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I. Introduction

We are developing a set of tools and techniques for analyzing the large dis-
tance/infrared behaviour of a system of identical bosons, as the temperature tends to
zero. In this paper we retain an infrared cutoff. That is, we consider bosons moving in the
discrete torus X = Z”/LZ", endowed with the standard Euclidean metric d(x,y). Our
long term goal is to rigorously treat the infrared limit L — oo. See the introduction of
[BFKT1].

The total energy of our many boson systems has two sources. First, each particle in
the system has a kinetic energy. We shall denote the corresponding quantum mechanical
observable by h. The most common is —ﬁA, but, in this paper, more general operators
are allowed. We assume that h = V*HV where H : L?(X*) — L?(X*) is a translation
invariant, real, strictly positive, operator, X* is the set of all bonds (ordered pairs of
nearest neighbour points of X, but with the pair (y, x) viewed as —(x,y)) and the gradient
(V) ((x,y)) = f(y) — f(x). Second, the particles interact with each other through a two-
body potential, 2v(x,y), which is assumed to be real, symmetric, translation invariant and
exponentially decaying. For stability, v is also required to be repulsive, in the sense that,

viewed as the kernel of a convolution operator, it is strictly positive.

We assume that the system is in thermodynamic equilibrium and that expectations
of observables are given by the grand canonical ensemble at temperature T' = % > (0 and
chemical potential u. We concentrate on the partition function Tr e~ wr (H—uN) Here,
H is the Hamiltonian and N is the number operator. The techniques developed here can

also be applied to correlations functions. See (I.8).

In [BFKT?2|, we developed a functional integral representation for the partition func-
tion. See (I.2) below. The integration variable of this functional integral is a complex field

a.(x) depending on position x € X and time/temperature 7 € (0 Here, we have

1
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periodic boundary conditions, that is ap = a 1 . The representation of [BFKT?2] can be

viewed as a rigorous version of the formal representation

Ty ¢ #r (H-1N) _ / / [[ 20ddactd pax(e)

xEX

[ kT

where



Ax (o, a) = /ok_ /dx {a-(x) —T (x) — ar(x)" (har ) (%) + por (x) - (x) }

_ / ® //X dxdy ar(x) ar(y) v(x y) ar(x)ar(y)

This formal representations is frequently used in the physics literature. See [NO, (2.66)].

(L1)

The ultraviolet problem is to integrate out, in this representation, all variables a.(x)
except for those having 7 in a lattice with spacing of order one. In this paper, we treat
the ultraviolet problem for our rigorous version of the formal representation above.

As pointed out in the introduction to [BFKT1], it is not possible to give rigorous
mathematical meaning to the functional integral above in a straightforward way. For this
reason, we derived (in Theorem 2.2 of [BFKT?2]) the representation

Tr ¢~ *r (H—1N)

= gl_l;% H [duR(E)(a;kaéT) C€<aT—E7aT) e<ai_5,j(£)a.r>—€ <o¢f_ cxrvaL_or >]
T€eZN(0,755]
(1.2)
Here, for any r > 0,
dlubr o Oé H da™ (x)Ada(x) —a*(x)a(x)x(|a(x)| < T’)
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denotes the unnormalized Gaussian measure, cut off at radius r, and (. («, 3) is the char-
acteristic function of

{a,8:CF =] la-Ble<pole) }

The cutoffs R(e) > 0 and py(¢) > In 1 are decreasing functions of € defined for all 0 < e <1
that obey

R(e) > 4zm0(c) and  lim VER(e) =

e—0

Furthermore, for any ¢ > 0, the operator j(t) = e7*(h=1#). We write the (IR-style) scalar
product, (f,g) = >, cx f(x)g(x) for any two fields f,g: X — €.()

In this paper, we treat the ultraviolet problem in the representation (I1.2). The final
result is to write the partition function as a functional integral which involves .. for only

finitely many values of 7, independent of . To achieve this, we have to integrate out all

(1) Thus the usual scalar product over C!Xlis (f*, g).



but a fixed number of fields «, in the representation (I.2). For n > 1 and ¢ > 0, set

L,(g;a", B)

[ T dmeena) T [elarmar) et efor avat a)]
T€eZN(0,27¢) T€eZN(0,27¢]

(1.3)

with agp = and agn, = . If € = Qimﬁ, for m,p € IN, then

H [duR(E)<O€j—7 047') CE(aT—E7 047') 6<ai_5’j(€)a‘r>_€ <o¢f__soz,- v ai_sa‘r>i|

T€eZN(0, 75

:/ﬁ [dﬂR(e)(Cbrwgbn) L (g5 Cb;—lvgbn)]
n=1

(L.4)
with the convention ¢y = ¢, . Combining (1.2) and (1.4) we get

m— 00

p
_ 1 _ . * *
Tr e *7 (H=pN) = lim /H [duR(W)((ﬁn?(ﬁn) Im(m;(bn—l?(bn)] (15)
n=1

In this paper we show that, that for all sufficiently small®) 6 > 0,

Iy(a™,8) = lim L,(276; a*, ) (1.6)
m—0o0
exists and we also exhibit properties of Iy that we deem useful for a potential infrared
analysis. If § was chosen sufficiently small, we will write Iy as the sum of a dominant part
(which is shown to have a logarithm) and terms indexed by proper subsets of X and which
are exponentially small in the size of the subsets.

The partition function can be written as

p
Tr e~ wr (70N — / H [ 1 W eI Ty (Br 1, bn)

n=1 xeX

More generally, one also gets a representation for the Green’s functions(®

g ¢
Tr e~ wr(H uN)THj:1¢(T)(5j,Xj)

. (1.7)
Tr e~ %7 (H=nN)

(2) The smallness condition on 6 does not depend on the interaction v.

(3) Here P(B;,%;) and ol (Bj,%;) are annihilation and creation operators, conjugated by eBi(H—pN)
and T denotes time ordering.



with x1, -+, x, € X and 0 < By, -+, Br < % To this end, choose a sufficiently fine

partition, 0 =79 <71 < -+ < 7 = % that contains f1, -+, B¢. It follows from [BFKT2,
Theorem 3.7] that the numerator of (I1.7) is equal to

p
dTnx Tn \X T X* T X *
/HH [[ b dnal) =m0 ) 1 (07 6,)) H% %)) (L8)

n=1 xeX

with ¢ = ¢ iy
The functions I, (g; a*,3) can also be defined recursively by

Il(g; a*’ﬁ) N /d”R(E)(qS*: ¢) CE(a*v ¢) €<a*’j(6)¢>+<¢*’j(a)ﬂ>
e~=((070, v a6 (8" B, v " B)) (47 3)

(1.9)

and

Losi(e: a*,B) = / Qo) (@, 8) Tn(e: o, &) I(; 6°, 5) (1.10)

This recursive definition is called decimation, because we successively integrate out every
second field. The description of and estimates on I,, will be obtained inductively.

The integrals (I.9) and (I.10) are oscillatory. Their dominant contributions are ex-
tracted by stationary phase. In [BFKT5], we describe the construction and estimates
that one obtains if, in (1.9) and (I.10), one always ignores contributions far away from
the critical point of the (“free part”) of the exponent. We call this the “stationary phase
approximation”. To be somewhat more precise, fix a suitable (see [BFKT5, Hypothesis
I.1]) non negative decreasing function r(t), and assume that one keeps in (1.9) and (I1.10)
only the integral over fields that are within distance r(2"¢) from the critical point of the
exponent, evaluated at v = 0. Then the dominant contribution to I, (g; a*, 8) is

IEP) (g a*, B) = Zone(e)X] el0™ 1@ )A)FVanc (507, 8)+ Eone(esa”, )

where, for every § that is an integer multiple of ¢,

Vs(es o, 8) =~ > ([i(n)a’][j(6 =7 —e)b], v [i(n)a][i(6 — 7 —)5])

T€eZNI0,5)
and the functions Fjs are recursively defined by

E.(e;a",8)=0

[ dpp(s) (2, 2) 04007 5272)

[ dpr sy (2%, 2)

Es(g; o, B) = Es(e; o, j(6)B) + Es(e; j(6)a”, B) +1o
(L11)



with
OAs(g; o, B 24, 2) = [Vis(e; a*,j< )B+ z) — Vs(e; o, 5(6)0)]

+ [V5 Na™ + zi, B) — Vs(e; j(d)o‘*vﬁ)]
+ [Es(e; o™, j(8)B + 2) — Bs(e; o, 5(6)B)]
+ [Es(e; j(6)a* + 2., B) — Es(e; j(0)a*, B)]

The normalization constant Zs(¢), which is extremely close to one, is chosen so that
Es(g;0,0) = 0. See (1.7), (1.8) and (1.9) in [BFKT5]. The motivation for this recursion
relation comes from a stationary phase construction and is given below and also in the
section §II of [BFKT5]. Theorem 1.4 of [BFKT5] shows that, under suitable assumptions
on the function r(¢) and the number 0, the logarithm in (I.11) always exists as an analytic
function of the fields, and that one can get a good estimate on

Ey(a™,B) = lim Ejy (2_m9; a*,ﬁ)

m—0o0

To motivate the recursive definition (I.11) of Ej(e; a*, ) we replace I,, by

ISP (e; a, B) = Z., ()X elo3(En)BI+Ven (507 8)+ Be (e507,5)
in the recursion relation (1.10). Here, ¢, = 2™¢. The resulting integral

/ dpr(e) (0", 0) ISP (g5 *, ) ISV (e; ¢*, B)

_z. (5>2|XV Qpio(6", @) €@ TEND B 5E0)8) Ven (5:076)4 Ve, (516°8)

elen (g;0"p)+Ec, (g;6%.8) (1.12)

= 2., (&P [ | I 250 (o] < R(e))] 19

xeX
with

A(Oé*,ﬁ; ¢*7¢> = _<¢* ) ¢> + <(l/*,](€n)¢> + <¢*7](€n>6>
+ Ve, (650", 0) + Ve, (65 ¢4, B) + Ec, (5 @™, ) + Ec, (&5 ¢4, B)

Here we have written A as a function of four independent complex fields o, 3, ¢, and ¢.
The activity in (I.12) is obtained by evaluating A(a*, 8; ¢, ¢) with ¢, = ¢*, the complex
conjugate of ¢. The reason for introducing independent complex fields ¢, and ¢ lies in the
fact that the critical point (with respect to the variables ¢., ¢) of the quadratic part

—(bx, @) + (J(en)a™, @) + (b, §(€n)B) = —(Px — J(en)™, ¢ — j(en)B) + (@, j(en+1)0)
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of A is “not real”. Precisely, the critical point is

¢t =jen) o ¢ = j(en) B (1.13)

and in general (¢§rit)* £ Pt

It is reasonable to expect that the dominant contribution to the integral in (I.12)
comes from the fields ¢(x) in a neighbourhood of the critical point. We now sketch, ap-
proximately, the strategy that we use to verify that this is indeed the case. We decompose,
for each x € X, the domain of integration {|¢(x)| < R(e)} into the “small field region”,
where ¢*(x) is close to ¢St(x) and ¢(x) is close to ¢<it(x), and the “large field region”
where this is not the case. Precisely, write

X(|¢(X>| < R(g)) = Xx, small (¢(X)7 Qf)* (X>) + Xx,large (¢(X))

where
1 if ¢, =¢*, |9| <R(e)
Xx,srnall(¢7 ¢*) = and M)* qbirlt )‘ <r 6n M) ¢cr1t )‘ < I'(En)
0 otherwise
and

Xx,large(¢> = X(|¢| < R(5>) (1 - Xx,sma11(¢v ¢*))

We multiply out the products of sums of characteristic functions and get that (1.12) is

equal to
Z ZE7L(€)2|X|[ HA/%X&small(qﬁ(x%qf)*(x))]
ACX x€
do™ (x)Ndo(x a*,B; ox,
[ 11 / : (2);\’ “ )Xx’ large((b(x))} e Pi0e0) b ()= (x)
xeX\A for x€X\A
(I1.14)

Select a term of (I.14), that is, a subset A of X. For points x € A, we introduce the

“fluctuation variables” z.(x), z(x) by the change of variables

¢u(x) = M (%) + 2:(x) . B(x) = 6 (x) + 2(x)

For points outside A, we do not perform any change of variables. So the fluctuation fields

Z«, z are supported on A, and the change of variables is

e = AT + 2, + A, = Aj(en)a” + 2. + AP,

crit c . c (115)
¢ =N + 2+ A@ =Aj(e,)B+ 2+ A%
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Here, we also denote by A the operator “multiplication by the characteristic function of
the set A”. Under this change of variables the domain of integration

[ (6(x), 94(%)) | Xox, smatt (3(%), 6 (x)) = 1 }

is transformed into

D(x) = { (2(x), 2(3)) | (67 (x) + 2.(x)) " = 67 (%) + 2(x), |67 (%) + 2(x)| < R()

and |z, (x)| < r(en), 2(x)] < r(en)}
(1.16)
Observe that for (z,(x), 2(x)) € D(x), in general z,(x) # 2*(x).
The quadratic part of the effective action

A((l/*,ﬁ; A¢irit + 2, +AC¢*, A¢crit +Z+AC¢)
in the new variables is
— (Aj(en)a™ + 2z + Abu, Aj(en)B + 2+ A°)
+ (%, j(en) (Mj(en) B+ 2+ A%)) + (d(en) (Aj(en)a™ + 2. + A°0.), B)
= —(2x, 2) — (A“9u, A%9) + Qr(a”, B; As, A°0)

where

Qala™, B; A¢u, A°0) = (Aj(en)a™, Aj(en)B) + (@, j(en)AD) + (j(en)A%, ) (L17)

Observe that the terms linear in z,, z cancelled, because we centered the change of vari-
ables at the critical point. Inserting this change of variables in (I.14), we see that (1.12) is

equal to

dze(xX)Ndz(x) —2z,(x)z(x
2 (PN Y [ 0 / (ONds() 2. (<)2( >]
ACX x€A J D(x)

[ 1—/[\ /We—é*(x)qﬁ(x) Xx,large(¢(x)):| P INCONCIRNE)
xeA°
(1.18)

where

"Z{A(a*v Bv ¢7 Zse s Z) = QA(a*v Bv AC¢*7 AC¢>
+ Vz, (5 &, A + 2 4+ A°9) + Ve, (5 AgS™ + 2, + A°0*, B)

+ B, (g5 o, A¢™ + 2 + A°9) + E. (55 AgS™ + 2 + A°9", )
(1.19)



If we apply Stokes” Theorem (Lemma A.1 of [BFKT5]) with X replaced by A, r =r(e,),
oc=0,=0and p=(¢T)* — ¢t to (I.18) we see that (I.12) is equal to

Za (6)2|X| Z |:H / dz*(;zc)dz(x) e—|z(x)|2:||: H / dz*(XQ)/\dZ(X) e—z*(x)z(x):|
QcAacx  XE€RJ|z(x)[<r(en) xeA\Q J C(x)

[ 0 / 49" (x)d $(x) e"¢<x>'2xx,1arge(¢(x))] An(a" 5 6,72,2)
xXEA°

24 () =2* (x)
for xe€Q

(1.20)
where, for each x € X, C(x) is a two real dimensional submanifold of C* whose boundary
is the union of “circles” 0D(x) and { (z.(x), 2(x)) € C? ‘ 2H(x) = 2(x), |2(x)| =r(en) }
For points x € 2, the domain of integration has been moved “back to the reals”.

Whenever xx,large (¢(X)) = 1 or (2.(x),z(x)) € C(x) for some x € X, then
Ap(a*, B; ¢, 24,2) or —z.(x)z(x) has extremely large negative real part and the con-
tribution to the integral is very small. (See the discussion following Theorem II1.35.) For
this reason we kept only the term of (I1.20) with @ = A = X for the “stationary phase
approximation” in [BFKT5]. In this case, Qx(a*,5; A°*, A°9) = (o, j(en+1)5) - Thus,
the stationary phase approximation to

/ dino (67, 6) IO (e a*, ) ISP (; ¢*, B)

is
Z, (e)2Xlglami(Enta)h) / We—p(x)q pAla” 82" 2)
xex 7 12(x)[<r(en)
— 22X| gl (ensn)) / Qi oy (2, 2) AX (@872
where

Ax(a*, B2, 2) = Ve, (65, ¢™ +2) + V2, (g5 65 + 24, B)
+ E., (g5 o, ¢ +2) + B, (g5 ¢ + 2., B)
By construction
Vo, (g5 0, 6™) + V2, (5 087, B) = Ve, (&5 o, j(en)B) + Ve, (&3 ji(en)a™, B)
= ‘/En+1 (5; Oé*, /B>
so that
Ve, (g5 a®, 0 4+ 2) + V2, (5 ¢S + 2%, B)
= ‘/En+1 (5; Oé*, /8) + [‘/En (6’ a*h](en)/B + Z) - ‘/En (5; a*7j(€n)/8)]
+ Ve, (&5 jlen)a™ + 2%, B) = Ve, (& j(en)a™, B)]
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Consequently, the stationary phase approximation to

/ dino (67, 6) IO (e a*, ) ISP (; ¢*, B)

can also be written as

Ze, (5>2|X|6<O‘* J(Eny1)B)+ Ve, 4 (6507,8)

oEen (€507 (e0)8) +Eey (5 5(e)a" ) / D Aen (50" B2 2)

dpir(e,) (2", 2)
This is compatible with (I.11) if we take

Zen@) = 2o o [ ek 21

|z|<r(en)

It turns out that, for each fixed 2 C X, the sum over all sets A with Q C A C X in
(I.20) can be written in the form

Z€n+1 (6)lee<a*’j(€n+1)6>ﬂevﬂ;€n+1 (E;a*’ﬁ)+EQ;En+1(€;a*76) (PQ;sn+1 (6, Oé*,/B) (1.22)

where Vq...,., and Eq., ., depend only on o*(x) and $(x) with x € 2, and are given
wy1 and E but with the total space X replaced by (2

by the same formulae as V; ent1
everywhere, and where ¢q.. ., is a very small function that encapsulates the sum over A

and various integral operators.

The sets A, resp. (1, introduced above are called “small field sets” of the first, resp.

second, kind. The discussion of the previous paragraph shows that (1.20) is equal to
[ i @.0) 18V 0 ) 1D e 07,9

and it indicates that Iﬁ_ljl)(s; a*, ¢) is its dominant contribution. The next decimation
step would be to consider

/ djine) (6, 0) | / dire) (61, 61) I (e o, 1) I (e5 67, 0)
| [ e (61,62) 18761 07 62) 1575 63,5

Inserting (1.20) and (I1.22) for the two integrals in brackets gives a normalization constant
times a sum over small field sets £2; and €25 of integrals

/ | IR (1900) < REE)) | X g0,ic, (65 0%, 0) e (€5 67, )
xe
(1.23)



with
A,(Cl/*,ﬁ; ¢*7¢> = - <¢* ) ¢> + <a*7j(5n+l)¢>gl + <¢*7j(5n+1)ﬁ>g2

+ VQl;En+1 (5; Oé*, ¢) + VQ2;5n+1 (5; b 6)
+ EQ1§€n+1 (6; Oé*, (ZS) + E92§€n+1 (6; ¢*7 B)
This oscillatory integral is similar to (I1.12). The small factors for points x € (X \ 1) U

(X \ 22) mentioned above are so strong that we only have to perform a stationary phase
argument for points inside 3 Ny . That is, we would, as in (1.18), write (1.23) as
dz. (x)Adz(x) 6_2*(X)Z(x)]

27

A CQN xEN’ /D’(x)

* (% x _ x 2 A’ o™ (2% 2 * .
[ 0 /d¢> (23rf¢( ) 16| X;,large(cb(X))} A 5202 (o Bz 2)
xeX\A/

where D'x) and X;Jarge are defined as were D(x) and Xx,large , Put with €, replaced by
€nt1, and where A'(a*,5; ¢, 2z, 2z) and f'(a*, ; ¢, 2, z) are obtained using the change
of variables around the critical point of the quadratic form.

The next step would be to again apply Stokes’” Theorem for the variables z,(x), z(x)
with x € A. Here, a small technical difficulty arises. Namely, the factor f'(a*, f; z, 2) in
the integrand need not be analytic in z,, 2z and the version of Stokes’ Theorem presented
in Appendix A of [BFKT5] cannot be applied directly. To circumvent this difficulty, we
introduce a constant ¢ > 0 and define the cut—off propagator

1 ifdx,y)<c

i)y =iy { ) TS (124

where d(x,y) is the distance on the torus X, replace j(t) by j.(¢) in the formulae above
and control the error terms. We apply Stokes’ theorem only for pointsx € A’ that have
distance at least ¢ from (X \ ©;) U (X \ Q2). That is, we apply Stokes’ theorem only in

A={xeN | dxy)>c forally € (X \Q)U(X\Q)}

With this construction, the analogue of f’(a*, ;24 2) will not depend on the variables
24(x), z(x) with x € A. The integrals for points in the “corridor”

{xeN | dxy) <c forsomey € (X \Q)U(X\Q,) }

can again be controlled by the small factors from the points y € X\ A’. This modification
leads to the somewhat more involved formulae described in §II below.
Obviously we want to iterate the procedure described above, starting with n = 1.

In this way one creates a “hierarchy” of small field sets of the first and second kind. In

10



Definition I1.4, this is made more precise, and enriched with more sets that are used to

describe the various “large field conditions”.

The main results of this paper are estimates on all of the functions appearing in the
functional integral representation of the partition function. For these estimates we use the
norms developed in [BFKT3, BFKT4|. One of the simplest versions of such a norm is

defined as follows. Let x,m > 0. We define the norm of the power series

F@8) =5 Sl v ye) alxi) - alxi)* Blyn) - Blye)

k>0 x1.xpE€X
Y1, Y €X

(with the coefficients a(xy, -+, Xk ; y1,- -, ye¢) invariant under permutations of xy, - -+, Xy

and of y1,---,y¢) to be

1f (™, B)llwm = max max Y. &FETEN) a(x; §)|
k>0 XEX AsishH (%,5)exkxxt (I~25)
(X, 9);=x

where 7(X,y) is the minimal length of a tree which contains vertices at the points of the

set {x1, ", Xk, y1," ", Y}

Our main results, the description of and bounds on Iy, are stated in Section II.6
(Theorems I1.16 and II1.18). The other sections of Chapter II introduce the notation used
in these Theorems. Chapter III gives an outline of the proof and contains discussions
which might illuminate the concepts introduced in Chapter II. The proof of Theorem I1.16
is split over Chapters III-V. The proof of Theorem II.18 is split over Chapters III and VI.

