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¢I. Introduction

Let A(ay,---,ay,) be the finite dimensional, complex Grassmann algebra freely

generated by aq,---,a,. Let M, = {(zlzr) 1§i1,~~~,u§n} be the set of all multi

indices of degree r > 0. For each multi index 1 = (i1,--,i,), set a; = a; - a; By

.

convention, ap = 1. Let

7= | {(il,...,”)

0<r<n

1<i1<<ip<n }

be the family of all strictly increasing multi indices. The set of monomials {aI } 1€ } is a
basis for A(aq,---,a,).
Let S = (SZ) be a skew symmetric matrix of even order n. Recall that the

Grassmann, Gaussian integral with covariance S is the unique linear map

f(a,b) c A(a1,~--,an,b1,-~-,bn) — /f(a,b) d,u,g(a) c A(bl,"',bn)

satisfying
/ ezaibi dMS (a) — 6—%2[)7;5”'1)]'

To manipulate Grassmann, Gaussian integrals, we can “integrate by parts” with

respect to the generator ax, k=1,---,n,

/akf(anwan) dps = Skz/(g—w f(a1,~~~,an)> dps
i=1

The left partial derivative
G fw=2 fi o

1eZ

is determined by

0 14
g_aealz{ ’ ¢I

-v"ayax, a=ayapax
Here, |J| is the degree of J. Integrating by parts with respect to a;, and then arguing by

induction on r we find

/CLI d,us(a) = Pf(SI)
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where, for any multi index 1= (i, i) in M, , S; = (Sik ie) is the skew symmetric matrix

with elements S, ;,, k,¢=1,---,r, and where

r

P— —1 kl...kr . . . e . . .
Pf(S) = 55 E € S, ing S, i,
k;l’...Jg,r,:l

is its Pfaffian when r = 2s is even. By convention, the Pfaffian of a skew symmetric matrix

of odd order is zero. As usual,

1 , 41,,i, is an even permutation of 1,---,r
ghttr = -1 , 1,4, is an odd permutation of 1,---,r
0 , 11,4, are not all distinct
Let W(a) be an element of the commutative subalgebra A%(ay,---,a,) of all “even”
Grassmann polynomials in A(ay,---,a,). That is,

W(a) = Z Z Wi (J1,50r) Qj, - Q.

TZO .j17"'7.j'r
where, W, (j1,-j») , IS an antisymmetric function of its arguments 1<j,,--,j.<n that vanishes

identically when r is odd. By definition, the “Schwinger functional” S(f) on A(ay,---,an,)
corresponding to the “interaction” W (a) and the “propagator” S = (Sij) is

S(f) = %/f(a) eV (@) dug (a)

where Z = /ew(a) dpg . The associated “correlation functions” S, (ji,--jm), m > 0, are
given by
Sm (]177‘7m) = %/ ajl ...ajm ew(a) d,LLS(a)

In this paper we introduce an operator R on A(ay,---,a,) such that

S(f) = / (M—R)"(f) dus

holds for all f in A°(ay,---,a,). The utility of this representation of the Schwinger func-
tional is demonstrated in §I1I, where an elementary, but archetypical, bound on the correlation
functions S, (j1,+j4»), m > 1 is obtained by bounding the operator norm of R in terms of a
“naive power counting” norm on W (a). The tools developed here will be used to simplify

the rigorous construction of a class of two dimensional Fermi liquids outlined in [FKLT].
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The representation of the Schwinger functional derived in this paper grew out of
the “integration by parts expansion” of [FMRT], [FKLT] which, in turn, was developed as a
replacement for the traditional “cluster/Mayer expansion”. In fact, the integration by parts
expansion can be obtained by first expanding the inverse (1 — R)™! in a Neumann series
and then selectively expanding, by repeated partial integrations, the Grassmann, Gaussian
integrals appearing in the definition of R. Apart from its conciseness, the advantage of the
representation of the Schwinger functional given in this paper lies in the fact that the Pauli
exclusion principle can be implemented quantitatively by a simple application of Gram’s
inequality. This is in contrast to the “integration by parts expansion”, where the Pauli
exclusion principle is implemented by a more physical, but more complicated, approach that
involves carefully counting the number of fields in position space cubes whose dimensions are
matched to the decay of the free propagator.

One more notion is required for the detailed formulation of our results. For this

purpose, let S* be the complex, skew symmetric matrix of order 2n given by

¢ (0 S
= (5 5)

Also, for all multi indices 1 and J in M, let S..; be the skew symmetric matrix of order

|| + |J] defined by
_ 0 SI,J _ - SI O
S:I:J - (SJJ SJ ) - SIJ ( 0 O)

Here, 13 is the juxtaposition of 1 and J and

S, = (SW)

is the matrix with elements S;, ;,, k=1,---,7 and £ =1,---,s. Now, suppose a? ay is the
monomial in the Grassmann algebra A(a},---,a%, a1, -,a,) corresponding to 1 and J in

M . Then, by construction,

/ aEaJ d,usn (af,a) = Pf(S:I:J>

In other words, the Grassmann, Gaussian integral with covariance S* excludes “contractions”

between any pair of the generators af,---,af, in A(al, --,a%, a1, -, an,).
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For any f(a) in A(ay,---,a,), let fa)* be the Grassmann polynomial belonging
to A(a?, ---,al) defined by f(a)f = f(a*). If S is an invertible skew symmetric matrix,
then there is a unique linear map, called the Wick map with respect to S, from f(a) in the

Grassmann algebra A(ay,---,ay,) to : f(a):s in A(ay,---,a,) such that

/ Hf@ s gla) dps(a) = / f@F g@ dugs (@,a)
for all f(a), g(a) in A(ay,---,a,).
The Wick map has a unique extension from A(aq,---,a,) to the Grassmann algebra
A(ay, - ,an,by,---,b,) that is left linear over the subalgebra A(by,---,b,). For example,

Zaib

we can apply the Wick map to the exponential e i as a Grassmann polynomial in the

generators aq,---,a, with coefficients in A(by,---,b,). By definition,
/:eZaibi ” eEaibg diig (a) = / ezagbi eEaibg diigs (aha) = e—ZbiSUbg e—%Zbgsijbg.
On the other hand,

/ (ezaibi 6%2@-5”@-) o2 a; b dig (a) = o~ 2biSijb} ,— 52050

and consequently,

62a1b1 :S — e%zbzswb] ezazb,

It follows from the last identity that the Wick map : - :5 depends continuously on S and

has a unique continuous extension to the vector space of all skew symmetric matrices.

