The Geometric Hypotheses

These axioms concern a class of marked Riemann surfaces $\left(X ; A_{1}, B_{1}, \cdots\right)$, with A_{1}, B_{1}, \cdots a canonical homology basis for X, that are "asymptotic to" a finite number of complex planes \mathbb{C} joined by infinitely many handles. The notation

$$
\begin{aligned}
& X=X^{\mathrm{com}} \cup X^{\mathrm{reg}} \cup X^{\mathrm{han}} \\
& X^{\mathrm{reg}}=\bigcup_{\nu=1}^{m} X_{\nu}^{\mathrm{reg}} \quad X^{\mathrm{han}}=\bigcup_{j \geq g+1} Y_{j}
\end{aligned}
$$

denotes a marked Riemann surface with a decomposition into a compact, connected submanifold $X^{\text {com }} \subset X$ with smooth boundary and genus $g \geq 0$, a finite number of open "regular pieces" $X_{\nu}^{\mathrm{reg}} \subset X, \nu=1, \cdots, m$, and an infinite number of closed "handles" $Y_{j} \subset X, j \geq$ $g+1$, with $X^{\text {com }} \cap\left(X^{\text {reg }} \cup X^{\text {han }}\right)=\emptyset$. Each handle will be biholomorphic to the model handle

$$
\mathrm{H}(t)=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} \mid z_{1} z_{2}=t \text { and }\left|z_{1}\right|,\left|z_{2}\right| \leq 1\right\}
$$

for some $0<t<\frac{1}{2}$.

(GH1) (Regular pieces)

(i) For all $1 \leq \mu \neq \nu \leq m, \overline{X_{\mu}^{\mathrm{reg}}} \cap \overline{X_{\nu}^{\mathrm{reg}}}=\emptyset$.
(ii) For each $1 \leq \nu \leq m$ there is a compact simply connected neighborhood $K_{\nu} \subset \mathbb{C}$ of 0 with smooth boundary. There is also an infinite discrete subset $S_{\nu} \subset \mathbb{C}$ and, for each $s \in S_{\nu}$, there is a compact, simply connected neighborhood $D_{\nu}(s)$ with smooth boundary $\partial D_{\nu}(s)$ such that

$$
\begin{aligned}
D_{\nu}(s) \cap D_{\nu}\left(s^{\prime}\right) & =\emptyset \quad \forall s, s^{\prime} \in S_{\nu} \text { with } s \neq s^{\prime} \\
K_{\nu} \cap D_{\nu}(s) & =\emptyset \quad \forall s \in S_{\nu}
\end{aligned}
$$

(iii) Set $G_{\nu}=\mathbb{C} \backslash\left(\operatorname{int} K_{\nu} \cup \bigcup_{s \in S_{\nu}} \operatorname{int} D_{\nu}(s)\right)$. There is a biholomorphic map Φ_{ν},

$$
\Phi_{\nu}: G_{\nu} \rightarrow \overline{X_{\nu}^{\mathrm{reg}}}
$$

between G_{ν} and $\overline{X_{\nu}^{\mathrm{reg}}}$.

(GH2) (Handles)

(i) For all $i \neq j$ with $i, j \geq g+1, \quad Y_{i} \cap Y_{j}=\emptyset$.
(ii) For each $j \geq g+1$ there is a $0<t_{j}<\frac{1}{2}$ and a biholomorphic map ϕ_{j}

$$
\phi_{j}: \mathrm{H}\left(t_{j}\right) \rightarrow Y_{j}
$$

between the model handle $\mathrm{H}\left(t_{j}\right)$ and Y_{j}.
(iii) For all $j \geq g+1, A_{j}$ is the homology class represented by the oriented loop

$$
\phi_{j}\left(\left\{\left(\sqrt{t_{j}} e^{i \theta}, \sqrt{t_{j}} e^{-i \theta}\right) \mid 0 \leq \theta \leq 2 \pi\right\}\right)
$$