11



II. Formulation of the Main Theorem

Our main result is a representation of the “effective density” Iy of (I.6) as a sum over
subsets ) of X . For each 2 C X the corresponding summand is the product of

e the exponential of a function that is analytic in the fields and that depends only on
Q.

e A function that involves all possible “hierarchies” (collections of large and small field
sets — see Definition 11.4) that lead to €2, which is not necessarily analytic, but can be
proven to be very small (unless Q = X ). Indeed, if Q¢ # (), this function is O ({||v[|™)
(this norm will be defined in (IL.5)) for all n € IN and also decreases exponentially
quickly with |Q¢].

The first factor will be called the “small field part”. It is described in Section II.1 below.

I1.1 The Small Field Parts

Let © be a subset of X . For any kernel w(x,y) on X denote by

_Juwxy) ifx,yeQ
wo(x, y) {O otherwise

its truncation to . For any t > 0, set

Jion(®) =g +§1 1(=t(h - p)o)*

— e th—pa _ ]IX\Q

and

J@),()(x,y) = {gm)(t)(x, y) g Zg g § E

For each 0 < t < ﬁ and each analytic function V'(ay, ), that depends only on
the variables . (x), 8(x) with x € €, consider the formal renormalization group operator
Ra.(V; -, -) at scale t with “principal interaction V” that is defined as the following

generalization of (I.11). It associates to any two analytic functions®) fi(cv, ), fa2(cu, B)

(1) We introduce the complex field o in order to clarify the analyticity properties of the functions f1, fa.
We shall usually evaluate o at a*.

12



that depend only on the variables «.,(x), 8(x) with x € Q the function

%Q;t(v;fbfé)(a*?ﬁ)

' . d N ( *, ) A(ax,B52™,2)
= fi(ando(08) + ol (t)ar,B) +1og L2 f(tc)l,uil,r(i) (Z*, 2)
— ([i) (t) = dia),c (O], [y (t) — dia),« (£)]B)

+ V(@ Jia),c 0)B) = V(aw, oy (#)8) + V (Ja),c(H)aw. B) =V (o) (t)ox, B)

where A(aw, B; 24, 2) is

[f1 (o, 24 i), (0)B) = fi(aw, d),8)B)] + [f2 (2 + G, ()aw, B) = f2 Gy, O, B)]
+ (@) = d@).cOaw, 2) + (2 [io)(t) = ). D]8)
+ [V (e, 2 + j), (6)B) = V(s jia).(t)5)]
+[V(2 +i@.c(Waw B) = V(i@ (), B)]

and

dpg.r (2%, 2) = % e—2(3) 2(x) x(|z(x)| < r)

xeN
As “principal interaction” V in the renormalization group map, we use the dominant
part of the interaction at the corresponding scale. Precisely, for every ¢ that is an integer
multiple of ¢, define

Vas(e; ay, B) = —¢ Z { Jy(Mew] [y (6—7—2)B], va i) (T)a] i) (6—T7—¢)8])

TEEZNI0,9) ( )
I1.1

Define recursively

Do.o(e; ax, B) =0
DQ;n—l—l(g; O‘*aﬁ) — 9{9;2"8 (VQ;Q"E(g; N ); DQ;n(g; Ty )7 DQ;n(E; Ty ))

If 6 is small enough, this recursion defines analytic functions Dgq.,, (€; v, 5) , when 2"e < 6,

and furthermore
DQ;G(O‘*y B) = lim ,DQ7m(2_m67 Oy, 5) (II2)

m—00

exists and fulfills the estimates of Proposition II.1 and Theorem II.16 below. Our repre-

sentation of the effective density will be of the form

Io(a*, )= Y 2yl i@ +Van (@ M+Pan@™8) (O, B) paip(a™,f)  (IL3)
QCx
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where the normalization constant Zy, which will be defined in Lemma II.7, is very close
to one,

Vao(ow, ) = lim Ve (27™0; o, B)

m— o0

0 (I1.4)
= —/0 dt { [y (t)ew] [G) (0 —1)B], va [i) (t)as] [w) (@ —t)5])

and xp(9; o, f) implements the small field conditions for the set . (See Theorem I1.16.)
For our construction to work, we need exponential decay of the interaction v. Pre-

cisely, we assume that there is a “mass” m > 0 such that

ol = sup 35 ™4V Ju(x, y)| (IL5)
xeXyeX

is finite.

Proposition I1.1 There are constants const ,k > 0 such that for all sufficiently small 0
and interactions v, and all Q C X , the function Da.p(ax, 8) of (I1.2) is well defined®,
and obeys

|Daol|,, ., < const [|lv]]

K,m —

Here, we use the norm (1.25).

The proof of this Proposition is much the same as the proof of [BFKT5, Theorem 1.4].
It is also a consequence of our complete analysis of Iy in Theorem I1.16. There, we shall

also state more properties of Dq.g .

I1.2 Decomposition of Space into Large and Small Field Subsets

As indicated in the introduction, the functions g of (I1.3) are expressed in terms of
“hierarchies” of large and small field subsets of X . Recall that we have chosen a function
r(t) that measures the size of the neighbourhood of a critical point at scale ¢ in which
Stokes’ argument is applied to move the domain of integration “back to the reals”.

We fix, in addition to the functions R(¢) and r(¢) of Chapter I, another decreasing
positive function R/(t). If we are at scale ¢ and, for some point x, one of the fields a*(x)
or B(x) is larger than R(f) we shall get a controllable small factor. This leads us to
introduce a further decomposition of X where the corresponding large field sets will be

denoted by P, and Ppg, respectively. Also large values of the spatial gradients of the

(2) That is, it is possible to take the logarithms involved and the limit.
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fields give rise to small factors. Spatial gradients are controlled in terms of the function
R(t). The corresponding large field sets will be sets P, and Pg of bonds in the lattice
X . Similarly, large time derivatives cause small factors. The corresponding large field sets
will be denoted by the letter Q. The sets where, in the application of Stokes’ theorem, the
“side” C'(x) of the cylinder is chosen as the domain of integration, will be labelled by R.

All the sets in our construction should be separated by corridors. The width of these
corridors is scale dependent and will be measured by a function ¢(¢). Later, in (I1.18),
we will make specific choices of all these functions. Their properties will be proven in
Appendix F. Here, we concentrate on the purely set theoretic picture.

As indicated above, we will have to deal with bonds of the lattice X. We denote by
X* the set of all bonds (i.e. pairs of neighbouring points). Furthermore, for a subset Y
of X, we set

Y* = { xeX } X is connected by a bond to a point of Y }
Y* = { be X* } b has at least one end point in Y }

For P’ ¢ X*, we denote by supp P’ the set of all end points of all bonds in P’.
The large and small field sets will be conveniently indexed by intervals whose length

is related to the scale at which they were created.

Notation I1.2

(i) A decimation point for the interval [0,0] is a point 7 = Jzé with integers £ > 0 and
0<p<2k.

(ii) A decimation interval in [0,d] is an interval of the form J =[5z, pziklé] with £ >0
and 0 <p<2F 1.

(iii) For a decimation point 7 # 0,6, there is a unique k£ > 1 such that 7 € 2%Z\ %Z.
This number k is called the decimation index 9(7) of 7 in [0,d]. We also set 9(0) =
9(8) = 0. We call s = 27°(7)§ the scale of 7.

The unique decimation interval that has 7 as its midpoint is
Jr=1[r—s,T7+5]
Its left and right halves
Jo=lr=s1 .  Jr=[n7+5

are also decimation intervals.
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Example II.3 For example, if 7 = 6 then 7 € 242\ 232 so that 0(7) =4, s = 1%,
TIr = 160169, T = [150. 159] and *7¢+ = (169, 169]-
J- VA

If 7 is a decimation point, then the field o, appears as an integration variable in the
construction of I, (2_’”6; a*, B) for all m > (7). When this variable is integrated, large
and small field sets are introduced. We choose to label them by 7., because J, carries

the information about 7, and through its length, also about the scale 27°(7)§.

Definition I1.4 (Hierarchy) A hierarchy, &, for scale 0 < § < kT , of large and small
field sets is a collection

P, (J),Ps(TJ),Q(J) of subsets of X, called large field sets of the first kind

P (J), P5(TJ) of subsets of X*, also called large field sets of the first kind

R(J) of subsets of X, called large field sets of the second kind

A(T), Q(T) of subsets of X, called the small field sets of the first and second kind

respectively.

o

@)

o

@)

These sets
o are indexed by all decimation intervals 7 in [0, d],
o and obey the following “large/small field set” compatibility conditions. Let J be
a decimation interval in [0,6], and J~ and J* be its left and right halves. Let
t = length(J ") = length(J ~) = 5 length(7). Then
« Po(J),Ps(J) QI )NQJTT) and PL(T), P3(T) C QI )N Q(j+))* and
Q) c (TN Q<J+>)*
-A(j)z{xeX‘d( JYUP(T)UQ(T)) > e(t),
d(x, SuppP’ (J) Usupp P5(J)) > ¢(t),
d(x, AT ) UQT)) > c(t) }
- R(T) CAT)
- 7) = { xe M) ‘ d(x, R(T)) > <(t)}

o There is a non negative integer ko such that A(J) = Q(J) = X, and consequently
Po(J) = Ps(J) = Po(J) = P5(J) = Q(J) = R(J) = 0, for all decimation intervals
of lengths 27%§ with k > ko . The smallest such kg is called depth(&).

The following figure schematically illustrates the set relations amongst the various large
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and small field sets at a single scale, but is not metrically accurate.

/N
9 9
4

()

QI+) QT ) —

Notation II.5 Let & be a hierarchy of scale ¢ .

(i) We also denote, for example, A(J) by As(J), when we wish to emphasize its depen-
dence on the hierarchy &.

(ii) The “summits” Qg([0,d]) and Ag([0,d]) are also denoted Qs and As, respectively.

(iii) The decimation points, resp. intervals, in [0, d] are called the decimation points, resp.

intervals, for the hierarchy &.

(iv) For a decimation point 7, we set

A _ AT i #£0.8
00 if r=0,0

Here, 7, is the unique decimation interval centered on 7. See Notation II.2. Observe that

Ar=X if 9(7) > depth(6)

Remark I1.6 It follows from the definition that, for decimation intervals 7’ ; J
o A(J")DQUJ") DAT) D QUT)
o UJT")U Pa(J) U Ps(J) Usupp P, (J) Usupp P5(J) UQ(T) C AMT)°
and A(J)°UR(T) C QUT)°
and indeed if,  # Q(J') # X, then d(Q(J")°, QT)) = d(QT")°, AT)) > <(|T']).
Since X is a finite set and ¢(¢) > 1 for all ¢, it then follows that there is a natural number

kx with the property that
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o if J' is a decimation interval with Q(J’) # X, then Q(J) = A(J) = Pu(J) =
Ps(J) = PL(J) = P3(J) = Q(J) = R(J) = 0 for all decimation intervals J 2 J
with {7 > 2k~

In particular, for each 4 > 0, there are only finitely many hierarchies & for scale ¢ that
have Qg/([0,4]) # (0. Each such hierarchy has depth at most kx.

I1.3 The Large Field Integral Operator

The functions ¢q.¢(a*, 5) of (I1.3) will be written as a sum

P = > P (1L.6)
S hierarchy for scale 6
Qg ([0,6)=0

Each of the functions ¢g.9(*, §) will be an integral over variables in the large field regions
determined by the hierarchy &.

As we saw in the discussion of the stationary phase approximation in §I, we shall need
normalization constants in the representation (I1.3) of the effective densities. They should
obey the recursion relation (1.21). We make a particular choice of normalization constants
Zs, by prescribing their asymptotic behaviour as § — 0. This choice is made to simplify
the proof that lim,, oo I (2_m9; .- ) exists.

Lemma ILI.7 There is a unique function § € (0,1) — Z5 € (0,1) that obeys

Zoy = 22 dz*Adz o~ |2l lim LlogZ. =0
o /|er<6> o ST
Furthermore,

‘ln Zg‘ < e_r(5)2

This lemma is proven in Appendix C.

The large field integral operator arises from the “left over” fields in the decimation
procedure outlined in and after (I.12). The decimation steps are indexed by decimation
points 7 € (0,6). When the field ¢ is being integrated out in such a step, one gets, as in
(I.20), a sum over pairs of small field sets Q(7,) C A(J,) and

(i) the fluctuation integral with variables |2(x)| < r(3|7;|) for x € Q(T;)
(ii) the integral over the Stokes’ cylinders C(x), x € A(J;) \ Q(J-), with the variables

24 (%), 2(x)

(iii) the “large field integral of the first kind” for points = € A(J;)¢, with variables ¢(x)
which violated at least one of the small field conditions of the first kind
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In the decimation step, the fluctuation integral (i) is performed, while the integrals (ii) and
(iii) are are not performed explicitly and form part of the large field integral operator. For
labelling purposes, the integration variables of (ii) are renamed z,,(x) and z,(x), and the
integration variables of (iii) are renamed a. (x). We call the fields o, (x), x € A(J;)¢, and
Zar (X), 20 (X), x € A(T7) \ Q(T;), the residual fields. The integral operator associated to a
full hierarchy, &, is the concatenation of all integral operators associated to all decimation
points 7 for the hierarchy with decimation index d(7) < depth(&).

The definition of the integral operators involves the constant ¢ and the cut—off prop-
agator j.(7) of (1.24).

Definition II.8 (Large Field Integral Operator) Let & be a hierarchy for scale
0>0.

(i) Let 7 be a decimation point for & with 9(7) < depth(&). The scale of 7 is s = 27°(7)§,
and its corresponding decimation interval is J = J, = |1y, 7| with 7y = T—s and 7. = 7+s.

The integral operator associated to the decimation point 7 is
dz. (x)"Ndz,(x)  —z.(%x)*z,(x
T s) = Tiroiars) = ( / 2200 Nz () (=27 (%) <>)
xEMIN\(R(T)uR()) 177 (II<r(e)

( / dZ*T(X2)/\dZT(X) —Z*T(X)ZT(X))

(I [esmn) o

x€X\A(T)
21T I ATHD)

Here, for each x € R(J), Cs(x;a*, 3) is a two real dimensional surface in

{ (z*,z) eC? ‘ |z«], |2| < R(s) }

whose boundary is the union of the circle { (24,2) € C? ‘ zZ; = z,

z| = r(s)} and the
curve bounding(®
{(202) € € |2~ ([0 je(9)la") (9] < 7(s), |2 = ([T e()B) (0] < x(5)
2= 2= (je(s)[8 — a)) (%) |

Analyticity and Stokes’ theorem ensures the action of the integral operator is independent
of the choice of the surfaces Cy(x;a*, ). See [BFKT5, §II and Lemma A.1]. We choose

(IL.7)

(3) The set (IL.7) is a technically precise variant of (1.16).
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Cs(x;a*, 8) to depend only on the values of the fields o and f at points y € X with
d(x,y) < ¢. This is possible because the boundary curves have the same property, since
Jje(s) has range c.

The characteristic function x 7 (a, ar, B) implementing the large and small field con-
ditions of the first kind is given in Appendix A.

If Q(J) =X, weset Lz, q-p =1L

(ii) The integral operator associated to the hierarchy & is

L(&iam8) = I1 II L(7;az,.00,)

=0, depth(§) degimption imgrigl

of length 2— 71§

*

Observe that the arguments a7 , a,, in each Z7. oz, .ar,) are the integration variables for
an integral appearing to its left. This is the reason for ordering the product ano,m depth(S)

with larger values of n to the right.

(iii) We will bound, in Theorem II.18, the “absolute value”

Z(s:an.0)| = 11 II  |Zviaan

n=0:depth(®) fins s,

of length 2= 71§

of the integral operator. Here ‘I( Tax, 5)‘ is constructed by replacing

271 271

/ d2er (INd22 () =20 ()22 (x) g / ‘dz*q—(x)/\dzq—(x) o~ Re 2 ()21 ()
Cs(x;a*,3) Cs(x;a%,8)

in the formula for Z( 7,,+ gy of part (i).

The integral operator Zg integrates over the fields a;, z4r, 2 with 7 € eZ N (0,9),
where ¢ = 274ePth() 5§ We introduce the shorthand notation

a= (aT)TEEZﬂ(O,é) ) Z= (27)76520(0,6) ) Zk = (2*7)76520(0,6) (118)

for these “residual” fields.

In Theorem II.18, we give an estimate on the integral operators Zgs .

I1.4 The Background Field

In (I.17), we described the change of the quadratic part of the effective interaction

after one decimation step. We iterate this procedure and are led to explicit, but relatively
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complicated expressions for the quadratic part of the effective action at a given scale. To
organize the description of the quadratic part and also of the dominant quartic part, we
introduce “background fields”. The effective action depends on the fields a;; both directly
and through their complex conjugates, but is an analytic function if we treat the complex
conjugates as independent variables. Consequently we introduce new complex fields o,

that will often be evaluated at o .

Definition II.9 (The Background Field) Let & be a hierarchy for scale §. Set
e = 27§ with the integer n > depth(&). Given fields a, 3, @s = (@ur(X)) reczno,s) and
xcX

@ = (ar(x)) reczn(o.6) , we define the background fields® for & by
xeX

To(T; s, @) =T (S) s+ S T7(S) oy
T/€eZN(0,6)

Ts(t; @ B8)= > TIT(8)ar + I&)A
T/€eZN(0,6)

For 7 € (0,6) and decimation points 7/ € [0,4], the coefficients I'7 (&) = I'T., with
7' #£ 6, and FZ/(G) = FZ/ , with 7/ # 0, are defined as follows:
o For 7 =7" € (0,9),
[T, =7 = A
Here, we use the following notation. If Y is a subset of X, the operator “multiplica-
tion by the characteristic function of Y ” is also denoted by Y .
o For 7 # 7', TT_ =0 unless 7 > 7/ and [r/,7] is strictly contained in a decimation
interval with 7/ as its left endpoint(®. If J is the smallest such decimation interval
and ¢’ its length, then

I =j(r—7' = $)AT)j(5)AS

J
O(—/* 5 ® :6
Te——9 —— T
< 0’ >
o Similarly for 7 # 7/, T7 = 0 unless 7 < 7/ and [r,7'] is strictly contained in a

decimation interval with 7’ as its right endpoint. If J is the smallest such interval
and ¢’ its length, then

M7 = (7 =7 = 5 M) §(5) A

(4) For each fixed 7 € (0,8), ax and G, the background field T, & (7; s, @) is a function of x € X.
(5) This implies that 9(7) > d(7’) whenever 7 is a decimation point. Observe that there is a maximal
decimation interval with 7/ as its left endpoint. If 7/ # 0, it is [7/,7/ +27°(7)§]. If 7/ = 0 it is [0, ].
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Remark I1.10 The Definition I1.9, of the background field, is independent of the choice
of integer n > depth(&). To see this, let eg = 2—depth(8) 5 The only place in the definition

where € appears is in the range of summation 3 c.z+5- 7' € (eZ\ esZ) N (0,96),
then d(7’) > depth(&) so that A¢, = § and T'7 (&) = I'_ (&) = 0.

The dominant contributions to the quadratic part of the effective action associated to
the hierarchy & for scale § will be

QG(a*7 Bv 0_2*7 62) = QE,5(a*7 Bv F*g( 5 Oy, O_Z*) ) FG( "3 627 6) ) (119>
with e = 274ePth(8)§  where

Qa,é(amﬁ;:);m:);)
= Z <'7*7-7 77> - <a*7j<5)7€> - Z <’7*77 ](5) '77+6> - <'7* 5—e» ](5) ﬁ)

T€ZN(0,9) T€eZN(0,6—¢)

= - <05*7j<5)7€> + Z <'7*T7 Yr — ](5) ’774—5) + <'7* S§—es Vo6—e — ](5) B>
T€eZN(0,6—¢)

= (Ve = J(€) @, ¥e) + D20 (Yar — J(E) Ver—ey Vo) — (Yxs—e5 J(E) B)
T€eZN(e,0)

(IL.10)

The dominant part to the quartic part of the effective action will be

5
Ve (ax, B; @s, d) = —/ dr (Tie (75 s, Q)T (75 @, B), v Tis (75 ax, @:)ls (15 A, B))
0
(I1.11)
The contributions characteristic of the small field set Qg ([0,0]) are not being integrated

over. Therefore we set

& (e, B Gy @) = Qe (0, B G, ) — (a0, G (0)B)

L o (IL12)
Vées(a/*?B; (l/*,(l/) = VG(Q*,B; Oé*,(l/> - VQ;(S(Q/*,B)

I1.5 Norms
Our main result will be, that for sufficiently small 0 < 6 < % , the effective density

can be represented in the form

QCX
> L) (e‘%”(a*,ﬁ;a*@)Wé”(a*,ﬁ;a*,&) eBe(a*,B;ﬁ)JrL:s(a*,B;ﬁr))
S hierarchy for scale 6

Q=0

(11.13)

22



In this formula, Vo, Q&° and Vg* are explicit functions; their definitions have been
given in (II.4), (I1.10), (II.11) and (II.12). Observe that they are evaluated with .. = o*.
The pure small field part Dgq.g has been constructed in (I1.2). The functions L and Bg
depend on the “residual fields” @, z,, 2’ that are the integration variables of Zg. Again we

choose to write them as analytic functions of

as well as o and 8. When they appear inside the integral operator we evaluate them at

p_E = (62*70_2’ g*’z)’ Gp=a*

Zer (¥)=27(x)* for x€A(Tr)\(R(T)NQ(ITT))

The function Lg(ay, S; p) will be analytic in the fields and depends only on the values of
the fields .+ (x), o (x) for points x € X\ Q. It is called the “pure large field contribution”.
The function Bg (o, 3; p) depends on the fields at points x both inside and outside (2
and is called the “boundary contribution”.

