}

There is a universal constant independent of X,X ′ etc. such that for all j ∈ Jc, z ∈ UR

|wj(z)− w′j(z)| ≤ const
εK4

1 + |z|2

If z ∈ Ur \ UR then there exists an s ∈ S and/or an s′ ∈ S′ such that |z − s| ≤ R(s) and/or

|z − s′| ≤ R(s′). Then, for all j ∈ Jc

|wj(z)− w′j(z)| ≤ const εK3

(
r(s)

|z − s|2 +
r′(s′)
|z − s′|2

)
+ const

εK4

1 + |z|2

b) For j /∈ Jc ∣∣∣∣wj(z)−
1

2πi

1

z − s1(j)
+

1

2πi

1

z − s2(j)

∣∣∣∣ ≤ const
εK2

1 + |z|2
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if dist(z,T )2

1+|z|2 ≥ γ
K

and |z − s| ≥ R(s) for all s ∈ S. If for some s ∈ S, 4r(s) ≤ |z − s| ≤ R(s)

then
∣∣∣∣wj(z)−

1

2πi

1

z − s1(j)
+

1

2πi

1

z − s2(j)

∣∣∣∣ ≤ const εK

(
r(s)

|z − s|2
)

+ const
εK2

1 + |z|2

Similar bounds apply to w′j(z).

c) For i ∈ J , j /∈ Jc
∣∣∣∣
φ∗i (ωj)
dz1/z1

∣∣∣∣ ≤ const εK (|z1|+ |z2|) if |z1|, |z2| ≤ 1/4

∣∣∣∣
φ∗iF

∗ω′j
dz1/z1

∣∣∣∣ ≤ const εK (|z1|+ |z2|) if |z1|, |z2| ≤ 1/4

Proof: a) By Lemma 6.9.c and Proposition 6.12

|wj(z)− w′j(z)| ≤ |wj,com(z)− w′j,com(z)|+
∑

k∈J
µ=1,2

|wj,sµ(j)(z)− w′j,sµ(j)(z)|

+
∑

k/∈J
µ=1,2

|wj,sµ(j)(z)|+
∑

k/∈J
µ=1,2

|w′j,s′µ(j)(z)|

≤ γ

dist(z, T )2
M j

com +
∑

k∈J
µ=1,2

3rµ(k)

|z − sµ(k)|2M
j
k

+
∑

k/∈J
µ=1,2

3rµ(k)

|z − sµ(k)|2 Ωjk +
∑

k/∈J
µ=1,2

3r′µ(k)

|z − s′µ(k)|2 Ω′jk

≤ const εK3

(
γ

dist(z, T )2
+
∑

s∈S

r(s)

|z − s|2 +
∑

s′∈S′

r′(s′)
|z − s′|2

)

by Lemma 20.12. As in (6.3)

γ

dist(z, T )2
+
∑

s∈S

r(s)

|z − s|2 +
∑

s′∈S′

r′(s′)
|z − s′|2 ≤ const

K

1 + |z|2

The claim now follows from part (iii) of Definition 20.2.

b) follows from Proposition 6.12 and Lemma 20.12.

c) The first line follows from Lemma 6.8, applied to the scaled handle H(4ti), and

Lemma 20.12. To prove the second line observe that, in the notation of Lemma 20.6,

φ∗iF
∗ω′j = g′(u1)

(
a(z1)dz1z1 + b(z1)dz̄1z̄1

)
with g′(u1) estimated in (20.6a) and (20.4). Defi-

nition 20.2 (i) and Definition 20.1 provide bounds on a(z1) and b(z1).
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Proof of Theorem 20.4: Part (a) has been proven in (20.5). For part (b), first consider

i ∈ J . The cycle Bi can be represented as the union of hi ∪ Φ(bi) with
∑
i′<i ci,i′Ai′ where

hi = φi
({

(z1, z2) ∈ H(ti)
∣∣ z1 > 0

})
∩ Y (◦)

i

and bi is a path in UR with the property that

length
{
z ∈ bi

∣∣ |z| ≤ ρ
}
≤ const ρ for all ρ > 0

The integral of ωj − F ∗ω′j over each A–cycle Ai′ is zero. By the first statement of Lemma

20.13(a) ∣∣∣∣∣

∫

Φ(bi)

ωj −
∫

Φ′(bi)
ω′j

∣∣∣∣∣ ≤
∫

bi

∣∣(wj(z)− w′j(z)
)
dz
∣∣ ≤ const εK4

By the second statement of Lemma 20.13(a)

∣∣∣∣∣

∫

hi\Y (◦◦)
i

(ωj − F ∗ω′j)
∣∣∣∣∣ ≤ const εK3

2∑

µ=1

∫ Rµ(j)

rµ(j)

rµ(j)
dt

t2
+ const εK4 ≤ const εK4

Furthermore, by the pointwise estimate of Lemma 20.6, the bound on Dj
i arising from Lemma

20.13(a) and the estimate on Ω′ji of Lemma 20.12,

∣∣∣∣∣

∫

hi∩Y (◦◦)
i

(ωj − F ∗ω′j)
∣∣∣∣∣ ≤ const εK4

This proves part (b) of the Theorem when i ∈ J .

Now fix any 1 ≤ i ≤ g. By Definition 20.2 part (vi), there exist Li, δi obeying√
Li/δi ≤ K and a quasicomformal diffeomorphism ui, with Beltrami coefficient bounded by

1/2, from U = IR/LiZZ × [0, δi] into Xcom with ui(U0) = Bi. Then, by Lemmas 20.11 and

20.12 ∣∣∣∣
∫

Bi

ωj − F ∗ω′j
∣∣∣∣ ≤

√
Li
δi

√
3/2
1/2εK

3 ≤ const εK4

We now prove part (c). Recall that, by part (i) and the first bullet of part (v) of

Definition 20.2 and by Definition 20.1, there is a cover

Xcom ∪ Φ
{
z ∈ G

∣∣ dist(z,T )2

1+|z|2 ≤ γ
K

}
⊂

N⋃

i=1

Di ∪
r⋃

`=1

H` ⊂ X(Γ)

sets

{
(z1, z2) ∈ H(t`)

∣∣ (1− 1
K

)−1
t` ≤ |z1| ≤ 1− 1

K

}
⊂Ŷ` ⊂ H(t`) 1 ≤ ` ≤ r

{
(z1, z2) ∈ H(t′`)

∣∣ (1− 1
K

)−1
t′` ≤ |z1| ≤ 1− 1

K

}
⊂Ŷ ′` ⊂ H(t′`) 1 ≤ ` ≤ r
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and biholomorphic maps

Φi :
{
z ∈ C

∣∣ |z| < 1
}
−→ Di 1 ≤ i ≤ N

ψ` : H(t`) −→ H` 1 ≤ ` ≤ r

and a corresponding family of coordinate patches containing X ′com
such that

Φ′i
−1 ◦ F ◦ Φi is biholomorphic 1 ≤ i ≤ N

ψ′`
−1 ◦ F ◦ ψ` � Ŷ` is K–quasiconformal of distortion at most ε 1 ≤ ` ≤ r

Furthermore we may choose this cover such that x1 is joined to by x2 by a curve that is a

union of a finite number (depending only on K) of pieces with the image under the universal

covering π of each piece being of one of the four following types:

• the image under some φk of a line segment in Yk

• the image under Φ of a line segment in UR

• the image under some Φi of a line segment in
{
z ∈ C

∣∣ |z| ≤ 1/2
}

• the image under some ψ` of a line segment in
{

(z1, z2) ∈ H(t`)
∣∣ |z1|, |z2| ≤ 1− 20

15K

}

Pieces of the first two types were treated in part (b).

