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Fermionic Expansions

These lecture notes concern an expansion that can play the role of a single scale
cluster expansion in fermionic models. We use this expansion to reduce the problem of
constructing two dimensional Fermi liquids to that of controlling the flow of two and four
legged vertices.

Notation. Let
e A be the Grassmann algebra generated by {a1,---,a,}. Think of {ay,---,a,} as
some finite approximation to the set { v, (z), ¢, (z) ‘ z e R o e {11} } of

fields integrated out in a renormalization group transformation like

V(ih, ) — V(T, T) = — log / AT 4y (4 )

e C be the Grassmann algebra generated by {ci,---,¢,}. Think of {¢1,---,¢,} as
some finite approximation to the set { ¥, (z), Vs (z) ’ z e R™ o e {1,]} } of
fields that are arguments of the output of the renormalization group transformation.

e AC be the Grassmann algebra generated by {a1, -, an,c1, -, cn}.

o S =(S;;) be askew symmetric matrix of order n. Think of S as the “single scale”
covariance of the Gaussian measure that is integrated out in the renormalization
group step.

e [ - dus(a) be the Grassmann, Gaussian integral with covariance S. It is the

unique linear map from AC to C satisfying

s _1 Q. .~
/echal d,US(a) — e 52 ¢i5:5Cj

In particular
/aiaj dus(a) = S;
e M, = { (i1, 1) ‘ 1<iy, i <n } be the set of all multi indices of degree
r > 0. For each I € M, set a; = a;, ---a;, . By convention, ay =1.
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e the space (AC)? of “interactions” is the linear subspace of AC of even Grassmann

polynomials with no constant term. That is, polynomials of the form

Wi(c,a) = > > wi (L, J) erag

l,reIN LeM;
1<I47r€2Z  JeM,

Often, in the renormalization group map, the interaction is of the form W(c + a).

We do not require this.

Main Definitions.

i) The renormalization group map : (AC)? — C° is

QW )(e) = log [ 1) dyus(a) ~ log [ O dps(a)

It is defined for all W’s obeying feW(O’a) dus(a) # 0. The second term ensures that
Q(W)(0) =0, i.e. that Q(WW)(c) contains no constant term. Since Q(W) =0 for W =0

Q)(e) = [ W) de

[ [ W(ea) eV e dpg(a) . LW (0,a) WO dpg(a)
—Jo JeWen dug(a) 0 [ esW 0 dpg(a)

Thus to get bounds on the renormalization group map, it suffices to get bounds on

ii) the Schwinger functional S : AC — C, defined by

SU) = by [ flea) e dus(a)

where Z(c) = [e"(©%) dug(a) . Despite our notation, S(f) is of course a function of W

and S as well as f.

iii) Define the linear map R: AC — AC by

R(f)(c;a) = / LW (eath) - Wiea) _ 1. (e b) dus(b)
where : - :; denotes Wick ordering of the b—field and is determined by

LD At S Bibi+ S Cici (38 BiSiiB; S Aiai+S Bibi+Y Cies
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Diagramatically, % [ eV f(c,a) dus(a) is the sum of all connected (f is viewed as a
single, connected, vertex) Feynman diagrams with one f—vertex and arbitrary numbers of
W —vertices and S-lines. The operation R(f) builds parts of those diagrams. It introduces
those W—vertices that are connected directly to the f—vertex (i.e that share a common S-line
with f) and it introduces those lines that connect f either to itself or to a W-vertex.

To obtain the expansion that will be discussed in these lectures, expand the (1-R)~*

of the following Theorem, which shall be proven shortly, in a power series in R.

Theorem 1 Suppose that the kernel of 1 — R s trivial. Then,

S(f) = / (1—R)"\(f) dpus(a)

for every f in AC.

Lemma 2 For all f and g in AC,

/ / f(e,b) sg(c.a+ by dpus(b) dus(a) = / f(c, a)g(e, a) dps(a)

Proof: It suffices to consider f(c,a) = e¥i4i%+¥iCi¢i and g(c,a) = eXiBivt¥iDici yith
the sources A;, B;, C;, D, anticommuting amongst themselves and with the original fields

a;, Cj. Then

¥, B;b;

— . eZiBi(aitbi)+3iDic; b= eZiBiaitEiDici ., b

:g(c,a+b)p

=:g9(c,a+0b):y

so that
/f(c, b) :g(c,a +b)xy dus(a) = eZi(CitDi)ei+%i(Ai+Bi)b; _ f(e,b)g(c,b)

Integrating this with respect to dug(b) gives the same answer as integrating f(c,a)g(c,a) =

e¥i(AitBi)aitXi(CitDi)ei with respect to dug(a). ]
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Proposition 3 For all f in AC,

/ F(ea) eV dug(a) = / F(e.b) dus(b) / VD dyig(a) + / R(f)(e.a) " @ dpus(a)

Proof: By Lemma 2,
/ f(e,b) dps(b) / e dpg(a) + / R(f)(c,a) e™ (") dpg(a)
_ / :GW(c,a+b)—W(c,a) b f(C, b) d,LLS(b) eW(c,a) d,ug(a)

- / Vet feb) dps(b) dus(a)

Proof of Theorem 1: For all g(c,a) € AC

/ (1— R)(g) ") dug(a) = Z(c) / g(c.a) dus(a)

by Proposition 3. If the kernel of 1 — R is trivial, then we may choose g = (1 — R)~*(f). So

/f(c, a) e dpg(a) = Z(C)/(Il— R)~'(f)(c,a) dps(a)

The left hand side does not vanish for all f € AC (for example, for f = e=") so Z(c) is

nonzero and

2l [ e dusta) = [ (1= R (F)(e.a) dus(a)

Norms

For any function f : M, — C, define
Ifl = max sup 3> [f(J)|

1<i<r 1<k<n Jem.
<k<n JeM,

I = > [f)
JemM
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The norm || - ||, which is an “L! norm with one argument held fixed”, is appropriate for
kernels, like those appearing in interactions, that become translation invariant when the

cutoffs are removed. Any f(c,a) € AC has a unique representation

f(c,a) = Z Z fl,?"(klv"'7kl7j17"'5j7“)ck1"'Cklajl"'ajr
L,r>0 k1,0kg
J1sdr

with each kernel f; ,(k1,---,ki,j1,---,Jr) antisymmetric under separate permutation of its

k arguments and its j arguments. Define

If(e,a)lla =D [l fil

l,r>0

(e, a)lla = D &l fill

l,r>0

Hypotheses

(HG) )fbH cby: dps(b) | < FIHIEI

(HS)  [IS|l<F*D

b

So F is a measure of the “typical size of fields b in the support of the measure dugs(b)” and

D is a measure of the decay rate of S.