In Proposition II.1, we gave estimates on Dgq.g , expressed in terms of the norms (1.25).
The norms that we use to measure Lg and Bg are similar to the ones introduced in (1.25),
but are more sophisticated. They weight the variables a..,(x), a,(x) so as to take into
account their maximum possible magnitudes on Zg’s domain of integration. The abstract
framework for these norms was developed in [BFKT4, §II|. For the convenience of the
reader, we review it. In Definition I1.13, we introduce the concrete weight factors used in

this paper.
Definition I1.11

(i) A weight factor on X is a function x : X — (0, o0].

(ii) Let nq, - -+, ns be nonnegative integers and X7 € X", --- X, € X™. If § is any metric
on X, we define the tree size 75(X1,- - -, X;) as the length (with respect to the metric J) of

the shortest tree in X whose set of vertices contains x1 1, X1,2, **, X1,ny5 " Xs,n,-

(iii) For any subset Q of X we construct a metric dg on X as follows: Denote by Q the

union of closed unit cubes centered at the points of ). For a curve v in IR" we set
lengthq () = 2 - length(y N Q) + length(y N (R™ \ Q))

where length is the ordinary length in X.
For any two points x,y € X define

do(x,y) = inf {mlengthQ('y)} 7 a curve joining x to y }
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where m is the “mass” introduced just before (1.25). Clearly,
md <dgo <2md (I1.14)

Recall that d is the standard metric on X.
If QCQ C X and the set S = {x11,X1,2," ", X1,ny, "+ Xs,n, ; contains both a point
of  and of X \ Q' then

Tdo (X1, +, %) < Ta, (X1, -+, Xs) — mdist(Q, R™ \ Q) (IL.15)
where, for subsets U,V of R"

dist(U, V) = inf {length(v)‘ 7 a curve joining a point of U to a point of V'}

Definition I1.12 Let ¢1, ---, ¢s be a collection of fields on X.

(i) Let f(¢1,--+,¢s) be a function which is defined and analytic on a neighbourhood of
the origin in €*'*!. Then f has a unique expansion of the form

f(¢1:"'7¢8>: Z Z a(ilv"'7i3) ¢1(i1)"'¢8(i8)

N1y g >0 (Ry,e,Re)EX T X x X s

with the coefficients a(X1, - - -, X;) invariant under permutations of the components of each

vector X;. The functions a(X;,---,X;) are called the (symmetric) coefficient system for f.

(ii) For any nq,---,ns > 0 and any function b(Xy,---,Xs) on X™ x --- x X" we define

the norm |||, ... n, as follows:

s
S

o If there is at least one field, that is if ) n; # 0, then

i=1
b ... = IMax max max E ‘b}‘(’ X }
(LIEARER x€X 1<j<s 1<i<n; (X, %)
nj#0 77 zpex™
1<e<s
(%), =x

S

o For the constant term, that is if ) n; =0,
j=1

(ii) Given weight factors k1, - -, ks, and a metric § on X, the weight system with metric
0 that associates the weight factor k; to the field ¢; is defined by

(Ll P

N,
w5<§17 T 725) = em(xn“’XS) H H Kj (XJ"@)
o1 =1
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for all (X1, +-,Xs) € X™ X ---x X" and all nonnegative integers nq, - -, ns.
If €2 is a subset of X, the weight system with core €) that associates the weight factor r;
to the field ¢; (and the weight factor one to the history field) is wy,,.

(iv) Let f(¢1, -, ¢s) be a function which is defined and analytic on a neighbourhood of
the origin in Xl and a the symmetric coefficient system of f. We define the norm, with

weight w, of f to be

||f||w = Z Hw(ilv"WiS) a(§17"'7i8>}}n1’...’n5

The functions Bg (o, 5; p) and Les(ax, 5; p) in (I1.13) depend on the fields a, , 8
and, in addition, on the residual fields g = (07*, a, Zy, Z) that are integrated over in the
large field integral operator Zg . The weight factors that we associate to these variables
depend on the functions r(¢) and R(t) introduced before. Recall that r(¢) measures the
size of the region close to a critical point where the stationary phase construction at scale
t is performed (see the Introduction just after (I1.10) ). R(t) is the threshold between

“large” and “small” fields for scale t, see the beginning of Section II.2.

Definition I1.13 (Weight Factors) Let G be a hierarchy for scale 6.
(i) We define the weight factor k.g o for the field o, by
Kse,0(X) = min{ 2R(t) ‘ x € A([0,]) such that [0,¢] is a decimation interval }

and, for 7 a decimation point in (0, 0), the weight factor k.s . for the field a., by

o0 if xe A,

Ksg,r(X) = . . . .
min { R(t) ’ x € A([r,7+1]), [7,7 +t] a decimation 1nterval} otherwise

Similarly we define the weight factor kg s for the field 8 by
Ke.5(x) = min{ 2R(t) ‘ x € A([6 —¢,0]), [6 —t,6] a decimation interval }

and, for 7 a decimation point in (0, ), the weight factor kg . for the field a, by

o0 if xe A,

rer(X) =4 L :
min { R(t) } x € A([r —t,7]), [r —t,7] a decimation interval } otherwise
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The significance of the “co0” lines is the following. If 9(7) < depth(&) and x € A,
then the integration variables a..(x), - (x) have been replaced by the integration variable
Zar (X), 27 (x) during the decimation step for 7. Thus a.,(x), @-(x) no longer appear as
arguments. If 9(7) > depth(S), that is if a..; and «,; do not appear as integration variables
in Zg at all, then A; = X and k. -(x) = k,(x) = oo for all x.

The spatial decay of these weight factors is discussed in Appendix B.

(ii) We define weight factors A, for the “residual” fields z..,z,; , 7 a decimation point in
(0,6) by
Ao a(x) = { 32 1(27°8) if x € A, \ Q)

00 otherwise

(iii) We denote by we the weight system with core Qg that associates the weight factor
ks,0 to the field o, the weight factor kg s to the field 8, and, for 7 € (0, J), the weight
factors ki 7, Ke,ry As,r and Ag » to the fields a.,, ar, 2.+ and z;, respectively. We will

generally write || - ||g in place of || - [|we-

Our main result (Theorem II.16 below) states, that, under suitable assumptions on
the functions R(t) and r(t) the decomposition (II.13) of I exists, and gives bounds on
|Bslle and |[Lells -

I1.6 Summary and Statement of the Main Theorems

We are studying many particle systems of Bosons on the finite lattice X whose single
particle Hamiltonianh is of the form h = V*HV with a translation invariant, strictly
positive operator H : L?(X*) — L?(X*). For our construction, we assume that there are
constants 0 < ¢y < Cy such that all of its eigenvalues lie between ¢y and Cy. Also we

assume that
Dy= > ™02 (b;(0),b;(x))| < 00 (11.16)

xeX
1<i,j<d

where m is the mass used in (IL5). Here, for each 1 <i < pand x € X, b;(x) = (x,x+¢;)
denotes the bond with base point x and direction e;. The interactions v(x,y) we allow

are assumed to be translation invariant, repulsive and exponentially decaying in that the

norm

lvlll = Sup ZX M) o (x, y))|
X ye

introduced in (I1.5), is sufficiently small. We discuss the system at temperature 7' = % >0
and chemical potential .
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The representation (I1.13) of the effective density that we want to achieve depends on

e the functions R(t) and R’(t) that implement the large field conditions at scale ¢ .

e the function r(¢) that gives the size of the region near the critical point at scale ¢
where stationary phase is applied.

e the function c¢(t) that measures the size of the “corridors” in the hierarchies.

e the constant ¢ that measures the size of the cut off of the single particle operator that
is needed for the analyticity in Stokes’ argument (see (1.24)).

e a constant v > 0 that measures, roughly speaking, the size of the interaction v. The
precise conditions relating v and v are given in Hypothesis I1.14, below.

e a constant ¢, > 0 that, roughly speaking, imposes a lower bound on the smallest
eigenvalue, vy, of v, viewed as the kernel of a convolution operator acting on L?(X).
Again, see Hypothesis 11.14, below. Clearly vy < [Jv|| < |||v]||-

e the chemical potential u

Hypothesis 11.14 The two-body potential v(x,y) is a real, symmetric, translation in-

variant function on X x X that obeys

<l <z and v >cflvll

For our construction, we fix strictly positive exponents e,, er, er’ and e, that obey

3er +4e, < 1 1 < 4er + 2e, 2(er +e) <e, <1
(I1.17)
er' + e, <1 %SGR/

and a constant K, > 0. We make the particular, v—dependent, choices

r(t) = (%)er R(t) = (%)eRr(t) R'(t) = (%)GR'r(t) (IL18)
¢ = log? 1 ct) = log? = '
and assume that

lp| < K, 0% (I1.19)

Example I1.15 Natural choices for eg and er: are eg = %, er = % It is also natural to
choose e, bigger than, but close to %
We are working with a Riemann sum approximation to the quartic term in (I.1) which is,

roughly speaking, (—2 times) a sum over 7 € eZ N [O, %} of

e(ara,, vara:) > vy Z oy (%) > ev R(e)* { x€ X | |ar(x)| > R(e) }}
xeX
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The coefficient cv1R(e)? = %5UR(5)4 would be exactly %+, which is of order one, for the
choice e = i, if e, were zero. We think of e, as being small.

Similarly, the h term in (I.1) is, roughly speaking, a sum over 7 € eZ N [O of (minus)

7]

el|Var|r2(x-) = eR'(e)* |{ be X* | [Va,(b)| > R'(¢) }|

The coefficient eR’(¢)? would be exactly one, for the choice er: = 1, if e, were zero.

The combined v and p terms in (I.1) are, roughly speaking, a sum over 7 € eZ N [0, %}

of (—¢ times)

L atar, vatar) — plagl? = 3 [Surlar (ol - plar ()P
xeX
2 2
= [zole-(0P - &) — 47|
xeX
_ Z il
2’01
xeX

With this choice of e, the right hand side is small. Making e,, larger would make the right
hand side smaller, but would also make the critical value, £-, of |a(x)| smaller too. This
is not desirable for generating symmetry breaking in the infrared regime.

With these choices, (I1.17) is satisfied if e, > 0 is small enough.

Our main theorems are Theorems I1.16 and I1.18, below. They are proven in §III.8.

Theorem I1.16 There is a constant K , such that for all sufficiently'® small v, 6 >0,
the limit Ip(a*,8) = lim [,,(27™0; o*, B) exists and has the representation
m—00

I9<a*,/3) fr Z ZgQ|e<O‘*’j(Q)(9)6>+V9;9(O‘*’B)_"DQ;O(O‘*:B) XQ(Q; Oé,/B)
QCX

> Lsar ) (6_@;5(0‘*@wﬂHVé“(@*ﬁ;&*,&) B (0" \B: 5 )+Le (0" B )>

&S hierarchy for scale 6
Q=0

with the following properties.
o Va.p and Do, are the functions defined in (11.4) and (11.2). Furthermore, Dq.g can
be decomposed in the form

Da.o(, B) = Rae(ax, B) + Eq.e( o, B)

(6) See Hypothesis F.7.
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with a function Ra.e(ax, B) that is bilinear in «, and (3, is independent™ of the
interaction v, and fulfills the estimate

IR0llam gy, m < K e 07 £(6)*R(9)* < K fo™'o8

and a function Eq.p(aw, B) that has degree at least two® both in a, and in B and
fulfills the estimate

vl 2
€026 om0y, 2 < K O [0l x(60)* R(0)® < K (1)

Xo (€ «, B) is the characteristic function imposing the small field conditions. It is one
of
- Ja(x)], |8(x)] < R(0) for all x € Q and
- [Va(b)], [VB(b)| < R'(0) for all bonds b on X that have at least one end in Q and
- Ja(x) — B(x)| < r(0) for all x within a distance one from
and it is zero otherwise
For each hierarchy & for scale 0, Bg(ax, B; p) is an analytic function of its argu-

ments and fulfills the estimate
IBslls < K 0[]l v(6) R(0)* < K Il
For each hierarchy & for scale 6, L& has the decomposition

Lo(an i) = > Le(TiawBip)

decimation
intervals

7Cl0,6]
where, for each decimation interval J C [0,0], the function L&(T;ax, 5;0) is an
analytic function of its arguments that
- is “large field with respect to the interval J” (that is, it depends only on val-
ues of the fields at points x € X \ Qg(J) and depends only on the variables
Qury Ory Zary, 2r With T € J. (If T = 0 € J, then replace a.o(x) by a.(x). If
T=0¢€J, then replace ag(x) by B(x) )
« and fulfills the estimate

1L6(T; - )lle < K8 v]|(6) R(8)® = K 1l (pg)L-3en—te:

o

where § 1is the length of the time interval J .
The functions Ra.e, Ene, Bs and Les(J) are all invariant under o, — e~ %a,,
B B, f= (@020 2) — (e, €0, e, 672).

a,e""Z,,e
For each hierarchy & for scale 6, Ig 1is the integral operator of Definition I1.8. Its

Oy, €

properties are described in Theorem I1.18, below.

(7)
(8)

Ra.e is constructed like Dq.g, but with v =0.

By this we mean that every monomial appearing in the power series expansion of these functions
contains a factor of the form au(x1) ax(x2) B(x3) B(x4) .
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Definition I1.17 Let Q2 C X and 8,v > 0. We define the technical small field regulator
R 0: - R (2) 0O: R (4) 0:
egS}"( 70575) egS]-'< 7057B)+ egS}'( 70575)
with
2
RegSr (v, 8) = Kueg 0lu] [llalfs + 15]2]
4
Regx (% @, B) = Kreg 00 {Jlallfaq) + 181Es@ } {lla = Blse)
+ 0 [M+e—5mC(9)] |:||a/||L4(f~2)+ ||B||L4(S~))} + 0|:||VO'/HL4(Q*)+ ||VBHL4(Q*)} }

Here Q is the set of points of X that are within a distance ¢(6) of Q, and Kieg =
29 exp {20612mDDH}.

In addition to the constants of (I1.17), we choose 0 < e; < 2e, and set

ot) = (&)~ (I11.20)
Theorem I1.18 Let 2 C X and assume that o and [ obey the small field conditions
X@(Q7 O‘?ﬁ) =1 Then,

e sllel? =381 JRe ({a™, ja) (0)B)+Vase (s, 8)) . —Regs 7 (2;01,8)

S [T )| (R CAETHVEN B HiEST)

hierarchies &
for scale 6
with Qg=Q

—Lp0)|0° 1 1
< et '[ Il vemr 1+|5(x>|3}
xeQe

In the above theorem,
o the factor ergc 1+|a1(x) 5T 51(X)|3 on the right hand side ensures the left hand side,

which is a function of {a(x), f(x)}xex is integrable,
o the factor e~ “@12°l on the right hand side tells us that when the large field region Q¢

is large, then the left hand side is small and
A stronger bound than that of Theorems I1.18 is given in (II1.22).
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II1. Strategy of the Proof

Our proof of Theorem I1.16 goes roughly as follows. In a first step, we fix ¢ = 2750
for some k£ € IN and show that there is a representation for Ix(e;a*, 3) similar to (I1.13),
but with a sum over hierarchies for scale 8 which have depth at most k. In a second step
we compare the resulting representations for I, (27%0; o*, 8) and Ij41(2~**tD;a*, 3) in
order to take the limit k — oo.

For the first step, we use the decimation strategy sketched in the introduction. We
construct, for n = 1,2,---,k a representation of I,(g;a*,3) similar to (II.13), but with
a sum over hierarchies for scale 2"e = 2"~%@. In the step (1.10) from n to n+1,

In—|—1<€; Oé*,ﬁ) = /duR(s)(¢*7¢) In<€; Oé*,(b)]n(é‘; (ZS*?B)

write the representation of I, (g;a*, ¢) resp. I,(e;¢*,3) as a sum over such hierarchies
S, resp. G2 and write the integral as a sum of integrals, indexed by (&1, S&3). One such
integral leads to the sum of terms in the representation of I,,; that are associated to
the hierarchies for scale 2"*le = 2"~k+19 that are preceded by (&1, &) in the following

sense.

Definition ITI.1 A pair (&4, &2) of hierarchies for scale J is said to precede the hierarchy
G for scale 26 if

Se(J)=8e.,(J) and  Se(6+J) = Se,(J)
for all S = A,Q, Py, Ps, P, Pj, @, R and all decimation intervals 7 in [0,]. In this case,

we write

(61, 62) <6
We also denote, for any field @ = (- (X)) rcezn(0,25) , the left and right half fields to be
xeX

62[ = (OCT(X)) T€eZN(0,5) O_Zr — (047—_|_5(X)) T€eZn(0,5)
xeX xeX

Given hierarchies &1, &4 for scale 9, the choice of a hierarchy & with (G1,S83) < &
amounts to the choice of
(i) the small/large field sets of the first kind

P, ([0,26]), P3([0,24]) C Qs, N Qs,
P;([0,24]), P5([0,20]) € (Qe, N Qe,)”
Q([0,24)) € (s, NQs,)”
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By Definition II.4, these sets determine A([0,24]) .
(ii) the large field set of the second kind R([0,26]) C A([0,24]). Again, by Definition
I1.4, this set determines the new small field set of the second kind ([0, 24]) .
In a decimation step as outlined above, we start with two hierarchies &1, S5 for scale
d. Then we first decompose g, N Qg, into large/small field sets of the first kind, and
afterwards decompose the resulting small field sets A according to the choice of the regions
where “stationary phase” is applied. To formalize the first step, we use

Definition ITI.2 Let Qy C X and § > 0. We denote by Fs(€) the set of all choices
of “small/large field sets of the first kind”

Q[:(A,Payp,fJ’,Po,nPévQ)

with
o A, Py, Py CQ, P, PyC Q5 and QC O
o A= { xe X ‘ d(x, PaUPBUQUsuppPC’XUsuppPéUQg) >c(5)}

y
SAD

Qo

I1I.1 History Fields

As described in the previous section, the decimation step from scale § to scale 20
involves integrals of products of pairs of terms like in (I1.13), indexed by two hierarchies
of &1,6, for scale §. The result of this integral will be represented as a sum over all
hierarchies & of scale 29 that are preceded by (&71,65). Each such term should contain
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a factor
el dag)(20)B)+Vag s (g5 0™, 8)+Dag 25 (e5a™,8)

For the construction of Dqg.25(e; -, -) out of DQGl;g(é‘; -, +) and DQ62;5(€; -, +) we need
to know which contributions to D ;s(; -, -) involved points outside the new small field
region (g .

To keep track of precisely which points were involved in the construction of each
contribution, we introduce the concept of a history field. This is a field on X that takes

only the values 0 and 1. In particular
h? =

The history field is never integrated over. We put in a history field at each point where
some construction is performed. That is, we shall always work with “history complete”
functions in the following sense.

Definition II1.3
(i) A function f(¢1, -, ¢s;h) in the fields ¢q,---, ¢s, b is called history complete if it
is in fact a function of ¢1h,---,¢sh,h. If f is a history complete analytic function,
any non trivial monomial in its power series expansion that contains a factor ¢;(x)
automatically also contains a factor h(x).
(ii) Given a power series f(¢1,- -+, ¢s;h) and a subset Q of X we set
flo = F(61, - 6a:b)

h(x)=0 for xeX\Q

If f is history complete, f‘ﬂ depends only on the fields ¢1(x),- -, ¢s(x), h(x) with
x € ().

The starting points of our construction are the single particle Hamiltonian h = V*HV
and the interaction v. Already at this point, we have to monitor the points in space
involved in the construction, for example in the exponential j(t) = et(=m)  This is the
motivation for the notion of h—operator introduced in [BFKT4, Definition IV.1]. For the
convenience of the reader, we repeat some of the concepts introduced in [BFKT4].

Definition I11.4
(i) An h-operator or h-linear map A on €~ is a linear operator on €~ whose kernel is
of the form

o0

Axy)=> X AGx, L xiy) h(x) b(x) - -h(xe) b(y)

=0 (xl’...’xe)eXZ
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(ii) The composition Ao B of two h—operators A, B on € is by definition the h-operator
with kernel

(Ao B)(x,y) = 2. Alx,z) B(z,y)

zcX

= > > Alxxiy,--,xpz)B(zyn, o, yesy)

ZGX €’£/>0 X1, ,Xp
Y1 Yy

h(x) b(x1)---b(xe) H(z) b(y1) - blye) b(y)

Here we used that h% = b.
(iii) For an “ordinary” linear operator .J on € with kernel J(x,y), we define the associated

h—operator by

J(x,y) =bh(x) J(x,¥) b(y)

and the associated h—exponential as

exph (J) =h+ > 7 J = he"/0 = "0
=1
The h—exponential obeys the product rule exph (J;) exph (J2) = exph (J; + J3), pro-
vided the operators J; and Jo commute.
(iv) If ¢ is any field on X and A an h—operator, we set

(Ap)(x) = Y A(x,y) o(y)

yeX

— Z Z A(x; X1, -+, %05 y) b(x) h(x1) -+ - b(xe) b(y) o(y)

=0 X1, ,Xg,y

To keep the notation simple, we shall frequently use the same symbol for a history
complete function or h—operator as we used in Chapter II for the function or operator one
gets if one sets h(x) =1 for all x € X. So we shall again write v for the operator v, and

set
j(t) = exph ( —t(h — ,u)) (T11.1)
Observe that
5Oy -ater wexia = (1)

h(x)=1for x€Q

with the operator ji)(t) introduced at the beginning of Section II.1. Again we define

i)y =iy { ) TS (01.2)
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I11.2 Properties of the Background Fields

Here, and through the rest of the paper, use the same definition as before for back-
ground fields (that is Definition I1.9), just with j(¢) being interpreted as the h—operator
of (III.1). Here, we want to study some of their properties. In particular, we develop a

recursion relation (Proposition I11.6).

Remark ITII.5 (The structure of the background fields)
Let & be a hierarchy for scale ¢.