Definition I.1 For any Grassmann polynomial

h(a,b) = E g1s ay by

1,3eZ

in A(ala"'aanabla"'7bn)7
th(a,b) is.q = Y Y15 iaris by

1,JeT

ch(a,b) sy = Y. Giyar :byig

1,5eZ

In other words, the Wick map with respect to S is applied to h(a,b) as a Grassmann polyno-
mial in the generators ay,---,a, with coefficients in A(by,---,b,) to obtain : h(a,b) :5.q .
Similarly, it is applied to h(a,b) as a Grassmann polynomial in the generators by,---, by,

with coefficients in A(ay,---,a,) to obtain : h(a,b) :5p .



Definition 1.2 The linear map R from A(ay,---,a,) to itself is (consciously suppressing

the dependence on W(a) and S') given by

R()(a) = / WDV 1L F () dps o

Our first result is

Theorem 1.3 Suppose 1 is not in the spectrum of R. Then,

St = [=R)7 ) dus

for every f in A%aq,---,a,).

To exploit the representation of Theorem 1.3 we decompose R by expanding the

exponential in : eW(e+t)=W(a) _ 1.

Definition 1.4 For each pair r,s € IN , £ > 1, and every polynomial f in A(aq,---,a,), the
complex valued kernel Ryg(f)(xy,-,x,) On My, —g x--xMy,_s, is (consciously suppressing

the dependence on W(a) and S') given by

V4
Rrs(f) (ki) = £(s) % )OI 11 (:Z) WTi(JivKi)in s f(b) dps (b)
neMs, T eMsg, =1

when r; >s; >1,i=1,--- £. Otherwise, R;s(f)(;,-,x,) =0 . Here,

¢
+(s) = [] (_1)5i(5i+1+"'+52)
i=1
The corresponding linear map R*3 from A(aq,---,ay) to itself is
¢
Rrs(f) = Z Z RrS(f)(Kl»“'aKz) H Gk,
KjeM, o KeeM,, i=1



Theorem 1.5 For every f in A(ay,---,a,),

R(f) = X 2  R™”()

£>1 r ,scIN?

Remark I.6 At the end of the introduction, we use Theorem 1.5 to interpret Definition 1.4

and Theorem 1.3 in terms of Feynman graphs.

We can combine Theorem 1.3 and Theorem 1.5 to obtain analytic control over the
Schwinger functional S(f). To do this, choose a nondecreasing function ® on IN and a

A > 0 such that

< {q’ﬂlnA%““'), A<
0, 31>

‘/al tay s dps(a)

for all multi indices 1 and J. The number A is morally the supremum |[|S|_ =

sup  |S;;| of the covariance S. The number ®(|1) is intuitively the degree of can-
17‘76{17771}
cellation between the at most 1! nonzero terms contributing to the Pfaffian

SI SI
Pf(SJ,I OJ) = /CLI tay g dug(a)

At one extreme (see, Example II1.4), we can always choose ®(|1)) = 1|1 for all multi indices

1 and A =S| . At the other extreme (see, Example II1.5), suppose that

0 =
5= (3 0)

for some matrix ¥ = (Zij) of order 7, and further that there is a complex Hilbert space
H, elements v;,w; € H,1=1,---,%, and a constant A > 0 with
(vi,wj)yy =Xy
1
[villre s lwjlle < L2

for all 7,7 =1,---,5 . Then, by a variant of Gram’s inequality, we can choose ®(j1) =1 for

all multi indices 1 and A = 2L.



For example, the Grassmann algebra associated to a many fermion system has an
equal number of “annihilation” aq,---,a,, and “creation” ai,---,a,, generators. Further-

more, the physical covariance C' cannot pair two annihilation or two creation generators.

: _ 0 Cy
That is, C' = (Cm 0

between vectors in an appropriate Hilbert space with “naturally” bounded norms so that

) . It is also often possible to write (7 as an inner product

®(1) =1, 1€ M, can be achieved in models of physical interest. See, [FMRT, p.682].

Now, let
fla) = > f(a)
m>0
be a Grassmann polynomial in A(aq,---,a,) where, for each m >0,
f(m)(a) = ' ’ fm(]la,]m) a.jl a]m
1717...7‘]771

and the kernel f,, (ji,--,jm) is an antisymmetric function of its arguments.

Definition 1.7 For all a > 2, the “external” and “internal” naive power counting norms

| flle and |||f]||e of the Grassmann polynomial f(a) are

Il = > [F ™ lla = 2;0 ™ A" | flls

m>0

and

|1,oo

m m l(m_)
Al = > 1F e = 2 @ ISl A7 7l fom

m>

where

1fmli = X [fnlrim)]

J1s 5 dm
[frm

|1,OO = sup Z ‘fm(]'hj%‘“,jm)}

J1€{l, o} g2, im

are the L' and “mixed L!',L> ” norms of the antisymmetric kernels f,, (J1erjm) -

In Section III we prove

Theorem 1.8 Suppose 2 |||W|||a+1 < 1. Then, for all polynomials f in the Grassmann
algebra A(ay,---,ay),

RNl < 220) [[[Willass [[fla
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In particular, the spectrum of R is bounded away from 1 uniformly in the number of degrees

of freedom n when ® is constant and |||W|||a+1 is small enough.

A simple consequence of Theorem 1.8 is the archetypical bound on correlation func-

tions

Theorem 1.9 Suppose 2(14+®(n)) [|[W]|las1 < 1. Then, for each m >0 and all sequences of

mdices 1< jy,jm <n,

. ) P(n) moAsm
[Sm Gim)| < Tramy WL @ A

In particular, the correlation functions are bounded uniformly in the number of degrees of

freedom n when ® is constant and |W||ax1 s small enough.

Decomposition of Feynman Graphs into Annuli

In the rest of the introduction we motivate and interpret Definition 1.4 and Theorem
1.3 “graphically”. However, we emphasize that the purely algebraic proof of Theorem 1.3 given
in the next section is completely independent of this discussion and, in particular, does not
refer to graphs.