Pieces of the third type are bounded using Lemma 6.9(a). Because F ◦ Φi is holo-

morphic on the unit disk, the pullback

Φ∗i
(
ωj − F ∗ω′j

)
= wi,j(z)dz

is a holomorphic form with L2 norm bounded by
∥∥(ωj −F ∗ω′j

)∣∣
X(Γ)

∥∥
2
≤ const εK3 . Hence,

by Lemma 6.9(a), |wi,j(z)| ≤ const εK3 on
{
z ∈ C

∣∣ |z| ≤ 1/2
}

and the integral of

Φ∗i
(
ωj − F ∗ω′j

)
along any line segment in

{
z ∈ C

∣∣ |z| ≤ 1/2
}

obeys a similar bound.

Pieces of the fourth type are bounded using a variant of Lemma 20.6 similarly to

pieces of the first type. By way of preparation we make some preliminary bounds. Because

F ◦ ψ` is holomorphic on |z1| > 1− 28
15K

and on |z2| > 1− 28
15K

, the pullback

ψ∗`
(
ωj − F ∗ω′j

)
= α`,j(z1)dz1

z1
+ β`,j(z1)dz̄1

z1

restricted to these two neighbourhoods is a holomorphic form (that is, β`,j = 0 and α`,j is

holomorphic) with L2 norm bounded by
∥∥(ωj − F ∗ω′j

)∣∣
X(Γ)

∥∥
2
≤ const εK3 . Define

D`,j ≡ sup
|z1|=1− 17

15K

|α`,j(z)|+ sup
|z2|=1− 17

15K

|α`,j(z)|

By the Cauchy integral formula, for |z1| = 1− 17
15K ,

α`,j(z1) = 1
2πi

∫

|ζ|=1− 16
15K

α`,j(ζ)
ζ−z1 dζ −

1
2πi

∫

|ζ|=1− 18
15K

α`,j(ζ)
ζ−z1 dζ
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By Lemma 6.9(a),

1
2πi

∫

|ζ|=1− 16
15K

α`,j(ζ)
ζ−z1 dζ ≤ const εK3/2

∥∥(ωj − F ∗ω′j
)∣∣
X(Γ)

∥∥
2
≤ const εK9/2

Applying a similar argument for the integral over |ζ| = 1 − 18
15K

and then twice more for

|z2| = 1− 17
15K

D`,j ≤ const εK9/2

As the image under ψ` of the circle |z1| =
√
t` is homologous to a finite linear combination

of the cycles Aj, 1 ≤ j ≤ g, we have that

∫

|z1|=
√
t`

ψ∗` (ωj − F ∗ω′j) = 0 for all j ≥ 1

∫

|z1|=
√
t`

ψ∗`ωj = 0 for all j > g

∣∣∣∣∣

∫

|z1|=
√
t`

ψ∗`ωj

∣∣∣∣∣ ≤ C
′
K for all 1 ≤ j ≤ g

In Lemma 20.12 it was proven that

∥∥ψ∗`ωj
∣∣
Ŷ`

∥∥
2
≤
∥∥ωj

∣∣
X(Γ)

∥∥
2
≤ constK2

Similarly, ∥∥(ψ′`)
∗ω′j
∣∣
Ŷ ′`

∥∥
2
≤ constK2

Using the above preliminary estimates, we have, as in Lemma 20.6,

|α`,j(z1)| ≤ K
(
|z1|+

∣∣ t`
z1

∣∣
)
D`,j + const εK5/2 1

t`

(∥∥(ψ′`)
∗ω′j
∣∣
Ŷ ′`

∥∥
2

+ C ′K
)

|β`,j(z1)| ≤ const εK3/2
(
|z1|+

∣∣ t`
z1

∣∣
)(∥∥(ψ′`)

∗ω′j
∣∣
Ŷ ′`

∥∥
2

+ C ′K
)

for |z1|,
∣∣ t`
z1

∣∣ ≤ 1− 20
15K . Thus, on this domain,

|α`,j(z1)| ≤ constK εK
11/2

|β`,j(z1)| ≤ constK εK
5/2

and part (c) follows.

We prove the bound of part (d) on |Wj −W ′j |, j ∈ J . The remaining bounds are

proven similarly. From Proposition 19.1 and (19.2,3) and the Cauchy integral formula we

have that

Wj = w
(4)
j,Γ +

∑

s∈S
s outside Γ

w
(4)
j,s

360



where

w
(n)
j,s = − i1−n2πi

∫

|ζ−s|=r(s)
ζn−1wj(ζ)dζ

w
(n)
j,Γ = − i1−n2πi

∫

Γ

ζn−1wj(ζ)dζ

The proof now continues as in the simple single sheet case.

Corollary 20.14 (Solutions of the KP equation) Let X = Xcom ∪ Xreg ∪ Xhan be a

marked Riemann surface that fulfils (GH1-GH5) with one regular sheet (m = 1). Assume

that

sup
j

(
τ1(j)2 + τ2(j)2

)
| ln tj |2 ln τ1(j)τ2(j)

tj
<∞

and that

lim
j→∞

1

| log tj |
(
s1(j)n − s2(j)n

)
= 0 for n = 1, 2, 3

Then there is a constant c such that for every e ∈ B

u(x1, x2, t) = −2∂
2

∂x2
2

ln θ
(
Ux2 + V x1 − 1

2Wt+ e
)

+ c (20.15)

solves the KP equation

(
ut − 3uux2

+ 1
2ux2x2x2

)
x2

+ 3
2ux1x1

= 0 (20.16)

whenever θ
(
Ux2 + V x1 − 1

2Wt+ e
)
6= 0.

Proof: Fix R > 0. By the holomorphicity of θ, it suffices to prove that there exists a

constant c such that the expression (20.15) satisfies the KP equation for all e, t, x1 and x2

obeying ‖Ux2‖, ‖V x1‖, ‖Wt‖, ‖e‖ < R.

We denote by R the period matrix Rij =
∫
Bi
ωj of X, so θ(z) = θ(z,R). For

J ⊂ {1, 2, · · ·} let θJ (z,R) be the truncated theta function

θJ (z,R) =
∑

n∈ZZ∞
nj=0 if j /∈J

e2πi〈z,n〉eπ〈n,Rn〉

Now fix ε > 0. Since the series for θ(z,R) converges uniformly on B5R there is N > 0 such

that for all J ⊂ IN with {1, 2, · · · , N} ⊂ J
∣∣θ(z,R)− θJ (z,R)

∣∣ < ε for z ∈ B5R
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Furthermore there is δ such that for {1, 2, · · · , N} ⊂ J

i)
∣∣θ(z,R)− θJ (z,R′)

∣∣ < ε for z ∈ B5R

if |Rij −R′ij | < δ for i, j ∈ J
i)
∣∣θ(z,R)− θJ (z′,R)

∣∣ < ε

if z, z′ ∈ B5R with |zj − z′j | < δ for j ∈ J

Now, by Proposition 20.3 and Theorem 20.4, there exist

a compact submanifold( with boundary) X0 in X containing the image of K
a marked Riemann surface X ′ = X ′com ∪X ′reg ∪X ′han

of genus genus(X0)

a compact submanifold X ′0 ⊂ X ′ and a diffeomorphism F : X0 → X ′0
such that

J =
{
j
∣∣ Yj ⊂ X0

}
contains {1, 2, · · · , N}

the period matrix R′ of X ′ fulfills |R′ij −Rij | < δ for all i, j ∈ J
‖Ux2 + V x1 − 1

2Wt − U ′x2 − V ′x1 + 1
2W

′t‖ < δ for all all t, x1 and x2 obeying

‖Ux2‖, ‖V x1‖, ‖Wt‖ < R.

Consequently, for any e, t, x1 and x2 obeying ‖Ux2‖, ‖V x1‖, ‖Wt‖ < R and ‖e‖ < 2R

∣∣θ
(
Ux2 + V x1 − 1

2Wt+ e;R
)
− θ
(
U ′x2 + V ′x1 − 1

2W
′t+ e;R′

)∣∣ < ε

By [MII, p3.239], for each such X ′ there is a constant c′ such that

u′(x1, x2, t) = −2∂
2

∂x2
2

ln θ
(
U ′x2 + V ′x1 − 1

2
W ′t+ e;R′

)

solves
(
u′t − 3u′u′x2

+ 1
2
u′x2x2x2

)
x2

+ 3
2
u′x1x1

= 3c′u′x2x2

We can choose a sequence of ε’s and approximating Riemann surfaces X ′ such that the

corresponding c′’s converge to some value c, which is possibly infinite. Then u′+ c′ converges

to u.