(i) When the history field is identically zero, the background field becomes

F*G(T; O O - Aia*T I's (7-7 0_27 5)‘5:0 = AS-OCT

My=o

The differences I'vg (75 @, @) —ASar and I's (75 &, B) —ASa, are history complete. Their

restrictions to the small field region (g are

—Aa, =j(6—7)8

Fis(T; o, aly) — ANl = (7))
~ QG QG

Qs

Qs

o(7)
(ii) Let 7 =0 > 5F, ar € {0,1}, be the “binary expansion” of the decimation point
k=1

7€ (0,6), and let 7/ € (0,0) be another decimation point different from 7. Then '], = 0
d
unless 7' is one of the “binary approximations” § > 5¢ (1 <d <0(7), aq =1) of 7.
k=1
In this case, let d' = min{ k>d ‘ ap =1 } Then

I = j(r—7"— 2‘3,)/\([7", T+ 2(155—_1])](%) AS,

In particular, T'7. = 0 whenever 7/ > 7 or 3(7/) > d(7) .
Analogous statements hold for F;l, in terms of the binary expansions of 6 — 7 and § — 7’.

In particular, I'7 = 0 whenever 7/ < 7 or d(7) > o(7).

(iif) If 7 # 7/, then T, and I'7 are always of the form j(m1)A17(2)AS with 71,75 > 0,

71+ 72 = |7 —7'| and A; and A§ being (possibly trivial) characteristic functions.

(iv) Let 7 € (0,9) and 7" € [0, 6] be decimation points with d(7) > d(7’). (For 7/ = 0,4,
set 9(7') = 0.) Furthermore let 0 < ¢t < 2%(7). If 7 is not of the form 7" + 2% for any
3(r') < d < depth(&), then T, = j()T7, .

(1) < d < depth(6), then T = j(t)T'L,,. For more information, see Lemma E.16.

If 7 is not of the form 7/ — % for any

(v) If 9(7') > depth(&) then I'T. =T7 =0 for all 7 € (0,4).
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Proof: (i) Since j(t) vanishes when b is identically zero, I'T.

all 7/ # 7. For all 7/ € (0,6), Qs NAS, = 0 and hence I'T,
7! # 7. Finally,

_}b 0:0for

= (0 whenever

oo =

T g =i(r = %) Q6 5($)],

(ii) Assume that T7_ # 0. Denote by J the smallest decimation interval with 7/ as
its left endpoint that strictly contains [r/,7]. As J is a decimation interval, there is
d >0(7") 4+ 1 such that J = [r/,7" + Qdfs -]. Since [7/,7 —|—
interval, but does not contain 7 in its mterlor we have 7’ +

Qd,] is also a decimation

<’T<7—/+2dEL_1.

2d’
Set d =0(7") <0o(r) and let 7/ =4 Z Y% . by €{0,1} be the “binary expansion” of 7/,
k=1

As <7-7 <2d,1 and d’ > d we have

2d’

ar =b fork=1,---,d, ag =1, g1 =+ =ag—1 =0, ag =1

So 7' is a binary approximation of 7. The remaining claims follow directly from the
Definition I1.9 of the background fields.

(iii) follows by inspection. Recall that j(0) = b.

(iv) We consider I'7_. By part (ii) we may assume that 7 > 7/. Observe that [/, 7'+ 20(#)]
is the maximal decimation interval with 7" as left endpoint. If 7 does not lie in this interval,
then 7 —t > 7 — 20% > 7+ %, and consequently I‘I = FTT . = 0. So we may
assume that 7€ (7', 7/ + 23(7/))

Let J = [, 7"+ Qd—_l], d > 9(7') be the smallest decimation interval with 7/ as left
endpoint such that 7" 7] g j Then 7/ + 25d <t <74+ %. If 7 #4717+ % then,
again, 7T —t > 71 —

2a<f > 7'+ 2d and consequently

P —JOTT = [j(r =7 = &) = j@®)i(r —t =7 = &) [ A7) (&) A% =0

Ifr=7+ but d > depth(S&), then A(J)= X and

2d7

[T =AMT) (L) A =j(r—7)AS T

*xT—t

=j(r—t—7)AS

(v) In this case AS, =10).
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In the decimation step from scale § to scale 26, we are passing from the product
of the terms indexed by hierarchies &;, G5 for scale § to a sum of terms indexed by
hierarchies & that are preceded by (S, &2) in the sense of Definition III.1. For this

reason, we need

Proposition I11.6 (Recursion relation for the background fields) Let (&1, S5) be
a pair of hierarchies for scale § that precede the hierarchy & for scale 26. Let T € (0,20)
be a decimation point. Then

P*61<7—; Oy, O_Z*l) ZfT - (O, (5)
Fie (75, di) = ¢ Asi(0)an + Agas ifr=29
Tie,(T—0; Aej(0)an+AG s, Aur) + OTwr e if T € (6, 20)

Here, for T € (4,20), the difference operator OT., is defined as follows. Let J be the
smallest decimation interval for & with left endpoint § such that [0, T] is strictly contained
in J, and let &' be the length of J . Then

O.r = j(r— 6 — 2) A (J)° (%) As §(6)

Similarly,

F61(T; ;a1 Asj(6)B + Agas) + 0.8 if T € (0,6)
Te(r; d,8) = ¢ Asj(0)8+ Agas ifr=2¢
F62(T — aT)/B) if T € ((5, 25)

Here, for T € (0,6), the difference operator OI'; is defined as follows. Let J be the small-
est decimation interval for & with right endpoint 6 such that [r,6] is strictly contained
in J, and let &' be the length of J . Then

o, = j(6—7— %) As(J)° §(¥)As 5(5)

Proof: If 7 € (0,6) and 0 < 7/ < 7 is a decimation point, then I'] (&) = I'Z, (S;) by
Definition I1.9. By Remark IIL5.ii, I'7 (&) = 0 and I'7 (&) = 0 whenever 7/ > 7.
If =6 then Dig(7; o, dy) = Asj(d)as + Agans directly by Definition I1.9.
Now let 7 € (6,26). Directly from Definition II.9,
FO

*T—0

(o) Ag if 7/ =0
I5(6) =117 25(6,) if § <7/ <20

0 ifo< 7' <6
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so that
Fie(T; au, @) — Di, (T— 05 Asj(0) s + AG s, Oarr)

= FST(6>O'/* - FST_(;(GQ)Agj((5>(J!*
Let J be the interval defined in the Proposition, and set J' = { t—20 } teJ } Then
AG (j) = A62(j/) and
I0(8) = TV, _5(62) A 5(8) = j(r = 8) Asii(8) — j(r — 6 — &) Ae, (T') (%) A 5(6)
=j(r =6 = %) Ae,(T) (%) A j(6) = 0T

Here, we used j(1 —06) = j(7 — 6 — &) (Ae, (J")° + As,(T) (5.
The recursion representation for I'g is proven similarly. [ |

Further properties and alternative definitions of the background fields are given in
Appendix E.

II1.3 The Explicit Quadratic and Quartic Terms in the Effective
Action

In (I1.9), we defined the prospective dominant contribution to the quadratic part of

the effective action associated to a hierarchy & for scale § to be

Q@(O‘*aﬁQ 0_2*76-;> = Qa,&(a*:ﬁ; F*6('§O¢*:O_Z*) ) FG(';&7 B)) (1113>

where Q. s was defined in (I1.10) and ¢ was chosen to be 274¢P*h(S)§  Here, and through
the rest of the paper, we use the same definition but with j(¢) being interpreted as the
h—operator of (I11.1) and with the background fields I'yg, I's of §I11.2.

Part (i) of the following Lemma shows that, in (II1.3), we could have chosen ¢ =
277§ for any n > depth(&). Part (ii) isolates the pure small field part and the history—
independent part. Part (iii) gives a recursion relation.

Lemma II1.7

(i) Let & be a hierarchy at scale 6. For all k,n > depth(S)

ink,a(a*,ﬁ; Lis( 5w dl) , Te(3d,8)) = Q4 s(on B Tus (i, ds) , Ts(-:d,5))

(i) Let S be a hierarchy at scale 6. When the history field is identically zero,

Qs(as, B; dn, @), o= X (Afau, Afay)

T€eZN(0,9)
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where ¢ = 274PR(O)5  The difference Qe (v, B; Gu, @) — 3. (ASouer, ASa,) is history
complete. Its restriction to the small field region Qg is

QG(O‘MB; 0_2*70_2)‘96 - Z <Aia*77Aia7>:_<a*7j(5)ﬁ>‘g~

T€eZN(0,9) e

(11i) Let S1,&2 be hierarchies of scale 6 such that (S1,82) < &, where S is a hierarchy
of scale 26. Then

Qs (0, B; Ay, @) = Qe, (o, AJ(6)B + Aaus; Gy, 1) + Qe (A (6) v + Auss, By ir, )
+ (Aj(6)as, AJ(9)B) + (Aays, ACas)

+ Z <F*61 (T; Qe &*l>v (BFT - j(5>arr+s) B>
T€eZN[0,9)

+ Y {((0ussr — §(€)Tss4r—c) v, D, (75 dr, B))
T€eZN(0,4]

where A = Ag , € = 279Pth(S) gnd the differences OT .., T+ were defined in Proposition
II1.6 for 7 € (6,20) and T € (0,0), respectively. Here, we have also set O'vs = Ol'4as =
Oy =0T's =0 and T'ys,(0; - )=y, I's,(0; -)=0.

(iv) Let & be a hierarchy of scale §. Then for any fields ¢., ¢

Qe (ax, Aj(0)B+ A°h;ds,d) — Qs (v, Aje(8)B + A°P; d., a)
= Z <P*6(T; Ay, O_Z*) ) (Pf— - ](g)ri—l-a)‘/\(](é) - ]c(5)>5>

TE€EZNI0,6)
Qs (AJ((;)O‘* + A%, B; ds, 52) - Qs (AJc(é)O‘* + A9y, B;d, 0_2)

= . sz:(o 51 <(F27- - j(‘g)FgT—s)A(J((s) - jc((s))a*a PG (7—; 0_27 B)>

where A = Ag and, again, ¢ = 279P™S)  Here we have also set F25 = Fg = 0 and
I.e(0; -) =a., T's(d; -) =B and, correspondingly, T9, = T3 = 1.
Proof: (i) It suffices to prove this in the case that k& > depth(&) and n =k —1. To

simplify notation, set € = 27%§,

_ el o, dy) i 7#0 [ Te(r; @,B) ifr#0
T e iftr=0 75 ifr=0

If 7, 7" are decimation points with 9(7) = k and ?(7') < depth(&), then by Remark
I11.5.iv, T, = j(e)T'7,__. Combining this with Remark IIL.5.v, we see that

VT = ](5) V1 —e if 0(7-> =k
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So by (I1.10)

Qs,é(awﬁ;i}*a?) = Z <7*T_j(5)7*7—€7 '77> o <’7*5—€7j<5)5>
T€ZN(0,9)

= Y (Yar = GE) Yareer ) — (G(E) Y 5-2e, G(€) B)
T€2eZN(0,9)

= Z <7*7' - ](5)](5> Yxr—2e) ’77'> - <’7* 0—2¢e) ](5>](5) B)
T€2eZN(0,6)

= Qac5(0ws, B35, 7)

(ii) Define ~,, and ~;, as above. By Remark II.5.,

j(g)'Y*T—s}bzo =0 j(6>7*7_5‘§26 = j(T)Oé*}QG

Both equations follow from the definition (I1.10) and Remark II1.5.i.

(iii) Let e = 2-depth(S)(95) = 2-(depth(S)=1)5  Define ~,, and v, as above, but with §
replaced by 26. By Proposition I11.6

A if 7 € (0,0) YY1 ar, 8 if 1€ (0,0)
er = 4 Aj(8)as + Aans ifT =3 e =4 Aj(6)B+ Acas ifT =0
’yii)_é + 0l o if 7€ (6,20) 752_)5 if 7 € (6,26)

where A = Ag and

’VS-) = F*Gl (7-; A, O_z*l) 7(-1) = P61 (T; 52[, A]((s)ﬁ + Acaé)

’Yii) = F*Gz (7_; A]((S)(l/* +ACas, d;*r) '77(-2) = FGQ (7_; d;?": B)

Then

Qs= Y (W =@ . W 4or,8)
T€eZN(0,6)

+ (Aj(8)as 4+ Ay — ()Y, Aj(6)8 + Ay)
+ (12 + 0510 — ()N (S)an + Aas), 1)

+ Y (WP Ol — () (VP 4 Oy ca), AP
TE€EZN(g,0)

_ <fy£25)_€ —+ 8F* 25 —eOlx, ](6>6>
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= 2 (P i@ Ay = G, Aj(0)8 + Acas)

T€eZN(0,6)
+ (12— () (Mj(O)an + Aas), 7D)

2 . 2 2 .
+ Y (2 @2, @Y — (B ie)8)
TEEZN(e,0)

+ (A (0)ar, Aj(6)B) + (Aass, Aas)

+ Y W), ar. 8
T€ZN(0,9)

+ <6F*5+5(l/*, '75 )> + Z <6F*5—|—7'04* _j(5>6r*6+7—5a*, 77(-2)>
TEEZN(e,0)

— (O, 25—z, j(€)B)
= Qs, (s, Aj(0)B + Aas; dur, ) + Qe, (AJ(0) s + Aais, B; Ay, Ar)
+ (Aj(0)as, Aj(0)B) + (Aaus, Aas)
+ X (W (00, —(2)or.4.) B)

T€eZNI0,5)

+ X <(3F*5+7— - j(e)ar*5+7_5)a*, 77-2)>
T€eZN(0,9]

with 0'g = 9's = OI'ys = OL'xa5 = O.
(iv) The first equality follows from (II.10) and the fact that

P (7; @ Aj(8)8 + A°; @) — Te (73 d, Ajie(9)8 + A°¢; @) = TIA(5(8) — je(6)) 8
The second equality follows from (I1.10) and the fact that
Pus (75 Aj(0)a + A%y ;@) — Dua (3 Aje(O)a + A @) = TLA(5(6) — je(6)) s

The quartic part of the interaction for a given decimation step depends on the scale
at which the process has been started. To keep track of this we need the Riemann sums

approximating (II.11).

Definition III.8

(i) Let & be a hierarchy for scale ¢, and let ¢ =27"¢ with n > depth(&). We define
Ve (&5, By i, @) = e Vy (05*75; Lis(5 0w, dy) , Te(; 5))

where

Vn(a*a B Ve 5;) = - [ <a* VYey U Qx ’7€> + Z <’7*T’77-—|—57 v ’7*7’77-+s>
T€eZN(0,6—¢)

+ <’7* d—e Bv VVx5—e 5) ]
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and D.s(7; ax,dy), I's(7; @, 8) are the background fields.

(ii) In the remark below we shall identify the small field part of V. For that purpose, we
define for any subset 2 of X and every ¢ that is an integer multiple of ¢

Va,s(e; as, B) = —¢ Z 1[0 —=7—=2¢)8], v [j(r)a"] [j(5—7_5)5}>’

Q
TEEZN[0 5)

(Evaluating this at h = 1 gives the Vo s(e; o, 8) of (IL.1).)

Clearly, Vg is history complete (in particular Ve = 0). It follows from Remark

II1.5.i that

‘h:O

Remark II1.9

(i) If e = 270 with n > depth(&) then Vs(e; ., B ds, a )‘ = Va,s(e; ax, B) for all
QN CQs.

(i) Va,s(e; ax,(0)8) + Vas(e; j(0)ax, B) = Va,2s(e; ax, B)
I11.4 Properties of the Large Field Integral Operator

In our representation of I,,(e; a*, 3), we persist in using the integral operator Z(s;q« )
of Definition II.8, except that the surface Cs(x;a*, ) is now h—dependent through the
operators j(s) of (II.7). Note that the characteristic functions x 7 («, .-, 5) and the cutoff
Gaussian measures do not depend on b.

Lemma III1.10

(i) Let (S61,82) be a pair of hierarchies for scale 6 that precede the hierarchy & for scale
20. We have the recursion relation

I(@;a*,ﬁ) [dﬂ(077 2*7 'g):|
= Z([0,26,6;0,8) L(&r:0%05) [T 2ty 21)] Li@siaz,0) [d1t(Grs Zir,s 21)]

(ii) Let & be a hierarchy for scale § and set ¢ = 2-9P(S)5  The large field operator
T(s:a%,5) [d,u(o?, 5*,5)} depends on a(y) and B(y) only fory € QF.

Proof: Part (i) is trivial. To prove part (ii) by induction, it suffices to show that
Z((0,26],&;a+,8) depends on a(y) and B(y) only for y € Q([0,26])°. The dependence of
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T([0,26],&;0+,8) on a(y) and B(y) arises only through two mechanisms. First, through the
integration domain Cj(x;a*, 8) with x € R([0,26]). By construction, this integration
domain depends only on a(y) and S(y) for y within a distance ¢ of R([0,26]). Since
([0, 26]) is the set of all points of A([0, 2d]) whose distance from R([0, 24]) is at least ¢(6),
any such y is in ©([0,26])¢. The second dependence is through the characteristic function
X[0,25](@, s, B). One sees by direct inspection of its definition in Appendix A that this
characteristic function is independent of a(y) and S(y) for all y € Q(]0, 24]). |

Remark III.11 Let & be a hierarchy for scale § and set ¢ = 279Pth(S)5  The inte-
gral operator Z(g.qo~ g) [d,u(o?, 5’*,5’)] acts on the space of functions that are defined and

measurable in the variables

2, (X) x € AT)\ (R(T)UQ(T)) with |z (x)| < x(s)
Zer(X), 2 (xX) x € R(J) with |z, (%), |2-(x)] < R(s)
ar (%) x € AM(J)° with | (x)] < R(e)

and analytic in the variables z.,(x), z-(x), x € R(7;). Here J = J; runs over all decima-
tion intervals in [0, 6] of length 2e < 2s < 4.

Proof: The first two restrictions appear explicitly in the limits of integration in Definition
I1.8. The restriction |a,(x)| < R(e) is an immediate consequence of Lemma A.4.a.
|

We shall prove a bound on these large field integral operators, with h = 1, in Theo-
rem I1.18. To obtain a good bound, we make a specific choice of Cs(x;a*, 3). Roughly
speaking, each point x € R(J) will provide a very small factor for the size of the integral
over Cs(x;a*, ) which arises from the factor e~z (X)2r (%) " This will be established in

Proposition 111.38, below.

II1.5 Norms and the Renormalization Group Map

In our description of the effective density in Theorem I1.16, the non-explicit quantities
Dqs, Bs and L are estimated with the help of the norms || - ||g. These norms were
defined abstractly in Definition I1.12 and then made concrete by the choice of the weight
factors in Definition I1.13. In the construction itself, all functions involve history fields.
For this reason, we extend, in Definition II1.12 below, the abstract definition of norms
to the case of functions that depend on a history field too. In this abstract setting, we

recall the main theorem from [BFKT4, §II] that will allow us to control the fluctuation
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integrals (Theorem II1.14). A fluctutation integral is performed for every triple &1, G5, &
of hierarchies with (&1,62) < &. (See the discussion before Definition III.1.) Therefore,
we discuss, in Remark IT1.17, how the weight factors for &1, &5 and & are related.

In each decimaation step, the fluctuation integral is introduced through coordinates
that are centred on the critical point of the quadratic part of the effective interaction.
This change of variables affects our norms and is controlled using the operator norm of
Definition II1.18, below.

Definition IT1.12 Let ¢, ---, ¢s be a collection of fields on X and let h be a history
field on X.

(i) Let f(¢1, -+, ¢ds;h) be a function which is defined and analytic on a neighbourhood of

Qs+ DIX]

the origin in . Then f has a unique expansion of the form

f(¢17"'7¢s;b): Z Z a(i17"'7is;is+1) ¢1<§1)"'¢s<is)b(is+l)

N1, M1 20 (RKp, -, Koy1)EXPL XX X s +1

with the coefficients a(Xy, -+, Xs;Xs41) invariant under permutations of the components
of each vector X;. The functions a(X;, - --,Xs;Xs11) are called the (symmetric) coefficient

system for f.

(ii) For any nq,---,ns11 > 0 and any function b(Xj, -, Xs;Xs41) on X™ X -+ x XMs+1

we define the norm |||, . as follows:

M1
s

o If there is at least one nonhistory field, that is if > n; # 0, then

i=1
b = max max max E ‘bf{’ e XX ‘
(LEIE xEX 1<j<s 1<i<n, (R, %Ki Xor)
7Lj7£0 ?cgEXne
1<e<st1
(Rj),=x

Here (X;), is the i*" component of the nj—tuple X;.
S
o If there are only history fields, that is if > n; = 0, but ns4q1 # 0, then we take the
j=1
pure L' norm

[Bllnyomes = Y [b(= e =i Res)]

is+1€XnS+1
s+1
o Finally, for the constant term, that is if > n; =0,
i=1
||an1,'“,ns+1 = ‘b<_7 Ty _)‘
(iii) Given weight factors k1, - -, ks, and a metric d on X, the weight system with metric

d that associates the weight factor x; to the field ¢; (and the weight factor one to the
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history field) is defined by

5 ny
— =2 .2 T X a"'ais
wd(X1,' : '7X8axs+l> =e€ d( ! +1) H H /{j (Xj’[)
for all (X1, -, Xs;Xsy1) € X™ X --- x X™ x X"+1 and all nonnegative integers

Ny MNs41-

If ©2 is a subset of X, the weight system with core €2 that associates the weight factor x;
to the field ¢; (and the weight factor one to the history field) is wgq,. The metric do was
specified in Definition I1.11.iii.

(iv) Let f(¢1,- -+, ¢s; b) be a function which is defined and analytic on a neighbourhood of
the origin in CEHOIXT and o the symmetric coefficient system of f. We define the norm,

with weight w, of f to be

||f||w = Z Hw(ilv o '7i37i8+1) a(§17' : '7i87is+1)“

N1, Ms41 20

N1, Msyl

Remark IT1.13 Let f(¢1,---,¢s;h) be a power series and €2 a subset of X.

