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§I. Introduction

Let A(a1, · · · , an) be the finite dimensional, complex Grassmann algebra freely

generated by a1, · · · , an . Let Mr =
{

(i1 ,···,ir)
∣∣ 1≤ i1 ,···,ir≤n

}
be the set of all multi

indices of degree r ≥ 0 . For each multi index I = (i1 ,···,ir) , set aI = ai1 · · · air
. By

convention, a∅ = 1 . Let

I =
⋃

0≤ r≤n

{
(i1 ,···,ir)

∣∣ 1≤ i1<···<ir≤n

}

be the family of all strictly increasing multi indices. The set of monomials
{

aI

∣∣ I ∈ I }
is a

basis for A(a1, · · · , an) .

Let S =
(
Sij

)
be a skew symmetric matrix of even order n . Recall that the

Grassmann, Gaussian integral with covariance S is the unique linear map

f (a,b) ∈ A(a1, · · · , an, b1, · · · , bn) −→
∫

f (a,b) dµS (a) ∈ A(b1, · · · , bn)

satisfying ∫
eΣ ai bi dµS (a) = e−

1
2Σ biSij bj

To manipulate Grassmann, Gaussian integrals, we can “integrate by parts” with

respect to the generator ak , k = 1, · · · , n ,

∫
ak f (a1,···,an) dµS =

n∑
`=1

Sk`

∫ (
∂
∂a`

f (a1,···,an)

)
dµS

The left partial derivative

∂
∂a`

f (a) =
∑
I∈I

fI
∂
∂a`

aI

is determined by

∂
∂a`

aI =
{

0 , ` /∈ I

(−1)
|J| aJ aK , aI = aJ a` aK

Here, |J| is the degree of J . Integrating by parts with respect to ai1 and then arguing by

induction on r we find ∫
aI dµS (a) = Pf

(
SI

)
1



where, for any multi index I = (i1 ,···,ir) in Mr , SI =
(
Sik i`

)
is the skew symmetric matrix

with elements Sik i` , k, ` = 1, · · · , r , and where

Pf
(
SI

)
= 1

2ss!

r∑
k1,···,kr=1

εk1···kr Sik1 ik2
· · · Sikr−1 ikr

is its Pfaffian when r = 2s is even. By convention, the Pfaffian of a skew symmetric matrix

of odd order is zero. As usual,

εi1···ir =

{ 1 , i1,···,ir is an even permutation of 1,···,r
−1 , i1,···,ir is an odd permutation of 1,···,r

0 , i1,···,ir are not all distinct

Let W(a) be an element of the commutative subalgebra A0(a1, · · · , an) of all “even”

Grassmann polynomials in A(a1, · · · , an) . That is,

W(a) =
∑
r≥0

∑
j1,···,jr

wr (j1,···,jr) aj1 · · · ajr

where, wr (j1,···,jr) , is an antisymmetric function of its arguments 1≤j1 ,···,jr≤n that vanishes

identically when r is odd. By definition, the “Schwinger functional” S(f) on A(a1, · · · , an)

corresponding to the “interaction” W(a) and the “propagator” S =
(
Sij

)
is

S(f) = 1
Z

∫
f (a) eW(a) dµS (a)

where Z =
∫

eW(a) dµS . The associated “correlation functions” Sm (j1,···,jm) , m ≥ 0 , are

given by

Sm (j1,···,jm) = 1
Z

∫
aj1 · · · ajm

eW(a) dµS (a)

In this paper we introduce an operator R on A(a1, · · · , an) such that

S(f) =
∫

(1l−R)−1 (f) dµS

holds for all f in A0(a1, · · · , an) . The utility of this representation of the Schwinger func-

tional is demonstrated in §III, where an elementary, but archetypical, bound on the correlation

functions Sm (j1,···,jr) , m ≥ 1 is obtained by bounding the operator norm of R in terms of a

“naive power counting” norm on W(a) . The tools developed here will be used to simplify

the rigorous construction of a class of two dimensional Fermi liquids outlined in [FKLT].
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The representation of the Schwinger functional derived in this paper grew out of

the “integration by parts expansion” of [FMRT], [FKLT] which, in turn, was developed as a

replacement for the traditional “cluster/Mayer expansion”. In fact, the integration by parts

expansion can be obtained by first expanding the inverse (1l − R)−1 in a Neumann series

and then selectively expanding, by repeated partial integrations, the Grassmann, Gaussian

integrals appearing in the definition of R . Apart from its conciseness, the advantage of the

representation of the Schwinger functional given in this paper lies in the fact that the Pauli

exclusion principle can be implemented quantitatively by a simple application of Gram’s

inequality. This is in contrast to the “integration by parts expansion”, where the Pauli

exclusion principle is implemented by a more physical, but more complicated, approach that

involves carefully counting the number of fields in position space cubes whose dimensions are

matched to the decay of the free propagator.

One more notion is required for the detailed formulation of our results. For this

purpose, let S] be the complex, skew symmetric matrix of order 2n given by

S] =
(

0 S
S S

)

Also, for all multi indices I and J in M , let S:I:J be the skew symmetric matrix of order

|I|+ |J| defined by

S:I:J =
(

0 SI ,J

SJ,I SJ

)
= SIJ −

(
SI 0
0 0

)

Here, IJ is the juxtaposition of I and J and

SI,J =
(
Sik j`

)

is the matrix with elements Sik j`
, k = 1, · · · , r and ` = 1, · · · , s . Now, suppose a]

I aJ is the

monomial in the Grassmann algebra A(a]

1, · · · , a]
n, a1, · · · , an) corresponding to I and J in

M . Then, by construction,

∫
a]

I aJ dµS] (a],a) = Pf
(
S:I:J

)

In other words, the Grassmann, Gaussian integral with covariance S] excludes “contractions”

between any pair of the generators a]

1, · · · , a]
n in A(a]

1, · · · , a]
n, a1, · · · , an) .
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For any f (a) in A(a1, · · · , an) , let f (a)
] be the Grassmann polynomial belonging

to A(a]
1, · · · , a]

n) defined by f (a)
] = f (a]) . If S is an invertible skew symmetric matrix,

then there is a unique linear map, called the Wick map with respect to S , from f (a) in the

Grassmann algebra A(a1, · · · , an) to : f (a) :S in A(a1, · · · , an) such that∫
: f (a) :S g(a) dµS (a) =

∫
f (a)

] g(a) dµS] (a],a)

for all f (a) , g(a) in A(a1, · · · , an) .

The Wick map has a unique extension from A(a1, · · · , an) to the Grassmann algebra

A(a1, · · · , an, b1, · · · , bn) that is left linear over the subalgebra A(b1, · · · , bn) . For example,

we can apply the Wick map to the exponential eΣ ai bi as a Grassmann polynomial in the

generators a1, · · · , an with coefficients in A(b1, · · · , bn) . By definition,∫
: eΣ ai bi :S eΣ ai b]

i dµS (a) =
∫

eΣ a]
i bi eΣ ai b]

i dµS] (a],a) = e−Σ biSij b]
j e−

1
2Σ b]

iSij b]
j

On the other hand,∫ (
eΣ ai bi e

1
2Σ biSij bj

)
eΣ ai b]

i dµS (a) = e−Σ biSij b]
j e−

1
2Σ b]

i
Sij b]

j

and consequently,

: eΣ ai bi :S = e
1
2Σ biSij bj eΣ ai bi

It follows from the last identity that the Wick map : · :S depends continuously on S and

has a unique continuous extension to the vector space of all skew symmetric matrices.

Definition I.1 For any Grassmann polynomial

h(a, b) =
∑

I,J∈I
gI J aI bJ

in A(a1, · · · , an, b1, · · · , bn) ,

: h(a, b) :S,a =
∑

I,J∈I
gI J : aI :S bJ

: h(a, b) :S,b =
∑

I,J∈I
gI J aI : bJ :S

In other words, the Wick map with respect to S is applied to h(a, b) as a Grassmann polyno-

mial in the generators a1, · · · , an with coefficients in A(b1, · · · , bn) to obtain : h(a, b) :S,a .

Similarly, it is applied to h(a, b) as a Grassmann polynomial in the generators b1, · · · , bn

with coefficients in A(a1, · · · , an) to obtain : h(a, b) :S,b .
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Definition I.2 The linear map R from A(a1, · · · , an) to itself is (consciously suppressing

the dependence on W(a) and S ) given by

(
R(f)

)
(a) =

∫
: eW(a+b)−W(a)− 1 :S,b f(b) dµS (b)

Our first result is

Theorem I.3 Suppose 1 is not in the spectrum of R . Then,

S(f) =
∫

(1l−R)−1 (f) dµS

for every f in A0(a1, · · · , an) .