If c is finite, then, by the Cauchy integral formula, we get the desired equation.

Assume now that c is infinite. Then ux2x2
= 0. That is

∂4

∂x4
2

ln θ
(
e+ Ux2

)
= 0 for all e ∈ B

Therefore, for each e ∈ B, the line

{
e+ x2U

∣∣ x2 ∈ C
}
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is either completely contained in the theta-divisor Θ, or does not meet it at all. So, for all

smooth points e of Θ the vector U lies in the tangent space TeΘ of Θ at e. Therefore U also

lies in the kernel of the second derivative of θ at any such point. That is,

U ∈ kerH(e) forall e ∈ Θreg

As kerH(z) = 0 for z in a dense subset of Θreg (Corollary 9.9 and Lemma 9.4a), this implies

that U = 0. Then u is a constant and the KP equation is trivially satisfied.

Remark. In a similar way one can show that for any marked Riemann surface X = X com ∪
Xreg ∪Xhan that fulfils (GH1-GH5) with one regular sheet (m = 1) and with

sup
j

(
τ1(j)2 + τ2(j)2

)
| ln tj |2 ln τ1(j)τ2(j)

tj
<∞

any point x and any local coordinate ζ about this point, formula (20.15) gives a solution of

the KP equation for U, V,W defined by

ωj = Ujdζ + Vjζdζ + 1
2Wjζ

2dζ +O(ζ3) near x

as in the beginning of §19.
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§21 Real Periodic Potentials

The main result in this section is

Theorem 21.1 Let q ∈ L2(IR2/Γ) be a real analytic potential satisfying

∫ 2π

0

q(x1, x2) dx2 = 0 for all x1 ∈ IR

Assume that its associated heat curve H(q) is smooth. Let θ be the theta function of H(q) on

the torus

T = (IR/ZZ)∞

with metric

d(x,y) = inf
n∈ZZ∞

‖x− y − n‖

Then there exist e ∈ T and U, V, W ∈ IR∞ such that

u(x1, x2, t) = −2∂
2

∂x2
2

ln θ(e+ Ux2 + V x1 − 1
2Wt)

is a C∞ function on IR3 which solves the KP equation

ut = 3uux2
− 1

2ux2x2x2
− 3

2I(ux1x1
) (KP)

and satisfies the initial condition

u(x1, x2, 0) = q(x1, x2)

Here, as before,

I(u)(x1, x2) =

∫ x2

0

u(x1, s) ds− 1
2π

∫ 2π

0

dt

∫ t

0

u(x1, s) ds

Remark 21.2 In the event that H(q) is singular, the results of the Theorem apply to the

normalization of H(q).

Theorem 21.1 and Remark 21.2 show that the initial value problem for periodic (KP)

with real analytic initial data can be solved for all time. This had been shown by Krichever

[K] and refined by Bourgain [B]. In addition the Theorem gives qualitative information on

the solution. Namely, by Proposition 4.16,
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Corollary 21.3 Let q ∈ L2(IR2/Γ) be a real analytic potential for which
∫ 2π

0
q(x1, x2) dx2 =

0 for all x1 ∈ IR. Then the solution of (KP) with initial data q is almost periodic in time.

In preparation for the proof of Theorem 21.1, we investigate the structure of H(q)

for real potentials q. Clearly H(q) is invariant under the antiholomorphic involution

σ : C∗ × C∗ −→ C∗ × C∗

(ξ1, ξ2) 7−→ (ξ̄−1
1 , ξ̄−1

2 )

In [K, chI §2], Krichever describes the structure of H(q) in more detail.

Theorem 21.4 ([K, chI §2]) Let q ∈ L2(IR2/Γ) be a real analytic potential. Let

HA(q) =
{

(ξ1, ξ2) ∈ H(q)
∣∣ ξ1, ξ2 ∈ IR

}

Then HA(q) is the disjoint union of connected components a0 and ab, b ∈ Γ#, b2 > 0. For

each b ∈ Γ#, b2 > 0, either ab is diffeomorphic to a circle or ab is a point. In the latter case

ab is an ordinary double point of H(q). There is holomorphic map

K2 : H(q) \
( ⋃

b∈Γ#

b2>0

ab

)
−→ C

such that

H(q)

(ξ1, ξ2)

K2
C

k2

ξ2 C∗ e2πik2

commutes. K2 is biholomorphic to its image and K2(a0) is the imaginary axis. The image

of K2 is the complement of a set of disjoint “cuts” cb(q), b ∈ Γ#, b2 6= 0. Each cut cb(q) is

either a compact interval or a point on the line
{
k2 ∈ C

∣∣ Re k2 = − 1
2
b2
}

. The cut cb(q) is

the reflection of c−b(q) across the imaginary axis. For each fixed b2, the cuts cb(q) are ordered

along the line
{
k2 ∈ C

∣∣ Re k2 = − 1
2b2

}
according to b1.
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cbc−b

Let M(q) be the Riemann surface obtained from C by gluing, for each b ∈ Γ#, b2 > 0, the

cut cb to the cut c−b using translation by b2. Then K2 induces a biholomorphic map from

H(q) to M(q) that maps ab to the circle defined by cb.

Let

D =
{

(ξ1, ξ2) ∈ H(q)
∣∣∣ ∃ ψ(x1, x2) 6= 0 obeying
(
∂
∂x1
− ∂2

∂x2
2

)
ψ + qψ = 0

ψ(x1 + ω1, x2 + ω2) = ξ1ψ(x1, x2)

ψ(x1, x2 + 2π) = ξ2ψ(x1, x2)

and ψ(0, 0) = 0
}

Then D ⊂ ⋃ b∈Γ#

b2>0

ab and each ab contains exactly one point of D, counted with multiplicity.

Lemma 21.5 Let β ≥ 4. Assume that q ∈ L2(IRd/Γ) obeys q̂(0) = 0 and ‖|b|β q̂(b)‖1 < ∞.

Then there is a constant const , depending only on ‖|b|β q̂(b)‖1 such that for every d ∈ Γ#

with d2 6= 0 and |d| > const

|vd − sd| ≤ const
|d|β

|wd − sd| ≤ const
|d|β

where sd = φ̂d(0, 0) was defined in Theorem 14.2.

Proof: Define, as in the proof of Theorem 14.2,

x1(k1, k2) = P0(k)−D1,1(k1, k2) = ik1 + k2
2 −D1,1(k1, k2)

x2(k1, k2) = Pd(k)−D2,2(k1, k2) = i(k1 + d1) + (k2 + d2)2 −D2,2(k1, k2)
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The functions D(k)i,j were given in Proposition 14.5, where it was also shown that k ∈ T0∩Td
is on Ĥ(q) if and only if

x1(k)x2(k) = h(k)

where h(k) =
(
q̂(−d)−D2,1(k)

)(
q̂(d)−D1,2(k)

)

We shall shortly show that, for |d| ≥ const , the equation

∂
∂k1

(
x1(k)x2(k)− h(k)

)
= 0

has precisely two solutions in T0 ∩ Td. These are the points vd and wd.