(i) For any weight system w

h(x)=1 for x€Q
h(x)=0 for xeX\Q

|£(61,- 040)

<ol <151

(ii) For any measure du(¢s) that is independent of b,

[ @) (161 6.0)1o) = | [ duton) fone- om)

Q

Theorem II1.4 of [BFKT4, §II] uses norms as in Definitions I1.12 and II1.12 to control
a renormalization group step. For the reader’s convenience, we repeat its statement as well
as the main result of [BFKT4, Corollary II1.5] here.

Theorem II1.14 Let f(¢1,- -+, @s; 24, 23 ) be a function which is defined and analytic on
a neighbourhood of the origin in CEIIX Let r > 0 and denote by du(z*, z) the measure

du(z",2) = [ x(2(x)]) < 7) e2097200) d=ndz6o

27
xeX
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Furthermore let k1, -, Kksyr2 be weight factors such that Ksi1(X),ksy2(x) > 4r for all
x € X, and let m > 0 and Q C X. Denote by w the weight system with core €1 that
associates the weight factor k; to the field ¢;, and the weight factors Ksyi,Ks42 to the

fields z* and z respectively.

If || fllw < 15, then there is an analytic function g(¢1,- -, ¢s) such that

[ ef(Praiz™2) qi(2%) 2)

— 9(¢1,505) I11.4
J el 022 dp (2, 2) (-4
and
[ f 1]
||g||w < =16 /Tw
If, in addition, ||f|w < 55 and the symmetric coefficient system a(X1,- -+, %s; ¥+, ¥;X) of
obeys a(X1, -+, Xs; ¥, ¥;X) = 0 whenever y =y, then
[ obey ; Y ¥ y=Y
I/l
g/l < ( a7 ) (IIL.5)

Definition III1.15

(i) We also use the weight system we of Definition I1.13.iii for functions that depend on
the history field, giving weight one to the history field as in Definition II1.12.iii. We again

write || - [l for [| - flus -

(ii) For any x,m > 0, we use wy,, to denote the weight system with metric md the
associates the constant weight factor x to the fields a® and § and the weight factor 1 to
the history field. The norm || f(c*, 8; b)HK =l -

Remark II1.16 For a function f(a.,[3) that depends only on «.(x) and £(x) with
x € Qg,

[fll2r@),m < [Iflle < [ fll2r ), 2m

For the decimation step, we need

Remark III.17 (Weight Factor Recursion Relation) Let (&1,&52) be a pair of
hierarchies for scale § that precede the hierarchy & for scale 26. Then weight factors of
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Definition II.13 obey

(QR(2(5> = %H*gl’o(x> ifTZO, XGA@
K*Gl,O(X) if 7= 07 X ¢ AG
KJ*G,T(X) _ K*Gl,T(X> Hfo<r<d
00 ifr=9,x€Ags
3#565,0(X) if 7 =0,x¢ Ag
\ /{‘*62,7'—5(}{) ifo<7<26
and ( _ R(29) e
2R(20) = R(0) K, s(x) if 7=20,x € Ag
K&,,5(X) if T =24, x¢ As
kes.r (X) = K&y, r—5(X) ifo<7<26
00 ifr=90,x€Ags
%H@l,g(x) ifT=0,x¢As
(| K&y, (X) it0<7<9
and
)\61,T(X) Ho<7<d
321‘(5) ifT:(s,XEAG\QG
Ae,r(x) = _—
00 ifr=09,x¢ As \ Qs

/\62,7_5(X) ifo<7<20

We will deal with linear changes in the ¢—fields which may be compositions of several
such changes of variables. For the convenience of the reader we repeat the [BFKT4,

Definition IV.2] of the operator norms we use.

Definition II1.18 (Weighted L!-L> operator norms) Let x,x’ : X — (0,00] be
weight factors and § an arbitrary metric and let A be an h-linear map on C~. We define

the operator norm

Ns(A; k. k) =1 > A %y) b(x)81(x) h(X) b(y)B:(y)

x,yEX Hw
zex (1)

where w is the weight system with metric § that associates the weight % to B;, the weight
k' to B, and the weight 1 to b.

For an ordinary operator J on C~, we set Ns(J; k, ') = Ns(J; k, ') . Observe that if .J
is multiplication by the characteristic function of a set Y, then

Ns(J; k, k') = sup 'Z((:)) (IT1.6)
xeY
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In [BFKT4, Remark IV.3], we gave a more explicit reformulation of the definition of
Ns(A; k, k).
The main change of variables formula [BFKT4, Proposition IV .4] is

Proposition II1.19 Let A;, 1 < j < s, be h-operators on C~, and let f(p1,---,¢s;b)
be an analytic function on a neighbourhood of the origin in CLFIX, Define f by

f(QSl?"'?(ZSS;b) = f<A1¢17"'7As¢s;b)

Let Ky, Kg, K1, -+ ks be weight factors. Denote by w and w the weight systems with
metric 0 that associate to the field ¢; the weight factor k; and k; respectively.
If N5(Aj; kj k) <1 forl<j<s, then

11l < 1 f [l

In [BFKT4] and Appendix G, we also state variants and corollaries of this Proposition.

Most of the times, the metric 6 used in Definition III.18 will be a multiple of the
standard metric d. Therefore we introduce the notation

Nu(4; 5, k') = Npa(4A; &, K)
for any p > 0, any h—operator A and any weight factors x, x’. By (I1.14), for any 2 C X
Nag, (A; 5, K') < Nom (45 &, &) (I11.7)

Specifically, we shall use

Definition III1.20
Al = Nom (A;1,1)

This is consistent with the definition of |||v]|| of (IL.5).

The most important operators for our considerations are the propagator

j(t) = exph (—t(h — p))
introduced in (III.1), and the cutoff propagator

e ) = 06y { Y =

introduced in (II1.2). They fulfill the estimates
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Lemma III.21 Set K; = Ngm(h —p;1,1) For allt >0,
(1) IO < Nom (5 (2);1,1) < 5

(i) () = bl < Now (5(t) — b; 1,1) < K el

(iii) () — ()| < tKefitemme .

Proof: These estimates follow directly from parts (ii), with A = j(¢) — b, and (iv) of
Remark G.4. ]

Further estimates on j(t) are given in Appendix D.

I11.6 Decimation

The first step in our proof of Theorem II.16 is the construction of the “large field/
small field” decomposition of I, (g;a*,8) (n =0,1,---,[log,0/e] ) for fixed ¢ > 0. The
recursion step for this construction is Theorem II1.26, below. Recall that we are assuming
that the two—body potential v satisfies Hypothesis I1.14, and in particular that [|v| < Lv.

As in §II.1, the small field parts of the term associated to a hierarchy will depend only
on the small field set, not on the hierarchy. Its description is similar to that in §II.1. First,
we introduce the analogue of the renormalization group map g s for history complete

functions:

Definition ITI.22 Let Q C X. If fi(a., 85 0), fo(ax, 8;h), V(as, B; ) are history
complete functions that are supported in  (i.e. fZ}Q = f;) we define

T (V' fr, f2) (e, 55 )
— {10 dc)8) + Rl 8) + 1o
— (50) — O, [10) — Ge(D)B)
V{0 dd09) = V{an J08) + V(i 8) = V(i 5) |

f d/’LQ,r(t)(Z*, Z) Ao, B;2",2)

f d/J’Q,r(t) (Z*7 Z)

Q

where A(au, B; 24, 2) 18

[fl(amz'i‘jc(t)ﬁ) - (a*ajc(t>/8):| + [fZ(Z* +]c(t>a/*76) - f2(jc(t)a*,ﬁ)]
+ ([5(t) = Je()]ev, 2) + (2, [§ () — Je(1)]B)
+ [V(O‘*7Z+jc(t)ﬁ) (a*7]c( ) )} [V(z* +jc(t)a*7ﬁ) - V(jc@)a*,ﬁ)}
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Since j(t)‘Q‘bzl = j(o)(t) and jc(t)}g}bzl = J(@),c(t),

1 = %Q;t<v‘b:1; fl‘b:17f2‘521>

z)_%Q;t(‘/; fl?fQ)‘h

Remark I11.23 If Q' C Q

Rare (V

Q/; fl

Q/:f? Q/) = 9}Q;t(‘/; fl:f?)

Q7

We control the small field part in one decimation step by the following

Theorem I111.24 Set Kp = 212KJ2 and Kg = 223. There are constants ©,vy > 0 such
that, for all § < %@ and v < vy, the following holds for all 2 C X:

Let Ry (e, i), Rolaa, B ) and 1(cre, B5 ), Ex(aa, B ) be history complete functions
that are supported on §) (that is RZ‘Q = R;, é}‘Q = &; fori = 1,2) with the following
properties

o Ry and Ro are both bilinear in o, and 8 and fulfill the estimates

IRill2r(s),2m < Kr671(6)*R(0)% e ¢

o &1 and &E; both have degree at least two both in a, and in B and fulfill the estimates

1€il|2r(8),2m < K (60)%1(8)* R(6)°

o All four of these functions are invariant under a, — e Pa,, f — €95.

Let € be a divisor of 6. Then there are history complete functions R(cu, B;h) and
E(ax, B;h) that are supported on Q2 such that

5%9;5<VQ,5(5; ); R+ &1, Re +€2> —R+E

and which have the following properties:

o R is bilinear in a, and B and fulfills the estimates

IR|l2r(26),2m < Kr (26)°1(20)> R(26)% e ™€

Furthermore R s the quadratic part of 9_%9;5 (O; R, 722) and, in particular, is independent
of Vas(e; ), &1 and &s.
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o £ has degree at least two both in «, and in B and fulfills the estimates

1€]]2r(26),2m < KE (260)%1(20)? R(20)°

o Both functions are invariant under o, — e Yoy, f — €.

The proof of Theorem I11.24 is similar to that of [BFKT5, Proposition II1.3] and is given
in Chapter IV.

Remark II1.25 By the definitions (I1.18)

52 I‘((S)Z R(6>26—2m c _ (5U>2(1—6R—2€r) e*22’m ¢

0

(0)?1(8)> R(9)" = (§0)*(1 ~Ben—der)

Both quantities go to zero with § by (I1.17).

The last Theorem allows us to recursively control the “small field parts”. We now
consider the full model.

Theorem I11.26 Set Kp = 2%%¢%%i and K = 2*3e%i. There are constants ©,v9 > 0
such that, for all 6 < %@ and v < vq, the following holds:

Let &1 and Gy be hierarchies for scale & with summits 3 = Qg, and Qo = Qg,. Let
e =2""0 with n > max{depth(&;), depth(S2)}.
Furthermore let Di(ax, B; pih), Dalax, B; pih), bi(ax, B8;0:0) and ba(ax, 8;p:h) be his-
tory complete functions with the following properties

o Fori=1,2, D;(0,0; 0;0) = 0 and

IDille, <1 Dl llg, <27
o The “pure large field parts” D, Q: and Do Qs vanish. On the other hand, by and by
are purely large field. That is, by = by Qs and by = by Qs
o Dy, Dy are invariant under o, — e Pa,, B — €YB, p = (d.,d,%Z,7) —
(6—100—2*, 610&, 6—105*7 ei@g)
Set, fori=1,2,

Ii(a*76> =
Q; —Qes, (a™,B;a",a s. (e;a%,B;a*,a i (™, B; ot * Q.o
= lXé(Qi;Oé,ﬁ)I(@;a*,m(e QoA Ay e, (Sen an AP Ay (o ,ﬁ’ﬂr)>
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where x5(€;; o, B) is the characteristic function introduced in Theorem I1.16. Also set

I(a*, ) = / Ao (6", 6) Li(a®,8) L(6", B)

[0 B) = Y 25 x25(Qei ) Lssar ﬂ)( —Qe (" 853" &) +Ve (550" 556", d)

hierarchies
S for scale 26
(61,62)<6

P by (0, asi i) balag, B ) €€ @) )

where, for each hierarchy & that is preceded by (S1,62) as in Definition II1.1, Dg and
L5 are analytic history complete functions that fulfill
o The “pure large field part”

o of Ds wvanishes. Also,

|De||s < 3Kp (200)1(25) R(20)? + 21O (D |le, + |ID2ls,)
+2"%([| D1l ||, + [|P2l0:ls,)

The “pure small field part” DG‘QG 1s determined by Dy and Do through

oo loe

De|q, 25%6;5<V96;5(6; )i Dilg. Dz\%)

o L is “pure large field” (that is L = L

e ) and fulfills the estimate
S
ILslle < $KL (260) r(20) R(26)° + 2° (|| D1 ls, + ID2ls.)

o Dg and L are invariant under o, — e Pa., B — €98, p = (4., &, 7, 2) —

( —wa ewa e 102 ezéz)

This Theorem allows the construction of I,,(27™0; -, -) for each fixed m, and The-
orem II1.24 provides control of its small field parts. See Propositions I11.32 and III.29,
with n = m, below. The second step in the proof of Theorem II.16 is the comparison of
Ln(27™0; -, ) and I,,41(27(+10; . .), leading to the limit m — oo. To do this, we
compare I,,(2770; -, -) and I, 1(27™tDg; . ) for 1 <n < m.

For the pure small field part the essential comparison step is

Theorem II1.27 Under the hypotheses of Theorem II1.24, assume that there is a second
set Ri(a, B;0), Ralow, B; ) and Ey(ax, B; ), Exlax, B; §) of history complete functions

52



that have similar properties to Rq, Ra, £1,&2 and are close to these functions. Precisely,
we assume that

o Ri and Ry are both bilinear in o, and 8 and fulfill the estimates

IRill2r(5),0m < Kr6Z1(5)2R(6)* e 2™¢

o & and & both have degree at least two both in o, and in B and fulfill the estimates

||<§i||2R(5),2m < K (60)%r(6)* R(6)°
Let
Ras (Vg,é(%; )i Ri+E&1,Ra+ 52) =R+E
be the decomposition of Theorem II1.24. Then
IR — R||2r(26),2m < 2A%
1€ = Ellonas) om < Ae + Ka(200)1(20)* R(20)* (A + (200) R(26)*)

_ 940,10K;

where Ka and

Agr = %(Hle — Rillar(s),2m + | R2 — R2||2R(5),2m>

Ag = %(”gl — &1ll2r(s),2m + ||<§2 - 52||2R(5),2m)

For the full model the essential comparison step is

Theorem II1.28 Under the hypotheses of Theorem II1.26, assume that there is a second

set Di(aw, 5 7). Do, B 350), brlaw, B 7:0) and bolaw, B 5 of history complete
functions such that |Di||s, < 1 and Hf)l <2720, Set

Q16

Ii(a*, B) = Z(|sQi|X5(Qi3 a, B) I(gi;oz*,ﬂ) (e_QGi'i‘VGi(E/Q; )+D; Bl>
I(@.0) = [ dungs)(0".) Tla".6) Lo )
and let

f(a*, 6) _ Z Z£?6| X26(Q6§ a, 6) I(G;a*,,@) (e_QG +Ve(e/2;-) eDs Bl 62 66’6)
hierarchies

&S for scale 26
(61,69)<6
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be its representation as in Theorem III.26. Then
|De — De || < 2Kp £(200)r(20)R(20)% + 2167 (| Dy — Dy|ls, + | D2 — Da2e,)

+2° (|[(D1 = D), |lg, + (D2 = D2)lg, Il s,)
L6 — Ls||s < 3KL €(200)r(20) R(26)* + 2°(|D1 — Dile, + D2 — D2l|s,)

Theorems I11.24 and I11.27 will be proven in Chapter IV. Theorems I11.26 and TI1.28
will be proven in Chapter V.

In the proof of Theorem I1.16, the analysis of the “pure small field part” can be treated
almost independently from the rest. To do this, we define, as in §I1.1 (but now with history
complete functions)

Dayo(g; ax, B) =0
DQ;n—l—l(g; Oy, B) - 97{9;2"8 (VQ;27L6(5§ Tyt ); DQ;n(5§ Tyt ): DQ;n(E; Ty ))

By Remark II1.23

(I11.8)

Daqron(e; ) = Daple; +) o when Q' C Q (I11.9)
Proposition II1.29 There are constants ©,v9 > 0 such that, for all § < O and v < vg,
the following holds for all Q C X :

For each € > 0 and each integer 1 < n < log, g the function Dq.,(e; -) is the sum of a
function Ra.n(e; -) that is bilinear in a, and § and an analytic function Eq.n(c; -) that

has degree at least two both in o, and in B. They fulfill the estimates

[Ren(e: gy om < K (272)71(27) R(2"2)? €727

Hé’g;n(e; . >H2R(2”€),2m < Kg (2" 0)2 1"(2”»3)2 R(2”5)6
Furthermore

P ) amney om < KR 2" 1(e)* R(e)? e

II1.10
[E0im(e5 ) — Earms1(55 lymgn o < 2K (c0)2 (=P RN (L0

Proof: We first prove, by induction on n, the statement of the Proposition but with the
second line of (II1.10) replaced by

Hgﬁ;n(5§ ) - gQ;n—l—l(%; : )HzR(zng)’zm < KE (50)2 I'(€)2 R(€)6

+ Kpel2er—der ( 2(2’“50)2 r(2k5)2 R(2k5)6>
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This induction argument is similar to that of Theorems 1.3 and 1.4 in [BFKT5].
The induction starts with n = 0. Observe that

Rayo(e; ) = Eaole; -) =0
while
Raa(5: )+ Ena (i) = s (Vas (51 )5 0.0)
By Theorem III.24, with ¢ = 5,
H2R(a) 2m < KR 62 r(€)2 R‘(‘E)Q e—2rn ‘
H2R(a) 2m — < Kg (‘EU) (6) (6 0

For the induction step from n to n 4+ 1 we apply Theorems 1I1.24 and II1.27 with
0 =2"¢ ~ ~
R1:R2:Rﬁ;n(€; ',') R1:R2:Rﬁ;n+1(%; '7')
51:52:59;n(€; o) ) 51252:89;714—1(%; ) )
By the inductive hypothesis and Theorem I11.24,

DQ;n+1(€; Oé*,ﬁ) = 9_%(2;2”6 (VQ;2"€<€; ) '); RQ;n<€; ) ')+59;n<5; T ')7
Ron(ei + ) + Eaunlei - -))

has the decomposition
DQ;n+1<€; Qe 5) = RQ;n+1(€; Oy, B) + gﬂ;n+1<€; Ay, 5)

where Rqn+1(¢; - ) and Eqnt1(e; - ) have all of the required properties. Furthermore, by
Theorem II1.27,

HRQ;n+1(€§ ) — Rayn+2(5; HZR(Qn-Ha) 2m — 2HRQ (8 ) = Ramna (5 ')H2R(2”€),2m
S KR 2n+1€2 I'(€)2 R(€)2 e—2rn c

and

Hgﬂ;n—l-l(g; -) = Eama(5; HQR(2n+1a),2m

< Hgﬂ,n( ) Eo, ”‘1'1(%’ ')H2R(2"a),2m

+ KA(QCSU) r( )2 R(2(5>2 (HT\)/Q;n({‘:; ’ ) - RQ;”‘H(%; ’ >H2R(2"€),2m + 5(260) R(25)4>
< |[Eam(e; -) — Eamtr(5; ')HzR(zns),zm
(

+ KA (260)1(20)2R 25)2<KR Ser(2)? R(e)2 e 2™¢ + £(200) R(26)4>
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< Hgﬂ;n(E; ) = Eainta (5 ')HzR(zns),zm

+ Ka € (260)2 1(26)2 R(26)? (%KR r(e)2R(e)* St 4 R(25)4)

< [[Eaines +) = Eama(5; ')HzR(zna),zm
+ Ka e (200)21(26)2 R(26)? (# + R(25)4>
< Kg (e0)?1(e)? R(e)® + K gl2ender <Z(2k60)2 r(2%¢)? R(2k6)6)

k=1
+ K etm2em4e (260)2 1(26)% R(20)°

n+1
= Kg (e0)*1(e)*R(g)® + K gt 2en 4 < 2(2’“50)2 r(2F¢)? R(2k5)6)
k=1

For the fourth inequality, we used that, by (F.4.b) and Hypothesis F.7.ii,

1 2 2 g7 2me 1 1 1—2er—4e, e~2m¢ 1
§KRT(5) R(f‘:) o = T2eR Tder §KRU ! ) < Z2eR Tder

This completes the induction argument.

It remains only to prove that (II1.11) implies the second line of (II1.10). Summing the
geometric series in (II1.11) gives

[€am(es +) = Eaint1(55 ) |lam(ane) om

2—6er—8e;, Ka 1—2er—4e; (on 2—6er —8e;
S KE (60) R + 1—27(276€R*8€r) 19 R (2 60) R

2—6er —8e 217 10K i 1—2er —4ey (gn\2—6er —8ey
= (EU) R : <KE + 1_27(27661’{7%61-)6 R r(2 ) R !

217610Kj

S (60)2—66R—8erKE (1 + e e (2”6)1_2€R—4€r)

S 2KE(EU)2_66R_Ser

by (I1.17) and Hypothesis F.7.i. |

Corollary II1.30 For each subset € of X

'Dgﬁ(a*,ﬁ) = lim ,DQ’m<2_m9; Oz*,ﬁ)

m— 00

existsV). It has a decomposition

Doy =Rae+Eae

where

(1) The convergence is with respect to the norm || - ll2r (6),2m-
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o Rap(ax, B) is bilinear in a, and B and fulfills the estimate
IR0l ap 9y om < ErO?1(0)*R(6)% e
o Eap(as, B) has degree at least two both in a, and in 5 and fulfills the estimate

[€0:0ll gy < K (602 5(0)° ROO)®

Proof: As

—2m ¢

27162 r(€)2 R(6)2 e—2rnc — 2”(60)2_2€R_45r e —

(e0)?1(e)? R(€)® = (ep)? Oen—8er

and the exponents 2 — 2er — 4e, and 2 — 6er — 8e, are strictly positive, Proposition I11.29,

with n = m, implies that the limits

lim Ra.m(2776; -) lim o, (2776; -)

m— o0 m— o0

exist. -

We now describe the construction of the functions Dg.g, Bg and Lg of Theorem I1.16
from Theorems I11.24, I11.26, 111.27 and II1.28.

In each of the four theorems mentioned above we assert the existence of constants g
and © such that for all interactions and “times” bounded by vy resp. O, the conclusions
are true. Now choose vy and © as the smallest of the constants from the three theorems.