Theorem 4 Assume Hypotheses (HG) and (HS). Let a > 2 and D||W || (q41yr < 1/3. Then,

for all f € AC,
IR(Allar < 2 DIWllarnyr [1fllar

IR(Nllar < 2DIWlarnye I/ llar

Corollary 5 Assume Hypotheses (HG) and (HS). Let o > 2 and D||W||(arnr < 1/3.
Then, for all f e AC,
IS(H () =S(NO)]lar < 25 fller
IS(Hllar < 325 I flar

1QW)llar < 3% (W lar
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Let
Wi(c,a) = > > w,(L,J)crag

l,reIN LeM;
JEM,

where w; ,(L,J) is a function which is separately antisymmetric under permutations of its
L and J arguments and that vanishes identically when [ + r is zero or odd. With this

antisymmetry

W(c,a+b) —W(c,a) = Z Z (") wirps(L, I, K)eLagbg

1,r>0 LeM;
s>1 JeM,
KeMs

SO

4
-eW(catb)=W(e,a) _ 1= Z % Z Z : H (Ti:;Si)wli,Ti-i-si(Lﬁ J;, Ki>CLiaJibKi D
=1

£>0 l;jr; 20 LieMg,
si21  J eMy
KiEMsi

with the index 7 in the second and third sums running from 1 to /. Hence

R=3 Y 4115 R

£>0 r,s,leN?
s;>1

where

¢
(=3 / T w0ty (L T K en,an,biccn f(eb) dps(b)
L;eMy, i=1

J;EMp;
K, €M,

Proposition 6 Assume Hypothesis (HG). Let

f(p’m) (C; CL) = Z fp,m(I; H) C1GH

HEMm
€My

Let r,s,l € IN® with each s; > 1. If m < £, Rir(f(p’m)) vanishes. If m >/

IR (FP™ ) < O E™ ol T (ISIE*2 fan .11

—~ s

IRE . (SP™ Dl < A7) E™ || fyml <HSHFS"_2 [0, 7i4-s:

N———

1
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Proof: We have

Ry (FP™) = £ > firs@a- Lo, Ly, Jo) e, o -e, crag, -+ ayg,

IEM, Ji€My,
LyeMy,
1<i<e

with

¢
firs(Li, - L, Ly, - J) = > /H Wi, rits; (Liy Ji, Ki) bk, fp,m (L H) b dpg(b)
i=1

HEM
K;€Ms,

The integral over b is bounded in Lemma 7 below. It shows that f; rs(L1,---,Le, L J1, -+, Jp)

vanishes if m < ¢ and is, for m > ¢, bounded by
}fl,r,s(Lla ooy L Ldg - 7J€)| < K'(?) T(Ll, oy L LJgy e 7J€) Fm+28i_2£

where

14 n
T(Ly, Lo L) = 50 TI(OX (ui(a Ji k) 1Sk ) fpom (1 H)|
HeM,, i=1"k;=1

and, for each i =1,---,/¢

ui(Li, Jisks) = 32wy res, (L, Ji, Koy )|
KieEMs, 1
By construction, ||u;|| = ||wi, r,+s;||- By Lemma 8, below

4 4
T < N fpmllISI* I Jfuill < [l Fpml ISI® T lws, s, |
1=

i=1
and hence
¢
1 frrsll < (7)) FT 25720 f SN 1:[1 [ w1, 45,
Similarly, the second bound follows from |[|T|| < || fp.m |l IS Hle ||lus]|- |
Lemma 7 Assume Hypothesis (HG). Then
¢ ¢
[T b ds() | < B
i=1 1<py,mp<|H|  i=1 ‘

all different



Proof: For convenience, set j; = k;; and K; = K; \ {ki1} for each i = 1,--- .

antisymmetry,

l 14
/ZH bKl bH dus(b) = :i:/: H bf(i bj1 bjé: bH d,us(b)
i=1 =1

Recall the integration by parts formula

‘ o)

[0 F0) dus(®) = 3 S [ 35 50) dusio)

o)

for Grassmann Gaussian measures. The left partial derivative is determined by

o 0 J ifme¢H
Do (=1)""bybk  if bu = by by bk

In the presence of Wick ordering

/ bich; ¢ F(b) dus(b) = le Sm / bict 2 F(b) dpus(b)

Integrate by parts successively with respect to bj, - --b;,

m=1

and then apply Leibniz’s rule

n J4
o) _ .
(2 Sim &) b = 5 (1 Sjon, )0yt )
= 1<pq,,pp<[H| =1

all different

and Hypothesis (HG).

Lemma 8 Let

T 36D = 5 (S5 k)16 ]) o (1.1D)

with £ < m. Then
¢
1T < |l fpmll I1S1° 1:[1||uiH

4
I < WfpmllISI* 11 e



Proof: For the triple norm,

s
Il ~
—_

> H( z (3, )1k ) (1 HD)| =

ILH,J, '™

5 L1 (S s )l ) k) o (1,11

7, 7.

)—1

IA

ﬁzm T~

(szp;iyumi,k)\) [T (5180 1) o (11

ILH:=1 i

T (el sup 32 k1) 351 (1 D)

LLH
< m w; || ||1S
> H|fp, f 11_[1 (H [l ||>

The proof for the double norm, i.e. the norm with one external argument sup’d over rather

than summed over, is similar. It repeatedly uses

sup > [u(d k) s(k, k) v(h, B, d)| < [lul ||| sup > |v(h, H, )|
Y mH

7

h,k,H,J
in place of
> [l k) sk h) o(h D] < ul lls] D [v(h, H)]
h,k,H,J h,H
|
Lemma 9 Assume Hypotheses (HG) and (HS). Let f®™(c,a) = Y. fom(L,H)cran
eny
Forall o >2 and £ > 1
¢
it 8 s ,m m £
X oall( PRSP )k < 21 FP™ ar [DIW | (at1)r]
r,ssyilgli\T 1=1
¢
Ti+S; ,m ,m £
X all( SR (SO Nlar < 2P Nlar [DIW [l as1yr]
r,i,ilgllN =1
Proof: We prove the bound with the | - || norm. The proof for || - || is identical. We

may assume, without loss of generality, that m > ¢. By Proposition 6,

%Hst,r(f(p’m))Ha =1 1 it ZritppSl +2m+pHRs (f(p’m))!h
4

< QterErcpEte = (yp| £ T (ISP )
1=1

)