In Proposition 14.5 and Lemmas 14.6 and 14.8, it was proven that, for k ∈ T0 ∩ Td
and m,n ≥ 0,

∣∣∣∣
∂n+m

∂nk1∂mk2
Di,j

∣∣∣∣ ≤





const

[1 + |zd|]2−m
if i = j

const
|d|m

[1 + |d|]β if i 6= j

with the constant depending only on n,m and ‖|b|β q̂(b)‖1. Consequently,

∂x1

∂k1
= i− ∂D1,1

∂k1
= i+ O

(
|zd|−2

)

∂x2

∂k1
= i− ∂D2,2

∂k1
= i+ O

(
|zd|−2

)

and
∂

∂k1
(x1x2 − h) =

(
i− ∂D2,2

∂k1

)
x1 +

(
i− ∂D1,1

∂k1

)
x2 −

∂h

∂k1

=
(
i+O

(
|zd|−2

))
x1 +

(
i+ O

(
|zd|−2

))
x2 + O

(
|d|−2β

)

First, substitute k1 = k1(x1, x2) and k2 = k2(x1, x2) in h(k),
∂D2,2

∂k1
,
∂D2,2

∂k1
and ∂h

∂k1

and think of
x1x2 = h

(
i− ∂D2,2

∂k1

)
x1 +

(
i− ∂D1,1

∂k1

)
x2 −

∂h

∂k1
= 0

as two equations in the two unknowns x1 and x2. As in the proof of Theorem 14.2
∣∣∣∣
∂

∂x1

∂D1,1

∂k1

∣∣∣∣ ≤
const

1 + |d2zd|∣∣∣∣
∂

∂x1

∂D2,2

∂k1

∣∣∣∣ ≤
const

1 + |d2zd|∣∣∣∣
∂h

∂x1

∣∣∣∣ ≤
const

1 + |d|2β−1

∣∣∣∣
∂

∂x1

∂h

∂k1

∣∣∣∣ ≤
const

1 + |d|2β−1
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so that, by the implicit function theorem, the second equation has a unique solution x2 =

x2(x1) and this solution obeys

x2 = −
i− ∂D2,2

∂k1

i− ∂D1,1

∂k1

x1 +
1

i− ∂D1,1

∂k1

∂h

∂k1

Substituting this in the first equation gives

x1 (ax1 + b)− h = 0

with

a = −
i− ∂D2,2

∂k1

i− ∂D1,1

∂k1

= −1 +O
(
|zd|−2

)

b =
1

i− ∂D1,1

∂k1

∂h

∂k1
= O

(
|d|−2β

)

h = O
(
|d|−2β

)

By Rouchés Theorem, this has the same number of solutions as −x2 = 0, namely two. The

solutions obey

x1 =
1

2a

{
−b±

√
b2 + 4ah

}

and hence

|x1|, |x2| ≤
const

[1 + |d|]β

In the proof of Theorem 14.2 we showed that the point sd obeyed

|x1|, |x2| ≤
1

[1 + |d|]2β−1

Hence, in terms of the coordinates (x1, x2), the points vd, wd are at most a distance const
[1+|d|]β

away from sd. Since we also showed in Theorem 14.2 that

∂k2

∂x1
= − 1

2d2

(
1l + O

(
|d2zd|−1

))

∂k2

∂x2
=

1

2d2

(
1l +O

(
|d2zd|−1

))

the corresponding distance in terms of k2 is at most const
[1+|d|]β
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We give a decomposition of H(q) based on Theorem 21.4 that is slightly different

from the one used in §15. Define, as in §15, for d ∈ Γ#, d2 > 0,

τd =
1

|zd|13
rd =

2

|d2z
14
d |

Rd =
1

6|d2zd|

and also set

t̂d =
|vd − wd|

9R2
d

Fix β sufficiently large. Then there is a constant ρ depending only on ‖|b|β q̂‖1 such that, for

d ∈ Γ#, d2 > 0, |d| > ρ, the circle of radius Rd and centre vd+wd
2 lies completely between the

ellipse with focii vd, wd and semiaxes |vd−wd|4

(
1√
t̂d
±
√
t̂d

)
and the ellipse with focii vd, wd

and semiaxes |vd−wd|4

(
1

2
√
t̂d
± 2
√
t̂d

)
. Also, if ρ is chosen large enough (depending only on

‖|b|β q̂‖1), then for |d| > ρ

• no two of the above ellipses intersect and

• the conditions of (GH2) are fulfilled.

wd
wd+vd

2

vd Rd

Choose a closed σ–invariant curve around the origin with inner and outer radii ρ and 2ρ that

avoids all of the ellipses above. Define Kcom
2 to be the interior of this curve and H(q)com to

be the closure of the inverse image of Kcom
2 under the map K2. Furthermore, let G be the

complement of the interior of Kcom
2 and the union over all d with vd+wd

2 /∈ Kcom
2 of the interior

of the ellipse with focii vd, wd and semiaxes |vd−wd|4

(
τd√
t̂d
± τd

√
t̂d

)
. Define Φ : G → H(q)

as the inverse of the map K2.

We set

td = t̂d if vd+wd
2

/∈ Kcom
2

If vd+wd
2 ∈ Kcom

2 choose td close to 1 such that the ellipses with with focii vd, wd and semiaxes
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|vd−wd|
4

(
1√
td
±√td

)
do not overlap. Define

Pd,1 : H(td) −→ C

(z1, z2) 7−→ vd+wd
2

+ vd−wd
4
√
td

(z1 + z2)

Pd,2 : H(td) −→ C

(z1, z2) 7−→ v−d+w−d
2 +

v−d−w−d
4
√
td

(z1 + z2)

Then Pd,1 maps the “centre of the handle”

{
(z1, z2) ∈ H(td)

∣∣ |z1| = |z2| =
√
td
}

as a two-fold cover on the line segment [vd, wd] and it maps the “edge of the handle”

{
(z1, z2) ∈ H(td)

∣∣ |z1| = 1
}

to the ellipse with focii vd and wd and semiaxes of lengths |vd−wd|4

(
1√
td
± √td

)
. Similarly,

Pd,2 maps the “centre of the handle” as a two-fold cover on the line segment [v−d, w−d] and

maps the “edge of the handle” to the ellipse with focii v−d and w−d and semiaxes of lengths
|vd−wd|

4

(
1√
td
±√td

)
.

Let σ̂ : C → C, k2 7→ −k̄2 be reflection in the imaginary axis. Then for each

(z1, z2) ∈ H(t)

Pd,2(z̄2, z̄1) = σ̂ ◦ Pd,1(z1, z2)

We define
Pd :H(td) \

{
(z1, z2) ∈ H(td)

∣∣ |z1| = |z2| =
√
td
}
−→ C

(z1, z2) 7−→
{
Pd,1(z1, z2) if |z1| >

√
td

Pd,2(z1, z2) if |z2| >
√
td

There is a unique holomorphic

φd : H(td) −→ H(q)

such that

H(td) \
{

(z1, z2) ∈ H(td)
∣∣ |z1| = |z2| =

√
td
} φd H(q) \ ∪cac

C

K2Pd

commutes. As in §15 one verifies that this decomposition satisfies (GH1-6).
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Theorem 21.4 also shows that the heat curves for real potentials all have the same

topological structure. To make this more precise, we fix a ball P in the space of real analytic

potentials q ∈ L2(IR2/Γ) with x2–average zero and construct the “universal family” H of

heat curves over P. More precisely, put

H =
{ (

(ξ1, ξ2); q
)
∈ C∗ × C∗ × P

∣∣ (ξ1, ξ2) ∈ H(q)
}

By Lemma 13.6 and Theorem 13.8, H is an analytic subvariety of C∗ × C∗ × P. Denote by

h : H → P the projection
(
(ξ1, ξ2); q

)
7→ q. The fiber h−1(q) is the heat curve H(q).