Recall that, for 1= (iy,-,i,) in M, with r even,

‘s

/ ay d,uS (a) = Pf(SI) = Z 5klmkr Uy Ty Sikr,likr

Ky, kp=1
ko;_1<kg,; for i<r/2
k1<kz<---<kp_1

can be thought of as the sum of the amplitudes of all graphs having r vertices labelled i, ,---,i,
and having precisely one line attached to each vertex. The amplitude of the graph having
lines {ik,, 0y}, - s {50k, } 1S Ek1~~~kr5ik1 ing " Sk, i,

This graphical representation has an immediate extension to

J4
[an @ dpsw = X £ b T o 2 [ [T e, desto

>0 recIN¢ neMyp 1eM,, =1
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with H € M,,, . One merely has to substitute Hr, ---1, for 1. In general, a “Feynman graph I'”
with m external legs and ¢ internal vertices w; ,---,w;, (the vertex w,, having r; legs)
is a partition of the m + r1 +--- + 74 legs into disjoint pairs that are represented as lines.
The amplitude of the graph I'" is defined to be

¢
AmT)m = 5 > - > Il wea I S

LeM, 1eM,, i=1 linescin T
where we choose any ordering (i.,;j.) of the pairs in the partition determined by the lines c
of T' and where ¢ is the signature of the permutation that brings the juxtaposition of these
pairs to the juxtaposition HI,---1, of the multi indices H,1,,---,1,. Then, for H € M,,,

/ ag €V dug@ = > Am(T) (1)

Feynman graphs I'

A Feynman graph I' is “externally connected” when each connected component

contains a line with an external leg. In other words, there are no °

‘vacuum components”.
It is well known (and can also be derived from Theorem 1.3 and Theorem 1.5) that the
correlation function S(ay) = % [ au eV dug(a) is the sum of the amplitudes of all
externally connected graphs. Roughly speaking, the representation S(f) = i J R™(f)dps
generates these graphs a bit at a time with the m*™ application of R addingnt:lr(l)ose lines that
are of distance m — 1 from f and those vertices that are of distance m from f.

To make this more precise, we return to Definition 1.4 and choose r,s € IN® satis-

fying r,;>s;>1,i=1,---,¢. We first explain how to visualize the action of the operator R*® on

a homogeneous Grassmann polynomial

f(a) = Fon Gy @y oo, = > fon(H) Qg
Jissdm He M,
of degree m .
Suppose, f(a) = ay is a monomial where, H = (hy,---,h,.) , and select a multi index

K, € M, _s ,i=1,---,¢. To graphically interpret the coefficient

4
RI‘S(G’H)(K17"'7K£) = =*(s) % Z Z / : H (:Z) W’I”,'(JivKi)in 's by dps (b)
neMs, JeMsg, =1

of ayx, ---ax, in R"®(ay), we imagine an annulus that has, for each generator in the incoming

£

monomial by, an “external leg” entering some point on its outer boundary and that has, for
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¢
each generator in the outgoing product [] ax, of R'® an “external leg” leaving some point

=1
on its inner boundary, and that furthermore contains the ¢ “vertices” w,,,---,w,, in its
interior. There are no other external legs or vertices. The vertex w,,, ¢ =1,---,¢, has r;

“legs”. One leg, for each generator in the monomial w,, (s,,x;) b;, ax, . The leg attached to
w,, for a given generator in ay, is joined by a “passive” line to the corresponding external

leg leaving the inner boundary of the annulus.

hy hs

(=4 m=10 7= (4,2,4,2) §=(2,1,3,2)
We construct “annular graphs of type m,r,s” out of our annulus, when m>s;+---+s, and
m+s;+-+s, 18 even, by connecting each leg of w,,,7=1,---,¢, representing a generator in
by, , |Ji|=s:, by an “active” line with an external leg representing a generator in by entering
the outer boundary or connecting, again by an “active” line, two external legs entering the
outer boundary corresponding to a pair of generators in by . Each vertex is connected to at
least one external leg entering the outer boundary because s; > 1,1 < ¢ < ¢. Note that
there is a bijection between annular graphs and partitions P of the disjoint union Hu U J;

1<i<e

into disjoint unordered pairs such that each element of U J, is paired with an element of
1<i<e

H.
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two annular graphs of type 10, (4,2,4,2), (2,1,3,2)

For each sequence (u.x,,-,x,) of multi indices in My, x My, —g, x--x My, _g, , the amplitude

Am(A)@#, x,,,x,) of an annular graph A of type m,r,s is

J4
Am(A)(H,Kl,.“,KZ) = j:(s)% I3 Z Z H (Zz) W, (35, K;) H Sicjc
Jq EMSl Jy EMSZ =1 aciivie; lxes

where we choose any ordering (i.,j.) of the pairs in the partition P, determined by the active
lines ¢ of A and where ¢ is the signature of the permutation that brings the juxtaposition
of these pairs to the juxtaposition HJ,---J, of the multi indices H,J,,-,J,. The amplitude
Am(A)m, x,,-,x,) is a function of the external legs of the annular graph A .
Recall that the Grassmann, Gaussian integral
¢ ¢
i=1 i=1
¢
is equal to a Pfaffian that is the sum over all the partitions of the product ( II bﬁ]) by into
i=1
¢
disjoint pairs such that each generator in [] b%i contracts, via a matrix element of S, to a

=1
generator in by . Therefore, by construction,

4
OF DYDY /:.H1(£;i)wrim,m>b‘]i s budps®) = 30 Am(A)(m . x)

JieM JpeM annular graphs A
P e of type [H|.r.s

That is,
Res(f ™) (k1,x) = D [ (H) > Am(A)(u, k- xy)
HeM,,

annular graphs A
of type m,r,s
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Suppose, |A| < 1. Then, the partition function Z(x) = [ e*V(@) dug # 0 and all
the eigenvalues of R = O(\) lie strictly inside the unit disc. In this case, the Neumann series

(I-R)~"!'= > RP converges. Writing out all the terms,
p=0

/(H_R)_l (f) dus = 32 PO R R¥ () dps

p>0, r IN41 tp
0>t 1,81 € I'p,SPE]N

To convey the intuition that leads to the statement of Theorem 1.3, we examine both the
action of a product R*»Sr...R* St contributing to R? on f and the corresponding

Grassmann Gaussian integrals
/Rrpsp"'ersl(f‘m)) dps

For p=2,

Ry, s, (R”Sl (f<m>)> (t1reite,)

— Z fml (H) Z Z Am<A1)(H7K1,--wKz1) Am(AQ)(Kl“'Kel»Llw“)Lez)
HEMm Kl R KZ annular graphs A ;
1 1 of type mj,r;,s;
fori=1,2