£
< Qm&meerpr,mH H (Dali+"’iFli+ri+5i
i=1

Wi, rits;
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Asa>2andm>/(>1,

4
X U IR (™) o

r,s,le]NZ (2
s;>1

l
< ZHf(P,m)HaF Z H [(Ti+5i>Dali+TiFli+7"i+8i
- retent i=1 b
S,L-Zl

[ V4
< IO [D X (e ]

r,s,lEIN
s>1

wliari+5i’|i|

< 25w [D 5 (04 1) |
N

r 4
< 2{|£%) o [DIW a1y |

Proof of Theorem 4:

ROor < 3 3 % 1O )IRE ) e

£>0 r,s,1eIN%
37;21

SN 20 DI (ag 1y

£>0 m,p

IN

2 DHWH( )
= 2||fllor BT

< Z21fllar DIWla+nr

The proof for the other norm is similar.

Lemma 10 Assume Hypothesis (HG). If a > 1 then, for all g(a,c) € AC

| / 9@, dus(@)]| < llgla O)lar
H/ a,¢) = 9(a,0)} dus(a)|| < llg(a.c)ar

Proof: Let
gla,c)= > > qr(L,J) cLa;

1,r>0 LEM,;
JeM,
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with g; (L, J) antisymmetric under separate permutations of its L and J arguments. Then

‘H/g(a, c)dus(a)

eEM;

‘oeF “
T Jem,

= Y oF Yy

>0 LeM; 'r>0 JEM,

< X aFH Y g (L)

l,r>0 LeM;
JEM,

< llg(a; e)lllar

Similarly,
| st~ sta0ydust@] =] £ 5 ot e [ardusia)
aF 1>1 LeM;
r>0 JeEM,
=Y a'F sup Y
>1 I<k<nicm,_, 720 JEM,
< S AFFT sup Y gie(k, L, J)
1>1 1<k<n Lem;_,
>0 JeEM,
< [lg(a, c)llar
Proof of Corollary 5: Set g = (1 —R)™!f. Then
IS()(e) = SO ar = | [ Tota.0) = 9(a,0)] dus(@)]
< (@ =R)"H(f)llar
< 1

1
=3 Wlerne/a 1 lor < =75 [ fller
The argument for ||S(f)||ar is identical.
With the more detailed notation

[ Flae) V) dpus(a)
[ V6T dyas(a)

S(f,W) =

we have

120W) r = | /O 1[S(W, SW)(e) — SW.eW)(0)]de||

1
< / Wl de = = [Wlar

11

% aed)a [ adusi)

Z Z gl,r(k;ii,J)/aJ d,us(a)

S5 (L) [adus(a)

(Theorem 1)
(Lemma 10)

(Theorem 4)



We now apply the expansion to a few examples. In these examples, the set of
fields {a1,---,a,} is replaced by { ¢, (), o (z ‘ x € IRd+1, o € 6 } with & being a
finite set (of spin/colour values). Consequently, sums Z are replaced by > fle+1
That our Grassmann algebra is no longer finite dlmensmj)n;l is a technicality ﬁlgt is easily
dealt with, using the bounds of Theorem 4 and Corollary 5. We shall not do so. The
covariance .S; ; will be replaced by a “single scale” propagator that, in each example, will be
constructed by substituting a partition of unity of momentum space into the full propagator.
The partition of unity will be constructed using a fixed “scale parameter” M > 1 and a

function v € C§°([M 2, M?]) that takes values in [0, 1], is identically 1 on [M~/2, M'/?] and

obeys
Zu MQJ =1
7=0

for 0 <z < 1.

Example (Gross—Neveu,)

The propagator for the Gross-Neveu model in two space-time dimensions is

S(m,y):/(d2p i (= 3:)15—'——m §= (ipo P )

2m)2 p? + m?2 p1 —ipo

Set o

v(¥47) ifj>0

vi(p) =4 w() if j=0, |p| > 1

1 if j=0, [p| <1
Then

y)=> SV (z,y)

=0

with

, d?p i o Bt+m
SO = [ s L i)

The integrand of S(), the propagator of scale j, is supported on M7~! < Ip| < M7+ for
j>0and |p| < M for j =0. Thisis a region of volume at most const M2/ and on this region,
the integrand is bounded by const 7. By Corollary G.2, the value of F for this propagator
is bounded by

. 2 \1/2 1 |
F;= (2/| B |vi (o) '(2d_7r]))2> < Cr (g M) ? = Cp M/
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for some constant Cr. Here ’

sup|S(J) (z,9)| </} Zﬁ% v (p) (2 )2 < const M’

By the usual integration by parts games (a relatively complex version of which is used in

Proposition P.1)

(4) 2 (]) 1
S50 (@, y)| < const sup /d Yy 1S, 5(x,y)| < const 35

MI
(1+M7[z—yl]?

so that the value of D for this propagator is bounded by

We can always avoid having a const in D; by increasing the value of the Cr in F;. To apply

Corollary 5 to this model, we fix some a > 2 and define the norm

47
[W1l; = D[[Wllar, = > _(aCp) "M "2

l,r

Suppose that we have integrated out all scales from some ultraviolet cutoff down to
j and have ended up with an interaction that obeys |[|[W]|; < 1. To integrate out scale j — 1

we use

Theorem 11GN Suppose o > 2 and M > ﬁ(aT“)(5 If |\W]; <
L+r <4, then [|Q; 1 (W)l|j—1 < [W];-

% and w; , vanishes for

Proof: To apply Corollary 5 at scale j — 1, we need D;_1||W||(a41)F,_, < 5. But

1
3

+r4

D1 [W llasiyr,_y = (a4 1)Cp) MU0 =57

I+ 4
= 3 (M) g e

I+1>6
5 () o
z+l7’~rz6
6
< () Wl < 3



[e%

6
as M > (‘”1) and |[W|; < 3. By Corollary 5,

« « (67 6
19,1 (W) =1 = Dj—a 11 (W)[lar,_, < 225D 1[Wlar,_, < 225 (%) W5

— a—1 e

< Wl

It is no surprise that two and four-legged vertices cannot be handled. We have not

built in any renormalization.