Fix ρ > 0 such that the decomposition constructed above works for all q ∈ P. We

can choose the decomposition of the heat curves H(q), q ∈ P in such a way that

i) the restriction of h to

Hcom =
{ (

(ξ1, ξ2); q
)
∈ H

∣∣ (ξ1, ξ2) ∈ H(q)com
}

is a locally trivial differentiable fibre bundle over the complement of

∆ =
{
q ∈ P

∣∣ H(q)com is singular
}

The the arithmetic genus of H(q)com is a constant over P. We denote this number

by g.

ii) the restriction of h to ∂Hcom is a trivial fibre bundle with fibres S1.

iii) for all real valued q ∈ P
• σ maps each of the pieces H(q)com,H(q)reg,H(q)han onto itself

• the fixed point set of σ on H(q)com consists of one interval a0 ∩H(q)com and g ovals

a1, · · · , ag which represent the cycles A1, · · · , Ag.
• Φ−1 ◦ σ ◦ Φ is the map z 7→ −z̄
• for b ∈ Γ] obeying b2 > 0, vb+wb

2
/∈ Kcom

2 the involution on the model handle H(tb)

is given by

φ−1
b ◦ σ ◦ φb : H(tb) −→ H(tb)

(z1, z2) 7−→ ( tbz̄1 ,
tb
z̄2

) = (z̄2, z̄1)

The fixed point set of σ on H(q) consists of the curve a0, the ovals a1, · · · , ag and the ovals

ab = φb
{

(z1, z2) ∈ H(tb)
∣∣ |z1| = |z2| = t

1/2
b

}

and is illustrated in the figures below
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H(q)com

a0

a1

ab

Yb

σ

σ

iIR

compact

piece
Φ−1

(
H(q)reg

)

Corollary 21.6 The Riemann period matrix R, for the heat curve H(q), is pure imaginary.

The vectors U, V,W are real.

Proof: The A–cycles are invariant under the antiholomorphic involution σ. This implies

that σ∗ωb = ω̄b. As σ is orientation reversing, σBc = −Bc. Hence

Rc,b =

∫

Bc

ωb =

∫

−Bc
ω̄b = −R̄c,b

By (19.2,3) and the fact that wb(−ξ̄) = −wb(ξ) we have that w
(n)
b,s +w

(n)
b,−s̄ and w

(n)
b,com are

real. The reality of U, V,W then follows from Proposition 19.1.

We denote by PIR the set of real valued potentials in P and set

Hr =
{ (

(ξ1, ξ2); q
)
∈ H

∣∣ (ξ1, ξ2) ∈ IR× IR, q ∈ PIR

}

The maps K2 of Theorem 21.4 define a map

K2 : h−1(PIR) \ Hr → C× PIR
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Furthermore, there are real analytic maps

vb, wb : PIR → C

such that Re vb = Rewb = − 1
2
b2, Im vb ≤ Imwb and cb(q) is the line segment joining vb(q) and

wb(q). Observe that, for q ∈ PIR, the heat curve H(q) is singular if and only if vb(q) = wb(q)

for some b. In this case vb(q) corresponds to an ordinary double point of H(q).

We define, for each b ∈ Γ# with b2 > 0,

Ab =
⋃

q∈PIR

ab(q)× {q}

This is a connected component of Hr and Ab ∩ H(q) = ab.

Now fix ê =
(
êb
)
b∈Γ#,b2>0

such that êb ∈ IR for all b and

lim
b→∞

êb
log |b| = 0

For each q ∈ P for which H(q) is smooth ê lies in the Banach space associated to H(q). If

q ∈ PIR and H(q) has an ordinary double point at ac then we consider ê as a vector in the

Banach space with the variable ec deleted. Put

N =
{ (

(ξ1, ξ2); q
)
∈ H

∣∣∣ θ
(
ê+

∫ (ξ1,ξ2)

∞ ~ω
)

= 0
}

By Theorem 7.11 the restriction of h to N ∩Hcom is a (possibly ramified) covering of degree

g over P \∆. We use this picture to prove

Proposition 21.7 Let q ∈ Cω(IR/Γ) be a real valued potential with
∫ 2π

0
q(x1, x2) dx2 = 0

and let ê ∈ B be a real vector in the Banach space

B =
{ (

eb
)
b∈Γ]

+

∣∣ lim
b→∞

eb
| ln tb| = 0

}

Then

θ
(
ê+

∫ x

∞
~ω
)

has exactly one zero x̂b on ab, b ∈ Γ#, b2 > 0 and no other zeroes.

Proof: Observe that θ(ê) 6= 0 by Corollary 21.6 and Proposition 4.14. We may assume that

q is in the ball P discussed above. Put

S =
{
q ∈ PIR \∆

∣∣∣ N ∩Ab ∩H(q) consists of exactly one

point for each b ∈ Γ#, b2 > 0 with ab ⊂ Hcom
}
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If q ∈ P is small, then by Theorem 7.11 (choosing H(q)com = ∅)

N ∩H(q) =
⋃

b∈Γ#

b2>0

N ∩ Yb

and, for each b ∈ Γ#, b2 > 0, N ∩ Yb consists of one point. If q is real-valued, the anti-

holomorphic involution σ maps N and Yb to themselves. Thus, if q is small and real-valued,

N ∩Yb is a fixed point of σ, i.e. N ∩Yb ⊂ ab. This shows that all sufficiently small q ∈ PIR \∆

are contained in S.

Now fix q ∈ PIR \ ∆. Let 0 = t0 < t1 < t2 < · · · < tm be the points in [0, 1] for

which tq ∈ ∆. Put tm+1 = 1.

Next we claim that if tq ∈ S for some t ∈ (tn−1, tn), 1 ≤ n ≤ m + 1 then tq ∈ S
for all t ∈ (tn−1, tn). The points of N ∩ H(tq)com move continuously with t. Suppose that

t ∈ (tn−1, tn) and b ∈ Γ#, b2 > 0 are such that the cardinality of Ab ∩ H(tq) ∩ N jumps.

In other words, suppose that as t′ passes through t, a point z(t′) ∈ H(t′q) ∩ N leaves Ab.
If t′ is such that z(t′) /∈ Ab then, by σ– invariance, σz(t′) is a second point of H(t′q) ∩ N
near Ab. So there must be at least one point of multiplicity two in Ab ∩ H(tq) ∩ N . This is

impossible at any point t with tq ∈ S because then all the g points of H(tq)com ∩ N lie in

different connected components of Hr(tq). This shows that
{
t ∈ (tn−1, tn)

∣∣ tq ∈ S
}

is both

open and closed in (tn−1, tn).

Next we show that if tq ∈ S for all t ∈ (tn−1, tn) for some 1 ≤ n ≤ m then there is

t′ ∈ (tn, tn+1) with t′q ∈ S. Since h : N ∩ Hcom → P is a g–fold covering over P \∆ there

exist holomorphic maps from the punctured disk Ḋ =
{
z ∈ C

∣∣ 0 < |z| < ε
}

fi : Ḋ −→ N ∩Hcom i = 1, · · · , k

and αi ∈ ZZ, αi ≥ 1 such that the diagrams

Ḋ
z

fi N ∩Hcom

(
tn + ε

(
z
ε

)αi)
q P

h

commute, α1 + · · ·+αk = g and N ∩Hcom ∩h−1
(
(tn+ Ḋ)q

)
is the union of the images of the

fi. The fi have removeable singularities at z = 0 and hence can be analytically continued to

maps

f̄i :
{
z ∈ C

∣∣ |z| < ε
}
−→ Hcom
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If αi ≥ 2 for some i then there would be b 6= c ∈ Γ# such that the points of Ab∩H(tq)∩N and

Ac ∩H(tq) ∩N would have the same limit as t→ tn−. This is impossible since Ab ∩H(tnq)

and Ac ∩ H(tnq) are separated. So k = g and α1 = · · · = αk = 1. Since the construction is

continuous and σ–invariant fi
(
(−ε, ε)

)
is completely contained in some Abi . By hypothesis,

for i 6= j, fi(−ε) and fj(−ε) lie in different components of Hr
(
(tn − ε)q

)
. Thus bi 6= bj for

i 6= j and (tn + ε)q ∈ S.

Combining the last three paragraphs, it follows that tq lies in S for 0 < t ≤ 1 and

t 6= t1, · · · , tm. In particular q ∈ S.