To exploit the representation of Theorem I.3 we decompose R by expanding the

exponential in : eW(a+b)−W(a) − 1 :S,b .

Definition I.4 For each pair r, s ∈ IN` , ` ≥ 1 , and every polynomial f in A(a1, · · · , an) , the

complex valued kernel R r s (f)(K1 ,···,K`) on Mr1−s1×···×Mr`−s`
is (consciously suppressing

the dependence on W(a) and S ) given by

R r s (f)(K1 ,···,K`) = ±(s)
1
`!

∑
J1∈Ms1

···
∑

J`∈Ms`

∫
:

∏̀
i=1

(ri
si
) wri

(Ji, Ki) bJi
:S f (b) dµS (b)

when ri ≥ si ≥ 1 , i = 1, · · · , ` . Otherwise, R r s (f)(K1 ,···,K`) = 0 . Here,

±(s) =
∏̀
i=1

(−1)
si(si+1+···+s`)

The corresponding linear map Rr s from A(a1, · · · , an) to itself is

R r s (f) =
∑

K1∈Mr1−s1

···
∑

K`∈Mr`−s`

R r s (f)(K1 ,···,K`)
∏̀
i=1

aKi
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Theorem I.5 For every f in A0(a1, · · · , an) ,

R(f) =
∑
`≥1

∑
r,s∈IN`

R r s (f)

Remark I.6 At the end of the introduction, we use Theorem I.5 to interpret Definition I.4

and Theorem I.3 in terms of Feynman graphs.

We can combine Theorem I.3 and Theorem I.5 to obtain analytic control over the

Schwinger functional S(f) . To do this, choose a nondecreasing function Φ on IN and a

Λ > 0 such that

∣∣∣ ∫
aI : aJ :S dµS (a)

∣∣∣ ≤
{

Φ(|I|) Λ
1
2 (|I|+|J|)

, |J| ≤ |I|
0 , |J| > |I|

for all multi indices I and J . The number Λ is morally the supremum ‖S‖∞ =

sup
i,j∈{1,···,n}

|Sij | of the covariance S . The number Φ(|I|) is intuitively the degree of can-

cellation between the at most |I|! nonzero terms contributing to the Pfaffian

Pf
(

SI SI,J

SJ,I 0

)
=

∫
aI : aJ :S dµS (a)

At one extreme (see, Example III.4), we can always choose Φ(|I|) = |I|! for all multi indices

I and Λ = ‖S‖∞ . At the other extreme (see, Example III.5), suppose that

S =
(

0 Σ
−ΣT 0

)

for some matrix Σ =
(
Σij

)
of order n

2 , and further that there is a complex Hilbert space

H , elements vi, wi ∈ H , i = 1, · · · , n
2 , and a constant Λ > 0 with

〈vi, wj〉H = Σij

‖vi‖H , ‖wj‖H ≤ L
1
2

for all i, j = 1, · · · , n
2 . Then, by a variant of Gram’s inequality, we can choose Φ(|I|) = 1 for

all multi indices I and Λ = 2L .
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For example, the Grassmann algebra associated to a many fermion system has an

equal number of “annihilation” a1, · · · , am and “creation” ā1, · · · , ām generators. Further-

more, the physical covariance C cannot pair two annihilation or two creation generators.

That is, C =
(

0 Cı̄

Cı̄ 0

)
. It is also often possible to write Cı̄ as an inner product

between vectors in an appropriate Hilbert space with “naturally” bounded norms so that

Φ(|I|) = 1 , I ∈M , can be achieved in models of physical interest. See, [FMRT, p.682].

Now, let

f (a) =
∑

m≥0

f (m)(a)

be a Grassmann polynomial in A(a1, · · · , an) where, for each m ≥ 0 ,

f (m)(a) =
∑

j1,···,jm

fm (j1,···,jm) aj1 · · · ajm

and the kernel fm (j1,···,jm) is an antisymmetric function of its arguments.

Definition I.7 For all α ≥ 2 , the “external” and “internal” naive power counting norms

‖f‖α and |||f |||α of the Grassmann polynomial f (a) are

‖f‖α =
∑

m≥0

‖f (m)‖α =
∑

m≥0

αm Λ
1
2 m ‖fm‖1

and

|||f |||α =
∑

m≥0

|||f (m)|||α =
∑

m≥0

αm ‖S‖1,∞ Λ
1
2 (m−2) ‖fm‖1,∞

where
‖fm‖1 =

∑
j1,···,jm

∣∣fm(j1,···,jm)
∣∣

‖fm‖1,∞ = sup
j1∈{1,···,n}

∑
j2,···,jm

∣∣fm(j1,j2,···,jm)
∣∣

are the L1 and “mixed L1,L∞ ” norms of the antisymmetric kernels fm(j1,···,jm) .

In Section III we prove

Theorem I.8 Suppose 2 |||W|||α+1 ≤ 1 . Then, for all polynomials f in the Grassmann

algebra A(a1, · · · , an) ,

‖R(f)‖α ≤ 2 Φ(n) |||W|||α+1 ‖f‖α
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In particular, the spectrum of R is bounded away from 1 uniformly in the number of degrees

of freedom n when Φ is constant and |||W|||α+1 is small enough.

A simple consequence of Theorem I.8 is the archetypical bound on correlation func-

tions

Theorem I.9 Suppose 2 (1+Φ(n)) |||W|||α+1 < 1 . Then, for each m ≥ 0 and all sequences of

indices 1≤ j1,···,jm ≤n ,

|Sm (j1,···,jm)| ≤ Φ(n)
1−2 Φ(n) |||W|||α+1

αm Λ
1
2 m

In particular, the correlation functions are bounded uniformly in the number of degrees of

freedom n when Φ is constant and ‖W‖α+1 is small enough.

Decomposition of Feynman Graphs into Annuli

In the rest of the introduction we motivate and interpret Definition I.4 and Theorem

I.3 “graphically”. However, we emphasize that the purely algebraic proof of Theorem I.3 given

in the next section is completely independent of this discussion and, in particular, does not

refer to graphs.

Recall that, for I = (i1 ,···,ir) in Mr with r even,

∫
aI dµS (a) = Pf

(
SI

)
=

r∑
k1,···,kr=1

k2i−1<k2i for i≤r/2
k1<k3<···<kr−1

εk1···krSik1 ik2
· · · Sikr−1 ikr

can be thought of as the sum of the amplitudes of all graphs having r vertices labelled i1 ,···,ir

and having precisely one line attached to each vertex. The amplitude of the graph having

lines {ik1 , ik2} , · · · , {ikr−1 , ikr
} is εk1···kr Sik1 ik2

· · · Sikr−1 ikr
.

This graphical representation has an immediate extension to∫
aH eW(a) dµS (a) =

∑
`≥0

∑
r∈IN`

1
`!

∑
I1∈Mr1

···
∑

I`∈Mr`

∫
aH

∏̀
i=1

wri
(Ii) aIi

dµS (a)
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with H ∈ Mm . One merely has to substitute HI1 ··· I` for I. In general, a “Feynman graph Γ ”

with m external legs and ` internal vertices wr1 , · · · ,wr`
(the vertex wri

having ri legs)

is a partition of the m + r1 + · · ·+ r` legs into disjoint pairs that are represented as lines.

The amplitude of the graph Γ is defined to be

Am(Γ)(H) = ε
`!

∑
I1∈Mr1

···
∑

I`∈Mr`

∏̀
i=1

wri
(Ii)

∏
lines c in Γ

Sic jc

where we choose any ordering (ic , jc) of the pairs in the partition determined by the lines c

of Γ and where ε is the signature of the permutation that brings the juxtaposition of these

pairs to the juxtaposition HI1···I` of the multi indices H , I1 , ··· , I` . Then, for H ∈Mm ,∫
aH eW(a) dµS (a) =

∑
Feynman graphs Γ

Am(Γ)(H)

A Feynman graph Γ is “externally connected” when each connected component

contains a line with an external leg. In other words, there are no “vacuum components”.