Example (Many-fermion, — without sectorization)
The propagator, or covariance, for many—fermion models is the Fourier transform of

Oy o
k) = 2o
Coo (k) iko — e(k)

where k = (ko, k) and e(k) is the one particle dispersion relation minus the chemical potential.
The subscript on many-fermions signifies that the number of space dimensions is two (i.e.
k € R?, k € IR®). We assume that e(k) is a reasonably smooth function (for example, C*)
that has a nonempty, compact, strictly convex zero set, called the Fermi curve and denoted
F. We further assume that Ve(k) does not vanish for k € F, so that F is itself a reasonably
smooth curve. At low temperatures only those momenta with kg ~ 0 and k near F are

important, so we replace the above propagator with

U
O = e

The precise ultraviolet cutoff, U(k), shall be chosen shortly. It is a C§° function which takes
values in [0, 1], is identically 1 for k% + e(k)? < 1 and vanishes for k3 + e(k)? larger than some
constant.

We slice momentum space into shells around the Fermi curve. The j'" shell is

defined to be the support of
v (k) = v (M (k§ + e(k)?))

By construction, the j*" shell is a subset of

{ k| w0 <liko — e(k)| < 3= }

14



As the scale parameter M > 1, the shells near the Fermi curve have j near +o0o. Setting
CY (k) = C(k)v9) (k)

and U(k) = > vU)(k) we have
j=0

k) = iC(”(k)

The propagator C9) (k) is supported on a region of volume at most const M=% (kg is
restricted to an interval of length const M ~7 and k must remain within a distance const M ~7
of F) and is bounded by const M7. By Corollary G.2, the value of F for this propagator is
bounded by

Py = (2 f it ) < Ce( ) = o .

for some constant Cr. Also

i ) (K
sup i )l < | iy e < const

o,0

€)
Each derivative g—ki acting on Z,:OJ_SEI)() increases the supremum of its magnitude by a factor

of order M7. So, naively, it looks like

\Cg;,(:ﬁ,y)] < const % SupZ/d3y ’C(J) (z,y)| < const M
In fact, using Corollary P.3, with [; = W’ yields the better bound
supZ/d?’y |C(J) (x,y)| < const %Mj < const M37/2 (2)

Here, the factor [i is the number of terms in the partition of unity used to write CY) as a
J

sum of C’>(<J )’S, each term of which is bounded using Corollary P.3. So the value of D for this

propagator is bounded by

D, = M>/?

This time we define the norm

_ s l4r—5
IWl; = Dyl Wlar, = > _(aCr)*"M 773

lLr

[[wir|

If we have integrated out all scales from the ultraviolet cutoff, which in this (infrared) problem
is at scale 0, to j and we have ended up with some interaction that obeys ||[W{|; < 1, then

we integrate out scale j + lusing the following analog of Theorem 11GN.
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Theorem 11MB; Suppose o > 2 and M > (ﬁ)z(o‘Tﬂ) If [W]; < 3 and wy,, vanishes
fO’I" [ +r < 6, then ||Qj+1(W)||j+1 S ||WH]

Proof: To apply Corollary 5 at scale j + 1, we need D11 [|W |l (aq1)F,,, < % But

r —(q I+r—5
Dj+1||W“(a+1)Fj+1 = Z((Oz + 1)CF)I+ MU+ ==

l,r

1 5 I+r :
= Z <O‘T+1M_§(1—L+r ) * (OKCF)Z+TM7]I+

L,r

I+r
Z <QT+1M_%) " (oGt M1

L,r
l+r>6

6
< (*F) Wl < Wl <

[[wir |

n
~—

VAN

1
3

By Corollary 5

6
19 -1 (W) i1 = Djgal| s (Wlar; oy < 225D541Wllar,,, < 225 (%) 7472115

< Wl

It looks, in Theorem 11MB;y, like five-legged vertices are marginal and all vertices
with five or fewer legs have to be renormalized. Of course, by evenness, there are no five-
legged vertices so only vertices with two or four legs have to be renormalized. But it still
looks, contrary to the behaviour of perturbation theory, like four—legged vertices are worse
than marginal. Fortunately, this is not the case. Our bounds can be tightened still further.

In the bounds (1) and (2) the momentum k runs over a shell around the Fermi curve.
Effectively, the estimates we have used to count powers of M7 assume that all momenta
entering an [ 4+ r—legged vertex run independently over the shell. Thus the estimates fail to
take into account conservation of momentum. As a simple illustration of this, observe that

for the two-legged diagram B(z,y) = [ d*z ) (z,2)CY) (2, y), (2) yields the bound

sup/d3y|B(x,y)| < sup/cl3 }C’(J) (z,z }/d?’y }C’(J) }

< const M33/2 ) 33/2 — const M3
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But B(z,y) is the Fourier transform of W (k) = W;jﬁ% = C(j)(k)C’(j)(p)‘p:k. Conserva-
tion of momentum forces the momenta in the two lines to be the same. Plugging this W (k)

and [; = 7 into Corollary P.2 yields
Sup/d?’y |B(x,y)| < const %MQj < const M>/2
T J

We exploit conservation of momentum by partitioning the Fermi curve into “sectors”.

Example (Many-fermion, — with sectorization)

We start by describing precisely what sectors are, as subsets of momentum space.
Let, for k = (ko, k), k’(k) be any reasonable “projection” of k onto the Fermi curve. In the
event that F is a circle of radius kz centered on the origin, it is natural to choose k' (k) = %k.
For general F, one can always construct, in a tubular neighbourhood of F, a C*° vector field
that is transverse to F, and then define k/(k) to be the unique point of F that is on the same

integral curve of the vector field as k is.

