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Fermionic Expansions

These lecture notes concern an expansion that can play the role of a single scale

cluster expansion in fermionic models. We use this expansion to reduce the problem of

constructing two dimensional Fermi liquids to that of controlling the flow of two and four

legged vertices.

Notation. Let

• A be the Grassmann algebra generated by {a1, · · · , an}. Think of {a1, · · · , an} as

some finite approximation to the set
{
ψσ(x), ψ̄σ(x)

∣∣ x ∈ IRd+1, σ ∈ {↑, ↓} }
of

fields integrated out in a renormalization group transformation like

V(ψ, ψ̄) → Ṽ(Ψ,Ψ) = − log
∫
eV(ψ+Ψ,ψ̄+Ψ̄)dµS(ψ, ψ̄)

• C be the Grassmann algebra generated by {c1, · · · , cn}. Think of {c1, · · · , cn} as

some finite approximation to the set
{

Ψσ(x), Ψ̄σ(x)
∣∣ x ∈ IRd+1, σ ∈ {↑, ↓} }

of

fields that are arguments of the output of the renormalization group transformation.

• AC be the Grassmann algebra generated by {a1, · · · , an, c1, · · · , cn}.
• S = (Sij) be a skew symmetric matrix of order n . Think of S as the “single scale”

covariance of the Gaussian measure that is integrated out in the renormalization

group step.

• ∫ · dµS(a) be the Grassmann, Gaussian integral with covariance S . It is the

unique linear map from AC to C satisfying

∫
eΣ ciai dµS(a) = e−

1
2Σ ciSijcj

In particular ∫
aiaj dµS(a) = Si,j

• Mr =
{

(i1, · · · , ir)
∣∣ 1 ≤ i1, · · · , ir ≤ n

}
be the set of all multi indices of degree

r ≥ 0 . For each I ∈ Mr set aI = ai1 · · · air . By convention, a∅ = 1 .
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• the space (AC)0 of “interactions” is the linear subspace of AC of even Grassmann

polynomials with no constant term. That is, polynomials of the form

W (c, a) =
∑

l,r∈IN
1≤l+r∈2ZZ

∑
L∈Ml
J∈Mr

wl,r(L, J) cLaJ

Often, in the renormalization group map, the interaction is of the form W (c + a).

We do not require this.

Main Definitions.

i) The renormalization group map Ω : (AC)0 → C0 is

Ω(W )(c) = log
∫
eW (c,a) dµS(a) − log

∫
eW (0,a) dµS(a)

It is defined for all W ’s obeying
∫
eW (0,a) dµS(a) 6= 0. The second term ensures that

Ω(W )(0) = 0, i.e. that Ω(W )(c) contains no constant term. Since Ω(W ) = 0 for W = 0

Ω(W )(c) =
∫ 1

0

d
dεΩ(εW )(c) dε

=
∫ 1

0

∫
W (c, a) eεW (c,a) dµS(a)∫

eεW (c,a) dµS(a)
dε−

∫ 1

0

∫
W (0, a) eεW (0,a) dµS(a)∫

eεW (0,a) dµS(a)
dε (1)

Thus to get bounds on the renormalization group map, it suffices to get bounds on

ii) the Schwinger functional S : AC → C, defined by

S(f) = 1
Z(c)

∫
f(c, a) eW (c,a) dµS(a)

where Z(c) =
∫
eW (c,a) dµS(a) . Despite our notation, S(f) is of course a function of W

and S as well as f .

iii) Define the linear map R : AC → AC by

R(f)(c, a) =
∫

:eW (c,a+b)−W (c,a) − 1:b f(c, b) dµS(b)

where : · :b denotes Wick ordering of the b–field and is determined by

:eΣAiai+ΣBibi+ΣCici :b = e
1
2ΣBiSijBj eΣAiai+ΣBibi+ΣCici
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Diagramatically, 1
Z(c)

∫
eW (c,a) f(c, a) dµS(a) is the sum of all connected (f is viewed as a

single, connected, vertex) Feynman diagrams with one f–vertex and arbitrary numbers of

W–vertices and S–lines. The operation R(f) builds parts of those diagrams. It introduces

those W–vertices that are connected directly to the f–vertex (i.e that share a common S–line

with f) and it introduces those lines that connect f either to itself or to a W–vertex.

To obtain the expansion that will be discussed in these lectures, expand the (1l−R)−1

of the following Theorem, which shall be proven shortly, in a power series in R.

Theorem 1 Suppose that the kernel of 1l − R is trivial. Then,

S(f) =
∫

(1l − R)−1(f) dµS(a)

for every f in AC .

Lemma 2 For all f and g in AC ,∫ ∫
f(c, b) :g(c, a + b) :b dµS(b) dµS(a) =

∫
f(c, a)g(c, a) dµS(a)

Proof: It suffices to consider f(c, a) = eΣiAiai+ΣiCici and g(c, a) = eΣiBiai+ΣiDici , with

the sources Ai, Bi, Ci, Di anticommuting amongst themselves and with the original fields

ai, ci. Then

:g(c, a + b) :b = :eΣiBi(ai+bi)+ΣiDici :b = eΣiBiai+ΣiDici :eΣiBibi :b

= eΣiBiai+ΣiDicie
1
2ΣBiSijBj eΣBibi

= :g(c, a + b) :a

so that ∫
f(c, b) :g(c, a + b) :b dµS(a) = eΣi(Ci+Di)ci+Σi(Ai+Bi)bi = f(c, b)g(c, b)

Integrating this with respect to dµS(b) gives the same answer as integrating f(c, a)g(c, a) =

eΣi(Ai+Bi)ai+Σi(Ci+Di)ci with respect to dµS(a).
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Proposition 3 For all f in AC ,∫
f(c, a) eW (c,a) dµS(a) =

∫
f(c, b) dµS(b)

∫
eW (c,a) dµS(a) +

∫
R(f)(c, a) eW (c,a) dµS(a)

Proof: By Lemma 2,∫
f(c, b) dµS(b)

∫
eW (c,a) dµS(a) +

∫
R(f)(c, a) eW (c,a) dµS(a)

=
∫ ∫

:eW (c,a+b)−W (c,a) :b f(c, b) dµS(b) eW (c,a) dµS(a)

=
∫ ∫

:eW (c,a+b) :b f(c, b) dµS(b) dµS(a)

=
∫

f(c, a) eW (c,a) dµS(a)

Proof of Theorem 1: For all g(c, a) ∈ AC∫
(1l −R)(g) eW (c,a) dµS(a) = Z(c)

∫
g(c, a) dµS(a)

by Proposition 3. If the kernel of 1l −R is trivial, then we may choose g = (1l −R)−1(f). So∫
f(c, a) eW (c,a) dµS(a) = Z(c)

∫
(1l − R)−1(f)(c, a) dµS(a)

The left hand side does not vanish for all f ∈ AC (for example, for f = e−W ) so Z(c) is

nonzero and

1
Z(c)

∫
f(c, a) eW (c,a) dµS(a) =

∫
(1l −R)−1(f)(c, a) dµS(a)

Norms

For any function f : Mr → C, define

‖f‖ = max
1≤i≤r

sup
1≤k≤n

∑
J∈Mr
ji=k

∣∣f(J)
∣∣

|||f ||| =
∑

J∈Mr

∣∣f(J)
∣∣
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The norm ‖ · ‖, which is an “L1 norm with one argument held fixed”, is appropriate for

kernels, like those appearing in interactions, that become translation invariant when the

cutoffs are removed. Any f(c, a) ∈ AC has a unique representation

f(c, a) =
∑
l,r≥0

∑
k1,···,kl
j1,···,jr

fl,r(k1, · · · , kl, j1, · · · , jr) ck1 · · · ckl
aj1 · · · ajr

with each kernel fl,r(k1, · · · , kl, j1, · · · , jr) antisymmetric under separate permutation of its

k arguments and its j arguments. Define

‖f(c, a)‖α =
∑
l,r≥0

αl+r‖fl,r‖

|||f(c, a)|||α =
∑
l,r≥0

αl+r|||fl,r |||

Hypotheses

(HG)
∣∣∣ ∫

bH : bJ : dµS(b)
∣∣∣ ≤ F|H|+|J|

(HS) ‖S‖ ≤ F2D

So F is a measure of the “typical size of fields b in the support of the measure dµS(b)” and

D is a measure of the decay rate of S.

Theorem 4 Assume Hypotheses (HG) and (HS). Let α ≥ 2 and D‖W‖(α+1)F ≤ 1/3 . Then,

for all f ∈ AC ,
‖R(f)‖αF ≤ 3

α D‖W‖(α+1)F ‖f‖αF

|||R(f)|||αF ≤ 3
α D‖W‖(α+1)F |||f |||αF

Corollary 5 Assume Hypotheses (HG) and (HS). Let α ≥ 2 and D‖W‖(α+1)F ≤ 1/3 .