It is well known (and can also be derived from Theorem I.3 and Theorem I.5) that the

correlation function S(aH) = 1
Z

∫
aH eW(a) dµS (a) is the sum of the amplitudes of all

externally connected graphs. Roughly speaking, the representation S(f) =
∞∑

n=0

∫
Rn(f)dµS

generates these graphs a bit at a time with the mth application of R adding those lines that

are of distance m− 1 from f and those vertices that are of distance m from f .

To make this more precise, we return to Definition I.4 and choose r, s ∈ IN` satis-

fying ri≥si≥1 , i=1,···,` . We first explain how to visualize the action of the operator R r s on

a homogeneous Grassmann polynomial

f (m)(a) =
∑

j1,···,jm

fm (j1,···,jm) aj1 · · · ajm
=

∑
H∈Mm

fm (H) aH

of degree m .

Suppose, f (a) = aH is a monomial where, H = (h1 ,···,hm) , and select a multi index

Ki ∈ Mri−si
, i = 1, · · · , ` . To graphically interpret the coefficient

R r s (aH)(K1 ,···,K`) = ±(s)
1
`!

∑
J1∈Ms1

···
∑

J`∈Ms`

∫
:

∏̀
i=1

(ri
si
) wri

(Ji, Ki) bJi
:S bH dµS (b)

of aK1 · · · aK`
in R r s (aH) , we imagine an annulus that has, for each generator in the incoming

monomial bH , an “external leg” entering some point on its outer boundary and that has, for

9



each generator in the outgoing product
∏̀
i=1

aKi
of Rr s an “external leg” leaving some point

on its inner boundary, and that furthermore contains the ` “vertices” wr1, · · · , wr`
in its

interior. There are no other external legs or vertices. The vertex wri
, i = 1, · · · , ` , has ri

“legs”. One leg, for each generator in the monomial wri
(Ji, Ki) bJi

aKi
. The leg attached to

wri
for a given generator in aKi

is joined by a “passive” line to the corresponding external

leg leaving the inner boundary of the annulus.

wr2

wr1

wr4

wr3

h1 h2

h10

` = 4 m = 10 ~r = (4, 2, 4, 2) ~s = (2, 1, 3, 2)

We construct “annular graphs of type m, r, s ” out of our annulus, when m≥ s1+···+s` and

m + s1+···+s` is even, by connecting each leg of wri
, i = 1, · · · , ` , representing a generator in

bJi
, |Ji|=si , by an “active” line with an external leg representing a generator in bH entering

the outer boundary or connecting, again by an “active” line, two external legs entering the

outer boundary corresponding to a pair of generators in bH . Each vertex is connected to at

least one external leg entering the outer boundary because si ≥ 1 , 1 ≤ i ≤ ` . Note that

there is a bijection between annular graphs and partitions P of the disjoint union H ∪· ∪·
1≤i≤`

Ji

into disjoint unordered pairs such that each element of ∪·
1≤i≤`

Ji is paired with an element of

H .

10



two annular graphs of type 10, (4,2,4,2), (2,1,3,2)

For each sequence (H , K1 , ··· , K`) of multi indices in Mm×Mr1−s1×···×Mr`−s`
, the amplitude

Am(A)(H , K1 , ··· , K`) of an annular graph A of type m, r, s is

Am(A)(H , K1 , ··· , K`) = ±(s)
1
`! ε

∑
J1∈Ms1

···
∑

J`∈Ms`

∏̀
i=1

(ri
si
) wri

(Ji, Ki)
∏

active lines
c in A

Sic jc

where we choose any ordering (ic , jc) of the pairs in the partition PA determined by the active

lines c of A and where ε is the signature of the permutation that brings the juxtaposition

of these pairs to the juxtaposition HJ1···J` of the multi indices H , J1 , ··· , J` . The amplitude

Am(A)(H , K1 , ··· , K`) is a function of the external legs of the annular graph A .

Recall that the Grassmann, Gaussian integral
∫

:
∏̀
i=1

bJi
:S bH dµS (b) =

∫ ( ∏̀
i=1

b]
Ji

)
bH dµS] (b],b)

is equal to a Pfaffian that is the sum over all the partitions of the product
( ∏̀

i=1

b]
Ji

)
bH into

disjoint pairs such that each generator in
∏̀
i=1

b]
Ji

contracts, via a matrix element of S , to a

generator in bH . Therefore, by construction,

±(s)
1
`!

∑
J1∈Ms1

···
∑

J`∈Ms`

∫
:

∏̀
i=1

(ri
si
) wri

(Ji, Ki) bJi
:S bH dµS (b) =

∑
annular graphsA
of type |H|,r,s

Am(A)(H , K1 , ··· , K`)

That is,

R r s (f (m))(K1 ,···,K`) =
∑

H∈Mm

fm (H)
∑

annular graphsA
of type m,r,s

Am(A)(H , K1 , ··· , K`)
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Suppose, |λ| � 1 . Then, the partition function Z(λ) =
∫

eλW(a) dµS 6= 0 and all

the eigenvalues of R = O(λ) lie strictly inside the unit disc. In this case, the Neumann series

(1l− R)−1 =
∑
p≥0

Rp converges. Writing out all the terms,

∫
(1l−R)−1 (f (m)) dµS =

∑
p≥0 ,

`1,···,`p≥1

∑
r1,s1∈IN`1

· · · ∑
rp,sp∈IN`p

∫
R rp sp · · ·R r1 s1 (f (m)) dµS

To convey the intuition that leads to the statement of Theorem I.3, we examine both the

action of a product R rp sp · · ·R r1 s1 contributing to Rp on f (m) and the corresponding

Grassmann Gaussian integrals

∫
R rp sp · · ·R r1 s1 (f (m)) dµS

For p = 2 ,

R r2 s2

(
R r1 s1 (f (m))

)
(L1 ,···,L`2

)

=
∑

H∈Mm1

fm1 (H)
∑

K1 , ··· , K`1

∑
annular graphsAi
of type mi,ri,si

for i=1,2

Am(A1)(H , K1 , ··· , K`1
) Am(A2)(K1···K`1

, L1 , ··· , L`2
)

The degree m1 =m and the degree m2 = r1,1−s1,1+···+r1,`1−s1,`1 , the second sum is over all

sequences of multi indices (K1 , ··· , K`1
) in Mr1,1−s1,1×···×Mr1,`1−s1,`1

, and the multi index

K1···K`1
occuring in the amplitude Am(A2) is the juxtaposition of the multi indices K1 , ··· , K`1

.

Now,

Am(A1A2)(H , L1 , ··· , L`2
) =

∑
K1 , ··· , K`1

Am(A1)(H , K1 , ··· , K`1
) Am(A2)(K1···K`1

, L1 , ··· , L`2
)

is the “amplitude of the double annular graph A1A2 of type m, r1, s1, r2, s2 ” obtained by

inserting A2 just inside the inner boundary of A1 and then, for each generator in
`1∏

i=1
aKi

,

joining the associated external leg (at the end of a passive line) leaving the inner boundary of

A1 to its mate (at the begining of an active line) entering the outer boundary of A2 . Notice

that, by construction, each vertex in A2 is connected by a line to at least one vertex in A1

that, in turn, is connected to at least one external leg entering the outer boundary of A1 .

12



a double annular graph A1A2 with A1 of type 8, (2,6,2,4,4), (1,3,1,2,1)
and A2 of type 10, (4,2,4,2), (2,1,2,2)

For p ≥ 3 , one obtains the amplitude of the completely analogous p-annular graph A1 · · ·Ap

of type m, r1, s1, · · · , rp, sp in which each vertex in the annular graph Ai , i = 2, · · · , p of

type mi =

`i−1∑
j=1

ri−1,j−si−1,j , ri, si , is connected by a line to at least one vertex in Ai−1 and

ultimately to at least one external leg entering the outer boundary of A1 .

An “externally connected Feynman graph Γ of type m, r1, s1, · · · , rp, sp ” is a p-

annular graph A1 · · ·Ap of type m, r1, s1, · · · , rp, sp , as in the last paragraph, together with

a partition P of the legs emanating from the inner boundary of Ap into disjoint pairs that

are joined to form lines.