The degree m; =m and the degree ms=ri1—-s1 14+ +r1e,—s1,., , the second sum is over all
sequences of multi indices (i, 1) I My gy XXMy, —s, ., and the multi index
K,--k,, occuring in the amplitude Am(As) is the juxtaposition of the multi indices «, ... x,, .
Now,

Am(AlAg)(H,Ll , -H,LéQ) = Z Am(Al)(H,Kl ,Kél) Am(AQ)(Kl-uKll I R ,LeZ)

Kq, ’Kél

is the “amplitude of the double annular graph A;A, of type m,ry,s1,re,s2” obtained by
inserting A5 just inside the inner boundary of A; and then, for each generator in ﬁ ag,
joining the associated external leg (at the end of a passive line) leaving the inner boulﬁz;ry of
A; to its mate (at the begining of an active line) entering the outer boundary of As. Notice
that, by construction, each vertex in As is connected by a line to at least one vertex in A;

that, in turn, is connected to at least one external leg entering the outer boundary of A;.
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a double annular graph A; A; with A; of type 8, (2,6,2,4,4), (1,3,1,2,1)
and A, of type 10, (4,2,4,2), (2,1,2,2)
For p > 3, one obtains the amplitude of the completely analogous p-annular graph A;--- A,
of type m,ry,s1,---,rp,s, in which each vertex in the annular graph A;, ¢ = 2,---,p of
£i—1

type m; = Z ri_1,—si—1;, i, S;, is connected by a line to at least one vertex in A;_; and

ultimately to at least one external leg entering the outer boundary of A; .

2

An “externally connected Feynman graph I' of type m,ri,si,---,rp,8,” is a p-
annular graph A;---A, of type m,ry,s1,---,rp,s,, as in the last paragraph, together with
a partition P of the legs emanating from the inner boundary of A, into disjoint pairs that

are joined to form lines.

Suppose I' is an externally connected Feynman graph with m external legs and the internal

13



vertices w,,, -+, W, . Set

n

Al (F) = {W,«j ‘ at least one leg of Wo, is connected by a line in I' to an external leg}
and then define A;(T"), i>2, inductively by
i—1
AZ‘ (F) = {er ¢ U Ay (T) ‘ at least one leg of Wi is connected by a line in I' to a vertex inA;_1 }
h=1

Also, set ¢; = |A;(T")| fori>1. Thereis a 1<p<n such that A,(I") # 0 , while A, (") =0,

and

{wpy s we b = UAi(F)
i=1

Let wy, , -+, wy, ~ be the vertices in A;(T"). For each k=1,--,¢;, let s;, be the

it
number of legs of the vertex Wi that are attached by lines to a vertex in A;_1(I"). Also,
let m] be the total number of legs emanating from the vertices in A;_;(I") that are not
attached by lines to vertices in A; o(I'). For each ¢ = 1,---,p, set r] = (rjyeimi,,) and
s; = (5310 28i,,) - Observe that the graph T' induces a unique annular graph structure on
A;(T) of type m],r],s; for each ¢ = 1,---,p, and a partition pPr of the legs leaving the
inner boundary of A,(I") into pairs. Thus, every externally connected Feynman graph T
with m external legs corresponds to a unique externally connected Feynman graph of type

M,T],87, T, S, -
For each multi index H in M,, , the amplitude Am(I')(n) of the externally con-

nected Feynman graph I' of type m,ry,s;,---,r,,s, is defined by

Am(T") (1) = ePr) > Am(Ay - Ap)momy o)) T Siy
My, -, Mg, (i,5)€EPr
, where e(Pr) is the signature of the permutation that brings the juxtaposition of the pairs
in the partition Pr to the juxtaposition M;--M,, . The sum is over all sequences of multi
indices (my . m,) D My, =g, XXMy, , —s,, . By definition, the amplitude Am(I")(n) of
a an externally connected Feynman graph I' is the amplitude of the corresponding externally

Sl"

connected Feynman graph of type m,rj,sy, -+, r,,s, .
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We can now write

/erszRP1S1(f(m)) d,MS
= 3 fam /Rr252ersl(aH) dps

HeM,,
Lo
= Z Jm (H) Z Z Am(AlAQ)(H»le“wLez) H Qr,, diis
HeM,, Li,-, LZ2 annular graphs A =1
of type mj,r;,s;
fori=1,2
= 2 fm@ > Am(T) ()
HeM,, externally connected
Feynman graphs T of
type my,ry,s;,ma,rg,s2
Lo
since, the integral IT av, dus is equal to a Pfaffian that is the sum over all partitions
i=1

Lo
of the product [] a,, into disjoint pairs that are contracted via matrix elements of S.
i=1

Similarly,

/Rrpsp...ersl(f(m)) d,ug = ;\4 fm(H) Z Am(r)(H)

externally connected
Feynman graphs I" of
type myq,ry1,81, -, mp,rp,sp

for all p > 3. It follows that

/ (A—R)" (F™) dus
- Y e Y Y X > Am(T) (1)

H p>0 [4 £ externally connected
e My, 61,4'-,51;21 ri,s;1€IN“1 r,,s, €IN“P Feynman graphsI" of
type miy,r1,81, ", Mp,rp,Sp

or, equivalently,

Ja-RT U dps = S gaen S An@)m

HeM,, externally connected
Feynman graphs T’

where the last sum is over all externally connected Feymann graphs with m external legs
and any finite set w,,,---,w, of vertices chosen from w,,r > 1. As mentioned before, it
is “a well know fact” that

S(f™) = ) %DA Jom (1) > Am(T) (m)

externally connected
Feynman graphs I’

Therefore,

(o) = / A—R)~ () dug
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This completes the graphical interpretation of Theorem I.3.

Acknowledgement: It is a pleasure to thank Detlef Lehmann for many stimulating discus-

sions.
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¢II. The Proofs of Theorem 1.3 and Theorem 1.5

Again, let S = (Sij) be a skew symmetric matrix of even order n.