Fix an interaction v obeying Hypothesis 11.14. For each 0 < ¢ < ©/2 and each
natural number 1 <n <log, % define, for each o and 8 obeying |a(x)], |3(x)| < R(e) for
all x € X, the effective density I (e; a*, ) recursively by

I;(e; o*, B) = 22X /duR(s)(¢*,¢) Co(aF, @) ele i)D", 5(2)8)
e—c{a"d,va”d)+(¢"B,v¢"B)) Ce(¢*,ﬁ)

L a's8) = [ dino(@.6) L 0 0) e 07,9
(I11.12)
with the Z. of Lemma II.7.
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Remark II1.31 For each n > 1 we have

I} (50", B)

=22 [ [dure(atia) T [Clar—eiar) elr-cd@ar)eoorvarar))
T€eZN(0,27¢) T€eZN(0,27¢]

with g = o and agn. = . Comparing this with (I.3), we see that
I(e:0%, 8)]_y = 22" ¥ L (z107, B)
In §IIL.7, we shall prove that

Iy(a*,B) = lim I, (27™0;a",p

m— o0

)‘5:1

exists. Using the initial condition in Lemma IL.7, it will then follow that Iy(a*, ) =
lim [,,(27™0;a*, 3) also exists and
m—00

Io(a™, B) = Ig(a”, B)

Theorem II1.26 allows us to recursively construct a representation of I (e; -) similar
to that of Theorem II.16. To do so, fix v < vy and an interaction v obeying Hypothesis
I1.14. In the following, we use the constants Kp and K of Theorem III.26.

Proposition 111.32 For each ¢, sufficiently small, and integer n > 0 with 2" < O,
the effective density I, (e;a*, ) has, for all a, B obeying sup |a(x)], sup |5(x)| < R(e), a
X xeX

x€
representation

L anf)= > 28 xn(Qs; a,8)

S hierarchy
for scale 2Me
of depth at most n

Tisiar ) (e—Qe(a*,ﬂ;a*,&)+ve(a;a*,ﬂ;&*,&) Do (550" B ) +Le (507 ,6: ) )
Here, for each € > 0, sufficiently small, and hierarchy & for scale 2" < O, with depth at
mostn, Ds(e; o, B; p) and Ls(e; o, B; p) are analytic functions that have the following
properties
o The “pure large field part of Dg(e; - ) vanishes, that is Ds
field part”

qe = 0. The “pure small
S



as in (II1.8) and Proposition II1.29. Also
|Ds(s; -)||lg < Kp (2"e0)r(2") R(2"e)?
o The “pure large field part” L has the decomposition

Le(g; o, By p) = > Le(T, & o, B;p)

decimation intervals J
for [0,2"¢] of length

at least 27 —depth(&)+1_

where, for each decimation interval J in the sum, the function L& (T, ¢€; o, B;0) is
an analytic function of its arguments that
- is “large field with respect to the interval J” (that is, it depends only on val-
ues of the fields at points x € X \ Qg(J) and depends only on the variables
Qar, Qry Zur, 2p with T € J N (279P(S)g) 7.
« and fulfills the estimate

IL6(T e - )lle < Krdor(d)R(6)°

where § 1is the length of the time interval J .
o The functions Ds and L&(J) are all history complete and invariant under o, —
e Pa,, B— €8, p=(d,,a, 7., 7) — (e7¥ 0 W0
Furthermore, for each hierarchy & for scale 2™¢, of depth at most n, and each decimation
interval J C [0,2"¢], of length at least gn—depth(&)+1,

Ay, ea, e 7, €92

H,D6<57 ) —'DG(%’ )HG < (520)1_36R_4er

HEG(jw?; . ) — ﬁ@(j, %’ . )HG < 210(620)1—3eR—4er

Proof of Proposition II1.32 from Theorems 111.24, IT1.26, I11.27 and IT1.28: We
introduce, in addition to the effective densities I7, I5, --- of (II1.12), the initial effective

density
I3 o, B) = ZX \r(o) (X, @)xr(e) (X, B)Ce(a*, B) @I (EB) gela” B val )

where ygr (X, «) is the characteristic function which restricts |a(x)| < R for each x € X.
Then the recursion relation of (II1.12) still holds for the step from n =0 to n = 1.

We prove the Proposition by induction on n, starting with n = 0. There is only a
single hierarchy & of scale € and depth 0, namely that with Qg = X. For e sufficiently

small, the initial effective density Iy may also be written
(e o, B) = 21X (X a, B) ele 7B gela” B va”h)
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because |[Va(b)|,|VA(b)| < 2R(e) < R/(e) for all b € X*. Tt satisfies the conclusions of the
Proposition, with Dg(e) = L& (€) = 0 and Z(g;q+,5) the identity operator. Since Qg = X,
we have Lg (%) = 0 and, in the notation of Proposition III.29,
De(5) = Dx1(5) = Rxa(5) +€xa(3)
so that
|Ds(e) — De(5)lls = ||Ps(5) HZR(E) o < KR e21(e)*R(e)%e 2™ + K (ev)?r(e)*R(e)°
— Kp (60)2 2ep —4de, e~ 2m¢
S (EQU)I—BeR—4er
by (F.6.a) and (F.4.b), if € is small enough.
For the induction step from n to n+1, set 6 = 2"¢. By definition and the induction

+KE (60)2 6er —8e;

hypothesis
Do)=Y [dine(¢0) Ley(e a'.6) Teues 67, 5)
& 1,69 hierarchies
for scale & and
depth at most n
where

Is, (55 07, B) = 275 \5(Qe,; @, B)

T, a- B)<6—Qei<a*,ﬁ;a*,&)wei(s;a*,ﬁ;a*,&)wei(s;a*,ﬁ;ﬁr)eﬁei(a;a*,ﬁ;m>
By the induction hypothesis, Remark I11.16, Proposition I11.29, (F.4.b) and (F.6.a),
|Ds, (e < Kp(60)r(6)R(6)> <1

IPe (&

) HG

‘Q&, & = HDQC n HzR(é) 2m

HR% n >H2R(5) 2rn+HgQ‘b n HQR((S) 2m
< Kpd*r(6)’R(0)? e ™" + Kpg (50) r(8)* R(4)°
<271"K) (260) r(20) R(20)® < 272

Hence, for each pair of hierarchies &; and G5, we may apply Theorem II1.26 to the integral

[ dure) (9%, 9) Is, (5; @, ¢) Is, (&5 ¢*, 8). We apply it with D; = De, and b; = e“i . It
gives the representation

M o — E § Q6| .
In—l—l(‘g? « 75) - ZQ(S X25(QG¢7 aaﬁ)
& 1,69 hierarchies hierarchies &
for scale 6§ and for scale 26

depth at most n with (61,62)<6

Tisian9) (e—Qe(a*,ﬁ;&*,&>+ve(a;a*,ﬁ;(sz*mwe(e;a*,ﬁ;p?)

oL (e a™ B f)+Le, (60" a5 p)+Le, (505,85 pFr))
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The resulting functions Dg fulfill Dg(e; -)

=0
Qg )

De(s: g, = Raes (Vﬂb 5(¢5 )i Dag, (e ).+ Pae,nle: ')\QG>
= 9_%(26;5(‘/96;5(5; )7 DQg,n(g; ')7 DQg,n(g; ))

= Dﬂe,n+1(€; ' )
by the inductive hypothesis, (II1.9) and (II1.8), and

[Ds (e )|l < $Kp (200)1(26) R(26)° + 216 ™) (| D, (&5 - )lls, + [Ds. (55 -)llss)
+ 2" ([ Ps. (5 o, lls, + [Ps2 (e las, [ls,)
< 1Kp (200) r(20) R(20) + 2™ @ Kp (§0) r(6) R(6)* + 1 Kp (20v) r(26) R(20)?

< Kp (200)1(26) R(26)°

by (F.4.c). The resulting functions L5 fulfill £y = L and

ILslle < 3K1(200)r(20) R(20)° +28(H171||61+||Dz!|62)
< 1K (200)r(26) R(26)° + 2°Kp (6 0) r(6) R(6)®
< K1,(260) r(26) R(26)3

since Kj > 23K p. If J is a decimation interval for &, we set
Le, (T, &5 o, as; 1) if 7 Cl0,0]
‘CG(j?g; a*?ﬁ;ﬁ): £62<u7_5,5; 06*575;ﬁr) lij[é,Q(S]
Lo(e: 0, 8.7) it 7 = [0,20]
Now let &, &1 and &5 be hierarchies with (&1, &2) < &. By the induction hypothesis
and Proposition II1.29,
1—3er—4e,
IPs.(e5 ) = Do, (5: )|, < (€70)

1Pe.(e5 oy, = Pei(55 o, ls, < 1Ras,mE: ) = Rae, (55 )llor(s).2m
+ Hgﬁeim &)~ gﬂeim(%; ')HQR((S),zm
< Kredr(e)?R(e)?e ™™ + 2K (ev)?1(e)? R(e)°®
= KR (cv )1 2er—4de, e 2™ ¢ e L 9K, (50)2 6er —8e;
< 3K (e 0)2 ben—se
if € is small enough. We apply Theorem II1.28 with D; = Dg,(¢; - ), D; = Dgi(%; -),
b; = efei() and b, = efei(5) Tt gives
|De(e; ) — De (5 - )|l < 3K D £(200)r(26)R(26)® + 27 ™) ()
1917 (3K g (£0)2~6en—8ex)
= 1K, (26)1-3er—der o pl=Ser—der | 917,—me(d) (620)
4 3.2V pl-den—der (o2 p)l-3er—de,

< (620) 1—3er—4e,

1—3er—4e,

1—3er—4ey
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by (F.4.c) and (F.6.a), if € is small enough, and

1£6([0,28], 25 -) — £&(10,2],5; )| < LKL £(260) 1(26) R(26)° + 2 (%) 72"
< 910 (620)1—36R—4er

if ¢ is small enough.

Corollary II1.33 Let S be a hierarchy of scale 8. Then the limit
DG(O‘*vﬁ; ﬁj = n}E;HOODG,m(2_m07 O‘*:B; ﬁ)

exists? . Its “pure large field part” vanishes, that is De

qe = 0. The “pure small field
S

part”
Dg ‘QG = Dae .0

as in Corollary II1.30. Also
|Ps He < Kp (00)1(0)R(6)?
For each decimation interval J in [0, 0], the limit

L&(T;ax,B;p) = im L&m(T,27™0; ax, B; )

exists®) . The function L& (T; o, B3 ) is an analytic function of its arguments that
. is “large field with respect to the interval J” (that is, it depends only on values of the
fields at points x € X \ Qs(J) and depends only on the variables qur, try Zir, Zr
with T € J N (2-dePth(S) gy 7.
- and fulfills the estimate

I£6(T5 - lle < Kz 8 [lvllv(8) R(5)°

where & s the length of the time interval J .

The functions Dg and Ls(J) are all history complete and invariant under o, — e av,,

B— €3, p=(d.,a,z, 2) = (e7?a,,efd, ez, 7).

The remaining ¢ dependent term in the representation of Proposition II1.32 is

Ve (g; a*, B; @*,a). We now show that its limit as ¢ tends to zero is the interaction

)
Ve (ax, B; ay, a) = —/ dr (T (15 o, 0 )ls (15 @, ), v Tus (75 o, @)s (75 &, B))
0

This agrees with (I1.11), though of course v now implicitly depends on b.

(2) The convergence is with respect to the norm || - ||g.
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Lemma 111.34 Let G be a hierarchy for scale 0. Then, for each o, 3,a*, a,

lim Ve (27™0; au, B; 0y, @) = Ve (o, B; iy, d)

m—0o0

The convergence is uniform on compact sets. Furthermore

Ve (s, B A, @) ‘QG = Vae (s, B)
where Vo.g(ax, B) is defined as in (I1.4), but with history fields included.

Proof: We use the shorthand notations
[ Tus(r; o, dy) if 7€ (0,0) _ [Pe(r;a,p) ifT€(0,0)
7”_{04*0:@* if7=0 } %_{a@:ﬁ it =9 }
Set ¢ = 2760 and write
Vs(a™, pB; @, d) — Vs(e; o, B; a*, @)

0
= - / AT (YerVrs VYar¥r) +6 D (YarVrtes VerVrte)
0 TE€ZNI[0,0)

g
= Z / dt [<%<777+57 VYarYrde) = (Ver+tVrts U’Y*T—HVT-HH
TEEZNI0,0) 0
Consequently
Ve(a*, 8; @, @) — Vs(e; o, §; @, d)|

<0 SuI[) ‘ (VerYrdes VYsrVrte) = (Yer+tVrtts U Var+tVr+t) ‘
TEEZN[0,0)
0<t<e

<90 _sup {\ (Ver = Yart)Vr4er VVarVrte) | + | (et (Vrge — Yrt) s VVarVrte) |
OStS;

H (Yar+tVrtts O (Ver — YVar+t)Vr+e) ‘H <’7*r+t%+t, U Yartt(Vrte — %+t)> \}
We bound the first term. The bounds on the remaining three terms are virtually identical.
For all T € eN0,0),
} ((Var — Yar4t)Vr4er UV YsrVrre) } = } <([](t> - b]7*7)77+87 U'Y*T’YT+E> ‘
< K tefS? X esly T ’
< Kjte™ ol [X] max |y.r (x)|” max 7. (x)]
by Lemmas E.14 and III.21.ii, and

T < Ka =2 K; T/
2@?’7 +e(x)| < + 5e max max o (%)

_ K;
Elea)}é‘W*T(X)‘ < Ko =2 + betd r/g%%ie) xneliléc/ ‘oz*T/(X)‘

by Lemma E.8. Hence
Ve(ar,8; a,d) ~ Ve(e: a*, 5 6%, @)| < (402 o] |X| K2K2,) <

clearly converges to zero, uniformly on compacta, as ¢ — 0. [ |
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I11.7 Bounds on the Large Field Integral Operator

In this section we bound the large field integral operators Z(g,~,g) when the history
field is identically one. So we set h = 1 throughout this section. Recall that Z(g;q~ 3y and
its absolute value |Z(s;q+,5)| were defined in Definition II.8.

Proposition I11.32 gives a representation for I (27™6; o*, B) that is analogous to the
representation for Iy(a*, 5) = W}gnoo I (270; ", B)‘bzl given in our main Theorem II1.16.
To take the limit and prove Theorem I1.16, we shall apply the dominated convergence
theorem to the sum over hierarchies in Proposition I11.32. To do so, we apply a result,
Theorem II1.35, below, that is slightly more general than Theorem II.18.

Fix 0 <0 < 0. Let m € IN and set ¢ = 27™6. Assume that a and [ obey the small
field conditions x4 (€2; o, 8) = 1.

Theorem II1.35 For any bounded measurable function f(a, B;p) and subset Q C X,

m
e~ bl = 3IBI% ~Rezsr(2i0sf) 30 20§ e |7 o] Re(-QetVale) |

k=1 hierarchies &
for scale 6

of depth k

with Qg=Q

1 c
< om0 '[ I vemr 1+|51(X)I3] sup | f|
xeNe

with the Regs (2 «, B) of Definition 11.17 and
we= > 3T

decimation

intervals

JClo,6]

The small factors that lead to Theorem II1.35 arise from three sources.

o For each decimation interval [J, there is a large positive contribution to the main
quadratic part of the action, Qs (a*, 5; @*,d), for each point of the “large field sets
of the first kind” P, (J), P5(J) and Q(J) that were introduced in the Definition II.4
of a hierarchy. This is made precise in Proposition I11.36, below.

o For each decimation interval [J, there is a large negative contribution to the main
quartic part of the action, Vg(e;a*, 5; @*, @), for each point of the “large field sets
of the first kind” P, (J) and Pg(J), that were introduced in the Definition II.4 of a
hierarchy. This is made precise in Proposition I11.37, below.

o For each decimation interval J of length 2s, the integral operator Z(7 . q*,g), Of

Definition IL.8, includes an integral

/ dz.r (x)Adz, (%) G_Z*T(X)ZT (x)
271
Cs(x;0%,8)
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for each point x in the “large field set of the second kind” R(J). Proposition I11.38,
below, shows that we may choose the domain of integration Cs(x; a*, 8) in such a way
that Re z.,(x)z-(x) is large on the entire surface Cs(x; o, ).
At the end of this section, we show how Theorem II1.35 is deduced from these three propo-
sitions, which, in turn, will be proven in §VI. The three propositions involve a constant
Cp > 0, that is defined in Lemma F.5 and depends only on h and the constants of Hy-
pothesis 11.14, (I1.18), (I1.19) and (I1.20). For these three propositions, we fix an integer
0 <n <m and a hierarchy & for scale § = 2"¢ of depth at most n and write

a* ifr=0 « ifr=0
Vir = {F*g(T; a*, a*) ifTE(O,(S)} Vr = {Fg(T; a, B) ifTe(O,é)}
B ifr=9 I6; ifr=9
Proposition I11.36
~Re [ 4llall® + Qs(a”, 8 &, @) + 1)
< =0 > (TN + 1P + 1B} = 5 D I = vrselReune .

decimation 7€(0,6)
JC[O,Q]
2
+ 3 YT + e 1] Y [l liRe + IrsrllRe] + RegSr(9; e, B)
v 7€(0,9]
JC[O,é]

where Reg( ) (s «, B) is given in Definition I1.17 and, for each decimation interval J,
P(J)={beP(T)] d(b, AT T)UNT ) > 2¢(|TF) }
Py(7) = {bePs(T) [ d(b, AT UATH)) > 2(177)) }
Q) ={x€Q(J) |d(x, A(J‘)C UATN)) > 2(]7%)) }

Proposition IT1.37

Re [Vs (g5 0", B; @, @) — Reglx(a, B)]
< Y (TP{IBu] + 1B}

decimation
intervals

J Clo,4]
1 * * 1 *
— 3 e vy — D (Ve v YY)
7€[0,0) 7€(0,6]
+ HAD) T+ D0 fallvie = vl
8 16 | Ver = Vr4e ASUAS
decimation 7€[0.6)
J Clo,6]
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where Reggl}(oz, B) is given in Definition 11.17 and, for each decimation interval J,

71) }
71) }

Po(J)={xeP(T) | dx, AT ) UAMTT) > 2¢(
Ps(J)={xePs(J) | d(x, AT ) UAT)) > 2¢(

N N

Proposition I11.38 Let J be a decimation interval for & with length 2s and centre T, and
x € A(J). We may choose the surface Cs(x;a*, 8) of Definition 1.8 so that the following
holds. Assume that a and 8 are such that the characteristic functions x25(A(J); «, B) and
X7 (e, ar, B) are nonzero. Then

(i) Cs(x;0*,8) C { (24, 2) € C? ‘ |2, 2] < 2r(s) }.
(ii) For all (z, 2) € Cs(x;a*, ),

Re (z,2) > Cpr(s)?

(iii) The area of Cs(x;a*, 3) is bounded by 407 r(s)?.

Proof of Theorem II1.35: We still fix a hierarchy & for scale 6 = 2"¢. For bounding

the “absolute value” |Zg| = |Z(g;a+ )|, We introduce the auxiliary integral operator

Is= ]I II Zoieen

k:O’ . 7depth(g) dc;:[a:li?:r]igt[gfg?ls

of length 2— ks

where f( Jiax,B) 18 constructed by replacing

/ dZ*T(x2)/\.dZT (x) e—Z*‘r(x)Z‘r (x) by / dZ*T(ngdZT (x)
CS(XKX*:B) CS(X;O‘*76)

in the formula for Z( 7,,+ g) in Definition I1.8. Then,

Zs| = Ts 11 [[ e fesr=& (I11.13.a)

decimation intervals
XER
J C[0,5] with centre T € (j)

By Proposition III.38,

H H e—ReZ*T(X)ZT(X) S H e_CL|R(j)|r(%‘j|)2 (IIIlgb)
deci i ir rval, decir ion
SR XER() s

on the domain of integration.
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Lemma III1.39
Re| = Lllal? - Qa(a”, 8 @) = §BI2 + Ve (50", 8; &, @)| ~ Regs (% a, B)
<-C, > (1 TD{IQWD + BT + 1BAT) | + [Pa(T)] + | Ps(T)|}

decimation
intervals

J Clo,d]
1
+ Y 599
decimation
intervals
J Clo,4]
Proof: We assume that ¢ is sufficiently small that ‘es“ — 1‘ , which implies that

le# — 1| < 2¢|u|. It suffices to apply Propositions II1.36 and II1.37 together with

—devr 3 lielde + 20e =11 Y Il

7€(0,6] 7€(0,6]

= ten Y {60l -8 o)

T€(0,8] x€Q°
ep 2 ep_
=—dev ) ) {[\% —al 1'} —16|e€2v31|2}
7€(0,8] x€Q¢°

<dev; Y Y lZolE 1'2 = 45 2200 < 1652 102°)
T€(0,8] x€Qe°

2
< 64%5026“_1|QC| by Hypothesis 11.14
< 11Q°] by Hypothesis F.7.i and the fact that e, > 3

and

* 65#_12 c ¢
—fevr D Inverlfe + 2t =11 30 Ierllfe < 46 b0 < glee)
T€[0,4) 7€[0,0)

Consequently, by (I11.13) and Lemma II1.39,
e sllel?=3lIBII” ;—Regs 7 (0,8) pwe | T(iam | €86V @D | | < O T | f| (TTL14)

where

L®)=Cr > xTD}IQD + |PAT) + [B5T)] + [PalD)] + 1Pa(D)] + |R(T) |

decimation
intervals

J Cl0,6]

- ) 109

decimation
intervals

J C[0,d]
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The quantity L(S) is defined in terms of the number of points at which there are
violations of the various small field conditions (the sets Q(J), etc.). Lemma I11.40, which
is proven in §VI, provides a lower bound for L(&) purely in terms of the large field sets

Q(T)e.
Lemma I11.40 We have

CL > (1 TDH{IQWD) + BT + [BAT)| + [Pa )] + [Bs(T)] + [R(T)|}

decimation
intervals

J Cl0,d]

>0S)+ Y 12T)

decimation
intervals

J C[0,d]

where

(s)y=Y I 1)

decimation
intervals

Jclo,d]

Applying (I11.14) and Lemma I11.40, we have
e 3 llal®=3lIBII” ;—Regs 7 (20,8) pwe Lo )| RV || < o UO) | f|  (ITL15)

Theorem II1.35 is an immediate consequence of (II1.15) and

Proposition II1.41 For any (small field) subset Q@ C X, any 0 < n < m, and any
bounded function f(«a, B;p),

N _ — _ 1 n c
Z e e~ T | f| < e~ 1O I[ H 1+|a1(x)|3 1+|ﬁ1(x)|3 sup | f|

hierarchies & xeQe
for scale 2Me
with Qg = and

0<depth(&)<n
where
N — ¢(2n—depth(S)+1o) i depth(S) > 0
“7 o if depth(&) =0

Here 2"~4ePth(&)+1¢ s the length of the shortest decimation interval J with Qe (J) # X.
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Proof: The proof is by induction on n. The case n = 0 is trivial as is the case that
Q° = 0.