So θ
(
ê +

∫ x̂
∞~ω
)

has exactly one zero x̂b on each ab such that ab ⊂ H(q)com and no

other zeroes on H(q)com. For H(q) \ H(q)com the statement follows immediately from the

σ–invariance of N and Theorem 7.11.

Now, let q ∈ Cω(IR2/Γ) be a real potential with
∫ 2π

0
q(x1, x2)dx2 = 0 for which the

associated heat curve H(q) is smooth. Choose a real vector ê in the Banach space

B =
{
z ∈ C∞

∣∣ lim
b→∞

zb
| log tb| = 0

}

of H(q) and let x̂b be the zero of θ
(
ê +

∫ x
∞ ~ω

)
on the oval ab as in Proposition 21.7. Fur-

thermore, let yb ∈ ab be the unique point of D ∩ ab specified in Theorem 21.4. Then, for

j ≥ g + 1, ∣∣∣∣
∫ yb

x̂b

(φb)∗
(

1
2πi

dz1
z1

)∣∣∣∣ ≤ 1

so by Lemma 6.8 and Theorem 6.4, the sequence
(∫ yb

x̂b
ωb

)
is bounded. Therefore, (y1, y2, · · ·)

is a divisor of index zero in the sense of §8. We put

e = ê−
∑

b∈Γ#

b2>0

∫ yb

x̂b

~ω

Observe that, again by Corollary 21.6 and Proposition 4.14, θ(e) 6= 0. Then, by Proposition

8.5a, the points y1, y2, · · · are the zeroes of θ
(
e+

∫ x
∞ ~ω

)
on H(q).

Now define U, V,W as in §19. It follows from Theorem 4.6, Corollary 21.6, Propo-

sition 4.14 and (19.5) that

(x1, x2, t) 7−→ θ(e+ x2U + x1V − 1
2 tW )

is a nowhere vanishing C∞ function of (x1, x2, t). Hence

u(x1, x2, t) = −2∂
2

∂x2
2

ln θ(e+ Ux2 + V x1 − 1
2
Wt)

is well-defined everywhere. We can make our main result more precise.
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Theorem 21.1’ In the situation above, u(x1, x2, t) solves (KP) and

u(x1, x2, 0) = q(x1, x2)

In §20, we showed that there is a constant c such that u(x1, x2, t) + c is a solution

of the (KP) equation. It remains to verify the initial condition and c = 0.

We first verify that if u+ c obeys the initial condition then c = 0. So assume that

u+ c obeys the initial condition. Then, as
∫ 2π

0
q(x1, x2) dx2 = 0 we have

2πc = 2

∫ ξ+2π

ξ

d2

dx2
2

ln θ(e+ Ux2) dx2

= 2d
dx2

ln θ(e+ Ux2)
∣∣
x2=ξ+2π

− 2d
dx2

ln θ(e+ Ux2)
∣∣
x2=ξ

= 2ddx2
ln θ(e+2πU+Ux2)

θ(e+Ux2)

∣∣
x2=ξ

Hence

θ(e+ 2πU + Uξ) = ea+πcξθ(e+ Uξ)

Since, for real ξ, θ is real and bounded we have c = 0.

We have chosen the vector e by an algorithm that, in the finite genus case, ensures

that the initial condition is satisfied. To prove it in the general case, we approximate H(q) by

heat curves of finite genus. By convention, if θ′ is the θ function for an approximating finite

genus heat curve H(q′) and z ∈ B, then θ′(z) is evaluated by ignoring all components zb of z

for which a′b is a point. The following two theorems prove that approximation by finite genus

heat curves is possible.

Theorem 21.8 ([K, chI §3]) Let q ∈ Cω(IR2/Γ) be a real potential with
∫ 2π

0
q(x1, x2)dx2 =

0. Then, for any n > 0, ε > 0, there exists a real-valued finite zone potential q ′ with

∑

b∈Γ#

(1 + |b|n)|q̂(b)− q̂′(b)| < ε

Theorem 21.9 Fix a real q ∈ Cω(IR2/Γ). There is a constant K such that the following

holds. Let Z ⊂ H(q) be a compact subset containing H(q)com and let ε > 0. Then, there is

δ > 0 such that for all q′ with
∑

b |b|4|q̂(b)− q̂′(b)| < δ there are compact submanifolds with

boundary X0 ⊂ H(q), X ′0 ⊂ H(q′) with Z ⊂ X0 and a diffeomorphism F : X0 → X ′0 such

that

(i) (H(q), X0) is (ε,K)–close to (H(q′), X ′0) via F
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(ii) the antiholomorphic involutions preserve X0 and X ′0 and F is compatible with the

antiholomorphic involutions. In formulae: σ(X0) = X0, σ
′(X ′0) = X ′0 and F ◦ σ =

σ′ ◦ F
(iii) Let z′b ∈ a′b be the zeroes of θ′

(
e+

∫ z′
∞ ~ω′

)
on H(q′). Then

∣∣φ−1
b (zb)− φ−1

b

(
F−1(z′b)

)∣∣ ≤ ε
√
tb for all b such that Yb ⊂ X0

(iv) Let y′b ∈ a′b be the unique point of D′ ∩ a′b of Theorem 21.4. Then

∣∣φ−1
b (yb)− φ−1

b

(
F−1(y′b)

)∣∣ ≤ ε
√
tb for all b such that Yb ⊂ X0

ab√
tb

yb
F−1(y′b)F−1(z′b)

Before we prove Theorem 21.9, we use it to give the

Proof of Theorem 21.1’: Approximate q by finite zone potentials with respect to the

norm
∑
b |b|4|q̂(b)| . If q′ is an approximating potential as in Theorem 21.8, then

q′(x1, x2) = −∂2

∂x2
2

log θ′
(
e′ + U ′x2 + V ′x1

)

where

e′ = e−
∑

b

∫ y′b

z′
b

~ω′

since

θ′
(
e′ +

∫ y′

∞
~ω′
)

vanishes precisely on {y′b}. By Proposition 8.1, Proposition 6.16 and Theorem 21.9, e′ con-

verges to e in B. Furthermore by Theorem 21.9 (i) and Theorem 20.4 the theta function

θ′(e′ + U ′x2 + V ′x1)

converges to

θ(e+ Ux2 + V x1)

uniformly for all x1, x2 in any bounded set by the method of Corollary 20.14 (solutions of the

KP equation). By analyticity this proves that u(x1, x2, 0) = q(x1, x2). That u obeys the KP

equation was proven before.
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For the proof of Theorem 21.9 we need

Lemma 21.10 Let v, w, v′, w′ ∈ C, 0 < t, t′ < 1 and let

P1 : H(t) −→ C

(z1, z2) 7−→ v+w
2

+ 1
4
√
t
(v − w)(z1 + z2)

P ′1 : H(t′) −→ C

(z1, z2) 7−→ v′+w′

2 + 1
4
√
t′

(v′ − w′)(z1 + z2)

If t ≤
(

4
15×9

)2

set K = 2. Otherwise, let K > 2 obey t <
(
1− 28

15K

)2 (
1 + 1

K

)−4
. Assume

that |v − v′| < ε|v − w|, |w − w′| < ε|v − w| and |t− t′| < εt. There is a universal constant

const such that, if ε < 1
constK6 , then all of the following hold. There are

{
(z1, z2) ∈ H(t)

∣∣ t
1−constKε ≤ |z1| ≤ 1− constKε

}
⊂ Ŷ ⊂ H(t)

{
(z1, z2) ∈ H(t′)

∣∣ t′

1−constKε
≤ |z1| ≤ 1− constKε

}
⊂ Ŷ ′ ⊂ H(t′)

and a K–quasiconformal diffeomorphism f : Ŷ → Ŷ ′ of distortion at most constK5ε such

that

P ′1 ◦ f(z1, z2) = P1(z1, z2)

for (z1, z2) ∈ Ŷ with |z1| ≥ 1− 28
15K or |z2| ≥ 1− 28

15K

(
= 1

15 for K = 2
)

and

f(z1, z2) =

√
t′

t
(z1, z2)

for (z1, z2) ∈ Ŷ with |z1|, |z2| ≤
(
1− 28

15K

) (
1 + 1

K

)−1 (
= 2

45 for K = 2
)
. Furthermore

|f(z1, z2)− (z1, z2)| ≤ constKε

If the line through v and w coincides with that through v′ and w′ then f commutes with the

antiholomorphic involutions (z1, z2) 7→ (z̄2, z̄1) on H(t) and H(t′).