Then, for all f ∈ AC ,

‖S(f)(c) − S(f)(0)‖αF ≤ α
α−1 ‖f‖αF

|||S(f)|||αF ≤ α
α−1 |||f |||αF

‖Ω(W )‖αF ≤ α
α−1 ‖W‖αF
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Let

W (c, a) =
∑

l,r∈IN

∑
L∈Ml
J∈Mr

wl,r(L, J) cLaJ

where wl,r(L, J) is a function which is separately antisymmetric under permutations of its

L and J arguments and that vanishes identically when l + r is zero or odd. With this

antisymmetry

W (c, a+ b) −W (c, a) =
∑
l,r≥0
s≥1

∑
L∈Ml
J∈Mr
K∈Ms

(
r+s
s

)
wl,r+s(L, J,K)cLaJbK

so

:eW (c,a+b)−W (c,a) − 1:b=
∑
`>0

1
`!

∑
li,ri≥0

si≥1

∑
Li∈Mli
Ji∈Mri
Ki∈Msi

:
∏̀
i=1

(
ri+si

si

)
wli,ri+si

(Li, Ji,Ki)cLi
aJi
bKi

:b

with the index i in the second and third sums running from 1 to `. Hence

R(f) =
∑
`>0

∑
r,s,l∈IN`

si≥1

1
`!

∏̀
i=1

(
ri+si

si

)
Rs
l,r(f)

where

Rs
l,r(f) =

∑
Li∈Mli
Ji∈Mri
Ki∈Msi

∫
:
∏̀
i=1

wli,ri+si
(Li, Ji,Ki)cLi

aJi
bKi

:b f(c, b) dµS(b)

Proposition 6 Assume Hypothesis (HG). Let

f (p,m)(c, a) =
∑

H∈Mm
I∈Mp

fp,m(I,H) cIaH

Let r, s, l ∈ IN` with each si ≥ 1. If m < `, Rs
l,r(f

(p,m)) vanishes. If m ≥ `

‖Rs
l,r(f

(p,m))‖1 ≤ `!
(
m
`

)
Fm‖fp,m‖

∏̀
i=1

(
‖S‖Fsi−2 ‖wli,ri+si

‖
)

|||Rs
l,r(f

(p,m))|||1 ≤ `!
(
m
`

)
Fm|||fp,m||| ∏̀

i=1

(
‖S‖Fsi−2 ‖wli,ri+si

‖
)
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Proof: We have

Rs
l,r(f

(p,m)) = ±
∑

I∈Mp

∑
Ji∈Mri
Li∈Mli
1≤i≤`

fl,r,s(L1, · · · ,L`, I, J1, · · · , J`) cL1 · · · cL`
cI aJ1 · · · aJ`

with

fl,r,s(L1, · · · ,L`, I, J1, · · · , J`) =
∑

H∈Mm
Ki∈Msi

∫
:
∏̀
i=1

wli,ri+si
(Li, Ji,Ki)bKi

:b fp,m(I,H) bH dµS(b)

The integral over b is bounded in Lemma 7 below. It shows that fl,r,s(L1, · · · ,L`, I, J1, · · · , J`)
vanishes if m < ` and is, for m ≥ `, bounded by

∣∣fl,r,s(L1, · · · ,L`, I, J1, · · · , J`)
∣∣ ≤ `!

(
m
`

)
T (L1, · · · ,L`, I, J1, · · · , J`) Fm+Σsi−2`

where

T (L1, · · · ,L`, I, J1, · · · , J`) =
∑

H∈Mm

∏̀
i=1

( n∑
ki=1

|ui(Li, Ji, ki)||Ski,hi
|
)
|fp,m(I,H)|

and, for each i = 1, · · · , `

ui(Li, Ji, ki) =
∑

K̃i∈Msi−1

|wli,ri+si
(Li, Ji, K̃i, ki)|

By construction, ‖ui‖ = ‖wli,ri+si
‖. By Lemma 8, below

‖T‖ ≤ ‖fp,m‖ ‖S‖` ∏̀
i=1

‖ui‖ ≤ ‖fp,m‖ ‖S‖` ∏̀
i=1

‖wli,ri+si
‖

and hence

‖fl,r,s‖ ≤ `!
(
m
`

)
Fm+Σsi−2` ‖fp,m‖ ‖S‖`

∏̀
i=1

‖wli,ri+si
‖

Similarly, the second bound follows from |||T ||| ≤ |||fp,m||| ‖S‖` ∏`
i=1 ‖ui‖.

Lemma 7 Assume Hypothesis (HG). Then∣∣∣ ∫
:
∏̀
i=1

bKi
: bH dµS(b)

∣∣∣ ≤ F|H|+Σ|Ki|−2` ∑
1≤µ1,···,µ`≤|H|

all different

∏̀
i=1

|Ski1,hµi
|
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Proof: For convenience, set ji = ki1 and K̃i = Ki \ {ki1} for each i = 1, · · · , ` . By

antisymmetry, ∫
:
∏̀
i=1

bKi
: bH dµS(b) = ±

∫
:
∏̀
i=1

bK̃i
bj1 · · · bj`: bH dµS(b)

Recall the integration by parts formula∫
bj f(b) dµS(b) =

n∑
m=1

Sj,m

∫
∂
∂bm

f(b) dµS(b)

for Grassmann Gaussian measures. The left partial derivative is determined by

∂
∂bm

bH =
{

0 if m /∈ H
(−1)|J| bJ bK if bH = bJ bm bK

In the presence of Wick ordering∫
: bKbj : f(b) dµS(b) =

n∑
m=1

Sj,m

∫
: bK : ∂∂bm

f(b) dµS(b)

Integrate by parts successively with respect to bj` · · · bj1∫
:
∏̀
i=1

bKi
: bH dµS(b) = ±

∫
:
∏̀
i=1

bK̃i
:

[ ∏̀
i=1

( n∑
m=1

Sji,m
∂
∂bm

)
bH

]
dµS(b)

and then apply Leibniz’s rule

∏̀
i=1

( n∑
m=1

Sji,m
∂
∂bm

)
bH =

∑
1≤µ1,···,µ`≤|H|

all different

±
( ∏̀
i=1

Sji,hµi

)
bH\{hµ1 ,···,hµ`

}

and Hypothesis (HG).

Lemma 8 Let

T (J1, · · · , J`, I) =
∑

H∈Mm

∏̀
i=1

( n∑
ki=1

|ui(Ji, ki)||Ski,hi
|
)
|fp,m(I,H)|

with ` ≤ m. Then

‖T‖ ≤ ‖fp,m‖ ‖S‖`
∏̀
i=1

‖ui‖

|||T ||| ≤ |||fp,m||| ‖S‖` ∏̀
i=1

‖ui‖
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Proof: For the triple norm,∑
I,H,Ji

∏̀
i=1

( n∑
ki=1

|ui(Ji, ki)||Ski,hi
|
)
|fp,m(I,H)| =

∑
I,H

∏̀
i=1

( ∑
ki

( ∑
Ji

|ui(Ji, ki)|
)
|Ski,hi

|
)
|fp,m(I,H)|

≤ ∏̀
i=1

(
sup
ki

∑
Ji

|ui(Ji, ki)|
) ∑

I,H

∏̀
i=1

( ∑
ki

|Ski,hi
|
)
|fp,m(I,H)|

≤ ∏̀
i=1

(
‖ui‖ sup

hi

∑
ki

|Ski,hi
|
) ∑

I,H

|fp,m(I,H)|

≤ |||fp,m||| ∏̀
i=1

(
‖ui‖ ‖S‖

)
The proof for the double norm, i.e. the norm with one external argument sup’d over rather

than summed over, is similar. It repeatedly uses

sup
i

∑
h,k,H,J

∣∣u(J, k) s(k, h) v(h,H, i)∣∣ ≤ ‖u‖ ‖s‖ sup
i

∑
h,H

∣∣v(h,H, i)∣∣
in place of ∑

h,k,H,J

∣∣u(J, k) s(k, h) v(h,H)
∣∣ ≤ ‖u‖ ‖s‖

∑
h,H

∣∣v(h,H)
∣∣

Lemma 9 Assume Hypotheses (HG) and (HS). Let f (p,m)(c, a) =
∑

H∈Mm
I∈Mp

fp,m(I,H) cIaH .

For all α ≥ 2 and ` ≥ 1∑
r,s,l∈IN`

si≥1

1
`!

∏̀
i=1

(
ri+si

si

)‖Rs
l,r(f

(p,m))‖αF ≤ 2
α‖f (p,m)‖αF

[
D‖W‖(α+1)F

]`
∑

r,s,l∈IN`

si≥1

1
`!