Suppose Γ is an externally connected Feynman graph with m external legs and the internal

13



vertices wr1 , · · · ,wrn
. Set

A1(Γ) =
{

wrj

∣∣ at least one leg of wrj
is connected by a line in Γ to an external leg

}

and then define Ai(Γ) , i≥ 2 , inductively by

Ai(Γ) =
{

wrj
/∈

i−1⋃
h=1

Ah(Γ)
∣∣ at least one leg of wrj

is connected by a line in Γ to a vertex inAi−1

}

Also, set `i = |Ai(Γ)| for i≥ 1 . There is a 1≤ p≤n such that Ap(Γ) 6= ∅ , while Ap+1(Γ) = ∅ ,

and {
wr1 , · · · , wrn

}
=

p⋃
i=1

Ai(Γ)

Let wrj1
, · · · , wrj`i

be the vertices in Ai(Γ) . For each k = 1 , ··· , `i , let sjk
be the

number of legs of the vertex wrjk
that are attached by lines to a vertex in Ai−1(Γ) . Also,

let mΓ
i be the total number of legs emanating from the vertices in Ai−1(Γ) that are not

attached by lines to vertices in Ai−2(Γ) . For each i = 1, · · · , p , set rΓ
i = (rj1 ,···,rj`i

) and

sΓ
i = (sj1 ,···,sj`i

) . Observe that the graph Γ induces a unique annular graph structure on

Ai(Γ) of type mΓ
i , rΓ

i , sΓ
i for each i = 1, · · · , p , and a partition PΓ of the legs leaving the

inner boundary of Ap(Γ) into pairs. Thus, every externally connected Feynman graph Γ

with m external legs corresponds to a unique externally connected Feynman graph of type

m, rΓ
1 , sΓ

1 , · · · , rΓ
p , sΓ

p .

For each multi index H in Mm , the amplitude Am(Γ)(H) of the externally con-

nected Feynman graph Γ of type m, r1, s1, · · · , rp, sp is defined by

Am(Γ)(H) = ε(PΓ)
∑

M1 , ··· , M`p

Am(A1 · · ·Ap)(H , M1 , ··· , M`p
)

∏
(i,j)∈PΓ

Si j

, where ε(PΓ) is the signature of the permutation that brings the juxtaposition of the pairs

in the partition PΓ to the juxtaposition M1 ···M`p . The sum is over all sequences of multi

indices (M1 , ··· , M`p
) in Mrp,1−sp,1×···×Mrp,`p−sp,`p

. By definition, the amplitude Am(Γ)(H) of

a an externally connected Feynman graph Γ is the amplitude of the corresponding externally

connected Feynman graph of type m, rΓ
1 , sΓ

1 , · · · , rΓ
p , sΓ

p .

14



We can now write∫
R r2 s2R r1 s1 (f (m)) dµS

=
∑

H∈Mm

fm (H)

∫
R r2 s2R r1 s1(aH) dµS

=
∑

H∈Mm

fm (H)
∑

L1 , ··· , L`2

∑
annular graphsAi
of type mi,ri,si

for i=1,2

Am(A1A2)(H , L1 , ··· , L`2
)

∫
`2∏

i=1
aLi

dµS

=
∑

H∈Mm

fm (H)
∑

externally connected
FeynmangraphsΓ of

type m1,r1,s1,m2,r2,s2

Am(Γ)(H)

since, the integral
∫

`2∏
i=1

aLi
dµS is equal to a Pfaffian that is the sum over all partitions

of the product
`2∏

i=1
aLi

into disjoint pairs that are contracted via matrix elements of S .

Similarly,∫
R rp sp · · ·R r1 s1 (f (m)) dµS =

∑
H∈Mm

fm (H)
∑

externally connected
Feynmangraphs Γ of

type m1,r1,s1,···,mp,rp,sp

Am(Γ)(H)

for all p ≥ 3 . It follows that∫
(1l− R)−1 (f (m)) dµS

=
∑

H∈Mm

fm (H)
∑

p≥0 ,
`1,···,`p≥1

∑
r1,s1∈IN`1

· · · ∑
rp,sp∈IN`p

∑
externally connected
Feynman graphsΓ of

type m1,r1,s1,···,mp,rp,sp

Am(Γ)(H)

or, equivalently,∫
(1l−R)−1 (f (m)) dµS =

∑
H∈Mm

fm (H)
∑

externally connected
Feynmangraphs Γ

Am(Γ)(H)

where the last sum is over all externally connected Feymann graphs with m external legs

and any finite set wr1, · · · ,wrn
of vertices chosen from wr , r ≥ 1 . As mentioned before, it

is “a well know fact” that

S(f (m)) =
∑

H∈Mm

fm (H)
∑

externally connected
Feynman graphsΓ

Am(Γ)(H)

Therefore,

S(f (m)) =
∫

(1l−R)−1 (f (m)) dµS

15



This completes the graphical interpretation of Theorem I.3.

Acknowledgement: It is a pleasure to thank Detlef Lehmann for many stimulating discus-

sions.
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§II. The Proofs of Theorem I.3 and Theorem I.5

Again, let S =
(
Sij

)
be a skew symmetric matrix of even order n .

Lemma II.1 For each h(b, c) in A(b1, · · · , bn, c1, · · · , cn) ,

∫ ∫
h(b, a+b]) dµS] (b],b) dµS (a) =

∫
h(b, c) dµ( S S

S S ) (b,c)

Proof: Let Γ be the linear functional on the Grassmann algebra A(b1, · · · , bn, c1, · · · , cn)

given by

Γ(h) =
∫ ∫

h(b, a+b]) dµS] (b],b) dµS (a)

Then,

Γ
(
eΣ bi di+ci ei

)
=

∫ ∫
eΣ bi di+(a+b])i ei dµS] (b],b) dµS (a)

=
∫

eΣ aiei

∫
eΣ b]

i ei+bi di dµS] (b],b) dµS (a)

= e−Σ eiSij dj e−
1
2Σ diSij dj

∫
eΣ aiei dµS (a)

= e−
1
2Σ eiSij ej e−Σ eiSij dj e−

1
2Σ diSij dj

By uniqueness,

Γ(h) =
∫

h(b, c) dµ( S S
S S ) (b,c)

The main ingredient required for the proof of Theorem I.3 is

Proposition II.2 For all f and g in A(a1, · · · , an) ,

∫ ∫
f (b) : g (a+b) :S,b dµS (b) dµS (a) =

∫
f (a) g(a) dµS (a)

17



Proof: By Lemma II.1,

∫ ∫
f (b) : g (a+b) :S,b dµS (b) dµS (a) =

∫ ∫
f (b) g (a+b]) dµS] (b],b) dµS (a)

=
∫

f (b) g (c) dµ( S S
S S ) (b,c)

Now, observe that for all multi indices I = (i1 ,···,ir) and J = (j1 ,···,js) in M , the juxtaposition

I(J+n) = (i1 ,···,ir , j1+n,···,js+n)

is a multi index in {1,···,2n}r+s and by construction,

∫
bI cJ dµ( S S

S S ) (b,c) = Pf
(
( S S

S S ) I(J+n)

)
= Pf

(
SIJ

)
=

∫
aI aJ dµS (a)

It follows that

∫ ∫
f (b) : g (a+b) :S,b dµS (b) dµS (a) =

∫
f (a) g(a) dµS (a)

Again, let
W(a) =

∑
r≥0

∑
j1,···,jr

wr (j1,···,jr) aj1 · · · ajr

be an even Grassmann polynomial where, wr (j1,···,jr) , is an antisymmetric function of its

arguments 1≤j1 ,···,jr≤n that vanishes identically when r is odd. Let R be the linear map

on A(a1, · · · , an) , corresponding to W(a) and S , that was introduced in Definition I.2.