Let j > 0 and set

1 ifkeF
i (k) = .
vi=l(k) = S v (k) otherwise
(2]

Let I be an interval on the Fermi surface . Then
5= { k } kK'(k)el, ke supp v(27~1) }

is called a sector of length length(I) at scale j. Two different sectors s and s’ are called
neighbours if s’ Ns # (). A sectorization of length [; at scale j is a set X; of sectors of length
[; at scale j that obeys
- the set ¥, of sectors covers the Fermi surface
- each sector in X; has precisely two neighbours in X;, one to its left and one to its
right

- if s, s’ € ¥; are neighbours then %[j <length(sNs' NF) < %[j

1

Observe that there are at most 2length(F)/[; sectors in ;. In these notes, we fix [; = ———

and a sectorization X; at scale j.
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S1 S2 53

Next we describe how we “sectorize” an interaction

Wn = Z /wn((xlaa-laﬁl)a' : '>(5Enao-n;’€n)) 1%1 (xla’fl) oo 'wan(xn;’fn) Zflldxz

UiG{T,l}
r; €{0,1}

where

wcri (1'1,> = ¢0’1‘ (-riv Ki)’nizo ,lZO'i (.772) = wcri (113'7;, "ii) ‘Hi=1

To save writing, we are temporarily ignoring the distinction between “internal” (a;,—type)
fields and “external” (c;,~type) fields, so that w;, is being replaced by w,. Let F(n,X;)

denote the space of all translation invariant functions

fn((xlvo-lv’%l?sl)a“ '7('77”70”7’%”78”)) . (IR3 X {T’l} X {0’ 1} x Ej)n —C

whose Fourier transform, fn((kzl, 01,K1,81), s (KnyOny K, sn)) , vanishes unless k; € s;. An
fn € F(n,X;) is said to be a sectorized representative for w,, if

wn((klaglaﬁl)a B (knao-nalin)) = Z fn((klaalaﬁlasl)a Ty (knaanaﬁnasn))

siGZj
1<i<n

for all ki,---,k, € suppr(279). Tt is easy to construct a sectorized representative for w,
by introducing (in momentum space) a partition of unity of supp v(29) subordinate to 2.

Furthermore, if f,, is a sectorized representative for w,, then

/wn((xlva-lﬂ%l)f”7(xn70-nal€n)) ¢Ul(xlaK1)"'¢Un(xnaKn) ﬁldxz

= Z /fn((xlao-lafihsl);"'7(xn70-n7"£n75n)) w01<x17ﬂl)"'wan(xn7ﬂn) Hdmz
s,€35 =1

1<i<n

18



for all ¥, (xn, ki) “in the support of” duc(=j, i.e. provided v is integrated out using a
Gaussian Grassmann measure whose propagator is supported in supp v(27 )(k:) Furthermore,

by the momentum space support property of f,,
n
/fn((xlvo-lﬂ%la 81)7 Tty (xnaanw‘frwsn)) wol (xlﬂ%l) o '¢an($n; Hn) H dl’z
i=1
n
= /fn((xlaffl,lflasl)"",(l‘mgnaﬁnasn)) 1%1(901,%1781)"'¢an($n,%n78n) H dx
i=1

where

o (2,b, 5) = / By bo (9,5, )39 (z — )

and X(J ) is the Fourier transform of a function that is identically one on the sector s. This
function is chosen shortly before Proposition P.1.

We have expressed the interaction

n n
Wn = Z fn((wlao-la’flasl)a"'7(*%7170-717’{717871)) Hwai(xia’iiasi) dez
s, €S, =1 —
oié{T,gl} ’
r; €{0,1}

in terms of a sectorized kernel f,, and new “sectorized” fields, ¥, (z, K, s), that have propagator

CY), ((z,9), (y.5)) = / Vo (2,0, 8)e (y, 1, 8") duco) (1)

— / Bk ipiyeay VOO (XD (k)
m7 ) (@) iko — e(k)

The momentum space propagator

V) () (k) (k)
’I:ko — 6(k>

C) (kys,8') = Gy 00

vanishes unless s and s’ are equal or neighbours, is supported in a region of volume const [J Ve

and has supremum bounded by const M7. By Corollary G.3, the value of F for this propagator
is bounded by

Fj S Cp(ﬁ Mj[j)l/z - OF\/ %

for some constant Cr. By Corollary P.3,

sup Z /d3y |C’(]) z,s),(y,s"))| < const M’

was,,
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so the value of D for this propagator is bounded by
_ 1 a7s2j
D; = [—jM J

We are now almost ready to define the norm on interactions that replaces the un-
sectorized norm |[W{|; = D;||W||ar, of the last example. We define a norm on F (I + r, %)
by

Hf” = max max Z /H d.]?g |f 37170-17’%1781) (xl-i-T?O-l-l-Ta’il-l-T?Sl-l-r))}

1<i<l+r x;,0;,Kk:,5; e, i+
k#1

and for any translation invariant function

wl’r((xl’ 01,61)s 5 (Tigers Otger,s ’fl—i-r)) : (IR3 x {T1,1} x {0, 1})”7“ —

we define

.7

mf{ | £l ’f € F(l+r,%;) a representative for W}

The sectorized norm on interactions is

o =D; Y (aF;)
Lr

W] ;= Z(ozC )“”"[ e

l,r

=l s,

Proposition 12 (Change of Sectorization) Let j’ > j > 0. There is a constant Cg,
independent of M, j and j’, such that for all | +1r >4

-3
o < [CS[]_,J,} wirls;

Proof: Write [ +r = n. Also the spin indices o; and bar/unbar indices x; play no role, so

we supress them. Let e > 0 and choose f,, € F(n,X;) such that

wl,r(kly"';kn): Z fn((khSl)a"'v(knaSn))

s, €20
1<i<n

for all k1, -, k, in the support of supp (%) and

L2l —e
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Let
1= Z Xs’(k/)
S’EZj/
be a partition of unity of the Fermi curve F subordinate to the set { sNF ‘ s’ e X } of

intervals that obeys

const .
m
o

sup | x| <
k/
Fix a function ¢ € C§° ([O, 2)), independent of j, j/ and M, which takes values in [0, 1] and
which is identically 1 for 0 < z < 1. Set

(k) = (M2 =D[E2 + e(k)?))

Observe that ¢;/ is identically one on the support of v(23) and is supported in the support

of ¥(23'~1). Define g, € F(n,%;/) by

gn((klasll)a"'a(knasln)): Z fn((khsl)?'”?( N78n)) ﬁ |: ( )%’(lfm)]

spED m=1
1<e<n
= Z fn((klasl)a' ( 717871)) H |: ( )w]/(km)}
seﬁs/e;é@ m=1
1<t<n
Clearly
wl,r(kla"'7kn) = Z gn((klasll)a"'a(knasln)>

€%
1<e<n

for all kg in the support of supp v(2). Define

Mom (s') = { (s},--+,s},) 1<l<n

such that S(—1)%k; =0 }
¢
Here, I am assuming, without loss of generality, that the even (respectively, odd) numbered
legs of wy,- are hooked to 1’s (respectively ¢’s). Then

Jonll = e sup 37 [ L de lga((orssi)eo- st

z; €R3 041
S, Momi(s)”