∏̀
i=1

(
ri+si

si

)|||Rs
l,r(f

(p,m))|||αF ≤ 2
α |||f (p,m)|||αF

[
D‖W‖(α+1)F

]`

Proof: We prove the bound with the ‖ · ‖ norm. The proof for ||| · ||| is identical. We

may assume, without loss of generality, that m ≥ `. By Proposition 6,

1
`!‖Rs

l,r(f
(p,m))‖αF = 1

`!α
Σli+Σri+pFΣli+Σri+p‖Rs

l,r(f
(p,m))‖1

≤ αΣli+Σri+pFΣli+Σri+p
(
m
`

)
Fm‖fp,m‖

∏̀
i=1

(
‖S‖Fsi−2 ‖wli,ri+si

‖
)

≤ 2mαpFm+p‖fp,m‖
∏̀
i=1

(
Dαli+riFli+ri+si ‖wli,ri+si

‖
)
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As α ≥ 2 and m ≥ ` ≥ 1,

∑
r,s,l∈IN`

si≥1

1
`!

∏̀
i=1

(
ri+si

si

)‖Rs
l,r(f

(p,m))‖αF

≤ 2
α‖f (p,m)‖αF

∑
r,s,l∈IN`

si≥1

∏̀
i=1

[(
ri+si

si

)
Dαli+riFli+ri+si ‖wli,ri+si

‖
]

≤ 2
α‖f (p,m)‖αF

[
D

∑
r,s,l∈IN

s≥1

(
r+s
s

)
αrαlFl+r+s ‖wl,r+s‖

]`
≤ 2

α‖f (p,m)‖αF

[
D

∑
q≥1

(α+ 1)qαlFl+q ‖wl,q‖
]`

≤ 2
α‖f (p,m)‖αF

[
D‖W‖(α+1)F

]`

Proof of Theorem 4:

‖R(f)‖αF ≤
∑
`>0

∑
r,s,l∈IN`

si≥1

1
`!

∏̀
i=1

(
ri+si

si

)‖Rs
l,r(f)‖αF

≤
∑
`>0

∑
m,p

2
α‖f (p,m)‖αF

[
D‖W‖(α+1)F

]`
= 2

α‖f‖αF
D‖W‖(α+1)F

1−D‖W‖(α+1)F

≤ 3
α‖f‖αF D‖W‖(α+1)F

The proof for the other norm is similar.

Lemma 10 Assume Hypothesis (HG). If α ≥ 1 then, for all g(a, c) ∈ AC∣∣∣∣∣∣∣∣∣ ∫
g(a, c) dµS(a)

∣∣∣∣∣∣∣∣∣
αF

≤ |||g(a, c)|||αF∥∥∥ ∫
[g(a, c) − g(a, 0)]dµS(a)

∥∥∥
αF

≤ ‖g(a, c)‖αF

Proof: Let

g(a, c) =
∑
l,r≥0

∑
L∈Ml
J∈Mr

gl,r(L, J) cLaJ
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with gl,r(L, J) antisymmetric under separate permutations of its L and J arguments. Then∣∣∣∣∣∣∣∣∣ ∫
g(a, c) dµS(a)

∣∣∣∣∣∣∣∣∣
αF

=
∣∣∣∣∣∣∣∣∣ ∑
l,r≥0

∑
L∈Ml
J∈Mr

gl,r(L, J) cL
∫
aJ dµS(a)

∣∣∣∣∣∣∣∣∣
αF

=
∑
l≥0

αlFl
∑

L∈Ml

∣∣∣ ∑
r≥0

∑
J∈Mr

gl,r(L, J)
∫
aJ dµS(a)

∣∣∣
≤ ∑

l,r≥0

αlFl+r
∑

L∈Ml
J∈Mr

|gl,r(L, J)|

≤ |||g(a, c)|||αF

Similarly,∥∥∥ ∫
[g(a, c) − g(a, 0) dµS(a)

∥∥∥
αF

=
∥∥∥ ∑

l≥1
r≥0

∑
L∈Ml
J∈Mr

gl,r(L, J) cL
∫
aJ dµS(a)

∥∥∥
αF

=
∑
l≥1

αlFl sup
1≤k≤n

∑
L̃∈Ml−1

∣∣∣ ∑
r≥0

∑
J∈Mr

gl,r(k, L̃, J)
∫
aJ dµS(a)

∣∣∣
≤ ∑

l≥1
r≥0

αlFl+r sup
1≤k≤n

∑
L̃∈Ml−1
J∈Mr

|gl,r(k, L̃, J)|

≤ ‖g(a, c)‖αF

Proof of Corollary 5: Set g = (1l − R)−1f . Then

‖S(f)(c) − S(f)(0)‖αF =
∥∥∥∫ [

g(a, c) − g(a, 0)
]
dµS(a)

∥∥∥
αF

(Theorem 1)

≤ ‖(1l − R)−1(f)‖αF (Lemma 10)

≤ 1
1−3D‖W‖(α+1)F/α

‖f‖αF ≤ 1
1−1/α ‖f‖αF (Theorem 4)

The argument for |||S(f)|||αF is identical.

With the more detailed notation

S(f,W ) =
∫
f(a, c) eW(a,c) dµS(a)∫

eW(a,c) dµS(a)

we have

‖Ω(W )‖αF =
∥∥∥ ∫ 1

0

[S(W,εW )(c) − S(W,εW )(0)
]
dε

∥∥∥
αF

≤
∫ 1

0

α
α−1 ‖W‖αF dε = α

α−1 ‖W‖αF

11



We now apply the expansion to a few examples. In these examples, the set of

fields {a1, · · · , an} is replaced by
{
ψσ(x), ψ̄σ′(x)

∣∣ x ∈ IRd+1, σ ∈ S
}

with S being a

finite set (of spin/colour values). Consequently, sums
n∑
j=1

are replaced by
∑
σ∈S

∫
IRd+1

dx.

That our Grassmann algebra is no longer finite dimensional is a technicality that is easily

dealt with, using the bounds of Theorem 4 and Corollary 5. We shall not do so. The

covariance Si,j will be replaced by a “single scale” propagator that, in each example, will be

constructed by substituting a partition of unity of momentum space into the full propagator.

The partition of unity will be constructed using a fixed “scale parameter” M > 1 and a

function ν ∈ C∞
0 ([M−2,M2]) that takes values in [0, 1], is identically 1 on [M−1/2,M1/2 ] and

obeys
∞∑
j=0

ν
(
M2jx

)
= 1

for 0 < x < 1.

Example (Gross–Neveu2)

The propagator for the Gross-Neveu model in two space-time dimensions is

S(x, y) =
∫

d2p

(2π)2
eip·(y−x)

6p +m

p2 +m2
6p =

(
ip0 p1
−p1 −ip0

)
Set

νj(p) =


ν
(
M2j

p2

)
if j > 0

ν
(
M2j

p2

)
if j = 0, |p| ≥ 1

1 if j = 0, |p| < 1
Then

S(x, y) =
∞∑
j=0

S(j)(x, y)

with

S(j)(x, y) =
∫

d2p

(2π)2
eip·(y−x)

6p +m

p2 +m
νj(p)

The integrand of S(j), the propagator of scale j, is supported on M j−1 ≤ |p| ≤ Mj+1 for

j > 0 and |p| ≤ M for j = 0. This is a region of volume at most constM2j and on this region,

the integrand is bounded by const 1
Mj . By Corollary G.2, the value of F for this propagator

is bounded by

Fj =
(
2
∫ ∥∥ 6p+m

p2+m

∥∥νj(p) d2p
(2π)2

)1/2

≤ CF

(
1
MjM

2j
)1/2 = CFM

j/2

12



for some constant CF. Here
∥∥ 6p+m
p2+m

∥∥ is the matrix norm of 6p+m
p2+m . Also

sup
x,y

σ,σ′
|S(j)
σ,σ′(x, y)| ≤

∫ ∥∥ 6p+m
p2+m

∥∥νj(p) d2p
(2π)2 ≤ constMj

By the usual integration by parts games (a relatively complex version of which is used in

Proposition P.1)

|S(j)
σ,σ′(x, y)| ≤ const Mj

[1+Mj |x−y|]3 ⇒ sup
x,σ

∑
σ′

∫
d2y |S(j)

σ,σ′(x, y)| ≤ const 1
Mj

so that the value of D for this propagator is bounded by

Dj = 1
M2j

We can always avoid having a const in Dj by increasing the value of the CF in Fj . To apply

Corollary 5 to this model, we fix some α ≥ 2 and define the norm

‖W‖j = Dj‖W‖αFj
=

∑
l,r

(αCF)l+rMj l+r−4
2 ‖wl,r‖

Suppose that we have integrated out all scales from some ultraviolet cutoff down to

j and have ended up with an interaction that obeys ‖W‖j ≤ 1. To integrate out scale j − 1

we use

Theorem 11GN Suppose α ≥ 2 and M ≥ α
α−1

(
α+1
α

)6
. If ‖W‖j ≤ 1

3 and wl,r vanishes for

l + r ≤ 4, then ‖Ωj−1(W )‖j−1 ≤ ‖W‖j .