Lemma II.1 For each h(b,c) in A(by, - by, c1, -+, ¢n),

// h(b, a+b*) dpgs (v%,6) dpg (a) = /h(b,c) d,u(gg)(b,c)

Proof: Let I' be the linear functional on the Grassmann algebra A(by,---,by,,c1,- -

given by

I'(h) = / / h(b, a+b%) dpigs (v%,b) dius (a)

Then,
F<ezbidi+ci6i) — // eZbidi—i—(cH-bﬁ)iei dusﬁ(bﬁ,b)dus(a)

. Ye.4b. d,
— /ezazez/ezbzez+bzdz d/“LSﬂ (bﬁ’b) d/“LS(a)

_ Q.. 4. 1 Q. o
— ¢ ZEZS”dJ e zzdis”d] /623(116Z d,u,s(a)

e—%z eiSiJ- €4 e—z eiSij dj e—%zdisw dj

By uniqueness,

F(h,) = /h(b,c) du(gg)(b,C)

The main ingredient required for the proof of Theorem 1.3 is

Proposition I1.2 For all f and g in A(ay, -, an),

/ / f®) 1 glatd) sy dus®) dus(a) = / fla)gla) dps(a)

17
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Proof: By Lemma II.1,

/ / f®) 1 ga+tb) sy dps®)dps(a) = / / f®) gla+v®) dpgs (v*,b) dpis (a)

= / f®gee) ducs sy e
Now, observe that for all multi indices 1 = (i1,---,i,) and 7 = (j1,--,5,) in M, the juxtaposition
1(J+n) = (i1, ir, j1tn, -, js+n)
is a multi index in {1,--,2n}""* and by construction,

/bIcJ du(gg)(b,c) = Pf((@@)l(m)) = Pf(S,) = /aIaJ diis (a)

It follows that

/ / f®) 1 ga+b) s p dps®) dus(a) = / f(a)g(a) dps (a)

Again, let
W((I) = Z Z W (j17"'7j7‘) ajl oo a].r

TZO jla"':jr

be an even Grassmann polynomial where, w; (ji,-j.), iS an antisymmetric function of its
arguments 1<j,---,j,.<n that vanishes identically when r is odd. Let R be the linear map

on A(ay,---,ay), corresponding to W(a) and S, that was introduced in Definition I.2.

Theorem I1.3 For all f in A(ay,---,ay,),

/ f@ eV dug @ = / (Ro+R)(f) (@ eV dug (a)

where,

Ro(f)(a) = /f(b) dus (b) ag

18



Proof: By Proposition II.2,

/ (Ro+R)(f) (@) V'@ dug @ = / / eVt =W F(b) dus®) eV dus (o)
= // eV Oty f(b) dus ) dps (o)

= / fla) eV dug (a)

It is now easy to give the

Proof of Theorem 1.3: If |\ <r < 1, then
Z() = / eV (@ qug #£ 0

and all the eigenvalues of R = O(\) lie strictly inside the unit disc. In this case,

%/ ag eV dug = /a’H dps %/ R(an) eV dug

and

Iterating,

%/aH e/\W(a) dus = /CLH dus + /R(QH) dus + %/RQ(CLH) eAW(a) dpis

for all £ > 0. In the limit,

%/ ay eV dug = /(IR)_laH dpis

when |[A| < r <« 1. To complete the proof, observe that both sides of the last identity are

rational functions of A € C. [ ]

19



To prove Theorem 1.5 we make

Convention I1.4 Let 1= (iy,--,i,) be any multi index. A “sub multi index” 3c1 is a multi
index 3 = (j1,-,js) together with a strictly increasing map vy from {1,--,s} to {1,--r} such
that jx = iy, k), k = 1,---,s. If the multi indices 1 and 3 belong to I and, in addition,
Jc1 as sets, then 1 is uniquely determined as a sub multi index by the inclusion map of
{j1,--4s} into {ir,,i.}. For every sub multi index ic1, there is a unique complementary
sub multi index 1\J c 1 such that the image of vy, is the complement of v;({1,-,s}) in {1,-r}.
The “relative sign” p(3,1) of the pair Jc1 is the signature of the permutation that brings the
sequence (1, ,r—s,r—s+1,-,r) to (Vy(1), -, Vs(s), via(1),,vns(r—s)) . By construction,

a; = pU.1) ayar; . The relative sign is defined on all of T x 7T by

_(pED, Icr
paY) = {0, o

Proof Theorem 1.5: Observe that for each r > 1,

> owe (@) —ar) = > we) Y > pen byarn
e M, 1e M, 1<s<pr J a subindex

of T in Mg

- Z Z Z PG PG Wy (3,103) by Qr\
ISSST‘ IGMT‘ ifaIS;lnbivr/l\jesx

= Z Z Z (:) Wi (3,K) by ax

1<s<r jeMy; KeM, _,

¢
and consequently, for each r € IN" |

4
H( > wri<xi>(<a+b>1i—a1i))
I

“H((E T T (vt b

1=1 1<s5;<7r; JiGMSi KieM'r‘i—si
¢
-y Y .x (H(::) —— b)
seIN¥ J1€M51 JgGMsz =1
r>s>1 KieM, _g KZEMT(Z*SZ
YA ¢
= ) Yoo > = [T E) wey ik by, TT ax,
scINt J1€Msl Jee./\/ISZ =1 =1
rzs21l g e M

T1—81 KZGMréfsg

20



Now, we can expand the exponential to obtain

. eW(a—l—b)—W(a) 1

s,b
=& é 2,1l ( 2. W, (Ii)<(a+b)1i _ali)) ‘s,b
21 relN¢  i=1 \1,eM,,
1 {4 0
= 2> @ X S Y ks 1) we k) by ts T ax,
621 r,se€N¢ J1€M51 JZEMsg =1 i=1

r>s>1
ZsZ KieM, o KZEMTZ_SZ

4
= Z Z Z Z QI‘S(Klv"'aKé7b) H aKi
=1

EZl r,se]l\le K1€M KZGM

7‘1—\5‘1 TZ—SE
where
. ¢
+(s) 71 Z Z : H (gz) Wi, (355 K;) in sy rizsi=zl,i=1,-
QI‘S(Kla"'7KE7b) = JeMs JpeMs, =1
0, otherwise
Integrating,
[ e 1 r0) duso
[
= Z Z E Z /Qrs(Klv"'yKe:b)f(b) dps (b) H g,
21 rselNt KjeM, . KeeM,, g, i=1
0
= Z Z Z Z RrS(f)(Klv”':Ke) H g,
£>1 rselN® KjeM, _, KieM, i=1
= > > R
£>1 r,scIN¢
That is,

R(f) = 2 X R

£>1 r,scIN*

21



¢§III. An Archetypical Bound and “Naive Power Counting”