Remark. Be careful to distinguish between ε and ε. We shall use Lemma 21.10 to construct

K–quasiconformal diffeomorphisms of distortion at most ε in the proof of Theorem 21.9.

There, we first pick K. Then, for any desired ε > 0, we pick ε such that constK5ε < ε and

constKε < 1
K .

Proof: Let F̂t,K : C → [0, 1] be a C∞ function which takes the value one inside the

ellipse with focii ±
√
t and semiaxes 1

2

(
1− 28

15K

) (
1 + 1

K

)−1 ± t
2

(
1− 28

15K

)−1 (
1 + 1

K

)
, which
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vanishes outside the ellipse with focii ±
√
t and semiaxes 1

2

(
1− 28

15K

)
± t

2

(
1− 28

15K

)−1
, and

which is invariant under reflection about the real axis. Hence F̂t,K(z̄) = F̂t,K(z). Because

the distance between the two ellipses is

1
2

(
1− 28

15K

)
+ t

2

(
1− 28

15K

)−1 − 1
2

(
1− 28

15K

) (
1 + 1

K

)−1 − t
2

(
1− 28

15K

)−1 (
1 + 1

K

)

= 1
2

(
1− 28

15K

) (
1 + 1

K

)−1 1
K − t

2

(
1− 28

15K

)−1 1
K

≥ 1
2

(
1− 28

15K

) (
1 + 1

K

)−1 1
K
− 1

2

(
1− 28

15K

) (
1 + 1

K

)−4 1
K

≥ 1
2

1
15

2
3

1
K

[
1−

(
1 + 1

K

)−3
]

≥ const
K2

it is possible to construct F̂t,K so that

sup
x,y

∣∣∣∂αF̂t,K(x, y)
∣∣∣ ≤ const |α|

(
constK2

)|α|

Define F : C→ C by

F (z) = z +
[
v′+w′−v−w

2 + 2z−v−w
v−w

v′−w′−v+w
2

]
F̂t,K

(√
t 2z−v−w

v−w

)

We will define f in terms of F . Before doing so, we derive some properties of F . Observe

that, for each a >
√
t, the image under the map

(z1, z2) ∈ H(t) 7−→
√
t
2P1(z1, z2)− v − w

v − w =
z1 + z2

2
∈ C

of the circle |z1| = a and of the circle |z2| = a is the ellipse with focii ±
√
t and semiaxes

1
2

(
a± t

a

)
. Whenever F̂

(√
t 2z−v−w

v−w

)
= 1, and this includes all z = P1(z1, z2) with |z1|, |z2| =

t
|z1| ≤

(
1− 28

15K

) (
1 + 1

K

)−1
,

2F (z)− v′ − w′
v′ − w′ =

2z − v′ − w′
v′ − w′ +

v′ + w′ − v − w
v′ − w′ +

2z − v − w
v − w

v′ − w′ − v + w

v′ − w′

=
2z − v − w
v′ − w′ +

2z − v − w
v − w

v′ − w′ − v + w

v′ − w′

=
2z − v − w
v − w

Consequently, denoting
2z − v − w
v − w = s,

F
(
v+w

2 + s v−w2

)
= v′+w′

2 + s v
′−w′

2
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for all
√
t|s| inside the ellipse with focii ±

√
t and semiaxes 1

2

1− 28
15K

1 + 1
K

± t
2

1 + 1
K

1− 28
15K

. This

includes s = ±1, so
F (v) = v′

F (w) = w′

and F intertwines reflection about the line through v and w with reflection about the line

through v′ and w′, at least in a neighbourhood of the line segment joining v and w.

For general s

F
(
v+w

2 + s v−w2

)
= v′+w′

2 + s v
′−w′

2 +
[
v′+w′−v−w

2 + s v
′−w′−v+w

2

]
[F̂ (
√
t s)− 1]

= v′+w′

2
+ v′−w′

2

{
s+

[
v′+w′−v−w

v′−w′ + s
(

1− v−w
v′−w′

)]
[F̂ (
√
t s)− 1]

}

Note that, by hypothesis,
∣∣∣ v′+w′−v−wv−w

∣∣∣ ,
∣∣∣1− v′−w′

v−w

∣∣∣ ≤ 2ε and that, by construction,∣∣∣ dds F̂t,K(
√
ts)
∣∣∣ ≤ constK2. Hence, as long as we have chosen the const in ε ≤ 1

constK2

sufficiently large, the map from s to s +
[
v′+w′−v−w

v′−w′ + s
(

1− v−w
v′−w′

)]
[F̂t,K(

√
t s) − 1], and

consequently the map from z to F (z), is globally bijective. Furthermore, if the line through

v and w coincides with the line through v′ and w′ then v−w
v′−w′ and v′+w′−v−w

v′−w′ are real so that

F
(
v+w

2 + s̄ v−w2

)
= v′+w′

2 + v′−w′
2

{
s+

[
v′+w′−v−w

v′−w′ + s
(

1− v−w
v′−w′

)]
[F̂t,K(

√
t s)− 1]

}

and F commutes with relection in the line joining v and w.

Now define f : Ŷ =
{

(z1, z2) ∈ H(t)
∣∣ F ◦ P1(z1, z2) ∈ range P ′1

}
→ H(t′) so that

P ′1 ◦ f = F ◦ P1

P ′1 is a 2 to 1 map, so for each (z1, z2) in the domain of f we have two possible values of

(u1, u2) = f(z1, z2). Choose |u1| > |u2| if and only if |z1| > |z2|. Note the argument of F̂t,K

in F ◦ P1 is
√
t 2P1(z1,z2)−v−w

v−w = 1
2(z1 + z2) and that for |z1|, |z2| ≤

(
1− 28

15K

) (
1 + 1

K

)−1
we

have F̂t,K
(
z1+z2

2

)
= 1. For all such (z1, z2)

F ◦ P1(z1, z2) = v′+w′

2 + z1+z2
2
√
t
v′−w′

2

= P ′1

(√
t′

t
z1,

√
t′

t
z2

)

Thus

f(z1, z2) =

√
t′

t
(z1, z2)

on
{

(z1, z2) ∈ H(t)
∣∣ |z1|, |z2| ≤

(
1− 28

15K

) (
1 + 1

K

)−1 }
. On the other hand, in the event

that max{|z1|, |z2|} ≥
(
1− 28

15K

)
, we have F̂t,K

(
z1+z2

2

)
= 0. For all such (z1, z2)

P ′1 ◦ f = F ◦ P1 = P1
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Now write f(z1, z2) = (u1, u2). By definition

v′+w′

2 + v′−w′
2

u1+u2

2
√
t′

= v′+w′

2 + v′−w′
2

{
z1+z2
2
√
t

+
[
v′+w′−v−w

v′−w′ + z1+z2
2
√
t
v′−w′−v+w

v′−w′
]
[F̂ ( z1+z2

2 )− 1]
}

so that

u1 + u2 =

√
t′

t

{
z1 + z2 + 2

√
t
[
v′+w′−v−w

v′−w′ + z1+z2
2
√
t
v′−w′−v+w

v′−w′
]

[F̂t,K( z1+z2
2 )− 1]

}

=

√
t′

t

(
z1 + z2 + U

)

with

U = 2
√
t
[
v′+w′−v−w

v′−w′ + z1+z2
2
√
t
v′−w′−v+w

v′−w′
]