Proof: To apply Corollary 5 at scale j − 1, we need Dj−1‖W‖(α+1)Fj−1 ≤ 1
3 . But

Dj−1‖W‖(α+1)Fj−1 =
∑
l,r

((α+ 1)CF)l+rM (j−1) l+r−4
2 ‖wl,r‖

=
∑
l,r

l+r≥6

(
α+1
α M−( 1

2− 2
l+r

)
)l+r

(αCF)l+rMj l+r−4
2 ‖wl,r‖

≤
∑
l,r

l+r≥6

(
α+1
α M− 1

6

)l+r
(αCF)l+rMj l+r−4

2 ‖wl,r‖

≤ (
α+1
α

)6 1
M ‖W‖j ≤ 1

3

13



as M >
(
α+1
α

)6

and ‖W‖j ≤ 1
3 . By Corollary 5,

‖Ωj−1(W )‖j−1 = Dj−1‖Ωj−1(W )‖αFj−1 ≤ α
α−1Dj−1‖W‖αFj−1 ≤ α

α−1

(
α+1
α

)6 1
M ‖W‖j

≤ ‖W‖j

It is no surprise that two and four-legged vertices cannot be handled. We have not

built in any renormalization.

Example (Many-fermion2 – without sectorization)

The propagator, or covariance, for many–fermion models is the Fourier transform of

Cσ,σ′(k) =
δσ,σ′

ik0 − e(k)

where k = (k0,k) and e(k) is the one particle dispersion relation minus the chemical potential.

The subscript on many-fermion2 signifies that the number of space dimensions is two (i.e.

k ∈ IR2, k ∈ IR3). We assume that e(k) is a reasonably smooth function (for example, C4)

that has a nonempty, compact, strictly convex zero set, called the Fermi curve and denoted

F . We further assume that ∇e(k) does not vanish for k ∈ F , so that F is itself a reasonably

smooth curve. At low temperatures only those momenta with k0 ≈ 0 and k near F are

important, so we replace the above propagator with

C(k) =
U(k)

ik0 − e(k)
δσ,σ′

The precise ultraviolet cutoff, U(k), shall be chosen shortly. It is a C∞
0 function which takes

values in [0, 1], is identically 1 for k2
0 + e(k)2 ≤ 1 and vanishes for k2

0 + e(k)2 larger than some

constant.

We slice momentum space into shells around the Fermi curve. The jth shell is

defined to be the support of

ν(j)(k) = ν
(
M2j(k2

0 + e(k)2)
)

By construction, the jth shell is a subset of{
k

∣∣ 1
Mj+1 ≤ |ik0 − e(k)| ≤ 1

Mj−1

}
14



As the scale parameter M > 1, the shells near the Fermi curve have j near +∞. Setting

C(j)(k) = C(k)ν(j)(k)

and U(k) =
∞∑
j=0

ν(j)(k) we have

C(k) =
∞∑
j=0

C(j)(k)

The propagator C(j)(k) is supported on a region of volume at most constM−2j (k0 is

restricted to an interval of length constM−j and k must remain within a distance constM−j

of F) and is bounded by constMj . By Corollary G.2, the value of F for this propagator is

bounded by

Fj =
(
2
∫

ν(j)(k)
|ik0−e(k)|

d3k
(2π)3

)1/2

≤ CF

(
Mj 1

M2j

)1/2 = CF
1

Mj/2 (1)

for some constant CF. Also

sup
x,y

σ,σ′
|C(j)
σ,σ′(x, y)| ≤

∫
ν(j)(k)

|ik0−e(k)|
d3k

(2π)3 ≤ const 1
Mj

Each derivative ∂
∂ki

acting on ν(j)(k)
ik0−e(k) increases the supremum of its magnitude by a factor

of order Mj . So, naively, it looks like

|C(j)
σ,σ′(x, y)| ≤ const 1/Mj

[1+M−j |x−y|]4 ⇒ sup
x,σ

∑
σ′

∫
d3y |C(j)

σ,σ′(x, y)| ≤ constM2j

In fact, using Corollary P.3, with lj = 1
Mj/2 , yields the better bound

sup
x,σ

∑
σ′

∫
d3y |C(j)

σ,σ′(x, y)| ≤ const 1
lj
Mj ≤ constM3j/2 (2)

Here, the factor 1
lj

is the number of terms in the partition of unity used to write C(j) as a

sum of C(j)
χ ’s, each term of which is bounded using Corollary P.3. So the value of D for this

propagator is bounded by

Dj = M5j/2

This time we define the norm

‖W‖j = Dj‖W‖αFj
=

∑
l,r

(αCF)l+rM−j l+r−5
2 ‖wl,r‖

If we have integrated out all scales from the ultraviolet cutoff, which in this (infrared) problem

is at scale 0, to j and we have ended up with some interaction that obeys ‖W‖j ≤ 1, then

we integrate out scale j + 1using the following analog of Theorem 11GN.
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Theorem 11MB1 Suppose α ≥ 2 and M ≥ (
α
α−1

)2(α+1
α

)12. If ‖W‖j ≤ 1
3 and wl,r vanishes

for l + r < 6, then ‖Ωj+1(W )‖j+1 ≤ ‖W‖j.

Proof: To apply Corollary 5 at scale j + 1, we need Dj+1‖W‖(α+1)Fj+1 ≤ 1
3 . But

Dj+1‖W‖(α+1)Fj+1 =
∑
l,r

((α+ 1)CF)l+rM−(j+1) l+r−5
2 ‖wl,r‖

=
∑
l,r

l+r≥6

(
α+1
α M− 1

2 (1− 5
l+r )

)l+r
(αCF)l+rM−j l+r−5

2 ‖wl,r‖

≤
∑
l,r

l+r≥6

(
α+1
α M− 1

12

)l+r
(αCF)l+rM−j l+r−5

2 ‖wl,r‖

≤ (
α+1
α

)6 1
M1/2 ‖W‖j ≤ ‖W‖j ≤ 1

3

By Corollary 5

‖Ωj+1(W )‖j+1 = Dj+1‖Ωj+1(W )‖αFj+1 ≤ α
α−1Dj+1‖W‖αFj+1 ≤ α

α−1

(
α+1
α

)6 1
M1/2 ‖W‖j

≤ ‖W‖j

It looks, in Theorem 11MB1, like five-legged vertices are marginal and all vertices

with five or fewer legs have to be renormalized. Of course, by evenness, there are no five–

legged vertices so only vertices with two or four legs have to be renormalized. But it still

looks, contrary to the behaviour of perturbation theory, like four–legged vertices are worse

than marginal. Fortunately, this is not the case. Our bounds can be tightened still further.

In the bounds (1) and (2) the momentum k runs over a shell around the Fermi curve.

Effectively, the estimates we have used to count powers of M j assume that all momenta

entering an l + r–legged vertex run independently over the shell. Thus the estimates fail to

take into account conservation of momentum. As a simple illustration of this, observe that

for the two–legged diagram B(x, y) =
∫
d3z C

(j)
σ,σ(x, z)C

(j)
σ,σ(z, y), (2) yields the bound

sup
x

∫
d3y |B(x, y)| ≤ sup

x

∫
d3z

∣∣C(j)
σ,σ(x, z)

∣∣ ∫ d3y
∣∣C(j)
σ,σ(z, y)

∣∣
≤ constM3j/2M3j/2 = constM3j
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But B(x, y) is the Fourier transform of W (k) = ν(j)(k)2

[ik0−e(k)]2 = C(j)(k)C(j)(p)
∣∣
p=k

. Conserva-

tion of momentum forces the momenta in the two lines to be the same. Plugging this W (k)

and lj = 1
Mj/2 into Corollary P.2 yields

sup
x

∫
d3y |B(x, y)| ≤ const 1

lj
M2j ≤ constM5j/2

We exploit conservation of momentum by partitioning the Fermi curve into “sectors”.

Example (Many-fermion2 – with sectorization)

We start by describing precisely what sectors are, as subsets of momentum space.

Let, for k = (k0,k), k′(k) be any reasonable “projection” of k onto the Fermi curve. In the

event that F is a circle of radius kF centered on the origin, it is natural to choose k′(k) = kF
|k|k.

For general F , one can always construct, in a tubular neighbourhood of F , a C∞ vector field

that is transverse to F , and then define k′(k) to be the unique point of F that is on the same

integral curve of the vector field as k is.

Let j > 0 and set

ν(≥j)(k) =


1 if k ∈ F∑
i≥j

ν(i)(k) otherwise

Let I be an interval on the Fermi surface F . Then

s =
{
k

∣∣ k′(k) ∈ I, k ∈ supp ν(≥j−1)
}

is called a sector of length length(I) at scale j. Two different sectors s and s′ are called

neighbours if s′ ∩ s 6= ∅. A sectorization of length lj at scale j is a set Σj of sectors of length

lj at scale j that obeys

- the set Σj of sectors covers the Fermi surface

- each sector in Σj has precisely two neighbours in Σj , one to its left and one to its

right

- if s, s′ ∈ Σj are neighbours then 1
16 lj ≤ length(s ∩ s′ ∩ F) ≤ 1

8 lj

Observe that there are at most 2 length(F)/lj sectors in Σj . In these notes, we fix lj = 1
Mj/2

and a sectorization Σj at scale j.