Fix a complex, skew symmetric matrix S = (Sz-j) of order n and an even Grass-

mann polynomial

W(a) = Z Z Wi (41,50r) aj, - aj,

r>0 j1,dr
where, W, (j1,--j») , IS an antisymmetric function of its arguments 1<j,,--,j.<n that vanishes
identically when r is odd. In this section we introduce a family of norms on A(ay,---,ay)
and then derive an archetypical bound on

R(f) = 2 > R/

£>1 r,scIN*

for every f in Af(a1,---,a,). Recall that

14
Rrs(f) — Z Z Rrs(f)(KI,"':Ke) 1;[1@1(1-

K;e My, KZEMW

for all r,s € IN® with the convention t = r— s, where

V4
Res(f)ximk) = £ 4 > > / T (5) Wy, (i) by, ts f0) dps
JleMsl JEEMS[ =1

when r;>s;>1,i=1,--- £, and Rys(f)(x;,,x,) =0 otherwise. The sign + = +(s) is given

£
by +(s) = J] (-pulontote),
i=1

A first prerequisite for introducing an appropriate family of norms on A(ay,---,a,)
is to define the “L!norm” [ul|; and the “mixed L' L* norm” |[jull; . of a function
u(jl:"'»j'r‘) on {17___771}7" by

‘7'17...7.7‘71

and

Jull1,00 = sup sup > S |uldicdidinein)

=1, g;€{1l,-,n} Ji,dic1 Jit1roodr

If ugi, ) is an antisymmetric function of its arguments , then

[u

loo =  SUp > |u(idesi)
J1€{l,.m} Jo, 0

22



For example,

IS

100 =  sup > En
J

7:6{1,-“,71}

Remark ITI.1 Let u(,-,j.) be a function on {1,.--,n}" and set

AlbuGy g = 2 > sgn(m) Ul .d)

TeS,
where, 7 U1, jr) = W(ira),ine) - Observe that |7m-ully = |Juljy for all # € S, and
consequently,
[Albully < & X lmullh = [Jull
TES,

That is, ||Altully < [Jully . Similarly, ||[Altull1,c < [lu

1,00 -

Proposition III.2 (Tree Bound) Let f(hi,hn) and 0;(j,K;) = W0, kir,ikie,) , =

1,---,2, be antisymmetric functions of their arqguments with m > . Let

14 n
T = % Gl I (X 1Shsl ikl

hi,.h i=1 Nj=1
Then,
J4
1T < |Ifll -H1 111,00 [[0i]]1,00
1=
Proof: We have
HTHl = Z |T(K17"'7Kl)|
Ky, Ky
4
= ¥ % feennl T (X 18] iG]
Ki,---,Kp hh...’hm =1 j=1
J4 n J4
< 2 fowennl T (X 1Snl) TT Iuilhoo
hy b i—1 V=1 i1
J4 J4
< > fteena)| T 1Shee TT llwill1,eo
hi,hm i=1 i=1

1,00 111,00

4
S E
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A second prerequisite for introducing a family of norms on A(ay,---,a,) that “cor-
rectly measures” the size of R(f) is to choose a nondecreasing function ® on IN and a

A > 0 satsfying the

Hypothesis 111.3 For all multi indices 1 and J,

1
‘/al Day s dus‘ < {(I)('I')AQ(HHJ), 7 < 1
0, 3] > 1]

The form of this hypothesis is motivated by two examples.

Example II1.4 (Global Factorial) For any complex, skew symmetric matrix S = (Sij) ,

1
3 (1114131
‘ /aI ay s d,us‘ < {III! ISl s IS
0, 13 > |1

holds for all multi indices 1 and J. The proof of this crude inequality is by induction on |Jj.

the bound

Suppose 3] =0. If 1= {é,-,i,}, then
/ a dpug — Pt (Si,c ie) , T iseven
0, r is odd
where, Pf (Sik u) is the Pfaffian of the matrix with elements S;, ,,, k,£ =1,---,r. We have

T

‘ /al d,uS" < Z ‘Eklmkr‘ ’Siklik2’ ’Sikrilikzr‘

Ky, kp=1
T
1
< HSHEJ Z |€k;1...kr|
Ky, kp=1
=[Sz

i

Suppose |J] > 0. Integration by parts with respect to a;,

/aI tayis dps = /alaf‘] dpgs

_ 11| f #
= (=1 /ajlal a5\, ditse

gives

1

_ 1] =1 ’
= (-1 @Z (=1 Sji /al\{ie}“J\{jl} dfss
=1

1

I -1 . .
= (—1)H EZ (-1) Sjlie /GI\{%} S\ (i1} ‘s d,US
=1

24



Our induction hypothesis implies that

1 -2
‘/al\{ié} DAg\(4,y ts dﬂs’ < H‘S’H;(umJI )(|I|*1)!

for each £ =1,---,j11. Now,

1]
‘/CLI $ajy s d,US’ < Z |Sj1iz| ’/al\{il} CAy\{j1} ‘s dps
=1

11l

< SR et Y 1S4,
/=1

< S r—ny 1]

This “perturbative bound” is obtained by ignoring all potential cancellations between the at

most |1]! nonzero terms appearing in Pfaffian equal to / ay ag dugs .

Example II1.5 (Gram’s Inequality) Suppose that S = (SZ) is a complex, skew sym-

0 =
s (S0

metric matrix of the form

where ¥ = (Eij) is a matrix of order 7. Suppose, in addition, that there is a complex
Hilbert space H, elements v, w; € H,i=1,---,5, and a constant A > 0 with
Yij = (i, wj)y
and
1
AL
villre s wille < (5)?
for all 4,7 =1,---, 5. Then, the “nonperturbative bound”
3 (1114131
‘ / CLI . CLJ :S dMS ‘ S {A2 Y lJl S |I|
0, 131 > 1]

holds for all multi indices 1 and J. The proof is presented in the Appendix.