Fix any 1 <i <n, s’ € ¥} and z; € IR®. Then

> [ Idwe |gn((x1, ), (2n,57,)]

Mom; (s”) Sl

< > P> [T dze [fo((1,81), -, (@n, 50)) | max [[Xer + Gy ]|"

sl
Sn 2= GE
Momz(s) sy ﬁs ;é@ 7AZ
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By Proposition P.1, with j = j/ and ¢} = ¢/, maxees,, [|[Xor * @ || is bounded by a
constant independent of M, j’ and [;;. Observe that

> Z [T dae | fu((z1,81), -5 (T, 50)) |

3Sn g y
Mom; (") szﬁs #0 7

Z Z [ de | fu((@1,81), 5 (T, sn)) |

»Sn. Mom; (s/) é;éz
s; ﬁs #0 seﬂs £0
1§£§n
I will not prove the fact that, for any fixed sy, --- ,s, € Xj;, there are at most

[C’fg[[]%}n_3 elements of Mom;(s") obeying s, N's, # () for all 1 < ¢ < n, but I will try to

motivate it below. As there are at most two sectors s € ¥, that intersect ',

Z Z /Hd&)g ’fn (z1,81), (xn,sn))‘

>SS Momy; (s) £
s; ﬁs #0 SEQ‘SE#@
1<t<n

<Aty & [ e s )

s€X; 51,
< 2[C¢ [—j} 11 £l
and
[wirlls, <llgnll <2 max [[Re * @y " [C [—”} 1 £l
S’EE]-/

< [Cse]" I

Wlth CS e 2 maXs”GZj/ H)ACS” * ¢]1H4 Cé

)

Now, I will try to motivate the fact that, for any fixed s, --- s, € X , there are
at most [C’{S[[J—?',}n_?’ elements of Mom,(s’) obeying s, N's, # (0 for all 1 < ¢ < n. We may
assume that ¢ = 1. Then s} must be s’. Denote by I, the interval on the Fermi curve F that
has length [; 4+2[;, and is centered on s,NF. If s’ € ¥, intersects s;, then s'NF is contained

in I,. Every sector in ¥,/ contains an interval of F of length %[j/ that does not intersect any

+2r : . :
other sector in ;. At most [3 %] of these “hard core” intervals can be contained in Ij.
J
Thus there are at most [3 [” + 3]"~3 choices for sh, -, s/ .
’
Fix s{,sb,---,s,_5. Once s]_; is chosen, s}, is essentially uniquely determined by

conservation of momentum. But the desired bound on Mom;(s’) demands more. It says,

roughly speaking, that both s/, _; and s are essentially uniquely determined. As ky runs
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over s, for 1 < ¢ < n — 2, the sum Z?:_f (—1)%k; runs over a small set centered on some

point p. In order for (s, --,s/) to be in Mom;(s’), there must exist k,,_1 € s/, _; N F and
1 n—1

’r n
k, € s/, N F with k,, — k,,_1 very close to p. But k,, — k,,_1 is a secant joining two points of
the Fermi curve F. We have assumed that F is convex. Consequently, for any given p # 0
in IR? there exist at most two pairs (k/,q’) € F? with k' —q’ = p. So, if p is not near the

origin, s, _; and s/, are almost uniquely determined. If p is close to zero, then Z?:_f(—l)ekg

must be close to zero and the number of allowed s/, s, -+, s, _5 is reduced.

Theorem 11MBs Suppose o > 2 and M > (L)2(C’S“—+1)12. If |W|

a—1 «

1
a,j < 3 and wi r

vanishes for 1 +r < 4, then |11 (W) |laj+1 < [|[W/la,;-

Proof: We first verify that ||[W|a41,41 < 3.

r— _(a l4+r—4
W latijer =D ((a+1)Cp)F D2 =D =57 |y,

l,r

<> (“T“)HT(”JI)HE_QM‘#(CS LY (a0t (D

j+1

i1 |EJ’
l«kl;"TZfi
1+ _l4r—4 . I+r— _ _ l4r—4
<Y (Co ) M (L) T (ae) T M s,
z-q-l;rzs
I+ _l4r—4 — _ il4r—4
= Y (CsoE) M ()T M uy s,
14:717’26
_ Z (CSQT—I—IM—%(I—H%)Y—&—T (aCF)lJrr [§l+r—2)/2M7jl+g—4le’r|Ej
l+l7’vrze
6
< (Cs*F) 3772 1 Wllay < 5
By Corollary 5,
6
19 1M a1 < 3255 1W o < 325 (Cs %) 57172 W la < W la.s
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Gram Bounds

Let X be a finite set and A a function on X x X. Let ¢(¢,k), £ € X, k € {0,1} be
the generators of a Grassmann algebra A. In conventional notation, ¥ (¢,0) is written ()

and (¢, 1) is written ¥(¢). Let dpa(1)) be the Grassmann Gaussian measure on A with

0 iftk=r" =0
/¢ gl / d — A(ﬁ, f’) lf R = 0, K// =1
0 ifk=r =1
and denote by : - : Wick ordering with respect to du 4.

Proposition G.1 Assume that there is a Hilbert space H and vectors fo,ge, £ € X in 'H
such that

ALY = (fo,g0)y,  forall 0,0 € X

Then

‘/H le:[w(&,u,m,#): duA(l/f)’ < II velfe,. s II V2l ln

i—1 M=1 1<i<n 1<i<n
1<p<e; 1<p<e;
I{i7H=0 Ni,p:1

Proof: Define
S={(Gp|[1<i<n 1<p<e, rip=0}

S”:{(i,u)|1§i§n,1§u§ei, /@7“:1}

If the integral does not vanish, the cardinality of S and S coincide and there is a sign + such

that

/ﬁ; T1 (ki) = dpua() = + det (Mas)., .o
i=1 KM=l

Bes

where
0 if i =14
My, ir ) = {A(gw,fi,w) ifi #£4
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Define the vectors u®, o€ S and v%, g€ Sin C""' by

1 ifi=n+1

uf‘:{l if = (i,p) for some 1 < pu <eg;
0 otherwise
1 ifi=n+1

viﬁ:{—l if 3= (i,p) for some 1 < pu <e;
0 otherwise

Observe that, for all « € S and 3 € S,

lu®]l = [lv”]] = v2
o p_ 1 ifa=(,p), B=("p) withi#d
UUTEN0 ifa=(6,p), 8= (1) with i =i’

Hence, setting
Fo=u"® fo, , ceC" @H fora = (i,u) € S
ngvﬁ@)ggw cC"t oH for 3 = (i,u) € S
we have