17



F

s1 s2 s3 s4

Next we describe how we “sectorize” an interaction

Wn =
∑

σi∈{↑,↓}
κi∈{0,1}

∫
wn

(
(x1, σ1, κ1), · · · , (xn, σn, κn)

)
ψσ1(x1, κ1) · · ·ψσn

(xn, κn)
n∏
i=1

dxi

where

ψσi
(xi) = ψσi

(xi, κi)
∣∣
κi=0

ψ̄σi
(xi) = ψσi

(xi, κi)
∣∣
κi=1

To save writing, we are temporarily ignoring the distinction between “internal” (ai–type)

fields and “external” (ci–type) fields, so that wl,r is being replaced by wn. Let F(n,Σj)

denote the space of all translation invariant functions

fn
(
(x1, σ1, κ1, s1), · · · , (xn, σn, κn, sn)

)
:
(
IR3 × {↑, ↓} × {0, 1} × Σj

)n → C

whose Fourier transform, f̂n
(
(k1, σ1, κ1, s1), · · · , (kn, σn, κn, sn)

)
, vanishes unless ki ∈ si. An

fn ∈ F(n,Σj) is said to be a sectorized representative for wn if

ŵn
(
(k1, σ1, κ1), · · · , (kn, σn, κn)

)
=

∑
si∈Σj
1≤i≤n

f̂n
(
(k1, σ1, κ1, s1), · · · , (kn, σn, κn, sn)

)

for all k1, · · · , kn ∈ supp ν(≥j). It is easy to construct a sectorized representative for wn

by introducing (in momentum space) a partition of unity of supp ν(≥j) subordinate to Σj .

Furthermore, if fn is a sectorized representative for wn, then∫
wn

(
(x1, σ1, κ1), · · · , (xn, σn, κn)

)
ψσ1(x1, κ1) · · ·ψσn

(xn, κn)
n∏
i=1

dxi

=
∑

si∈Σj
1≤i≤n

∫
fn

(
(x1, σ1, κ1, s1), · · · , (xn, σn, κn, sn)

)
ψσ1(x1, κ1) · · ·ψσn

(xn, κn)
n∏
i=1

dxi

18



for all ψσi
(xn, κi) “in the support of” dµC(≥j) , i.e. provided ψ is integrated out using a

Gaussian Grassmann measure whose propagator is supported in supp ν(≥j)(k). Furthermore,

by the momentum space support property of fn,∫
fn

(
(x1, σ1, κ1, s1), · · · , (xn, σn, κn, sn)

)
ψσ1(x1, κ1) · · ·ψσn

(xn, κn)
n∏
i=1

dxi

=
∫
fn

(
(x1, σ1, κ1, s1), · · · , (xn, σn, κn, sn)

)
ψσ1(x1, κ1, s1) · · ·ψσn

(xn, κn, sn)
n∏
i=1

dxi

where

ψσ(x, b, s) =
∫
d3y ψσ(y, b, s)χ̂(j)

s (x− y)

and χ̂
(j)
s is the Fourier transform of a function that is identically one on the sector s. This

function is chosen shortly before Proposition P.1.

We have expressed the interaction

Wn =
∑

si∈Σj
σi∈{↑,↓}
κi∈{0,1}

∫
fn

(
(x1, σ1, κ1, s1), · · · , (xn, σn, κn, sn)

) n∏
i=1

ψσi
(xi, κi, si)

n∏
i=1

dxi

in terms of a sectorized kernel fn and new “sectorized” fields, ψσ(x, κ, s), that have propagator

C
(j)
σ,σ′

(
(x, s), (y, s′)

)
=

∫
ψσ(x, 0, s)ψσ′(y, 1, s′) dµC(j)(ψ)

= δσ,σ′

∫
d3k

(2π)3
eik·(y−x)

ν(j)(k)χ(j)
s (k)χ(j)

s′ (k)
ik0 − e(k)

The momentum space propagator

C
(j)
σ,σ′(k, s, s′) = δσ,σ′

ν(j)(k)χ(j)
s (k)χ(j)

s′ (k)
ik0 − e(k)

vanishes unless s and s′ are equal or neighbours, is supported in a region of volume const lj 1
M2j

and has supremum bounded by constM j . By Corollary G.3, the value of F for this propagator

is bounded by

Fj ≤ CF

(
1

M2j M
j
lj

)1/2 = CF

√
lj

Mj

for some constant CF. By Corollary P.3,

sup
x,σ,s

∑
σ′,s′

∫
d3y |C(j)

σ,σ′
(
(x, s), (y, s′)

)| ≤ constMj
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so the value of D for this propagator is bounded by

Dj = 1
lj
M2j

We are now almost ready to define the norm on interactions that replaces the un-

sectorized norm ‖W‖j = Dj‖W‖αFj
of the last example. We define a norm on F(l + r,Σj)

by

‖f‖ = max
1≤i≤l+r

max
xi,σi,κi,si

∑
σk,κk,sk

k 6=i

∫ ∏̀
6=i
dx`

∣∣f(
(x1, σ1, κ1, s1), · · · , (xl+r, σl+r, κl+r, sl+r)

)∣∣
and for any translation invariant function

wl,r
(
(x1, σ1, κ1), · · · , (xl+r, σl+r, κl+r)

)
:
(
IR3 × {↑, ↓} × {0, 1})l+r → C

we define

‖wl,r‖Σj
= inf

{
‖f‖

∣∣∣ f ∈ F(l+ r,Σj) a representative for W
}

The sectorized norm on interactions is

‖W‖α,j = Dj

∑
l,r

(αFj)l+r‖wl,r‖Σj
=

∑
l,r

(αCF)l+rl
l+r−2

2
j M−j l+r−4

2 ‖wl,r‖Σj

Proposition 12 (Change of Sectorization) Let j′ > j ≥ 0. There is a constant CS ,

independent of M, j and j′, such that for all l + r ≥ 4

‖wl,r‖Σj′ ≤
[
CS

lj

lj′

]l+r−3‖wl,r‖Σj

Proof: Write l + r = n. Also the spin indices σi and bar/unbar indices κi play no role, so

we supress them. Let ε > 0 and choose fn ∈ F(n,Σj) such that

wl,r(k1, · · · , kn) =
∑

si∈Σj
1≤i≤n

fn
(
(k1, s1), · · · , (kn, sn)

)
for all k1, · · · , kn in the support of supp ν(≥j) and

‖wl,r‖Σj
≥ ‖fn‖ − ε
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Let

1 =
∑
s′∈Σj′

χs′(k′)

be a partition of unity of the Fermi curve F subordinate to the set
{
s′ ∩ F ∣∣ s′ ∈ Σj

}
of

intervals that obeys

sup
k′

∣∣∂mk′χs′
∣∣ ≤ constm

lm
j′

Fix a function ϕ ∈ C∞
0

(
[0, 2)

)
, independent of j, j′ and M , which takes values in [0, 1] and

which is identically 1 for 0 ≤ x ≤ 1. Set

ϕj′(k) = ϕ
(
M2(j′−1)[k2

0 + e(k)2]
)

Observe that ϕj′ is identically one on the support of ν(≥j′) and is supported in the support

of ν(≥j′−1). Define gn ∈ F(n,Σj′) by

gn
(
(k1, s

′
1), · · · , (kn, s′n)

)
=

∑
s`∈Σ

1≤`≤n

fn
(
(k1, s1), · · · , (kn, sn)

) n∏
m=1

[
χs′m(km)ϕj′(km)

]
=

∑
s`∩s′

`
6=∅

1≤`≤n

fn
(
(k1, s1), · · · , (kn, sn)

) n∏
m=1

[
χs′m(km)ϕj′(km)

]
Clearly

wl,r(k1, · · · , kn) =
∑

s′
`
∈Σ

j′
1≤`≤n

gn
(
(k1, s

′
1), · · · , (kn, s′n)

)
for all k` in the support of supp ν(≥j′). Define

Momi(s′) =
{

(s′1, · · · , s′n) ∈ Σnj′
∣∣ s′i = s′ and there exist k` ∈ s′`, 1 ≤ ` ≤ n

such that
∑̀

(−1)`k` = 0
}

Here, I am assuming, without loss of generality, that the even (respectively, odd) numbered

legs of wl,r are hooked to ψ’s (respectively ψ̄’s). Then

‖gn‖ = max
1≤i≤n

sup
xi∈IR3

s′∈Σj′

∑
Momi(s′)

∫ ∏̀
6=i
dx`

∣∣gn((x1, s
′
1), · · · , (xn, s′n)

)∣∣
Fix any 1 ≤ i ≤ n, s′ ∈ Σ′

j and xi ∈ IR3. Then∑
Momi(s′)

∫ ∏̀
6=i
dx`

∣∣gn((x1, s
′
1), · · · , (xn, s′n)