(iv) For every $\beta>0$

$$
\sum_{j \geq g+1} t_{j}^{\beta}<\infty
$$

(GH3) (Glueing handles and regular pieces)

(i) For each $j \geq g+1$ the intersection $Y_{j} \cap X^{\text {reg }}$ consists of two components $Y_{j 1}, Y_{j 2}$:

$$
Y_{j} \cap X^{\mathrm{reg}}=Y_{j 1} \cup Y_{j 2}
$$

For each pair (j, μ) with $j \geq g+1$ and $\mu=$ 1,2 there is a radius $\tau_{\mu}(j) \in\left(\sqrt{t_{j}}, 1\right)$ and a sheet number $\nu_{\mu}(j) \in\{1, \ldots, m\}$ such that

$$
\begin{aligned}
Y_{j \mu} & =\phi_{j}\left(\left\{\left(z_{1}, z_{2}\right) \in H\left(t_{j}\right)\left|\tau_{\mu}(j)<\left|z_{\mu}\right| \leq 1\right\}\right)\right. \\
& \subset X_{\nu_{\mu}(j)}^{\mathrm{reg}}
\end{aligned}
$$

There is a bijective map

$$
\begin{aligned}
(j, \mu) & \mapsto s_{\mu}(j) \\
\{j \in \mathbb{Z} \mid j \geq g+1\} \times\{1,2\} & \rightarrow \bigsqcup_{\nu=1}^{m} S_{\nu}
\end{aligned}
$$

(disjoint union) such that

$$
\begin{aligned}
& \phi_{j}\left(\left\{\left(z_{1}, z_{2}\right) \in H\left(t_{j}\right)| | z_{\mu} \mid=\tau_{\mu}(j)\right\}\right) \\
&=\Phi_{\nu_{\mu}(j)}\left(\partial D_{\nu_{\mu}(j)}\left(s_{\mu}(j)\right)\right)
\end{aligned}
$$

(ii) For each $j \geq g+1$ and $\mu=1,2$ there are

$$
R_{\mu}(j)>4 r_{\mu}(j)>0
$$

such that the biholomorphic map

$$
g_{j \mu}: \mathcal{A}_{j \mu}=\left\{z \in \mathbb{C}\left|\tau_{\mu}(j) \leq|z| \leq 1\right\} \longrightarrow \mathbb{C}\right.
$$

defined by

$$
g_{j \mu}(z)= \begin{cases}\Phi_{\nu_{1}(j)}^{-1} \circ \phi_{j}\left(z, \frac{t_{j}}{z}\right), & \mu=1 \\ \Phi_{\nu_{2}(j)}^{-1} \circ \phi_{j}\left(\frac{t_{j}}{z}, z\right), & \mu=2\end{cases}
$$

satisfies

$$
\begin{aligned}
\left|g_{j \mu}\left(4 \tau_{\mu}(j) e^{i \theta}\right)-s_{\mu}(j)\right| & <r_{\mu}(j) \\
\left|g_{j \mu}\left(e^{i \theta} / 4\right)-s_{\mu}(j)\right| & >R_{\mu}(j) / 4 \\
\left|g_{j \mu}\left(e^{i \theta} / 2\right)-s_{\mu}(j)\right| & <R_{\mu}(j) \\
R_{\mu}(j)<\mid g_{j \mu}\left(e^{i \theta}\right) & -s_{\mu}(j) \mid
\end{aligned}
$$

for all $0 \leq \theta \leq 2 \pi$.

(GH4) (Glueing in the compact piece)

$$
\partial X^{\mathrm{com}}=\Phi_{1}\left(\partial K_{1}\right) \cup \cdots \cup \Phi_{m}\left(\partial K_{m}\right)
$$

Furthermore $A_{1}, B_{1}, \cdots, A_{g}, B_{g}$ is the image of a canonical homology basis of $X^{\text {com }}$ under the map

$$
H_{1}\left(X^{\mathrm{com}}, \mathbb{Z}\right) \rightarrow H_{1}(X, \mathbb{Z})
$$

induced by inclusion.