Assume that the statement holds for some 0 < n < m and that Q¢ # ). Set § = 2"¢. Given
subsets €21, {22, A of X containing 2 and hierarchies &, G4 for scale § with Qg, = ; and
Qs, = Q9, a hierarchy & with Ag = A, Qs = Q and (&4, 62) < & is specified by the sets

Pa,PﬁcglﬁQgﬂAc PO/‘,PéC(QlﬁngAcyk QC(leQQ)*mAC
and RCANQ°

See Definition I1.4. There are at most

22|le§22mAC| 24D|Q10Q20AC| 22|Q{mQ;mAC| 2|AmQC| < e(5—|—4D)|QC| (III.16)

(where D is the dimension of space) such choices. For each hierarchy & as above (see
Definition I1.8 and Appendix A)

:2.6|f| = < H / dZé(X)27i-\ZdZ§(X) _ZS(X)*Z(;(X) )

xEA\(RUQ) |25 (x) | <1(8)

271
xeRr v Cs(x;a*,B)
( H / W) X[0,25] (Oé,a/(;,ﬁ)
xex\A Vlos (¥)|<R(e)

Z<|$Ql\Q| ZJSQ?\Q' j-elj—Gz sup | f|

R C C C C
< (407r(8)%) ™ XRr(5) (1 N A, @) xr26) (AN Q% ) xr(5) (22 N A, B)XRr(2s) (AN QY B)
( 1T / —dOLS(X)Q*;\Z'dOLS(X))XR((s) (% UQ2) NAS a5) Is,Zs, sup|f]
rexa JasGoI<R(e)
(I11.17)

Here we used Lemma A.4.a, which ensures that the integral over as(x) is restricted to
las(x)| < R(e). For the inequality, we used that [ des () Nd25(x) o—25(x)"25(x) = 1, that

2me
the area of Cs(x;a*, 3) is at most 407r(5)? (by Lemma I11.38.iii), that Z5 < 1, and the
definition of x[o,24) (a, as, B) (given in Appendix A).

Since

_ _ o _ max {Ag,, A, } if depth(&) > 1
Xe — L&) = —£(28)]Q°)— (&4 )+ { me ( )

—5(25)[\96\—1] + s, — UG + Ae, — U(S2)
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(IT1.16), (II1.17) and the induction hypothesis give that

Z Z e)\g —E(G):z-6|f|

S1,69 S
g, =01 (61,62)<6
Qa=0, Ag=A
962:92 S S

< ¢ 120)[192°]-1] o (5+4p) || (40m(5)2)\1%\

Xr(s) (21 MAS, @) xr(2s) (AN Q% @) xres) (22 VA, B)xres) (AN QY B)

( H / W) XR(é)((91UQ2>mAC,O15)
xeX\A 7 los(¥)|<R(e)

{ Z 6>\Gl_£(61)-’261}{ Z e>“52_£(62)i62} sup |f|
Qefiﬂl QGZEQZ

< = (20)(|92°|-1] ,(5+4D) |2°] [5+2In(8)]|°

Xr(5) (11 N A @) xRr(25) (A N Q% ) xr(5) (L2 NAS, B)Xr(26) (A N Q°, B)
< H / w> XR(5) ((Ql U Q2> N AC,(J!(;)

ex\A 7 las (I <R(E)

o~ 149195 [

1 1 —12(8)|95] 1 1
1] =ror 1+|a5<x>|3} e [ I weieor 1+IB(X)I3} sup ||
x€Qg x€0S

(IT1.18)

For any t > 1,

(141)° 8t In8+3Int 1
xt(a) < [l < t]al® <e al®

which yields the bound
c c 1 c 1
Xe(5) (0 NA% a)xres (AN Q%) [] masr < xre (@02 0) [ mawmr

x€Q] x€0¢
[In8+31nR(6)] |Q°] 1
=¢ I wror
xee
Similarly
Xr(s)(Q2 N A, B)xres) (AN Q% B) ] THReF < lns+3m RO 2] T N
x€Qg xeQe

To bound the a; integrals, we use

dos(x)* Ndas (x c
( 11 /I ol pdesl )) xr@) (QU2) NA%as) ] i 1 e
x€Ac

s (x)|<R(e)

x€Qg x€Qs
_dPas(x)
< I+ N
- T+[as(x)[®
XE(QlﬁQ )C xEQlﬂQQﬂAC |O£5(X)|<R(5)
< 31(Q21N0Q2)°| R(§)2/22N22nA°]

< (lIn3+2InR(6)] [A%]

70



Inserting the last estimates into (I11.18) gives

Z e)\g—ﬁ(G):z-6|f|

&
Qg=Q, Ag=A
Qg (10,6)=91
Qg ([6,25])=00

< 6—8(25)[|QC|—1]6(5—|—4D) |Qc|e[5+21n r(9)]1Q°]

62[1r1 8+31nR(4)] |Q° e[ln 34+21nR(9)] |A€

" sup |f]

| 1 1
H I+]a(x)]3 1+|8(x)[?
x€eNe

< ¢ 3420)|2°] [16+4D+10 I R(9)] [2°

1 1
1 s e swlf]
xeQe°

Summing over the subsets f, 5, A¢ C Q°,

Z e,\e—z(e)j6|f| < o~ 34(20)9°] [19+4D+10 I R(8)] [92°] H 1+|O}(x)|3 1+|51(x)|3 sup ||

966:0 XGQC
—1p26)|0° 1 1
< e 1R H P P SUP ]
xee
by (F.6.d).

I11.8 Proof of Theorems I1.16 and I1.18

As we saw in Remark III.31, it suffices, for the proof of Theorems II.16, to prove

the convergence of I, (2_m9; : ) b

e =2""0 and n = m,

I;@(Q—mg; ., B) = Z Zéme(oz*,j(9)5>|Q+Vg,e(€;a*ﬁ)-i—"DQ,m(E;a*ﬁ) xo(Q; o, B)
QCX

Z L(&;0+,8) (e—Qg“(a*,,B;&*,d)+vg“(s;a*,ﬁ;a*,a)

S hierarchy - . - .
for scale 6 eBg(&;Ot ,B;p[)-i-ﬁg(a;oz ,6;p[)
depth(&)<m
with Qg=0Q

_, to the desired limit. By Proposition III.32, with

e=2—mf

(I11.19)

where
& (0", B 6, d) = Qs (0, B; &, @) + (o, 1(0)8)| g,

Ve© (e af, B; d%,d) = Ve(e; a7, f; @%,d) — Vag a(g a7, B)
Bs(e; o, B; p) = De(e; o, B; ) — Dag,m(e; o, )
with the Vo ¢(e; - ) of Definition II1.8.ii and the Dq ,,(e; - ) of (IIL.8).
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By (I1.4) and Corollary II1.30, for any fixed Q C X,

Va,e(27™0;0",8)+Da,m (27 ™0;0",8) XO(Q; Oz,ﬁ) eVao(a”.8)+Daqo(a”,p)

(IT1.20)

lim X@(Qﬂ «, 5)6
m—00

uniformly in « and . Fix any hierarchy & for scale 6 with Qg = () and set
Vées(a*aﬁ; 0_2*70_2) = VG(O‘*aﬁ; 0_2*70_2) - VQ@,G(Q*aﬁ)
Bs(a*, B; p) = Ds (™, B; p) — Dag,e(a”, B)
By Lemma II1.34 and Corollary II1.33,

reso—mpg. k Q. ok = _(o—mp. o *k Q. = _(o—mp. o * Q. =
XO(Q; a, /8) ev(S (2 eva 7/87a 7a)68“.‘!(2 07a 757p)+£“.‘!(2 eva 757p)

converges as 1m — 0O to

xo (% a, B) Ve (a”,B;a%,d) Be (a”,B; p)+Le (a5 p)

uniformly for g in the domain of integration of Z(s,q+ gy and (a, 8) in the support of
x0(§%; o, 3). By Remark III.11, the domain of integration for 7o~ gy is compact. Con-
sequently, as QF?° is a polynomial,

lim x6(Q; @, ) Lis;ax,8)

(G—Qg“(a*,ﬁ;o‘z*,&)+vg“(2*’"e;a*,ﬁ;&*m
m—00
666(2*’”0;a*,ﬂ;m+ce(2*me;a*,ﬁ;pﬁ)>
(II1.21)
= xo(¢% @, B) L(e;ax,8) (e_Q%“(a*,ﬁ;&*,&)Jrvé”(a*ﬁ;&*@)

eBe(a*ﬁ;pT)-i-ﬁe(a*,ﬁ;pT))

uniformly for (a, ) in the support of x¢(£2; o, 3).
By (II1.20) and (II1.21), the (2, &) term on the right hand side of (II1.19) converges

to

Zéme(a*,j(t‘))B)|Q+VQ,9(C¥*75)+DQ»9(O‘*’B) xo(Q; o, B)

L(&:ax.p) (e‘%”m*,ﬁ; & @) HVE (0" 8: 6" &) Be (o B p7>+c6<a*,/3;p7>>

as m — oo. Setting h = 1 gives the (2, &) term on the right hand side of the representation
of Ip(a*,3) in Theorem I1.16. The properties and estimates of the various functions in
Theorem II1.16 follow from Corollaries I11.30 and I11.33. It remains to prove the convergence
of the sum over €2 and &.

Recall that X is a finite set. We saw in Remark I1.6 that, for any () # Q C X, the
corridor condition in the definition of a hierarchy ensures that there are only finitely many
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hierarchies & with Qg = Q. If Q = 0, then QE° = Qs, V&*® = Vs and Bs = Dg = 0.

Therefore it suffices to prove the convergence, as m — oo, of

Z fk,m<a*7 B)
k=1

where

Fem(@® 8) = 3 Ty (e 00 0T MVe 0000100 Lotz 0507 510 )|

S hierarchy

h=1
for scale 6
depth(&)=k
with Qg =0

We already know the convergence, for each fixed &, of Fy, ,,(a*, 8) as m — oo. By Theorem
I11.35 and Lemma II1.42, below,

Fem(a, B)] < bl +3181E g—2710)

As this bound is summable in k, the dominated convergence theorem gives the desired

limit. This completes the proof of Theorems II.16. [ |

Lemma I11.42 Let G be a hierarchy for scale 8. Then, on the domain of integration for
IG;

|Bs| + |Ls| < we

where ws was defined in Theorem III.35.

Proof: Let ¢ = 2-9Pth(&)g  On the domain of integration,

o7 (x)] < min{re - (%), fre (%)} [ax)| <reox)  [BX)] < rep(x)
for all 7 € eZ N (0,0) and x € X. By Proposition I11.32 and [BFKT4, Lemma B.1],

‘86‘ < KdKD (90) 3 }Q ‘
Le] < D) KdKL(U\U)r(UDR(UD?’ 26 (T)°]

decimation
intervals

Jclo,6]

where Kg = supyex Y yex e~4*¥) The result now follows by (F.6.a). [ |
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Proof of Theorem I1.18: Set h = 1 and let f be any bounded measurable function. First
consider any fixed hierarchy & for scale § with Qs = 2. By Remark III.11, the domain of
integration for the large field integral operator ‘I(G;a*ﬁ)‘ is compact. By Lemma I11.34,
Ve (270; ., B; Ay, d) converges uniformly on this domain to

VG(O‘MB; 0_2*70_2) = VQ;@(Oéwﬁ)) + Vées(awﬁ; 0_2*70_2)
as m — co. Consequently,

lim |Z(gan 6| €tV 1]

m—0o0

fl

— eRe((a*,j(Q)(9)5>+Vg;9(a*,B)) I(G;oz*,ﬁ)} eRe(_QTGES_H;rGeS

For any natural number k, there are only finitely many hierarchies for scale 6 of depth k.
So, by Theorem II1.35,

ko
e~ sllall’=31181I” ;~Regs 7 (Q,8) Zg(f’““@)

k=1
Z Jar eRe((a*,j(ﬂ)(e)m'i‘vﬂ;f)(a*75))}I(G;a

hierarchies &

for scale 6
of depth k
with Qg =0Q

| R R E |

1 c
< # O T e rar) sup ]
xee

for all kg € IN. As all terms on the left hand side are nonnegative,

=310’ =381 (Re (a" () (0)8)+Vaaso (e1s.8)) o ~Regs r (icx, )

o
k41 _ores res -
S5 [ g | e
k=1 hi?gir:?:les 96 (III22)
of depth k
with Qg=8

—Le@)|0° 1 1
< MO T sl redeor) o ]
xeNe

The theorem now follows by setting f = 1 and applying Lemma I11.42. [ |
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IV. The “Small Field” Part of the Decimation Step

The “small field decimation step” is formulated in Theorems I11.24 and II1.27, which
we are going to prove in this chapter. It deals with the “stationary phase approximation”
to the construction on a fixed subset €2 of X. As the estimates do not depend on 2, we
may, for simplicity of notation, assume that = X . We shall write 9R; in place of 5%9;5
and Vs in place of Vg 5. Also write

r=r(0) R =R(9)
ry =r(20) R4+ = R(20)
Observe that, by (I11.18)

I‘+ . 1 R+ _ 1
T =3 R = mfa (IV.1)

We also write || - |5 for || - [|2r(s),2m -

The proofs of Theorem I11.24 and II1.27 are similar to [BFKT5]. The main technical
differences are the presence of the history field and the additional terms created by the
fact that the cut off propagator j.(t) of (III.2) is not a semigroup — in contrast to the
original propagator j(t) = exph( —t(h — ,u)) :

It turns out that the dominant contribution to s (Vg(e; ) f1, fg) in Definition I11.22
is f1 (o, je(£)B) + f2(je(t)ws, B) To estimate it, we use

Lemma IV.1 Let f(ay, B;h) be an analytic function. Let § < ©.
(i) If f is bilinear in ou, B then
. . . 2
1F (@3 (0)8) 550 [1£ (Ge(@)e, B)[|5 < 5 (FFE) N £ 11
(ii) If f has degree at least two both in o, and (3

£ (s 3e(@)8) g0 1 Ge@ere, B) 1 < €5 (52) 11

Proof: Both in cases (i) and (ii), we prove the first inequality. To do so, we introduce
the auxiliary weight system w,,x with metric 2md that associates the constant weight
factor 2R to the field o, and the constant weight factor 2e %R to the field 5. To
control the change of variables from f(«., ) to f(a*, jc(é)ﬂ), we use the weighted L'~L>
operator norm Nap, q(jc(6); 2R, 2¢7°%/R) of [BFKT4, Definition IV.2]. In the notation of
this paper,

Noma(j(0); 2R, 2¢7°%R) < e K3 ||j ()] <1
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by Lemma II1.21.i. Hence, by [BFKT4, Proposition IV.4]

Hf(a*,]c(&B) ‘

< flls

Waux

If f is bilinear in a4, 8 then

|#(anic@)| = (Z5) (5255 ) 1£ (0nse()8)]

1
v £ €55 (%) 11

If f has degree at least two both in a, and g

Hf(oz*,jc(5)ﬁ)H26 < (35) (35555 17 (@nde@)5)]

< % (%) £l

Waux

since e % > ﬁ by Hypothesis F.7.i. [ |

26R+€r

To treat the fluctuation integral in Definition I11.22, we introduce a second auxiliary
weight system wgyct with metric 2md that gives weight 2R, both to a,, and 3, and weight
32r to the fields z, and z. We write || - |lauet for || - |lwpge - If f (@, B, 24, 2) happens to
be independent of z, and z, then || f||guct = || f||25. For the first two terms in the effective
action A of Definition II1.22, we have

Lemma IV.2 For any history complete analytic function f(au, )

Hf(a*,z‘i‘]c((”ﬁ) - f(a*vjc 5)5 Hﬁuct S ||f||5
£ (2 + Je(8) e, B) = £ (Ge(0)ans B)) [l gue, < IIFls

for all § < O.
Proof: We prove the first inequality. By [BFKT4, Corollary IV.6],

[ £, 2+ 5e(6)B) = flaw, §e(8)B)||guee < (s 2+ 5e(6)B) || guee < || (s B)|5
since, by Lemma III1.21.i

Noma(1; 2R, 321) + Noma (5c(8); 2R, 2R ) < [1[J2Z + [|5.(8)| %=
< Loy Q0K Ry — 16(g0)°r 4 2§R+6r <1

by Hypothesis F.7.i [ |
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The remaining summands in Definition I11.22 are explicit quadratic and quartic terms.
The quadratic terms all involve the difference j.(6) — j(0) and are consequently exponen-

tially small with c.

Lemma IV.3
[(3(8) = je(&)]e, [(6 > (5)]B> |5 < 402K 22KPR2 =2
H <[j(5)_jc(5)]a*7 Hﬁuct’ H s j(é) 5) H <645KjeKj5rR+6_mc

Proof: By definition
[, B) ]| ,5 = 4R%

Therefore, by Lemma G.2.a,
[{5(0) = Ge(®)]evw, [1(0) = 1e(9)]B) [|5 < ART Noma(§(9) = je(0); 2R, 2R )

= 4RE Noma(j(0) = je(0); 1, 1)
< AR% 15(0) — je (D)l
< 452K?G2Kj6Rie—2mc

In the last line, we used Lemma II1.21.iii. Similarly

| ([5(8) = Je(O)]ans 2) || guer < 64Ro 1 Noma(§(6) — je(0); 2Ry, 2Ry )
<6406 KjeKj‘S rRye™™¢

The explicit quartic terms in Rs(Vs(e; -); R1+ &1, Ra + &) are
(Vs (&5, 5e(6)B) = Vi (g5 o, 5(8)B) ] + [Vs (&3 je(8)ews, B) — Vi (&5 j(6)au, B)]
“downstairs”, and
(Vs (&5 aw, 2+ §e(6)B) — Vi (&3 o, e (0)B)] + [V (&5 24 + je(0) s, B) — Vi (e je(8) e, B)]

as a contribution to the effective action. The term “downstairs” again involves the differ-

ence j.(0) —j(0) and is exponentially small with c.

Lemma IV.4 Ifé < O, then
HV};(&; a*,jc(é)ﬁ) — V(;(s; a*,j(é)ﬁ)H% < 64KJ~(38K3"s 82|l Rie
Vs (3 de(8)aw, B) = Vs (&5 G (8)axn, B) [l25 < 64K;e35° 6%||vf| RE e

and
Vs (&5 ey 2+ 5e(8)B) = Vi (&3 s 5e(6)B) || guee < 2 Olllvll rRE.

Vs (5 20 + Je(0)an, B) = Vi (&3 Je(8)ev, B) || ey < 2" Slllolllr RE
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Proof: We prove the first in each pair of inequalities. By Definition I11.8

V5(6 (l/*,ﬁ = —¢ Z '7*7"77'—1—57 U’Y*T’)/T+E>
TEZN|0,5)

with
Yor = J(T) s Ve =j(6—1)B
For the first inequality, we write
V(;(ﬁ; O‘*ajc(&ﬁ) - V(;(ﬁ; O‘*a](&ﬁ) =& Z [('7*TQT+£7 VYarGrie) = ( VarGrtes UV*T@T—I—E”

T€ZN|[0,4)

with
9r =30 —1)j(6)B gr =30 —7)jc(6)8

By definition
| (B, v ) |5 < 16v][RE

We apply Corollary G.3.ii, with d and d’ both replaced by 2md, 6 = 0, r = 4, s = 2,
h(v1,- 5 7v4) = (1172, VY374) , @1 = i, g = 8 and
r=ri=j(r) Ti=T3=0 [;=Ti=0 T3=T7=;(0-7-¢)j)
M =T3=j(r) T?=T3=0 [=Ti=0 TI§=T1=j(—7—¢)j(5)
As
o = max {de(j(f); 2R, 2R.), Noma(j(6 — 7 —€)j(8); 2Ry, 2R, ),
Nawa(j(0 = 7 = £)je(0); 2Ry, 2Ry.) |

< max {Jli@ll, W@ =7 =)@, 1150 -7 - i@}
BT (1v-2)

05 = Noma(j(6 — 7 —€)[§(6) — jc(6)]; 2R1, 2R )
<156 =7 =)l l7(6) = je ()]l
S 5Kj62Kj66—mC
by Lemma II1.21, it gives, for each 7 € eZ N[0, 6)
H (VerGrres VVargrte) = (VarGrte, U Varrie) H25 < 64|||U|||Ri|l— o5 0°
< 64[|v[|RE K jeBfi%emme

Summing over 7 and multiplying with ¢ gives the desired estimate.
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For the third inequality, we write

Vé(f‘:; (J,/*,Z-i-jc((s)ﬂ) - V6(5§ O‘*ujc@)ﬁ)

=—¢ Z [<7*TQT+€7 U YsrGrte) — { VerGrre, UV*T§T+5>]
TE€ZNI[0,9)

with
Gr =46 —7) (244 (0)B) = (6 — 1)z + (6 — 7)jc(0)B

This time, we apply Corollary G.3.ii, with d and d’ both replaced by 2md, 6 =0, r =4,
s =3, h(v1, -+,71) = (M2, v374) s @1 =, ap = 3, a3 = z and

with all other f‘g’s and f‘g’s being zero. Then

& = max {Ngmd(j(T); 9R.,2R:), Noma(j(6 — 7 — €)je(6): 2R, 2R.),
Noma(j(6 — 7 —€); 2R, 32r) + Nomg(j(6 — 7 — €)jc(0); 2R, 2R+)}
< max {HU(T)\H, 5(6 =7 —2)jcO)l, 1651706 —7 =)l + 76 — 7 — 6)jc(5)|||}
< (14 16(5v))e? 50
05 = szd(j(d —T—€); 2R+,32r)
<165 |lj(6 —7 =)l

< 165-e™?