[F̂t,K( z1+z2
2 )− 1]

bounded by

|U | ≤ 6
√
t ε
(

1 + z1+z2
2
√
t

)
≤ 12ε

and, more generally, obeying

|∂αU | ≤ const|α| ε(constK2)|α|

We now solve for u1 in terms of z1

u1 + t′

u1
=

√
t′

t

(
z1 + t

z1
+ U

)

=⇒ u2
1 −

√
t′

t

(
z1 + t

z1
+ U

)
u1 + t′ = 0

=⇒ u1 = 1
2

{√
t′

t

(
z1 + t

z1
+ U

)
±
√

t′

t

(
z1 + t

z1
+ U

)2 − 4t′
}

=⇒ u1 = 1
2

{√
t′

t

(
z1 + t

z1
+ U

)
±
√

t′

t

√(
z1 − t

z1

)2
+ 2U

(
z1 + t

z1

)
+ U2

}

To satisfy |u1| > |u2| for |z1| > |z2|, we take the + sign, so

u1 =

√
t′

t

(
z1 + U

2

)
+

√
t′

t

(
z1 − t

z1

)
[√

1 +
[
2U
(
z1 + t

z1

)
+ U2

] (
z1 − t

z1

)−2 − 1

]

We already know that U = 0 if |z1|, |z2| ≤
(
1− 28

15K

) (
1 + 1

K

)−1
. Otherwise,

∣∣z1 − t
z1

∣∣ = |z1 − z2| ≥
(
1− 28

15K

) (
1 + 1

K

)−1 −
√
t

≥
(
1− 28

15K

) (
1 + 1

K

)−2 1
K ≥ 1

15
4
9

1
K

and

|u1 − z1| ≤ const ε+ constKU ≤ constKε
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Similarly |u2 − z2| ≤ constKε , so we have verified

∣∣f(z1, z2)− (z1, z2)
∣∣ ≤ constKε

Finally, we must show that f∗ du1

u1
satisfies the K–quasiconformal bounds corre-

sponding to distortion at most constK5ε. If |z1|, |z2| ≤
(
1− 28

15K

) (
1 + 1

K

)−1

f∗ du1

u1
= dz1

z1

On the other hand, if, for example, |z1| ≥
(
1− 28

15K

) (
1 + 1

K

)−1
then

f∗ du1

u1
= f∗ d(u1+u2)

u1−u2

=

√
t′

t
d(z1+z2)+dU

u1−u2

=

√
t′

t
z1−z2
u1−u2

d(z1+z2)
z1−z2 +

√
t′

t
dU

u1−u2

=

√
t′

t
z1−z2
u1−u2

dz1
z1

+

√
t′

t
dU

u1−u2

= adz1z1 + bdz̄1z̄1

where

a =

√
t′

t
z1−z2
u1−u2

+

√
t′

t

z1Uz1
u1−u2

b =

√
t′

t

z̄1Uz̄1
u1−u2

Hence it remains only to show that, when |z1| ≥
(
1− 28

15K

) (
1 + 1

K

)−1
, each of

a− 1 =

√
t′

t − 1 +

√
t′

t
z1−u1−z2+u2

u1−u2
+

√
t′

t

z1Uz1
u1−u2

b =

√
t′

t

z̄1Uz̄1
u1−u2

∂a
∂z̄1

=

√
t′

t (z1 − z2) ∂
∂z̄1

1
u1−u2

+

√
t′

t z1
∂
∂z̄1

Uz1
u1−u2

= −
√

t′

t
z1−z2

(u1−u2)2
∂
∂z̄1

(u1 − u2)−
√

t′

t

z1Uz1
(u1−u2)2

∂
∂z̄1

(u1 − u2) +

√
t′

t
z1

u1−u2
Uz1z̄1

is bounded by constK5ε(|z1|+ |z2|). In fact, as

|z1|, |z2| ≤ 1

|z1| ≥
(
1− 28

15K

) (
1 + 1

K

)−1 ≥ 1
15

2
3

|z1 − z2| ≥ |z1 −
√
t| ≥





1
15

(
2
3 − 4

9

)
if t ≤

(
4

15×9

)2

1− 28
15K

1 + 1
K

− 1− 28
15K(

1 + 1
K

)2 if t ≥
(

4
15×9

)2
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≥





1
15

2
9

if t ≤
(

4
15×9

)2

1
15

4
9

1
K if t ≥

(
4

15×9

)2

|u1 − z1| ≤ constKε

|u2 − z2| ≤ constKε

|u1 − u2| ≥ |z1 − z2| − constKε ≥ const
K∣∣∣

√
t′

t
− 1
∣∣∣ ≤ const ε

we have
|a− 1| ≤ constK2ε+ constK|Uz1 |
|b| ≤ constK|Uz̄1 |∣∣ ∂a

∂z̄1

∣∣ ≤ constK2
(
1 + |Uz1 |

)∣∣ ∂
∂z̄1

(u1 − u2)
∣∣+ constK|Uz1z̄1 |

Applying |∂αU | ≤ const|α| ε(constK2)|α| yields

|a− 1| ≤ constK2ε+ constK3ε

|b| ≤ constK3ε
∣∣ ∂a
∂z̄1

∣∣ ≤ constK2
∣∣ ∂
∂z̄1

(u1 − u2)
∣∣+ constK5ε

We used |Uz1 | ≤ constK2ε ≤ const in the last line. Finally

∣∣ ∂
∂z̄1

(u1 − u2)
∣∣ =

∣∣(1 + t′

u2
1

)
∂u1

∂z̄1

∣∣ =
∣∣(1 + t′

u2
1

)
u1

z̄1
b
∣∣ =

∣∣(u1 + u2) bz̄1

∣∣ ≤ constK3ε

Proof of Theorem 21.9: Fix q ∈ C∞(IR2/Γ) and ρ > 0 such that the decomposition after

Theorem 21.4 works for all q′ ∈ C∞(IR2/Γ) with ‖|b|β q̂′‖1 < 2‖|b|β q̂‖1. Then there exist

K > 0 and γ > 0, a tubular neightbourhood T and a contour Γ, such that all of Definition

20.2 parts (iii) and (vi) as well as all parts of (v) except the second half of the fifth bullet, are

satisfied for all q′ ∈ C∞(IR2/Γ) with ‖|b|β q̂′‖1 < 2‖|b|β q̂‖1. Further increase K, if necessary,

so that tb <
(
1− 28

15K

)2 (
1 + 1

K

)−4
for all b ∈ Γ#, b2 > 0 and all q′ ∈ C∞(IR2/Γ) with

‖|b|β q̂′‖1 < 2‖|b|β q̂‖1. Now let 0 < ε < 1
150

and pick ε such that constK6ε < ε with the

const being that of Lemma 21.10. Choose a contour ∂G0 in C such that (iv) and the second

half of the fifth bullet of (v) are satisfied. If q′ is sufficiently close to q then v′b can be made

arbitrarily close to vb and w′b can be made arbitrarily close to wb for all b with vb+wb
2 inside

∂G0. In particular, |v − v′| < ε|vb − wb|, |wb − w′b| < ε|vb − wb| and |tb − t′b| < εtb can

be satisfied for all b with vb+wb
2 inside ∂G0. Define H(q′)0 to be the compact part of H(q′)

bounded by Φ′(∂G0). If q′ is close to q we define

F : H(q)0 −→ H(q′)0
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by

F (x) = K ′2
−1 ◦K2(x) for x /∈ φb

{
(z1, z2) ∈ H(tb)

∣∣ |z1|, |z2| ≤ 1
2

}
∀b ∈ Γ#, b2 > 0

F (x) = φ′b ◦ fb ◦ φb(x) for x ∈ φb
{

(z1, z2) ∈ H(tb)
∣∣ |z1|, |z2| ≤ 1

2

}

where K2 was defined in the discussion following Lemmma 21.5 and fb is defined in Lemma

21.10. Then, if q′ is sufficiently close to q (i),(ii) hold.

Parts (iii) and (iv) of Theorem 21.9 are obvious as zb, yb depend continuously on q.
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