Theorem II.3 For all f in A(a1, · · · , an) ,

∫
f (a) eW(a) dµS (a) =

∫
(R0 +R)(f)(a) eW(a) dµS (a)

where,

R0 (f)(a) =
∫

f (b) dµS (b) a∅

18



Proof: By Proposition II.2,

∫
(R0 +R)(f)(a) eW(a) dµS (a) =

∫ ∫
: eW(a+b)−W(a) :S,b f(b) dµS (b) eW(a) dµS (a)

=
∫ ∫

: eW(a+b) :S,b f(b) dµS (b) dµS (a)

=
∫

f(a) eW(a) dµS (a)

It is now easy to give the

Proof of Theorem I.3: If |λ| ≤ r � 1 , then

Z(λ) =
∫

eλW(a) dµS 6= 0

and all the eigenvalues of R = O(λ) lie strictly inside the unit disc. In this case,

1
Z

∫
aH eλW(a) dµS =

∫
aH dµS + 1

Z

∫
R(aH) eλW(a) dµS

and ∑
s≥0

Rs (aH) = (1l−R)−1 aH

Iterating,

1
Z

∫
aH eλW(a) dµS =

∫
aH dµS +

∫
R(aH) dµS + 1

Z

∫
R2 (aH) eλW(a) dµS

=
∫

t∑
s=0

Rs (aH) dµS + 1
Z

∫
Rt+1 (aH) eλW(a) dµS

for all t ≥ 0 . In the limit,

1
Z

∫
aH eλW(a) dµS =

∫
(1l−R)−1 aH dµS

when |λ| ≤ r � 1 . To complete the proof, observe that both sides of the last identity are

rational functions of λ ∈ C .
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To prove Theorem I.5 we make

Convention II.4 Let I = (i1 ,···,ir) be any multi index. A “sub multi index” J⊂I is a multi

index J = (j1 ,···,js) together with a strictly increasing map νJ from {1,···,s} to {1,···,r} such

that jk = iνJ(k) , k = 1, · · · , s . If the multi indices I and J belong to I and, in addition,

J⊂I as sets, then J is uniquely determined as a sub multi index by the inclusion map of

{j1 ,···,js} into {i1 ,···,ir} . For every sub multi index J⊂I , there is a unique complementary

sub multi index I\J⊂ I such that the image of νI\J is the complement of νJ({1,···,s}) in {1,···,r} .

The “relative sign” ρ(J,I) of the pair J⊂I is the signature of the permutation that brings the

sequence (1 , ··· , r−s , r−s+1 , ··· , r) to (νJ(1) , · · · , νJ(s) , νI\J(1) , ··· , νI\J(r−s)) . By construction,

aI = ρ(J,I) aJ aI\J . The relative sign is defined on all of I × I by

ρ(J,I) =
{ ρ(J,I) , J⊂I

0 , J6⊂I

Proof Theorem I.5: Observe that for each r ≥ 1 ,∑
I∈Mr

wr (I)
(
(a+b)I − aI

)
=

∑
I∈Mr

wr (I)
∑

1≤s≤r

∑
J a subindex
of I in Ms

ρ(J,I) bJ aI\J

=
∑

1≤s≤r

∑
I∈Mr

∑
J a subindex
of I in Ms

ρ(J,I) ρ(J,I) wr (J, I\J) bJ aI\J

=
∑

1≤s≤r

∑
J∈Ms

∑
K∈Mr−s

(r
s) wr (J, K) bJ aK

and consequently, for each r ∈ IN` ,

∏̀
i=1

( ∑
Ii∈Mri

wri
(Ii)

(
(a+b)Ii

− aIi

))

=
∏̀
i=1

( ∑
1≤si≤ri

∑
Ji∈Msi

∑
Ki∈Mri−si

(ri
si
) wri

(Ji, Ki) bJi
aKi

)

=
∑

s∈IN`

r≥s≥1

∑
J1∈Ms1

K1∈Mr1−s1

···
∑

J`∈Ms`
K`∈Mr`−s`

( ∏̀
i=1

(ri
si
) wri

(Ji, Ki) bJi
aKi

)

=
∑

s∈IN`

r≥s≥1

∑
J1∈Ms1

K1∈Mr1−s1

···
∑

J`∈Ms`
K`∈Mr`−s`

±(s)
∏̀
i=1

(ri
si
) wri

(Ji, Ki) bJi

∏̀
i=1

aKi
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Now, we can expand the exponential to obtain

: eW(a+b)−W(a) − 1 :S,b

=
∑
`≥1

1
`!

∑
r∈IN`

:
∏̀
i=1

( ∑
Ii∈Mri

wri
(Ii)

(
(a+b)Ii

− aIi

))
:S,b

=
∑
`≥1

1
`!

∑
r,s∈IN`

r≥s≥1

∑
J1∈Ms1

K1∈Mr1−s1

···
∑

J`∈Ms`
K`∈Mr`−s`

±(s) :
∏̀
i=1

(ri
si
) wri

(Ji, Ki) bJi
:S

∏̀
i=1

aKi

=
∑
`≥1

∑
r,s∈IN`

∑
K1∈Mr1−s1

···
∑

K`∈Mr`−s`

Q r s (K1 ,···,K` ,b)
∏̀
i=1

aKi

where

Q r s (K1 ,···,K` ,b) =



±(s)

1
`!

∑
J1∈Ms1

···
∑

J`∈Ms`

:
∏̀
i=1

(ri
si
) wri

(Ji, Ki) bJi
:S , ri≥si≥1 , i=1,···,`

0 , otherwise

Integrating,∫
: eW(a+b)−W(a) − 1 :S,b f(b) dµS (b)

=
∑
`≥1

∑
r,s∈IN`

∑
K1∈Mr1−s1

···
∑

K`∈Mr`−s`

∫
Q r s (K1 ,···,K` ,b) f(b) dµS (b)

∏̀
i=1

aKi

=
∑
`≥1

∑
r,s∈IN`

∑
K1∈Mr1−s1

···
∑

K`∈Mr`−s`

R r s (f)(K1 ,···,K`)
∏̀
i=1

aKi

=
∑
`≥1

∑
r,s∈IN`

R r s (f)

That is,

R(f) =
∑
`≥1

∑
r,s∈IN`

R r s (f)
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§III. An Archetypical Bound and “Naive Power Counting”

Fix a complex, skew symmetric matrix S =
(
Sij

)
of order n and an even Grass-

mann polynomial

W(a) =
∑
r≥0

∑
j1,···,jr

wr (j1,···,jr) aj1 · · · ajr

where, wr (j1,···,jr) , is an antisymmetric function of its arguments 1≤j1 ,···,jr≤n that vanishes

identically when r is odd. In this section we introduce a family of norms on A(a1, · · · , an)

and then derive an archetypical bound on

R(f) =
∑
`≥1

∑
r,s∈IN`

R r s (f)

for every f in A(a1, · · · , an) . Recall that

R r s (f) =
∑

K1∈Mt1

···
∑

K`∈Mt`

R r s (f)(K1 ,···,K`)
∏̀
i=1

aKi

for all r, s ∈ IN` with the convention t = r− s , where

R r s (f)(K1 ,···,K`) = ± 1
`!

∑
J1∈Ms1

···
∑

J`∈Ms`

∫
:

∏̀
i=1

(ri
si
) wri

(Ji, Ki) bJi
:S f (b) dµS

when ri≥si≥1 , i = 1, · · · , ` , and R r s (f)(K1 ,···,K`) = 0 otherwise. The sign ± = ±(s) is given

by ±(s) =
∏̀
i=1

(−1)
si(si+1+···+s`) .

A first prerequisite for introducing an appropriate family of norms on A(a1, · · · , an)

is to define the “ L1 norm” ‖u‖1 and the “mixed L1,L∞ norm” ‖u‖1,∞ of a function

u(j1,···,jr) on {1,···,n}r by

‖u‖1 =
∑

j1,···,jr

∣∣u(j1,···,jr)
∣∣

and

‖u‖1,∞ = sup
i=1,···,r

sup
ji∈{1,···,n}

∑
j1,···,ji−1

∑
ji+1,···,jr

∣∣u(j1,···,ji−1 ,ji ,ji+1,···,jr)
∣∣

If u(j1,···,jr) is an antisymmetric function of its arguments , then

‖u‖1,∞ = sup
j1∈{1,···,n}

∑
j2,···,jr

∣∣u(j1,j2,···,jr)
∣∣
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For example,

‖S‖1,∞ = sup
i∈{1,···,n}

∑
j

∣∣Sij

∣∣

Remark III.1 Let u(j1,···,jr) be a function on {1,···,n}r and set

Alt u(j1,···,jr) = 1
r!

∑
π∈Sr

sgn(π) π ·u(j1,···,jr)

where, π ·u(j1,···,jr) = u(jπ(1) ,···,jπ(r)) . Observe that ‖π ·u‖1 = ‖u‖1 for all π ∈ Sr and

consequently,

‖Alt u‖1 ≤ 1
r!

∑
π∈Sr

‖π ·u‖1 = ‖u‖1

That is, ‖Alt u‖1 ≤ ‖u‖1 . Similarly, ‖Alt u‖1,∞ ≤ ‖u‖1,∞ .