)∣∣
≤

∑
Momi(s′)

∑
s1,···,sn
s`∩s′

`
6=∅

∫ ∏̀
6=i
dx`

∣∣fn((x1, s1), · · · , (xn, sn)
)∣∣ max
s′′∈Σj′

‖χ̂s′′ ∗ ϕ̂j′‖n
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By Proposition P.1, with j = j′ and φ(j) = ϕ̂j′ , maxs′′∈Σj′ ‖χ̂s′′ ∗ ϕ̂j′‖n is bounded by a

constant independent of M, j′ and lj′. Observe that

∑
Momi(s′)

∑
s1,···,sn
s`∩s′

`
6=∅

∫ ∏̀
6=i
dx`

∣∣fn((x1, s1), · · · , (xn, sn)
)∣∣

≤
∑

s1,···,sn
si∩s′ 6=∅

∑
Momi(s′)
s`∩s′

`
6=∅

1≤`≤n

∫ ∏̀
6=i
dx`

∣∣fn((x1, s1), · · · , (xn, sn)
)∣∣

I will not prove the fact that, for any fixed s1, · · · , sn ∈ Σj , there are at most[
C′
S
lj

lj′

]n−3 elements of Momi(s′) obeying s` ∩ s′` 6= ∅ for all 1 ≤ ` ≤ n, but I will try to

motivate it below. As there are at most two sectors s ∈ Σj that intersect s′,

∑
s1,···,sn
si∩s′ 6=∅

∑
Momi(s′)
s`∩s′

`
6=∅

1≤`≤n

∫ ∏̀
6=i
dx`

∣∣fn((x1, s1), · · · , (xn, sn)
)∣∣

≤ 2
[
C′
S
lj

lj′

]n−3 sup
s∈Σj

∑
s1,···,sn

si=s

∫ ∏̀
6=i
dx`

∣∣fn((x1, s1), · · · , (xn, sn)
)∣∣

≤ 2
[
C′
S
lj

lj′

]n−3‖fn‖

and
‖wl,r‖Σj′ ≤ ‖gn‖ ≤ 2 max

s′′∈Σj′
‖χ̂s′′ ∗ ϕ̂j′‖n

[
C′
S
lj

lj′

]n−3‖fn‖

≤ [
CS

lj

lj′

]n−3‖(‖wl,r‖Σj
+ ε

)
with CS = 2 maxs′′∈Σj′ ‖χ̂s′′ ∗ ϕ̂j′‖4 C′

S .

Now, I will try to motivate the fact that, for any fixed s1, · · · sn ∈ Σj , there are

at most
[
C′
S
lj

lj′

]n−3 elements of Momi(s′) obeying s` ∩ s′` 6= ∅ for all 1 ≤ ` ≤ n. We may

assume that i = 1. Then s′1 must be s′. Denote by I` the interval on the Fermi curve F that

has length lj +2lj′ and is centered on s`∩F . If s′ ∈ Σj′ intersects s`, then s′∩F is contained

in I`. Every sector in Σj′ contains an interval of F of length 3
4 lj

′ that does not intersect any

other sector in Σj′ . At most [43
lj+2lj′
lj′

] of these “hard core” intervals can be contained in I`.

Thus there are at most [43
lj

lj′
+ 3]n−3 choices for s′2, · · · , s′n−2.

Fix s′1, s′2, · · · , s′n−2. Once s′n−1 is chosen, s′n is essentially uniquely determined by

conservation of momentum. But the desired bound on Momi(s′) demands more. It says,

roughly speaking, that both s′n−1 and s′n are essentially uniquely determined. As k` runs
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over s′` for 1 ≤ ` ≤ n − 2, the sum
∑n−2
`=1 (−1)`k` runs over a small set centered on some

point p. In order for (s′1, · · · , s′n) to be in Mom1(s′), there must exist kn−1 ∈ s′n−1 ∩ F and

kn ∈ s′n ∩F with kn − kn−1 very close to p. But kn − kn−1 is a secant joining two points of

the Fermi curve F . We have assumed that F is convex. Consequently, for any given p 6= 0

in IR2 there exist at most two pairs (k′,q′) ∈ F2 with k′ − q′ = p. So, if p is not near the

origin, s′n−1 and s′n are almost uniquely determined. If p is close to zero, then
∑n−2
`=1 (−1)`k`

must be close to zero and the number of allowed s′1, s′2, · · · , s′n−2 is reduced.

Theorem 11MB2 Suppose α ≥ 2 and M ≥ (
α
α−1

)2(
CS

α+1
α

)12. If ‖W‖α,j ≤ 1
3 and wl,r

vanishes for l + r ≤ 4, then ‖Ωj+1(W )‖α,j+1 ≤ ‖W‖α,j.

Proof: We first verify that ‖W‖α+1,j+1 ≤ 1
3 .

‖W‖α+1,j+1 =
∑
l,r

((α+ 1)CF)l+r l(l+r−2)/2
j+1 M−(j+1) l+r−4

2 ‖wl,r‖Σj+1

≤
∑
l,r

l+r≥6

(
α+1
α

)l+r( lj+1
lj

) l+r−2
2 M− l+r−4

2
(
CS

lj

lj+1

)l+r−3 (αCF)l+r l(l+r−2)/2
j M−j l+r−4

2 ‖wl,r‖Σj

≤
∑
l,r

l+r≥6

(
CS

α+1
α

)l+r
M− l+r−4

2
(

lj

lj+1

) l+r−4
2 (αCF)l+r l(l+r−2)/2

j M−j l+r−4
2 ‖wl,r‖Σj

=
∑
l,r

l+r≥6

(
CS

α+1
α

)l+r
M− l+r−4

4 (αCF)l+r l(l+r−2)/2
j M−j l+r−4

2 ‖wl,r‖Σj

=
∑
l,r

l+r≥6

(
CS

α+1
α M− 1

4 (1− 4
l+r )

)l+r (αCF)l+r l(l+r−2)/2
j M−j l+r−4

2 ‖wl,r‖Σj

≤ (
CS

α+1
α

)6 1
M1/2 ‖W‖α,j ≤ 1

3

By Corollary 5,

‖Ωj+1(W )‖α,j+1 ≤ α
α−1‖W‖α,j+1 ≤ α

α−1

(
CS

α+1
α

)6 1
M1/2 ‖W‖α,j ≤ ‖W‖α,j
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Gram Bounds

Let X be a finite set and A a function on X ×X. Let ψ(`, κ), ` ∈ X, κ ∈ {0, 1} be

the generators of a Grassmann algebra A. In conventional notation, ψ(`, 0) is written ψ(`)

and ψ(`, 1) is written ψ̄(`). Let dµA(ψ) be the Grassmann Gaussian measure on A with

∫
ψ(`, κ)ψ(`′, κ′) dµA(ψ) =


0 if κ = κ′ = 0
A(`, `′) if κ = 0, κ′ = 1
−A(`′, `) if κ = 1, κ′ = 0
0 if κ = κ′ = 1

and denote by : · : Wick ordering with respect to dµA.

Proposition G.1 Assume that there is a Hilbert space H and vectors f`, g`, ` ∈ X in H
such that

A(`, `′) = 〈f`, g`′〉H for all `, `′ ∈ X

Then ∣∣∣∣ ∫ n∏
i=1

:
ei∏
µ=1

ψ
(
`i,µ, κi,µ

)
: dµA(ψ)

∣∣∣∣ ≤ ∏
1≤i≤n
1≤µ≤ei
κi,µ=0

√
2‖f`i,µ

‖H
∏

1≤i≤n
1≤µ≤ei
κi,µ=1

√
2‖g`i,µ

‖H

Proof: Define
S =

{
(i, µ)

∣∣ 1 ≤ i ≤ n, 1 ≤ µ ≤ ei, κi,µ = 0
}

S̄ =
{

(i, µ)
∣∣ 1 ≤ i ≤ n, 1 ≤ µ ≤ ei, κi,µ = 1

}
If the integral does not vanish, the cardinality of S and S̄ coincide and there is a sign ± such

that ∫ n∏
i=1

:
ei∏
µ=1

ψ
(
`i,µ, κi,µ

)
: dµA(ψ) = ± det

(
Mα,β

)
α∈S
β∈S̄

where

M(i,µ),(i′,µ′) =
{

0 if i = i′

A(`i,µ, `i′,µ′) if i 6= i′
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Define the vectors uα, α ∈ S and vβ , β ∈ S̄ in Cn+1 by

uαi =

{ 1 if i = n+ 1
1 if α = (i, µ) for some 1 ≤ µ ≤ ei
0 otherwise

vβi =

{ 1 if i = n+ 1
−1 if β = (i, µ) for some 1 ≤ µ ≤ ei
0 otherwise

Observe that, for all α ∈ S and β ∈ S̄,

‖uα‖ = ‖vβ‖ =
√

2

uα · vβ =
{

1 if α = (i, µ), β = (i′, µ′) with i 6= i′

0 if α = (i, µ), β = (i′, µ′) with i = i′

Hence, setting
Fα = uα ⊗ f`i,µ

∈Cn+1 ⊗H for α = (i, µ) ∈ S

Gβ = vβ ⊗ g`i,µ
∈Cn+1 ⊗H for β = (i, µ) ∈ S̄

we have

Mα,β = 〈Fα,Gβ〉Cn+1⊗H

and consequently, by Gram’s inequality,∣∣∣∣ ∫ n∏
i=1

:
ei∏
µ=1

ψ
(
`i,µ, κi,µ

)
: dµA(ψ)