Now, let



be a Grassmann polynomial in A(aq,---,a,) where, for each m >0,

F™@ = Y folreedn) ajy - aj,

Jisdm
and the kernel f,, (ji,--,jm) is an antisymmetric function of its arguments. Fix a complex,

skew symmetric matrix S = (Si ) of order n satisfying Hypothesis I11.3. We recall

Definition 1.4 For all o > 2, the “external” and “internal” naive power counting norms

|flla and |||f]||a of the Grassmann polynomial f(a) are

1Al = 22 1™ lle = 2;0 ™ AT | flls

m>0

and

|1,oo

™m m l(m_)
WA llle = ZO e = Z>O a™ Sl A2 |

m>

By the triangle inequality,

RN < 22 X RNl = > > > IR ™)a

£>1 r,scIN? m>0 £>1 r scIN?

and consequently,

Rl < T ﬁl SR

=1 r,seIN?

since, R*®(f) =0 for all r,s € IN* when ¢ > m . Furthermore,

4
33 (ri—si)
i=1

e
&(iz::l(ﬁ—si))

A |ATE Rors ()12

IR (F ) le =

since,

R*S(f™) = ' Z AW R s (F) Grooeerinn) @y - @y,

J1,IM

with M = (ri—s1)+-+(re—se) . Altogether,

M

RO < ¥ 3 ¥ ORCE)

m>1 /=1 r7s€]:N£

33 (rimsi) (m)
A= [Res (£

Proposition II1.2 will now be used to obtain a bound on the norm ||[Rys(f)|1 of

the kernel Rys(f™)(xy,,x,).
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Lemma II1.6 Let H,Jy,--,J, be multi indices with |H| =m > {. Then,

4

14
[ e audus| < M) 8T S,

1<py, - pnpg<m =1

pairwise
different
where
¢
M(H, 31,5 3) = Sup ‘ Wst\ngy gy L] @uingay s dpts
1<p1, pug<m i=1
pairwise
different
Proof: For convenience, set k; = j;1,¢=1,---,£. By antisymmetry, the integrand can be

rewritten so that

0 0
. . — # # #
/ Ay - H Qy, ‘s d,us = &£ / ake . .-ak1 Ay H a']i\{ki} d#gn
i=1 i=1

Now, integrate by parts successively with respect to a?w, e ,a}‘ﬁ , and then apply Leibniz’s

rule to obtain

4 4 n l
/ ag - H aj; s d,ug = =+ / |:H < Z Sklm gam> aH:| H agi\{ki} d'UJSﬁ
=1 ] 1

1<pq, - pug<m =1
pairwise
different

since

ﬁ ( i Skim ga7> ag = > ( ]£[ Skih,, gahu) .

=1 m=1 1<py,ug<m =1
pairwise
different
J4
= Z :l: H Skih,u.i aH\{hul!“"h,u[}
1<py,pg<m =1
differont
It follows immediately that
14
‘ / CLH . H aJi :S d/JS ‘
=1
4 4
< X I Snkl | @yt s s dus
1<pg, - mp<m =1 i=1
pairwise
different
14
S M(Hw]la"'v*]f) Z H |Sh“iki
1<py,up<m =1
pairwise
different
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Proposition II1.7 Let
f(m)(a) = Z fm (h17"'7hm) ahl T ahm
hl:"'yhm

be a homogeneous Grassmann polynomial of degree m , where fp, (hi,h,m) @S an antisym-
metric function of its arguments. Let J,,--,3, be multi indices with m > €. Then,
14 l
m m
\/ L0 s f0 dus | < 00 (7) M(m,3i,3) 2 | o) [T IS0
1= hiyshm i=

where M(m,Jy,--,3,) = sup M(H, I, -, J0) -
|H|=m

Proof: For convenience, set k; = j;1,7=1,---,£. By the preceding lemma,
¢ 0
‘ CIL by, s f™ ) dps | <003 [fm @] M(H, 31,5 30) > [T [Sh,, &
1=1 |H|=m 1<pq,mp<m  §=1
pairwise
different
l
< M(valf"aJ@) Z |fm(H)| Z H |Sh“iki
|H|=m 1<py,mp<m =1
pairwise
different

Observe that, by the antisymmetry of f,, ,

l 14
> | fm ) > [T ISk, x| = 2 > fmamad)l I1 |Shy,, ks
|H|=m 1<up,—pp<m =1 ‘ 1<py, g <m Ry, hom i=1 ‘
pairwise pairwise
different different
14
= Z Z ‘fm(hlz"'7hnL)‘ H ’Shlkl
1<py,pg<m  hy,-- hpy, =1
palirwise

different

4
=00 X Afamuenol T ISk
h i=1

1" tm

Proposition II1.8 Let

f(m)(a) = Z o (ha,e ) ap, - - ap,,
ha,orhom

be as above. Let r,s € IN¢ with m > (. Then, the L' norm IRrs (F)|l1 of the kernel
Rys(f)(x1,-,x,) is bounded by
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(a)

¢
ResC < (7) Monss) [l (TT G2 DSlhoe ol
where M(m,s) = sup M(m,Ji, -, J0) .
[Ti1=s4
i=1,-,0

(b)

£
m ™m 2(m -3 (ri—s:) 4 . L(r,—
HRI‘S(f( ))Hl < ®(m—r) (4) A2( i=1 ) | fm 1 < (sz) 151,00 AQ( ) [wr, 1,00)
i=1
when, in addition, Hypothesis I11.3 is satisfied.
Proof: To verify (a), set
u’L(JvK’L) — Z |W7‘i(j7J;7Ki)|
|3 |=s;—1
i=1,
for each i =1,---,¢. By construction, |will1,00 = ||Wr;|[1,00,7=1,---,¢. Also, set
J4 n
T = X o]l TT (X 1Snl Tus<0))
By hm i=1 Nj=1
By Proposition II1.7,
¢
|Res(f)Garmxn)| < (7) Mamys) (TT (5)) T
i=1
since,
¢
M(maJla"'an) Z |fm(h17"'ahm)| H |Shiji1 |WTi(Ji’Ki)
[J;1=s; hi, s hm =1
i=1,--,0
14 n
<SMems X8 ekl T (S Sul w0150
[3l1=s;=1 hi,hm =1 “j=1
i=1,---,0
J4 n
= M(m,s) > |fm(uha)| ] (Z |Shij] Ium,Ki))
hi,hm i=1 “j=1

It follows from Proposition II1.2 that

N

Res (Dl < () Mm,s) (

() 1Tl

4
(D) 1lfmllx 11 11810 fFvor,

1,00

-
Il

s
~ |l
= =

< (7)) Mem,s) (
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For (b), simply observe that, by Hypothesis III.3,

¢ L(m+ 3 13:0-2))
2 ) i
‘/CLH\{hﬂl"“’hHe} :H a(]l_\{j“} ‘s d,LLS S (I)(m—é) A i=1
i=1
for any multi indices H, J,,---,J, with |[H = m > ¢ and any pairwise different sequence of

indices 1 < pq,---, ue < m. Consequently,

4
1(m i
M(m,s) = sup  sup M(H, 11, J) < P(m—r) AQ( A 2)

[Ji1=s; |Hil=m
=1,

We have developed all the material required for a useful bound on the operator R.