Proposition III.2 (Tree Bound) Let f (h1,···,hm) and ui(j, Ki) = ui(j, ki1,···,kiti
) , i =

1, · · · , ` , be antisymmetric functions of their arguments with m ≥ ` . Let

T(K1 ,···,K`) =
∑

h1,···,hm

|f (h1,···,hm)| ∏̀
i=1

( n∑
j=1

|Shij | |ui (j, Ki)|
)

Then,

‖T‖1 ≤ ‖f‖1
∏̀
i=1

‖S‖1,∞ ‖ui‖1,∞

Proof: We have

‖T‖1 =
∑

K1,···,K`

|T(K1 ,···,K`)|

=
∑

K1,···,K`

∑
h1,···,hm

|f (h1,···,hm)| ∏̀
i=1

( n∑
j=1

|Shij | |ui (j, Ki)|
)

≤ ∑
h1,···,hm

|f (h1,···,hm)| ∏̀
i=1

( n∑
j=1

|Shij |
) ∏̀

i=1
‖ui‖1,∞

≤ ∑
h1,···,hm

|f (h1,···,hm)| ∏̀
i=1

‖S‖1,∞
∏̀
i=1

‖ui‖1,∞

= ‖f‖1
∏̀
i=1

‖S‖1,∞ ‖ui‖1,∞
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A second prerequisite for introducing a family of norms on A(a1, · · · , an) that “cor-

rectly measures” the size of R(f) is to choose a nondecreasing function Φ on IN and a

Λ > 0 satsfying the

Hypothesis III.3 For all multi indices I and J ,∣∣∣ ∫
aI : aJ :S dµS

∣∣∣ ≤
{

Φ(|I|) Λ
1
2 (|I|+|J|)

, |J| ≤ |I|
0 , |J| > |I|

The form of this hypothesis is motivated by two examples.

Example III.4 (Global Factorial) For any complex, skew symmetric matrix S =
(
Sij

)
,

the bound ∣∣∣ ∫
aI : aJ :S dµS

∣∣∣ ≤
{
|I|! ‖S‖∞

1
2 (|I|+|J|)

, |J| ≤ |I|
0 , |J| > |I|

holds for all multi indices I and J . The proof of this crude inequality is by induction on |J| .

Suppose |J| = 0 . If I = {i1 ,···,ir} , then∫
aI dµS =

{
Pf

(
Sik i`

)
, r is even

0 , r is odd

where, Pf
(
Sik i`

)
is the Pfaffian of the matrix with elements Sik i` , k, ` = 1, · · · , r . We have

∣∣∣ ∫
aI dµS

∣∣∣ ≤
r∑

k1,···,kr=1

|εk1···kr | |Sik1 ik2
| · · · |Sikr−1 ikr

|

≤ ‖S‖ 1
2r
∞

r∑
k1,···,kr=1

|εk1···kr |

= ‖S‖ 1
2r
∞ r!

Suppose |J| > 0 . Integration by parts with respect to a]
j1

gives∫
aI : aJ :S dµS =

∫
aI a]

J dµS]

= (−1)
|I|

∫
a]

j1
aI a]

J\{j1} dµS]

= (−1)
|I|

|I|∑
`=1

(−1)
`−1 Sj1 i`

∫
aI\{i`} a]

J\{j1} dµS]

= (−1)
|I|

|I|∑
`=1

(−1)
`−1 Sj1 i`

∫
aI\{i`} : aJ\{j1} :S dµS
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Our induction hypothesis implies that

∣∣∣ ∫
aI\{i`} : aJ\{j1} :S dµS

∣∣∣ ≤ ‖S‖ 1
2 (|I|+|J|−2)
∞ (|I|−1)!

for each ` = 1, · · · , |I| . Now,

∣∣∣ ∫
aI : aJ :S dµS

∣∣∣ ≤
|I|∑

`=1

|Sj1 i`
|
∣∣∣ ∫

aI\{i`} : aJ\{j1} :S dµS

∣∣∣
≤ ‖S‖ 1

2 (|I|+|J|−2)
∞ (|I|−1)!

|I|∑
`=1

|Sj1 i`
|

≤ ‖S‖ 1
2 (|I|+|J|)
∞ (|I|−1)! |I|

This “perturbative bound” is obtained by ignoring all potential cancellations between the at

most |I|! nonzero terms appearing in Pfaffian equal to
∫

aI a]
J dµS] .

Example III.5 (Gram’s Inequality) Suppose that S =
(
Sij

)
is a complex, skew sym-

metric matrix of the form

S =
(

0 Σ
−Σt 0

)

where Σ =
(
Σij

)
is a matrix of order n

2 . Suppose, in addition, that there is a complex

Hilbert space H , elements vi, wi ∈ H , i = 1, · · · , n
2 , and a constant Λ > 0 with

Σij = 〈vi, wj〉H

and

‖vi‖H , ‖wj‖H ≤ (
Λ
2

)1
2

for all i, j = 1, · · · , n
2 . Then, the “nonperturbative bound”

∣∣∣ ∫
aI : aJ :S dµS

∣∣∣ ≤
{

Λ
1
2 (|I|+|J|)

, |J| ≤ |I|
0 , |J| > |I|

holds for all multi indices I and J . The proof is presented in the Appendix.

Now, let

f (a) =
∑

m≥0

f (m)(a)
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be a Grassmann polynomial in A(a1, · · · , an) where, for each m ≥ 0 ,

f (m)(a) =
∑

j1,···,jm

fm (j1,···,jm) aj1 · · · ajm

and the kernel fm (j1,···,jm) is an antisymmetric function of its arguments. Fix a complex,

skew symmetric matrix S =
(
Sij

)
of order n satisfying Hypothesis III.3. We recall

Definition I.4 For all α ≥ 2 , the “external” and “internal” naive power counting norms

‖f‖α and |||f |||α of the Grassmann polynomial f (a) are

‖f‖α =
∑

m≥0

‖f (m)‖α =
∑

m≥0

αm Λ
1
2 m ‖fm‖1

and

|||f |||α =
∑

m≥0

|||f (m)|||α =
∑

m≥0

αm ‖S‖1,∞ Λ
1
2 (m−2) ‖fm‖1,∞

By the triangle inequality,

‖R(f)‖α ≤ ∑
`≥1

∑
r,s∈IN`

‖R r s (f)‖α ≤ ∑
m≥0

∑
`≥1

∑
r,s∈IN`

‖R r s (f (m))‖α

and consequently,

‖R(f)‖α ≤ ∑
m≥1

m∑
`=1

∑
r,s∈IN`

‖R r s (f (m))‖α

since, R r s (f (m)) = 0 for all r, s ∈ IN` when ` > m . Furthermore,

‖R r s (f (m))‖α = α

(
Σ
`

i=1
(ri−si)

)
Λ

1
2 Σ

`

i=1
(ri−si) ‖Alt R r s (f (m))‖1

since,
R r s (f (m)) =

∑
j1,···,jM

Alt R r s (f (m)) (j1 ,···,jM) aj1 · · · ajM

with M = (r1−s1)+···+(r`−s`) . Altogether,

‖R(f)‖α ≤ ∑
m≥1

m∑
`=1

∑
r,s∈IN`

α

(
Σ
`

i=1
(ri−si)

)
Λ

1
2 Σ

`

i=1
(ri−si) ‖R r s (f (m))‖1

Proposition III.2 will now be used to obtain a bound on the norm ‖R r s (f (m))‖1 of

the kernel R r s (f (m))(K1 ,···,K`) .
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Lemma III.6 Let H, J1, ···, J` be multi indices with |H| = m ≥ ` . Then,∣∣∣ ∫
:

∏̀
i=1

aJi
:S aH dµS

∣∣∣ ≤ M(H, J1, ···, J`)
∑

1≤µ1,···,µ`≤m

pairwise
different

∏̀
i=1

|Shµi
ji1 |

where

M(H, J1, ···, J`) = sup
1≤µ1,···,µ`≤m

pairwise
different

∣∣∣ ∫
aH\{hµ1 ,···,hµ`

} :
∏̀
i=1

aJi\{ji1} :S dµS

∣∣∣

Proof: For convenience, set ki = ji1 , i = 1, · · · , ` . By antisymmetry, the integrand can be

rewritten so that∫
aH :

∏̀
i=1

aJi
:S dµS = ±

∫
a]

k`
· · · a]

k1
aH

∏̀
i=1

a]

Ji\{ki} dµS]

Now, integrate by parts successively with respect to a]

k`
, · · · , a]

k1
, and then apply Leibniz’s

rule to obtain∫
aH :