∣∣∣∣ =
∣∣∣det

(
Mα,β

)
α∈S
β∈S̄

∣∣∣∣
≤

∏
α∈S

‖Fα‖Cn+1⊗H
∏
β∈S̄

‖Gβ‖Cn+1⊗H

≤
∏
α∈S

√
2‖f`α‖H

∏
β∈S̄

√
2‖g`β‖H

Let S be a finite set (of spin/colour values). Let Eσ,σ′(k) ∈ L1
(
IRd+1, dk

(2π)d+1

)
, for

each σ, σ′ ∈ S, and let dµC be the Grassmann, Gaussian measure with covariance

Cσ,σ′(x, y) =
∫

dd+1k

(2π)d+1
eik·(y−x)Eσ,σ′(k)

That is, for all x, y ∈ IRd+1 and σ, σ′ ∈ S

∫
ψσ(x, κ)ψσ′(y, κ′) dµC(ψ) =


0 if κ = κ′ = 0
Cσ,σ′(x, y) if κ = 0, κ′ = 1
−Cσ′,σ(y, x) if κ = 1, κ′ = 0
0 if κ = κ′ = 1
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Corollary G.2

sup
xi,µ,σi,µ,κi,µ

∣∣∣ ∫ n∏
i=1

:ψσi,1(xi,1, κi,1) · · ·ψσi,ei
(xi,ei

, κi,ei
) : dµC(ψ)

∣∣∣ ≤ (
2
∫
‖E(k)‖ dk

(2π)d+1

)Σiei/2

Here ‖E(k)‖ denotes the norm of the matrix
(
Eσ,σ′(k)

)
σ,σ′∈S

as an operator on `2
(
C|S|).

Proof: Define
X =

{
(i, µ)

∣∣ 1 ≤ i ≤ n, 1 ≤ µ ≤ ei
}

A
(
(i, µ), (i′, µ′)

)
= Cσi,µ,σi′,µ′ (xi,µ, xi′,µ′)

Let Ψ
(
(i, µ), κ), (i, µ) ∈ X, κ ∈ {0, 1} be generators of a Grassmann algebra and let dµA(Ψ)

be a Grassmann Gaussian measure on the Grassmann algebra with covariance A. This

construction has been arranged so that∫
ψσi,µ

(xi,µ, κi,µ)ψσi′,µ′ (xi′,µ′ , κi′,µ′) dµC(ψ) =
∫

Ψ
(
(i, µ), κi,µ

)
Ψ

(
(i′, µ′), κi′,µ′

)
) dµA(Ψ)

and consequently∫
n∏
i=1

: ψσi,1(xi,1, κi,1) · · ·ψσi,ei
(xi,ei

, κi,ei
) : dµC(ψ)

=
∫

n∏
i=1

: Ψ
(
(i, 1), κi,1) · · ·Ψ((i, ei), κi,ei

)
: dµA(Ψ)

Let H = L2
(
IRd+1, dk

(2π)d+1

) ⊗ C|S| and

fi,µ(k, σ) = eik·xi,µ
√

‖E(k)‖ δσ,σi,µ
gi,µ(k, σ) = eik·xi,µ

Eσ,σi,µ
(k)√

‖E(k)‖

If ‖E(k)‖ = 0, set gi,µ(k, σ) = 0. Then

A
(
(i, µ), (i′, µ′)

)
= 〈fi,µ, gi′,µ′〉H

and, since
∑
σ∈S

∣∣Eσ,σi,µ
(k)

∣∣2 ≤ ‖E(k)‖2,

∥∥fi,µ∥∥H,
∥∥gi,µ∥∥H =

∥∥ √
‖E(k)‖∥∥

L2 =
(∫

‖E(k)‖ dk
(2π)d+1

)1/2

The Corollary now follows from Proposition G.1.
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Corollary G.3 For any L2 function χ, define ψχ,σ(x, κ) =
∫
dd+1y ψσ(y, κ)χ̂(x− y). Then,

for all xi,µ, σi,µ, κi,µ,∣∣∣ ∫ n∏
i=1

: ψχi,1,σi,1(xi,1, κi,1) · · ·ψχi,ei
,σi,ei

(xi,ei
, κi,ei

) : dµC(ψ)
∣∣∣

≤
n∏
i=1

ei∏
µ=1

(
2
∫
χ2
i,µ(k)‖E(k)‖ dk

(2π)d+1

)1/2

Proof: The proof is identical to that of Corollary G.2 once the replacements

A
(
(i, µ), (i′, µ′)

)
= δσi,µ,σi′,µ′

∫
dk

(2π)d+1 e
ik·(xi′,µ′−xi,µ)χi,µ(k)E(k)χi′,µ′(k)

fi,µ(k, σ) = eik·xi,µχi,µ(k)
√
‖E(k)‖ δσ,σi,µ

gi,µ(k, σ) = eik·xi,µχi,µ(k)
Eσ,σi,µ

(k)√
‖E(k)‖

have been made.
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Propagator Bounds

The propagator, or covariance, for many–fermion models is the Fourier transform of

Cσ,σ′(k) =
δσ,σ′

ik0 − e(k)

where k = (k0,k) and e(k) is the one particle dispersion relation minus the chemical potential.

For this appendix, the spins σ, σ′ play no role, so we suppress them completely. We also

restrict our attention to two space dimensions (i.e. k ∈ IR2, k ∈ IR3) though it is trivial to

extend the results of this appendix to any number of space dimensions. We assume that e(k)

is a reasonably smooth function (for example, C4) that has a nonempty, compact zero set F ,

called the Fermi curve. We further assume that ∇e(k) does not vanish for k ∈ F , so that F
is itself a reasonably smooth curve. At low temperatures only those momenta with k0 ≈ 0

and k near F are important, so we replace the above propagator with

C(k) =
U(k)

ik0 − e(k)

The precise ultraviolet cutoff, U(k), shall be chosen shortly. It is a C∞
0 function which takes

values in [0, 1], is identically 1 for k2
0 + e(k)2 ≤ 1 and vanishes for k2

0 + e(k)2 larger than some

constant.

We slice momentum space into shells around the Fermi surface. To do this, we fix

M > 1 and choose a function ν ∈ C∞
0 ([M−2,M2]) that takes values in [0, 1], is identically 1

on [M−1/2,M1/2 ] and obeys
∞∑
j=0

ν
(
M2jx

)
= 1

for 0 < x < 1. The jth shell is defined to be the support of

ν(j)(k) = ν
(
M2j

(
k2
0 + e(k)2

))
By construction, the jth shell is a subset of

{
k

∣∣ 1
Mj+1 ≤ |ik0 − e(k)| ≤ 1

Mj−1

}
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As the scale parameter M > 1, the shells near the Fermi curve have j near +∞. Setting

C(j)(k) = C(k)ν(j)(k)

and U(k) =
∞∑
j=0

ν(j)(k) we have

C(k) =
∞∑
j=0

C(j)(k)

To analyze the Fourier transform of C(j)(k), we further decompose the jth shell into

more or less rectangular “sectors”. To do so, we fix lj ∈
[

1
Mj ,

1
Mj/2

]
and choose a partition

of unity

1 =
∑
s∈Σ(j)

χ(j)
s (k′)

of the Fermi curve F with each χ(j)
s supported on an interval of length lj and obeying

sup
k′

∣∣∂mk′χ(j)
s

∣∣ ≤ constm

lj
m

Given any function χ(k′) on the Fermi curve F , we define

C(j)
χ (k) = C(j)(k)χ(k′(k))

where, for k = (k0,k), k′(k) is any reasonable “projection” of k onto the Fermi curve. In the

event that F is a circle of radius kF centered on the origin, it is natural to choose k′(k) = kF
|k|k.

For general F , one can always construct, in a tubular neighbourhood of F , a C∞ vector field

that is transverse to F , and then define k′(k) to be the unique point of F that is on the same

integral curve of the vector field as k is.

Proposition P.1 Let χ(k′) be a C∞
0 function on the Fermi curve F which takes values in

[0, 1], which is supported on an interval of length lj ∈
[

1
Mj ,

1
Mj/2

]
and whose derivatives obey

sup
k′

∣∣∂nk′χ(k′)
∣∣ ≤ constn

ln
j

Fix any point k′
c in the support of χ. Let t̂ and n̂ be unit tangent and normal vectors to the

Fermi curve at k′
c and set

ρ(x, y) = 1 +M−j |x0 − y0| +M−j |x⊥ − y⊥| + lj |x‖ − y‖|
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where x‖ is the component of x parallel to t̂ and x⊥ is the component parallel to n̂.