Ma,ﬁ = <Fa; Gﬂ>®n+l®H

and consequently, by Gram’s inequality,

’/ T T (b ki) duA(w)‘ - ’det (Maﬁ) .
i=1 K=l

BeS
< I 1Fallertren [ 1Galenran
a€esS BeS
< I vVallfelr T v2llges I
a€es ges

Let & be a finite set (of spin/colour values). Let E, (k) € L* (IR, @737@“), for

each 0,0’ € G, and let duc be the Grassmann, Gaussian measure with covariance

dd+1k k- (y—)
OJ,U/($7y) :/(2ﬂ->d+1 ey Ea,o’<k)

That is, for all z,y € R and 0,0’ € &
0 ifk=r"=0
3 /
1) (g, 1) d _ ) Coor(z,y)  ifr=0, k=1
[ s ) dety = § G (B0 =0 =
0 ifr=r=1
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Corollary G.2

; Eiei/2
sup ‘ /H Iwaig (.’131‘,1, lii,l) R wai,ei ($i7ei, /{i,e,-)i d,uC<¢)‘ < <2/HE(]{7)H (2:)7]Z+1>
mi,uaai,u,lﬁi’u i=1
Here | E(R)| denotes the norm of the matric (Ea,a’(k‘>) & 05 an operator on (> (@'G").
o,0'€S

Proof: Define
X={(ip|1<i<n, 1<p<e}

A((Z7 M)a (ila /J’/)) = CUi,;“Ui',#/ (xi:lﬂ .’131'/’“/)
Let W((i,pn), k), (i,1) € X, & € {0,1} be generators of a Grassmann algebra and let (V)
be a Grassmann Gaussian measure on the Grassmann algebra with covariance A. This

construction has been arranged so that
/ ¢in (xi,/.l,a ’ii,/ﬁ)waizwz (xi’,u’a ’fi’,u’) dﬂc(¢) = / v ((Za :u)a /{i7“)\11 ((2-/7 ,ul)a ﬁi’,u’)) dMA(\Ij)
and consequently
/ H 1¢ai,1($i,17/€z‘,1) : "wai,ei (xi,eiaﬁi,ei) : d#CW)
i=1

= / lfll cW((4,1),k51) -+ O((4,€5), Kipe, )+ dppa(P)

Let H = L? (H{d+1, (%d)’*;ﬂ) ® C'®! and

ikews . SO ikz, . Booi (k)
fiaﬂ(k7a-) =e g s ||E(k)|| 50’,0'1‘,“ gi7u(k7a> =€ k LH =

IEE)

If |E(k)|| =0, set g; u(k,0) = 0. Then
A((27H>7 (ilvl/)) = <f’i,uagi’,u'>7—[
and, since 3, e | Eo.o. . (k)" < | E(R)|,

[l Nl = | VIE@ s = (120 )

The Corollary now follows from Proposition G.1. [ |
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Corollary G.3 For any L? function x, define iy o(z,k) = [ d 'y ¢, (y, )X (x —y). Then,

for all x; 1, 04 4y Kip,

n
‘ / H1 : in,lan,l('rial’ HZ71) o ¢Xi,ei7ai,ei (miaei’,{i7€i) : dﬂc(w)‘
1=

n

r 2 ax \'?
<IT I (2 [ B0 | )
i=1p=

=1

Proof: The proof is identical to that of Corollary G.2 once the replacements

A(<i7/~l/)7 (leﬁj)) = 50i,u:“i’,#’ /(2737]3“&]6'(%/’“/mi’u)xi“u(k)E(k)Xi',H'(k)

fin(k o) = e® %oy, (K)VIEF) 000, ,
Eooy, (k)

Gink,o) = X () oy

have been made. [ ]
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Propagator Bounds

The propagator, or covariance, for many—fermion models is the Fourier transform of

50,0’
Co,or (k) = i — o(K)

where k = (ko, k) and e(k) is the one particle dispersion relation minus the chemical potential.
For this appendix, the spins o,0’ play no role, so we suppress them completely. We also
restrict our attention to two space dimensions (i.e. k € IR?, k € IR3) though it is trivial to
extend the results of this appendix to any number of space dimensions. We assume that e(k)
is a reasonably smooth function (for example, C*) that has a nonempty, compact zero set F,
called the Fermi curve. We further assume that Ve(k) does not vanish for k € F, so that F
is itself a reasonably smooth curve. At low temperatures only those momenta with kg ~ 0
and k near F are important, so we replace the above propagator with
Uk
) =T —( e>(k)
The precise ultraviolet cutoff, U(k), shall be chosen shortly. It is a C§° function which takes
values in [0, 1], is identically 1 for k2 +e(k)? < 1 and vanishes for k2 + e(k)? larger than some
constant.
We slice momentum space into shells around the Fermi surface. To do this, we fix
M > 1 and choose a function v € C§°([M 2, M?]) that takes values in [0, 1], is identically 1
on [M~%2 M'/?] and obeys
oo
Z v (M 2j :c) =1
j=0

for 0 < < 1. The j*" shell is defined to be the support of
v (k) = v (M% (k% + e(k)?))

By construction, the j*" shell is a subset of

{ k| w0 <liko — e(k)| < 3= }
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As the scale parameter M > 1, the shells near the Fermi curve have j near +o0o. Setting
C(j)(k) - C(k)y(j)(k)

and U(k) = > v (k) we have
7=0

C(k) =Y _ CY(k)

§=0
To analyze the Fourier transform of C¥)(k), we further decompose the j* shell into
more or less rectangular “sectors”. To do so, we fix [; € [ s eRVE /2} and choose a partition

of unity

Z X (k')

sex(d)

9

of the Fermi curve F with each x4’ supported on an interval of length [; and obeying

const
[,m
J

Sup }Gk,x(])| <
Given any function y(k’) on the Fermi curve F, we define
CP (k) = CV) (k) x (K (k)

where, for k = (ko, k), k’(k) is any reasonable “projection” of k onto the Fermi curve. In the

k:]:k

event that F is a circle of radius kz centered on the origin, it is natural to choose k' (k) = k]

For general F, one can always construct, in a tubular neighbourhood of F, a C*° vector field
that is transverse to F, and then define k/(k) to be the unique point of F that is on the same

integral curve of the vector field as k is.