∏̀
i=1

aJi
:S dµS = ±

∫ [ ∏̀
i=1

( n∑
m=1

Skim
∂
∂am

)
aH

] ∏̀
i=1

a]

Ji\{ki} dµS]

=
∑

1≤µ1,···,µ`≤m

pairwise
different

± ∏̀
i=1

Skihµi

∫
aH\{hµ1 ,···,hµ`

}
∏̀
i=1

a]

Ji\{ki} dµS]

since ∏̀
i=1

( n∑
m=1

Skim
∂
∂am

)
aH =

∑
1≤µ1,···,µ`≤m

pairwise
different

( ∏̀
i=1

Skihµi

∂
∂ahµi

)
aH

=
∑

1≤µ1,···,µ`≤m

pairwise
different

± ∏̀
i=1

Skihµi
aH\{hµ1 ,···,hµ`

}

It follows immediately that∣∣∣ ∫
aH :

∏̀
i=1

aJi
:S dµS

∣∣∣
≤ ∑

1≤µ1,···,µ`≤m

pairwise
different

∏̀
i=1

|Shµi
ki
|

∣∣∣ ∫
aH\{hµ1 ,···,hµ`

} :
∏̀
i=1

aJi\{ki} :S dµS

∣∣∣

≤ M(H, J1, ···, J`)
∑

1≤µ1,···,µ`≤m

pairwise
different

∏̀
i=1

|Shµi
ki
|
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Proposition III.7 Let

f (m)(a) =
∑

h1,···,hm

fm (h1,···,hm) ah1 · · · ahm

be a homogeneous Grassmann polynomial of degree m , where fm (h1,···,hm) is an antisym-

metric function of its arguments. Let J1, ···, J` be multi indices with m ≥ ` . Then,

∣∣∣ ∫ :
∏̀
i=1

bJi
:S f (m)

(b) dµS

∣∣∣ ≤ `!
(

m
`

)
M(m, J1, ···, J`)

∑
h1,···,hm

|fm (h1,···,hm)| ∏̀
i=1

|Shiji1 |

where M(m, J1, ···, J`) = sup
|H|=m

M(H, J1, ···, J`) .

Proof: For convenience, set ki = ji1 , i = 1, · · · , ` . By the preceding lemma,

∣∣∣ ∫ :
∏̀
i=1

bJi
:S f (m)

(b) dµS

∣∣∣ ≤ ∑
|H|=m

|fm (H)| M(H, J1, ···, J`)
∑

1≤µ1,···,µ`≤m

pairwise
different

∏̀
i=1

|Shµi
ki
|

≤ M(m, J1, ···, J`)
∑

|H|=m

|fm (H)| ∑
1≤µ1,···,µ`≤m

pairwise
different

∏̀
i=1

|Shµi
ki
|

Observe that, by the antisymmetry of fm ,

∑
|H|=m

|fm (H)| ∑
1≤µ1,···,µ`≤m

pairwise
different

∏̀
i=1

|Shµi
ki
| =

∑
1≤µ1,···,µ`≤m

pairwise
different

∑
h1,···,hm

|fm (h1,···,hm)| ∏̀
i=1

|Shµi
ki
|

=
∑

1≤µ1,···,µ`≤m

pairwise
different

∑
h1,···,hm

|fm (h1,···,hm)| ∏̀
i=1

|Shiki
|

= `!
(
m
`

) ∑
h1,···,hm

|fm (h1,···,hm)| ∏̀
i=1

|Shiki
|

Proposition III.8 Let

f (m)(a) =
∑

h1,···,hm

fm (h1,···,hm) ah1 · · · ahm

be as above. Let r, s ∈ IN` with m ≥ ` . Then, the L1 norm ‖R r s (f (m))‖1 of the kernel

R r s (f (m))(K1 ,···,K`) is bounded by
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(a)

‖R r s (f (m))‖1 ≤ (
m
`

)
M(m, s) ‖fm‖1

( ∏̀
i=1

(ri
si
) ‖S‖1,∞ ‖wri

‖1,∞
)

where M(m, s) = sup
|Ji|=si
i=1,···,`

M(m, J1, ···, J`) .

(b)

‖R r s (f (m))‖1 ≤ Φ(m−`)
(
m
`

)
Λ

1
2

(
m−Σ

`

i=1
(ri−si)

)
‖fm‖1

( ∏̀
i=1

(ri
si
) ‖S‖1,∞ Λ

1
2 (ri−2) ‖wri

‖1,∞
)

when, in addition, Hypothesis III.3 is satisfied.

Proof: To verify (a), set

ui(j, Ki) =
∑

|J′
i
|=si−1

i=1,···,`

|wri
(j , J′

i
, Ki)|

for each i = 1, · · · , ` . By construction, ‖ui‖1,∞ = ‖wri
‖1,∞ , i = 1, · · · , ` . Also, set

T(K1 ,···,K`) =
∑

h1,···,hm

|fm(h1,···,hm)| ∏̀
i=1

( n∑
j=1

|Shij | |ui (j,Ki)|
)

By Proposition III.7,

∣∣R r s (f)(K1 ,···,K`)
∣∣ ≤ (

m
`

)
M(m, s)

( ∏̀
i=1

(ri
si
)
)

T(K1 ,···,K`)

since,

∑
|Ji|=si
i=1,···,`

M(m, J1, ···, J`)
∑

h1,···,hm

|fm(h1,···,hm)| ∏̀
i=1

|Shiji1 | |wri
(Ji, Ki)|

≤ M(m, s)
∑

|J′
i
|=si−1

i=1,···,`

∑
h1,···,hm

|fm(h1,···,hm)| ∏̀
i=1

( n∑
j=1

|Shij | |wri
(j , J′

i
, Ki)|

)

= M(m, s)
∑

h1,···,hm

|fm(h1,···,hm)| ∏̀
i=1

( n∑
j=1

|Shij | |ui (j, Ki)|
)

It follows from Proposition III.2 that

‖R r s (f)‖1 ≤ (
m
`

)
M(m, s)

( ∏̀
i=1

(ri
si
)
) ‖T‖1

≤ (
m
`

)
M(m, s)

( ∏̀
i=1

(ri
si
)
) ‖fm‖1

∏̀
i=1

‖S‖1,∞ ‖wri
‖1,∞
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For (b), simply observe that, by Hypothesis III.3,

∣∣∣ ∫
aH\{hµ1 ,···,hµ`

} :
∏̀
i=1

aJi\{ji1} :S dµS

∣∣∣ ≤ Φ(m−`) Λ
1
2

(
m +Σ

`

i=1
(|Ji|−2)

)

for any multi indices H, J1, ···, J` with |H| = m ≥ ` and any pairwise different sequence of

indices 1 ≤ µ1, · · · , µ` ≤ m . Consequently,

M(m, s) = sup
|Ji|=si
i=1,···,`

sup
|Hi|=m

M(H, J1, ···, J`) ≤ Φ(m−`) Λ
1
2

(
m +Σ

`

i=1
(si−2)

)

We have developed all the material required for a useful bound on the operator R .

For the rest of this section we assume Hypothesis III.3.

Lemma III.9 Let

f (m)(a) =
∑

h1,···,hm

fm (h1,···,hm) ah1 · · · ahm

be as above and let m ≥ ` . Then, for all α ≥ 2 ,

∑
r,s∈IN`

‖R r s (f (m))‖α ≤ Φ(m−`) ‖f (m)‖α |||W|||`α+1

Proof: By Proposition III.8 (b),

‖R r s (f (m))‖α ≤ α

(
Σ
`

i=1
(ri−si)

)
Λ

1
2 Σ

`

i=1
(ri−si) ‖R r s (f (m))‖1 ≤ Φ(m−`)