Let φ be a C∞
0 function which takes values in [0, 1] and set φ(j) = φ

(
M2j [k2

0+e(k)2]
)
.

For any function W (k) define

W
(j)
χ,φ(x, y) =

∫
d3k

(2π)3 e
ik·(x−y)W (k)φ(j)(k)χ

(
k′(k)

)
Let γ ∈ IN. If e(k) has bounded max{2, γ}th derivatives, then there is a constant, const ,

depending on γ, const0 , · · · , constγ , φ and e(k), but independent of j, x and y such that

|W (j)
χ,φ(x, y)| ≤ const lj

M2j ρ(x, y)−γ max
α∈IN3
|α|≤γ

sup
k∈suppχφ(j)

l
α2
j

Mj(α0+α1)

∣∣∣∂α0
k0

(
n̂ ·∇k

)α1
(
t̂ ·∇k

)α2W (k)
∣∣∣

n̂

t̂
k′
c

O(lj)

O(1/Mj)

Proof: Use S to denote the support of φ(j)(k)χ
(
(k′(k)

)
. Observe that S has volume at

most constM−2j lj , since k0 is supported in an interval of length constM−j , the component

of k normal to F is supported in an interval of length constM−j and the component of k

tangential to F runs over an interval of length const lj . Hence

sup
x,y

|W (j)
χ,φ(x, y)| ≤ vol(S) sup

k∈S
|W (k)| ≤ const lj

M2j sup
k∈S

|W (k)|

which is the desired bound for γ = 0.

To bound supx,y ρ(x, y)
γ |W (j)

χ,φ(x, y)| by 4γC, it suffices to bound

∣∣∣(x0−y0
Mj

)β0
(
x⊥−y⊥
Mj

)β1
(
lj(x‖ − y‖)

)β2W
(j)
χ,φ(x, y)

∣∣∣
=

∣∣∣ ∫
d3k

(2π)3 e
ik·(x−y)( 1

Mj ∂k0
)β0( 1

Mj n̂ · ∇k

)β1(
lj t̂ · ∇k

)β2
(
W (k)φ(j)(k)χ

(
k′(k)

))∣∣∣
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by C for all x, y ∈ IR3 and β ∈ IN3 with |β| ≤ γ. The volume of the domain of integration is

still bounded by const lj

M2j , so by the product rule, to prove the desired bound it suffices to

prove that

max
|β|≤γ

sup
k

∣∣∣( 1
Mj ∂k0

)β0
(

1
Mj n̂ · ∇k

)β1
(
lj t̂ · ∇k

)β2
(
φ(j)(k)χ

(
k′(k)

))∣∣∣ ≤ const

Since lj ≥ 1
Mj and all derivatives of k′(k) to order γ are bounded,

max
|β|≤γ

sup
k

∣∣∣( 1
Mj ∂k0

)β0( 1
Mj n̂ ·∇k

)β1(
lj t̂ ·∇k

)β2χ
(
k′(k)

)∣∣∣ ≤ const max
β1+β2≤γ

l
β2
j

Mjβ1
1

l
β1+β2
j

≤ const

so, by the product rule, it suffices to prove

max
|β|≤γ

sup
k∈S

∣∣∣( 1
Mj ∂k0

)β0
(

1
Mj n̂ · ∇k

)β1
(
lj t̂ · ∇k

)β2φ(j)(k)
∣∣∣ ≤ const

Set I = {1, · · · , |β|},

di =


1
Mj ∂k0 if 1 ≤ i ≤ β0

1
Mj n̂ · ∇k if β0 + 1 ≤ i ≤ β0 + β1

lj t̂ · ∇k if β0 + β1 + 1 ≤ i ≤ |β|

and, for each I ′ ⊂ I, dI
′
=

∏
i∈I ′ di. By the product and chain rules

dIφ(j)(k) =
|β|∑
m=1

∑
(I1,···,Im)∈Pm

dmφ
dxm

(
M2j

(
k2
0 + e(k)2

)) m∏
i=1

M2jdIi
(
k2
0 + e(k)2

)
where Pm is the set of all partitions of I into m nonempty subsets I1, · · · , Im with, for

all i < i′, the smallest element of Ii smaller than the smallest element of Ii′ . For all m,∣∣dmφ
dxm

(
M2j

(
k2
0 + e(k)2

)) ∣∣ is bounded by a constant independent of j, so to prove the Propo-

sition, it suffices to prove that

max
|β|≤γ

sup
k∈S

∣∣∣M2j
(

1
Mj ∂k0

)β0
(

1
Mj n̂ · ∇k

)β1
(
lj t̂ · ∇k

)β2
(
k2
0 + e(k)2

) ∣∣∣ ≤ const

If β0 6= 0

M2j
(

1
Mj ∂k0

)β0
(

1
Mj n̂ · ∇k

)β1
(
lj t̂ · ∇k

)β2
(
k2
0 + e(k)2

)
=

{
2k0M

j if β0 = 1, β1 = β2 = 0
2 if β0 = 2, β1 = β2 = 0
0 otherwise
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is bounded, independent of j since |k0| ≤ const 1
Mj on S. Thus it suffices to consider β0 = 0.

Applying the product rule once again, this time to the derivatives acting on M2je(k)2 =

[Mje(k)] [Mje(k)], it suffices to prove

max
|β|≤γ

sup
k∈S

∣∣∣Mj
(

1
Mj n̂ · ∇k

)β1
(
lj t̂ · ∇k

)β2e(k)
∣∣∣ ≤ const

If β1 = β2 = 0, this follows from the fact that |e(k)| ≤ const 1
Mj on S. If β1 ≥ 1 or β2 ≥ 2, it

follows from Mj

Mβ1j l
β2
j

≤ 1. (Recall that lj ≥ 1
Mj/2 .) This leaves only β1 = 0, β2 = 1.

If t̂ · ∇ke(k) is evaluated at k = k′
c, it vanishes, since ∇ke(k′

c) is parallel to n̂. The

second derivative of e is bounded so that,

Mj
lj sup
k∈S

∣∣t̂ · ∇ke(k)
∣∣ ≤ constMj

lj sup
k∈S

|k − k′
c| ≤ constMj

l
2
j ≤ const

since lj ≤ 1
Mj/2 .

Corollary P.2 Under the hypotheses of Proposition P.1,

sup
∣∣W (j)

χ,φ(x, y)
∣∣ ≤ const lj

M2j sup
k∈suppχφ(j)

|W (k)|

and, if e(k) has bounded fourth derivatives,

sup
x

∫
dy

∣∣W (j)
χ,φ(x, y)

∣∣, sup
y

∫
dx

∣∣W (j)
χ,φ(x, y)

∣∣
≤ const max

α∈IN3
|α|≤4

sup
k∈suppχφ(j)

l
α2
j

Mj(α0+α1)

∣∣∣∂α0
k0

(
n̂ · ∇k

)α1
(
t̂ · ∇k

)α2W (k)
∣∣∣

Proof: The first claim is simply a restatement of Proposition P.1 with γ = 0, For the second

statement just use

sup
x

∫
dy 1

ρ(x,y)4 , sup
y

∫
dx 1

ρ(x,y)4 =
∫
dx 1

ρ(x,0)4 ≤ constM2j 1
lj

For the last inequality, just make the change of variables x0 = Mjz0, x⊥ = Mjz1, x‖ = 1
lj
z2.
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Corollary P.3 Under the hypotheses of Proposition P.1,

sup
∣∣C(j)
χ (x, y)

∣∣ ≤ const lj

Mj

and, if e(k) has bounded fourth derivatives,

sup
x

∫
dy

∣∣C(j)
χ (x, y)

∣∣, sup
y

∫
dx

∣∣C(j)
χ (x, y)

∣∣ ≤ const Mj

Proof: Apply Corollary P.2 with W (k) = 1
ik0−e(k) and φ = ν. To achieve the desired

bounds, we need

max
|α|≤4

sup
k∈suppχν(j)

∣∣∣( 1
Mj ∂k0

)α0( 1
Mj n̂ · ∇k

)α1(
lj t̂ · ∇k

)α2 1
ik0−e(k)

∣∣∣ ≤ constMj

In the notation of the proof of Proposition P.1, with β replaced by α,

dIν(j)(k) = Mj

|α|∑
m=1

(−1)mm!
∑

(I1,···,Im)∈Pm

(
1/Mj

ik0−e(k)

)m+1 m∏
i=1

MjdIi(ik0 − e(k))

On the support of χν(j), |ik0−e(k)| ≥ const 1
Mj so that

(
1/Mj

ik0−e(k)

)m+1

is bounded uniformly

in j. That MjdIi(ik0 − e(k)) is bounded uniformly in j was proven during the course of the

proof of Proposition P.1.
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