Proposition P.1 Let x(k') be a C§° function on the Fermi curve F which takes values in

0,1], which is supported on an interval of length [; € [MJ , M%/Q} and whose derivatives obey

J

sup | ()| < <

Fiz any point K., in the support of x. Let t and n be unit tangent and normal vectors to the

Fermi curve at K., and set

p(z,y) = 1+ M7 |xg —yol + M7 |xL —yo|+ lilx — vyl

29



where X 1s the component of x parallel to t and x| is the component parallel to 1.
Let ¢ be a C§° function which takes values in [0,1] and set ¢\ = ¢(M? [kZ+e(k)?]).
For any function W (k) define

W (o0) = [ ke W ()6 () (' (1)

Let v € IN. If e(k) has bounded max{2,y}*"* derivatives, then there is a constant, const,

depending on 7y, constg ,- -+, const. , ¢ and e(k), but independent of j, x and y such that

2

. l5 -
WY@yl < const srp(ay) 7 max sup
oSN kesupp x¢)

00 (8- Vi)™ (£ V1) W ()|

J
Mi(ag+ar)

Proof: Use S to denote the support of ¢\/)(k)x((k’(k)). Observe that S has volume at
most const M ~27[;, since ko is supported in an interval of length const M 7, the component
of k normal to F is supported in an interval of length const M~/ and the component of k

tangential to F runs over an interval of length const[;. Hence

sup \Wijgb(a:, y)| < vol(S)sup |W (k)| < const % sup |W (k)|
Y keS kES

which is the desired bound for v = 0.
To bound sup, , p(, y)ﬂWf{%(m, y)| by 47C, it suffices to bound

(o0 ) ™ (i)™ (1 (3 — Y|\>)B2W§‘fi<%y)‘
- / s ) (10, ) ™ (k- Vi)™ (- Vi) (W (k)6 () x (K (8)) )|
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by C for all z,y € IR® and 8 € IN? with || < . The volume of the domain of integration is
still bounded by const %, so by the product rule, to prove the desired bound it suffices to

prove that

max sup ‘(ﬁ@ko)ﬁo (370 Vk)ﬂl ([jf: : Vk)ﬁ2 (qb(j)(k) x(k’(kz))) ’ < const
IBI<y &k

Since [; > 77 and all derivatives of k’(k) to order ~ are bounded,

1 Bos 1 4 B1/y 1 B2 / (%2 1
max su —0 —n-V [tV k'(k ’ < const max -——Li——-—5 < const
18]1<~y kp )(M] ko) (M] k) (] k> X( ( )) - B1+Ba<~ MiP1 [?1+ﬁ2 =

so, by the product rule, it suffices to prove

max sup ‘(%&Co)ﬁo (ﬁﬁ . Vk)ﬁl ([jf: . Vk)ﬁ2 ¢(j)(k)‘ < const
1B1<v kes

Set]:{17 T |ﬁ|}7

177 Ok if 1 <i< By
di=1< 350V ifBo+1<i<Bo+ 5
t-Vie B+ Bi+1<i<|B]

and, for each I' c I, dI' = [, di- By the product and chain rules
|18l

oDk =3 S (MY (k2 + e(k)?)) jleZjdfi (kg + e(k)?)

m=1 (117'”717’”)67)7?1

where P, is the set of all partitions of I into m nonempty subsets Iy,---, [, with, for

all i < 4/, the smallest element of I; smaller than the smallest element of I;;. For all m,
d™e

dm'rn

(M 2 (kg + e(k)z)) ‘ is bounded by a constant independent of j, so to prove the Propo-

sition, it suffices to prove that

max sup (M (550k,)" (- Vi)™ (11t Vi)™ (k8 + e(1)?) | < const

18Iy kes
If Bo #0
‘ . 2k M7 if =1, p1=F2=0
M2 (350k,) " (350 Vi) " (Gt Vi)™ (k2 + e(k)?) = {2 if =2, f1 = fa =0
0 otherwise



is bounded, independent of j since |kg| < const 577 on S. Thus it suffices to consider Gy = 0.

Applying the product rule once again, this time to the derivatives acting on M%e(k)? =

[M7e(k)] [M7e(k)], it suffices to prove

max sup ‘Mj (;70 Vk)ﬁl ([jf: : Vk)BQG(k)’ < const
IBI<y kes

If 81 = B2 = 0, this follows from the fact that |e( )| < const 577 on S. If By > 1or By >2,it
follows from ﬁ . (Recall that [; > M —7z-) This leaves only B1 =0, B =1.

If t - Vie(k) is evaluated at k = k., it vanishes, since Vie(k’) is parallel to in. The
second derivative of e is bounded so that,

Mj[j sup |f . Vke(k)} < const Mj[j sup |k — k.| < const Mj[? < const
keS kesS

. 1
since [; < VTR [ ]

Corollary P.2 Under the hypotheses of Proposition P.1,

[.
sup}W(]) y)| <comst i  sup  |W(K)]
k€supp x¢()

and, if e(k) has bounded fourth derivatives,

sup/dy’W(]) Y)

, sup/d:c‘W(J) )|
y

(2
< const max sup

*EN? kesupp xp ()

o (8- Vi) (E- Vi) W ()

J
Mi(ag+ar)

Proof: The first claim is simply a restatement of Proposition P.1 with v = 0, For the second

statement just use

1 _ 1 251
S‘;P/dymv SgP/d%<my>4 —/dxm < const My,

For the last inequality, just make the change of variables o = M7z, x1 = MYz, x| = £ 2.
J
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Corollary P.3 Under the hypotheses of Proposition P.1,
sup ‘C’ij)(x,y)‘ < const %
and, if e(k) has bounded fourth derivatives,

sup/dy|C’>(<j)(x,y)‘, sup/d:v‘C’;j)(a:,y)’ < const M’
x Yy

Proof: Apply Corollary P.2 with W (k) = m and ¢ = v. To achieve the desired

bounds, we need

(67 ~ (0% ~ (67 Y
max sup (%Bko) 0 (ﬁn . Vk) ! ([jt . Vk) QW‘ < const M

In the notation of the proof of Proposition P.1, with ( replaced by «,

' ' o] j m+1 m .
VO =M Y ()t Y (i) LM Gk — e(k)
m=1 (I, In ) EPom, =

; " m—41
On the support of v, |iky —e(k)| > const ﬁ so that (mz/_%) is bounded uniformly
in j. That M’d!(ikg — e(k)) is bounded uniformly in j was proven during the course of the

proof of Proposition P.1. [ |
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