(
m
`

)
Λ

1
2 m ‖fm‖1 P r s

where, for convenience, P r s =
∏̀
i=1

(ri
si
) αri−si ‖S‖1,∞ Λ

1
2 (ri−2) ‖wri

‖1,∞ . However,

(
m
`

)
Λ

1
2 m ‖fm‖1 = 1

αm

(
m
`

)
αm Λ

1
2m ‖fm‖1 ≤ ‖f (m)‖α

when α ≥ 2 , and consequently,

∑
r,s∈IN`

‖R r s (f (m))‖α ≤ Φ(m−`) ‖f (m)‖α

∑
ri≥si≥1
i=1,···,`

P r s
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Observe that

∑
ri≥si≥1
i=1,···,`

P r s =
( ∑

r≥s≥1

(r
s) αr−s ‖S‖1,∞ Λ

1
2 (r−2) ‖wr‖1,∞

)`

≤ |||W|||`α+1

since

∑
r≥s≥1

(r
s) αr−s ‖S‖1,∞ Λ

1
2 (r−2) ‖wr‖1,∞ ≤ ∑

r≥s≥0

(r
s) αr−s ‖S‖1,∞ Λ

1
2 (r−2) ‖wr‖1,∞

=
∑
r≥0

(α+1)
r ‖S‖1,∞ Λ

1
2 (r−2) ‖wr‖1,∞

= |||W|||α+1

Therefore, ∑
r,s∈IN`

‖R r s (f (m))‖α ≤ Φ(m−`) ‖f (m)‖α |||W|||`α+1

We can now prove

Theorem I.8 Suppose 2 |||W|||α+1 ≤ 1 . Then, for all polynomials f in the Grassmann

algebra A(a1, · · · , an) ,

‖R(f)‖α ≤ 2 Φ(n) |||W|||α+1 ‖f‖α

Proof: By Lemma III.9,

‖R(f)‖α ≤ ∑
m≥1

m∑
`=1

∑
r,s∈IN`

‖R r s (f (m))‖α

≤ Φ(n)
∑

m≥1

‖f (m)‖α

m∑
`=1

|||W|||`α+1

≤ Φ(n) ‖f‖α
1

1−|||W|||α+1
|||W|||α+1

≤ 2 Φ(n) ‖f‖α |||W|||α+1
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Corollary III.10 Suppose 2 (1+Φ(n)) |||W|||α+1 < 1 . Then, for all polynomials f in the

Grassmann algebra A(a1, · · · , an) ,

‖(1l−R)−1 (f)‖α ≤ 1
1−2Φ(n) |||W|||α+1

‖f‖α

Lemma III.11 For all Grassmann polynomials f in A(a1, · · · , an) ,
∣∣ ∫

f (a) dµS

∣∣ ≤ Φ(n) ‖f‖α

Proof: As usual, write

f (a) =
∑

m≥0

f (m)(a)

where, for each m ≥ 0 , f (m)(a) =
∑

j1,···,jm

fm (j1,···,jm) aj1 · · · ajm
and the kernel fm (j1,···,jm)

is an antisymmetric function of its arguments. Then, by Hypothesis III.3,∣∣ ∫
f(a) dµS

∣∣ ≤ ∑
m≥0

∣∣ ∫ f (m)(a) dµS

∣∣
≤ ∑

m≥0

∑
j1,···,jm

|fm (j1,···,jm)| ∣∣ ∫ aj1 · · · ajm
dµS

∣∣
≤ ∑

m≥0

∑
j1,···,jm

|fm (j1,···,jm)| Φ(m) Λ
1
2 m

≤ ∑
m≥0

‖fm‖1 Φ(m) αm Λ
1
2 m

≤ Φ(n) ‖f‖α

Recall that the correlation functions Sm (j1,···,jm) , m ≥ 0 , corresponding to the

interaction W(a) and the propagator S =
(
Sij

)
are given by

Sm (j1,···,jm) = 1
Z

∫
aj1 · · · ajm

eW(a) dµS (a)

Theorem I.9 Suppose 2 (1+Φ(n)) |||W|||α+1 < 1 . Then, for each m ≥ 0 and all sequences of

indices 1≤ j1,···,jm ≤n ,

|Sm (j1,···,jm)| ≤ Φ(n)
1−2 Φ(n) |||W|||α+1

αm Λ
1
2 m
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Proof: Fix 1≤ j1,···,jm ≤n and rewrite the monomial aJ = aj1 · · · ajm
as

aJ =
∑

k1,···,km

Alt(δk1,j1 · · · δkm,jm
)(k1,···,km) ak1 · · · akm

Then,

‖aJ‖α = αm Λ
1
2 m ‖Alt(δ ·,j1 · · · δ ·,jm

)‖1 ≤ αm Λ
1
2m

By Theorem I.3, Lemma III.11 and Corollary III.10,

|Sm (j1,···,jm)| =
∣∣ ∫ (1l−R)−1 (aJ) dµS

∣∣
≤ Φ(n) ‖(1l− R)−1 (aJ)‖α

≤ Φ(n)
1−2Φ(n) |||W|||α+1

‖aJ‖α

so that

|Sm (j1,···,jm)| ≤ Φ(n)
1−2 Φ(n) |||W|||α+1

αm Λ
1
2 m
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Appendix: Gram’s Inequality for Pfaffians

Proposition. Suppose that S =
(
Sij

)
is a complex, skew symmetric matrix of the form

S =
(

0 Σ
−Σt 0

)

where Σ =
(
Σij

)
is a matrix of order n

2 . Suppose, in addition, that there is a complex

Hilbert space H , elements vi, wi ∈ H , i = 1, · · · , n
2 , and a constant Λ > 0 with

Σij = 〈vi, wj〉H

and

‖vi‖H , ‖wj‖H ≤ (
Λ
2

)1
2

for all i, j = 1, · · · , n
2 . Then, for all multi indices I and J ,

∣∣∣ ∫
aI dµS

∣∣∣ ≤ (
Λ
2

)1
2 |I|

and ∣∣∣ ∫
aI : aJ :S dµS

∣∣∣ ≤
{

Λ
1
2 (|I|+|J|)

, |J| ≤ |I|
0 , |J| > |I|

Proof: To prove the first inequality, suppose i1<···<ir and observe that

∫
ai1 · · · air

dµS = Pf
(
Sik i`

)

where, Pf
(
Sik i`

)
is the Pfaffian of the matrix with elements Sik i` , k, ` = 1, · · · , r , given by

Sik i` =




0 , 1≤ik , i`≤ n
2

Σik i`−n
2

, 1≤ik≤ n
2 and

n
2 <i`≤n

−Σi` ik−n
2

, n
2 <ik≤n and 1≤i`≤ n

2

0 , n
2 <ik≤n and

n
2 <i`≤n

More concisely, ∫
ai1 · · · air

dµS = Pf
(

0 U
−U t 0

)
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where U =
(
Uk`

)
is the ρ = max

{
k
∣∣ ik≤ n

2

}
by r − ρ matrix with elements

Uk` = Σik i`+ρ−n
2

=
〈
vik , wi`+ρ−n

2

〉
H

By direct inspection,

Pf
(

0 U
−U t 0

)
=

{
0 , ρ 6=r−ρ

(−1)
1
2 ρ(ρ−1) det(U) , ρ=r−ρ

If r = 2ρ , then by Gram’s inequality for determinants
∣∣∣ ∫

ai1 · · · air
dµS

∣∣∣ =
∣∣∣ det

( 〈
vik , wi`+ρ−n

2

〉
H

)∣∣∣ ≤
ρ∏

k=1

‖vik‖H ‖wik+ρ−n
2
‖H ≤ (

Λ
2

)ρ

Finally, by antisymmetry, ∣∣∣ ∫
aI dµS

∣∣∣ ≤ (
Λ
2

)1
2 |I|

for any multi index I .

To prove the second inequality, set

Σ] =
(

0 Σ
Σ Σ

)

The matrix

S] =
(

0 S
S S

)
=




0 0 0 Σ
0 0 −Σt 0
0 Σ 0 Σ
−Σt 0 −Σt 0




is conjugated by the permutation matrix


1l 0 0 0
0 0 1l 0
0 1l 0 0
0 0 0 1l




to (
0 Σ]

−Σ]t
0

)
=




0 0 0 Σ
0 0 Σ Σ
0 −Σt 0 0
−Σt −Σt 0 0




Also, define the vectors v]

i , w
]

i , i = 1, · · · , n , in the Hilbert space H⊕H by

v]

i =
{

(0,vi) , 1≤i≤ n
2

(vi,vi) , n
2 <i≤n

w]

i =
{

(wi,0) , 1≤i≤ n
2

(0,wi) , n
2 <i≤n
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Then,

Σ]
ij =

〈
v]

i , w]

j

〉
H⊕H

and

‖v]

i‖H⊕H , ‖w]

j‖H⊕H ≤ Λ
1
2

for all i, j = 1, · · · , n . The second inequality has now been reduced to the first for the matrix

(
0 Σ]

−Σ]t
0

)

the Hilbert space H⊕H and the vectors v]

i , w
]

i , i = 1, · · · , n .
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