For the rest of this section we assume Hypothesis I11.3.

Lemma II1.9 Let

f(m)(a) = Z o (ha,e ) ap, - - ap,,
hi,ehm

R

be as above and let m > ¢ . Then, for all a > 2,

Y AR e < @lm=e) [1F ™ lla HIWIIG1a

r,s € IN¢

Proof: By Proposition II1.8 (b),

~

£
r m Y (ri=si)) (33 (ri—si) m my A im
RE= G < alECT) IECT YR < B (2) AP s P
g L(r,—2)
where, for convenience, Prs = [] (5}) &% [IS]100 A2 7 ||Wy, ||l1,00 . However,
i=1

(7) AZ™ Il = G (7) @™ AF™ [ fmll < 1F ™l

when o > 2, and consequently,

> AR < @Om—0) [[f e D2 Prs

r,s € IN? r;=s;>1
1=1,---,£
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Observe that

l
r r—s 3(r-2)
S P = ( S ()t sin A2 QHWAhw) < IWIIL,,

ri>s;>1 r>s>1
i=1,--- .0

since
1 Lip_
S 0 15w A2 Wi € X () @ sl A2 w10
r>s>1 r>s>0
1
= 3 (0t 151w A2 (w1
r>0
= [[[W][las1

Therefore,

> AR < @lm=e) [1F o TWIlaqa

r,s € IN¢

We can now prove

Theorem 1.8 Suppose 2 |||W|||a+1 < 1. Then, for all polynomials f in the Grassmann
algebra A(ay, -, ay),

RNl < 22(0) [[[Wllatr [If]la

Proof: By Lemma III.9,

RN < > > > IR=FE™)a
m>1 {=1 r,scIN?
<em) X I Ne X HWillas
m>1 /=1
< @(n) [Iflla W Wl[at1

< 28n) [flla Wlla+s
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Corollary III.10 Suppose 2(14+@(n))[|[W]|laz1 < 1. Then, for all polynomials f in the

Grassmann algebra A(ay,---,ay),

1@-R) " (Nlle < =rerrimem= Il

Lemma II1.11 For all Grassmann polynomials f in A(ay, -, ay),

| / fla) dus| < B(n) |If]l

Proof: As usual, write
fla) = > f(a)
m>0

where, for each m >0, f™(a) = Y foGiim) Qj, - aj
jl?“'!jm
is an antisymmetric function of its arguments. Then, by Hypothesis I11.3,

[ @ dns| < S| [ 50 dus

and the kernel f,, (j1,,jm)

m

< Z Z |fm(j1,""jm)| ‘/Cljl Qg dlqu‘
mZO J1sJm
< XY | fmGueim)| ®m) A2
m20 Ji,Jm
im
< X fmllh @) @™ A®
m>0
< @) [|flla

Recall that the correlation functions S, (Gi,---,jm), m > 0, corresponding to the

interaction W (a) and the propagator S = (SZ- ) are given by

S’I’TL (.]177.]711) = %/ a’]l ...ajm ew(a) dus(a)

Theorem 1.9 Suppose 2(14+@(n)) [|[W]|lay1 < 1. Then, for each m >0 and all sequences of
mdices 1<y, jm <n,

. ) D (n) moAsm
[Sm Gim)| < Tramy WL @ A
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Proof: Fix 1<ji,jm <n and rewrite the monomial a; = a;, ---a;, as

a; = i Zk Alt(6k1,j1 "'5km,jm)(k1:"'vkm) ap, - ag,,
1oy

m

Then,

im 1o
lasla = o™ A*™ AL(S. j, - 8.5,) 1 < a™ A?
By Theorem 1.3, Lemma III.11 and Corollary III.10,

S Groin] = | / (1-R)" (a,) dps|
(n) |(1-R) (@)

IN

3(n)
=250 TWiTars 1% ]la

IN

so that

. ; P(n) moAsm
[Sm i) < tmEm MWL @ A
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Appendix: Gram’s Inequality for Pfaffians

Proposition. Suppose that S = (Sz) 1s a complex, skew symmetric matrix of the form

0 3
o (30)

where Y = (Eij) is a matriz of order 4 . Suppose, in addition, that there is a complex
Hilbert space H , elements vi,w; € H, 1 =1,---,%, and a constant A >0 with

Nij = (vi,wj)y
and

1
[villae s Jlwsllee < ()2

for all 1,5 =1,---,5. Then, for all multi indices 1 and 7,

[ s < (&)

and

1
‘/al Day s d,uS‘ = {AZ(M”)a 91 <
0, I > 1

Proof: To prove the first inequality, suppose i, <---<i, and observe that

/ail"'air dus = Pf(Sikie>

where, Pf (Sik ie) is the Pfaffian of the matrix with elements S;, ;, , k,¢ =1,---,r, given by

0, 1§ik7i£§%
Sik i = ;Zk wE 1n§ik:§% e %<,ZZ S:
T Higig—% §<Zk§n and 1§Z[S§
0 s %<ik§n and %<i5§n

More concisely,

0 U
/ail---air dus = Pf(_Ut 0)



where U = (ng) is the p = max {k | i < %} by r — p matrix with elements

By direct inspection,

o

p
‘/ail"'air dﬂs‘ = ’det<<vik7wie+p—%>n)’ < k;Hl i 17 wis -2l < (

U =

0

_Ut

Finally, by antisymmetry,

for any multi index 1.

by

ik itp— % (Vi s wie+p—%>H

U . 0, ) pFET—P
0 o (_1)§p(p—1) det(U) , p=r—p

If » =2p, then by Gram’s inequality for determinants

| [adus| < &)

To prove the second inequality, set

The matrix

-

¢ _ (0 S) _
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is conjugated by the permutation matrix

to

Also, define the vectors v
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Then,

$ho= (v W), e,
and
[0} lr@r s [[whllnan < Az
for all 2,7 =1,---,n. The second inequality has now been reduced to the first for the matrix
0 xf
(2 %)
the Hilbert space H & H and the vectors v}, w!,i=1,---,n. [ |
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