(GH5) (Estimates on the Glueing Maps)

(i) For each $j \geq g+1$ and $\mu=1,2$

$$
\begin{aligned}
& R_{\mu}(j)<\frac{1}{4} \min _{\substack{s \in S_{\nu_{\mu}(j)} s \neq s_{\mu}(j)}}\left|s-s_{\mu}(j)\right| \\
& R_{\mu}(j)<\frac{1}{4} \operatorname{dist}\left(s_{\mu}(j), K_{\nu_{\mu}(j)}\right)
\end{aligned}
$$

(ii) There are $0<\delta<d$ such that

$$
\sum_{j, \mu} \frac{1}{\left|s_{\mu}(j)\right|^{d-4 \delta-2}}<\infty
$$

and such that, for all $j \geq g+1$ and $\mu=1,2$

$$
\begin{gathered}
r_{\mu}(j)<\frac{1}{\left|s_{\mu}(j)\right|^{d}} \quad R_{\mu}(j)>\frac{1}{\left|s_{\mu}(j)\right|^{\delta}} \\
\left|s_{1}(j)-s_{2}(j)\right|>\frac{1}{\left|s_{\mu}(j)\right|^{\delta}}
\end{gathered}
$$

(iii) For all $j \geq g+1$

$$
\left|\left|s_{1}(j)\right|-\left|s_{2}(j)\right|\right| \leq \frac{1}{4} \min _{\mu=1,2} \min _{\substack{s \in S_{\nu_{\mu}(j)} \\ s \neq s_{\mu}(j)}}\left|s-s_{\mu}(j)\right|
$$

For $\mu=1,2$

$$
\sum_{j} \frac{| | s_{1}(j)\left|-\left|s_{2}(j)\right|\right|}{\left|s_{\mu}(j)\right|}<\infty
$$

(iv) For $\mu=1,2$

$$
\lim _{j \rightarrow \infty} \frac{\log \left|s_{\mu}(j)\right|}{\left|\log t_{j}\right|}=0
$$

(v) For $\mu=1,2$

$$
\lim _{j \rightarrow \infty} \frac{R_{\mu}(j)}{\min _{\substack{s \in S_{\nu_{\mu}}(j) \\ s \neq s_{\mu}(j)}}\left|s-s_{\mu}(j)\right|} \log \left|s_{\mu}(j)\right|=0
$$

(vi) For each $j \geq g+1$ and $\mu=1,2$ we define $\alpha_{j, \mu}(z)$ by

$$
\alpha_{j, \mu}(z) d z=\left(g_{j, \mu}\right)_{*}\left(\frac{1}{2 \pi i} \frac{d z_{1}}{z_{1}}\right)-\frac{(-1)^{\mu+1}}{2 \pi i} \frac{1}{z-s_{\mu}(j)} d z
$$

We assume
$\sup _{j, \mu}\left\|\left.\alpha_{j, \mu}(z) d z\right|_{\left\{z \in \mathbb{C}\left|r_{\mu}(j)<\left|z-s_{\mu}(j)\right|<R_{\mu}(j)\right\}\right.}\right\|_{2}<\infty$
and, for $\mu=1,2$

$$
\lim _{j \rightarrow \infty} R_{\mu}(j) \sup _{\left|z-s_{\mu}(j)\right|=R_{\mu}(j)}\left|\alpha_{j, \mu}(z)\right|=0
$$

(GH6) (Distribution of s_{ν})

For all $\nu=1, \cdots, m$ such that

$$
\#\left\{(j, \mu) \mid \nu_{\mu}(j)=\nu, \nu_{1}(j) \neq \nu_{2}(j)\right\}<\infty
$$

that is, such that the sheet $X_{\nu}^{\text {reg }}$ is joined to other sheets by only finitely many handles, one has

$$
\limsup _{\substack{j \rightarrow \infty \\ \nu_{1}(j)=\nu_{2}(j)=\nu}}\left|s_{1}(j)-s_{2}(j)\right|=\infty
$$