(IV.4)
So, as before, for each 7 € eZ N |0, 0)
H (VerGres VYarGrie) = (VarGrte, VVurfrte) Hﬁuct < 64“‘”“&{1{ 555"
< 2 Jloff r RE.
by Hypothesis F.7.i. Summing over 7 gives the desired result. [ |

Proof of Theorem II1.24: Set

RW (ax, B) = R (v, §e(6)B) + Ra(je(8)as, B) — ([5(6) — je(8)]aw, [§(8) — j(6)]B)
ED(au, B) = &1 (0w, 10 (8)8) + E2(je(6) v, B)
+ Vs (&5 o, 5c(0)B) — Vs (&3 sy 5(6)8) + Vi (&5 je(8) s, B) — Vi (&5 j(0) s, B)
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Ri(a, 2) = Rilow, 2) +([5(0) — je(dlax, 2)
R0, 2) = Ra(2x, 8) + (24, [1(8) — Je(8]8)
(v, B, 2) = [Er(as, 2+ 5e(8)8) — Ei(aw, je(5)B)]
+ [Vs(&; o, 2+ je(8)B) — Vs (&5 o, je(6) )]
Er(zes e, B) = [Ea(2e + Je(0) e, B) — Ex(2s + je(0) s, B)]
+ [Vs(&; 2o + Je(8)an, B) — Vs(e; je(0)an, 5]

Clearly, R™M (e, ) is bilinear in a,, 8 and €M (ay, f) has degree at least two both in a,
and (. Furthermore, by Lemmas IV.1, IV.3 and IV .4

||R(1)||26 S €6Kj (%)Q(HRIH(; + ||R2||6) +4(52K3262Kj6R3_ e—2mc

(1) 26K, (Ry\4 8K;6 2 4 - (IV.5)
1€ |25 < % ()" (1lls + [1€2]l) + 128 Kje™9° 6%[v[| RY. e
Also, R, is bilinear in «, z, and R, is bilinear in z,, 8. By Lemma IV.2 and Lemma IV.3

1Rl uct < [[R1lls + 645KjeKj5rR+e_mc

(IV.6)
1Ry lauet < ||R2lls + 640 K ;ei° rRie™™F¢
J

Furthermore, & (o, ,2) has degree at least two in the variable a, ; and the sums of
the degrees of the variables § and z in each monomial of its power series expansion is also
at least two. Also, by Lemma IV.2 and Lemma IV.4

1€xlluer < [1E€1]ls + 2" olvll]x RE. (IV.7)

There is the analogous statement for &, .
By construction, the effective density in Definition II1.22 in the situation of Theorem
I11.24 is

.A(Oé*,ﬁ; Z*:'Z> - RZ(OK*,Z> +gl((l/*,ﬁ,2) +RT(Z*7B) +€T(Z*,Oé*,ﬁ>

so that
Rs(Vs(e; - ); Ri+E1,Ro + &) =RW 4 £W
+ ]'Og % /d/,l/r(z*, Z) eRl (a*”B7z)+€l(a*”87z)+RT(Z*aﬁ)'l'gr(z*,oz*,ﬁ)

where Z = [dp.(z*,z). Set

RO(0,,) = § [[dul,2) Rulon DR (9
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By [BFKT4, Remark III.3.ii]
[R5 = R Ngyer < IRelltuct IRelluce

Expanding the exponential in Definition I11.22 and using the fact that the du,(z*, z) inte-

gral is zero unless there are the same number of z’s and 2*’s, one sees that
e (an ) =log} [ du(z",z) A - R o, p)

has degree at least two both in «, and in 8. By [BFKT4, Corollary I11.5], with n = 2,
there is a function &'(a, B) such that

log & / dpe(2", 2) A= 5202) = £(a,, B) + & / dpn(2*,2) [Ri+ &+ R + &
= &(an, B) + R (a, B) + L / dpn(=*, ) [RiEy + ER, + EE)]

and 5
1€ 126 < (7”““”“““ ) (IV.8)

%_HA”ﬂuct

(The hypothesis that [|Alguct < 35 is verified below.) Clearly
ED=¢+1 / dpe (2, 2) [RiEr + ERy + EIE,]
and, by [BFKT4, Remark III.3.ii]

HE(Q)HQ(S S H5/||26 + HRlHﬂuct H5r||ﬂuct + ||ngﬁuct ||Rr||ﬂuct + ||ngﬁuct ||87"Hﬁuct

We set
R=RW4+R® | =W 4e®

By construction

9_%5(‘/5(6; '); R1 +81,R2+52> :'R-i—g

Furthermore, R (., ) is bilinear in ., 3, and £ (ax, 5) has degree at least two both in a
and . Hence R is the quadratic part of R; (V(;(s; ); R1+E1,Re + 82>, which coincides
with the quadratic part of R; (0; R, Rg). Also

RNz < IRW 25 + [R™]|2s
< IRWl2s + [IRillauct 1R [lauct
< eaKj(%)2(||R1H6+ IRsl5) _l_(%)szzeszéR%r p—2me
+ (IR |5 + 646 K ;e’i° rRie ™) (| Rzls + 646 K efi° rRie ™)
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The hypotheses on ||R1|ls and ||[Rz|ls imply that

IR |25 < 2% (%)2 Kr&*1’R?e™2™m¢ + (25)2K]262Kj5R3_ e 2me
+ (Kr 62 r*R2e™2™MC 4 646 K e9° rR+e_mc)2

2212 —2mc| fKi | Kje?ri° 2, VER Se—me | 2iterf o Kid\2
S KR (25) r—I—R‘—i-e [21—26r + JKR (250) + (21—“3R—25r (50)6R+25r + VEr )

< Kg (26)*r3R% e ?™¢
by (F.8.a). Similarly
IEll25 < 1€W 125 + €@ |25

S ||€(1)||25 + ||g/||25 + ||Rl||ﬁuct ||g7"||ﬁuct + ||€l||ﬂuct|| Rr”ﬁuc‘c + ||gl||ﬁuct ||g7"||ﬂuct
(IV.9)

By (IV.5) and the hypotheses in Theorem III1.24
1ED 25 < 22K (£2)* Kpp (50)2 12 RS 4 64 K ;e*5% 620 RE e

5 o 6 626Kj 16K_68Kjéefrnc
S (260) I'_'_ R+ (KE 91— (2er+4er) + Jra_Ra_U

By (IV.6), (IV.7) and the hypotheses of the Theorem
IR ucts || R llauet < Kr 6% r?R* e 2™ + 646 K;e®i rRye ™°
< OryRye ™ (2 Kl + 64K 2% €29)
<4 r+R+e_%m ¢
1€l fuct, 1€ [auet < K (60)*r* R® + 2" 6]|v]| r RY.

< (260) 14 R3 (Kp 2% e =1 (5p) r R? + 2%)
< 2'0(26v) 14 R3.

by (F.4.b), Hypothesis F.7.i,ii, (F.6.a) and the fact that e, < 0.1. Consequently, by (F.4.b),

—dme
[Allfuct = [Ri + Ry + &1 + Er[lftuce < (200) 1r+Ri(€D;{2+ +2')
< 2'(200) r; R

(IV.10)

By (F.6.a), this number is smaller than %. Therefore, by (IV.8),
1€ |25 < (30)°[|Allguee < 2°(260)° 13 RY

Inserting all these estimates into (IV.9) gives

K

2 . 8K ;6 —mc 10 7lrnc
€125 < (26013 RS, | Ky gty + e + 27 (200)r, RY + 206 27|

R
< Kpg (2(50)2 1'3_ Rg_
by (F.8.b). |
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The additional ingredient that we need for the proof of Theorem IIL.27 is

Lemma IV.5 Set
W (aw, B) = Vs(&; o, B) = Vs(5; o, B)
Then
HW(a*,j(é)B) — W(a*,jc(é)B)H% 28 10K, 552|||v|||Ri e ™M
W (5(8) v, B) = W (je(O)aus, B)llas < 2%€™7 e6?|[vf|RS e

IN

and
W (cves 2 + e (8)8) = W (e, 5e(8)8) [lgye < 2126”7 <BullpRE,

W (20 + Ge(8) v, B) = W (je(8) o, B) || guey < 2'2€™ €6 |v]|rRE

Proof: We prove the first of each of the two pairs of inequalities and use the same

notation as in Lemma IV.4. By definition

W(a*7 5) = Wl(a*7 ﬁ) + WQ(O‘M ﬁ)
with

Wi(ax, B) = % Z [<7*TVT+§7 U7*777+§> — (YVarYrae U7*77T+€>:|
T€eZNI0,5)

Wa(ax, B) = % Z [<’Y*T+§%-+s7 U7*7+%7T+E> — { YarVrtes U’Y*T’YT-I—E”
T€eZNI0,5)

Now, using the g, and g, of Lemma IV .4,

Wl (am](d)ﬁ) - Wl (a*7]c(6>6)

- % Z [<,y*7—g7—+%’ UIY*TgT+%> - <7*Tg7'+€7 U7*797+5>
TE€ZNI[0,9)

- < ’7*T§T+§ , U ’7*7,&7—1—% > + <'7*T§T+67 v 'Y*TgT—l—a) :|

= % Z |:<’)/*T j(%)gr—i-s, U Yer j(%)gr+s> = (VerGraes VVerGrae)
T€eZNI0,5)

- <7*7’ ](%)97‘—1—6: VY1 ](%)97‘—1—5> + VarGrte U’Y*Tg7'+a>}

We apply Corollary G.3.iii, with the metrics d and d’ both replaced by 2md, the metric

0 = 0, and with the same substitutions as in the first bound on Lemma IV.4, namely,

I =T3=j(r) Ti=T;=0 [y =T;=0 T3=T%=j(-7-¢)id)
M =T3=j(r) TIT=I5=0 [y=T;=0 TI3=I7=j0-7-2)j(5)
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and, in addition,
A=A =A3=A4;=1 Ay =As=3(%) Ay = A, =1 (IV.11)

The Corollary bounds the || - ||25 norm of the 7 term in terms of the o and o5 of (IV.2)

and
= max{|||ﬂ|||, 3 (511} < €2

(IV.12)
= Noma(j(5) = b: 2R+, 2R4) < [|5(5) — bl < §K €%

by Lemma II1.21. Summing over 7 and multiplying by 5, we get

[W1 (v, je(8)B) = Wi(aw, 5(8)B) |5 < § 2 47 16][0]IRY osas(oa)’
< 27610KJ e6?||v[|RS e ™
The same estimate holds for HWQ (a*,jc(é)ﬁ) — Wy (Oé*7j<6)ﬁ) Hza'

For the first of the second pair of inequalities, write, using the g, and g, of Lemma
V.4,

Wwh (a*7 zZ+ ]c(d)ﬁ) -W (a*:]c((S)ﬁ)

- % Z |:<IY*TQT+%’ U7*7g7+%> - <7*T§T+€7 U7*7g7+5>
TE€EZNI[0,9)

- < ’7*7.&74—% » U 7*7@74—% > + <’7*T§T+s7 v 7*T§T+E> :|

=5 3 [(her () drses 0%r (5)rs) — (YerGrre VYarbrse)
TEZNI0,5)

- <'7*T (%)QT-F@ U Ysr J (%)QT+€> + (VerGre, UV*TQT-FE”

This time, we apply Corollary G.3.iii using the f‘g’s and f‘g’s of (IV.3) together with the
A;’s and A;’s of (IV.11). By (IV.4) and (IV.12)

W1 (0, 2+ 5e(8)B) = Wi (aw, 5e(8)B) || gy < 5 2 4% 16][v]|RS. G505(5a)°

< 21169KJ eé|||v]|lrR2.

The same estimate holds for ||Wa(aw, z + jc(0)8) — Wa(ow, jc(6)8) Hﬂuct. |

Proof of Theorem III.27: We use the same notation as in the proof of Theorem I11.24.
Define R, £V R, R, &, & and A in the same way as the corresponding “untilded”
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quantities were defined at the beginning of the proof of Theorem II1.24. They fulfill the

same bounds as their untilded siblings. Furthermore

IR =R,
< Ry = Ru) (e, Je(0)8) 55 + [|(R2 = Ra) (Gc(B)are. )|
< 29 () A
6w — e,
< [~ €) (0 de(®)8) |5y + | (B2 — €2) (Je(B)ere, B)
[ (0 5e8)8) = W (e 50)8) s + W (GeB)ers, B) = W (G0, ) |

< 2eMK5 (Be)IAg 4 2%10K5 cg?[of|RL e ¢
by Lemmas IV.1 and IV.5. Also

1R =Rl ger = IR (000, 2) = Ra (0, 2) | s

TR (o, ) = R, B) 5

1€ =&l < (€1 = &) (w2 + 5e(6)B) — (E1 = E1) (e 5e(6)B) |1 ...
+[[W (e, 2 4 e(8)B) = W (s, 5(6)8) | e

1€ — &1 5 + 2'2%5 ed|v]|rRE

IA

by Lemmas IV.2 and IV.5. Similarly

[Re =R lguee = R [NR2 — R2

ng B ngﬁuct < ng B 82”6

15
+ 212955 g6]||v[|rR3.

Consequently
M = Allge, < AR +24 +2e% edjo]lrRE

For the fluctuation integral, we have

RE —RE =1 / dpe (2%, 2) [(Ri — Ri) (v, 2) Rio(2%, B) + R, 2) (R — Ry) (27, B)]

By [BFKT4, Remark III.3.ii] and (IV.6),

IR = R ,5 = [R® = RO,
S ||7i)'l - Rl”ﬂuct ||7ér||ﬁuct + ||Rl||ﬂuct ||7é7" - Rr”ﬂuct
< (KR(52r2R26_2m° + 646 KjeKj5 rRye™ ‘) %AR

12 2K; ¢.2 _—me
<27 ori e ™ Ag
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by (F.4.b) and (F.6.a). Furthermore

E® — @)and) =log} [ due"2) AT dog [ (e, z) el

—(R? — R®)(a, B)

We apply [BFKT4, Corollary II1.6] to the difference of the two logarithms of integrals.
Since each monomial of A and A contains either only z’s or only z*’s, and hence integrates

to zero, the first hypothesis of this corollary is satisfied. For the second hypothesis, we
have, by (IV.10),

Al et + A — Allfruct < 2'2(260)r3 R + 28 (| Ry — Rils + [|[R2 — Ralls)
1E1 — Eills + |E2 — E2ls) + 21275 ed|v|[rRE.

%(
+

3(25 e RE A+ R (IRalls + [1R1lls + [[R2lls + [R21l5)
H(

| /\

+ (111l + 1121l + lIE2lls + lI€2lls)
260)r RY < L

| /\

by Hypothesis F.7.i and (F.6.a). The corollary gives
€@ — @, <4(34)% (2" (200)r,RY) (BZAr + 24 + 2" &6||v|[rRY)
+[|R® — R,
< 2%3e2K5(260)12 R2 Ag + 228(200)r RY Ag + 23757 £(200)%r3 RS

Combining the above bounds, we have

IR = R[5 < [RY = RV, + [R® = R,
< (265Kj (%’)2 + 212255 51& e ™ ‘)AR
<2AR
1€ = &ll5 < (18D = W5+ [|EF = £
< (207 ()" + 228 (2000, RE ) A + 2925 (20012 RE. A
+29e'0K5 282(||v||RY e ™€ + 2%e?%5 g(260)%*13 RS
< Ag + 232?55 (200)13 R A + 2406955 g(200)%1r2 RS

by (F.4.b), (F.6.a), Hypothesis F.7.i and (F.8.c). [ |
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V. The Decimation Step in all of Space

The “ decimation step” for all large and small field regions is formulated in Theorems
II1.26 and II1.28. We shall prove them in this chapter. As in Chapter IV, write

r=r(9) R = R(0) R’ =R/(9)
Iy = r(25) R+ = R(25) R/+ = R/(25)

Recall that, by (I1.18),

r 1 Ry 1 R} 1
Y= K "=y (V.1)

The hierarchies G; and &; of Theorem II1.26 each specify the large and small field sets for

decimation intervals of length at most §. For a decimation interval J of length at most o
contained in [0, 26], we set, for X = A, Q, P, Ps, Py, P5, Q, R

Xs, (J) it 7 C|0,d]

X(J)= {X62(j_5) if J C [6,24]

Then X (J) = Xg(J) for all hierarchies & of scale 2§ with (&1,62) < & and all J
contained in either [0, d] or [d, 24].
We also set Qg = Q1 N Q.

V.1 The new small field/large field decomposition of the first kind

By hypothesis, the integrand of the integral defining I(a*, ) in Theorem III1.26
contains the product xs(1;a*, @) x5(Q2; ¢*, 8) of characteristic functions. These char-
acteristic functions impose small field conditions for the decimation intervals [0,d] and
[0,20]. For example, the first characteristic function contains a factor which vanishes
unless |a(x)| < R(§) for each x € 3. The representation for I(a*, ) in the conclu-
sion of Theorem II1.26 contains the characteristic function yo25(Q2g; @, 8) which imposes
small field conditions for the decimation interval [0,26]. For example, it vanishes unless
la(x)] < R(20) for each x € Q.

The first step in the proof of Theorem II1.26 builds y2s5(Q2s; @, 8) from the product
Xs(21; ", 6) x5(Q2; 0", 5). To illustrate the construction procedure, we consider the con-

ditions on |a(x)|. We expand the existing conditions on |a(x)|, for x € Qy = Q1 N Qy,

87



to

xr@) (Q0,0) = T xre ()
xEQ

= H [XR(25> (@(x)) + Xr(28),R(5) (O‘(XM

xEQ

= Y Xreo(Q0\ Pay @) Xre26) 1) (Pas @)
PQCQO

where we are using

Notation V.1 Set, for 0 <r < R, t € C, any set Y and any complex valued function f

onY
1 if|t|§r} {1 ifr<|t|§R}
r(t) = { rR(T) = .
X (t) 0 otherwise X, (?) 0 otherwise

and

V=T x(f@) xnr® ) =] xnelf(@)

z€Y €Y

The characteristic function xg(25) (€0 \ Pa, @) successfully imposes the new small field
condition of scale 2§ on |a(x)| at each point of € \ P,. The characteristic function
XR(26),R(5)(Pa, @) says that [a(x)| violates the new small field condition at each x € P,.
In Lemma A.3, we perform a similar expansion for the other small field conditions as well.
The conclusion of that Lemma is

X5 (15 @, 9) x5(Q2; 0, B8)

= > xes(Aaia, B) xe(Aa, o — ) xe(Aas 6 — B) xous (@, Qo; a0, 8)  (V-2)
2AE€Fs(Q0)

where Fj5(€g) is the set of possible configurations of large field/small field sets for the
decimation interval [0, 26] that are compatible with (&1, S3) (see Definition II1.2) and the
associated characteristic function xe (€21, Q25 @, ¢, 8) is given in Definition A.1. Note, for
future reference, that the factor xs 5(€21,Q2; o, ¢, 8) does not depend on the values of the
fields o, ¢ and [ at points of A.

Recall, from Definition III.1, the notation

d;l = (Clq—(X)) T€eZN(0,5) O_Zr - (047-+6(X)) T€ZN(0,5)
xeX xeX

for a system a = (aT(X)) reczn(o.25) of fields.
xeX
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As an immediate consequence of (V.2) we have that the I(a*, 3) of Theorem II1.26 is

* A x)* x o
I, = Y 2! gu/ [T S20Ldst) gy oo e (0)

A€ Fs5(Qo) xEAgy

xas(Aat; v, B)Xe(Aat, @ — @) xe(Ast, & — B)
e~ Qe (a”,0;a7,01)=Qe,(¢7,5;47,0r) Ve, (65a",¢; a7 ,01)+ Ve, (¢,07,8; &7,d7)

e'Dl(OA*,(ﬁ;p_ﬁ )+D2(¢*7185prr)b1( QS’ )b2(¢ /8, )

where Int(g,- g) is the integral operator

It (a;ar,5) [du(0", 6; @, 2, 2)]

a,

Q Q < N

_ zI%\al gl 2\AQ1|/ OO NSG) - ((x)) xaus (R, Das @, &, B)
1(61;04*@)[6{#(0% Zls Zl)} 1(62;¢*,5)[du(ar, Zrs zr)}
- Zgglmmlzggzmm/ L) Adplx) xa,6(21, Q25 o, 0, B)

271
I(Gl;a*,qb)[dﬂ(al, Zxls Zl)} I(Gz;¢*,,8)[d,u(ozr, Zrs Zr)}

by Lemma A.4.b. By Lemma II1.10.ii, Z(s, ;a*,¢) and Z(g,;¢+,g) are independent of ¢(x) for
all x € Agy. Inspection of the definition of xg (€21, Q2; @, ¢, B) in Definition A.1 shows that
it is also independent of ¢(x) for all x € Ag. By hypothesis, by (cu, ¢; p;) and b (¢x, 5; pr)
are pure large field and thus independent of ¢.(x), ¢(x) for all x € Ay. Therefore we may
move the integral fHXGAQ[ w to the right to give

Corollary V.2

I(a*,B)= > Inteeg bi(a®,é;60)b2(0", B A7) Xos(Aasa, B)

A€ F5(Qo)

Z(?'Aml dote) /\dd)(X) (@ *’¢>Xr(AQl7 a — (ZS)Xr(AQU ¢ - 5)

271
XGAQ[

e~ Qe (a”,¢;a7,01)=Qe,(¢7,5;d7,0r) Ve, (65a",¢; a7 ,01)+ Ve, (07,8 &7,d7)

Dl(a ¢7 l)+D2(¢ 7/8 p )

Observe that the integrand above is independent of the variables z.4, z5 and aug, as.
We will shortly introduce z, = z,s and z = z5 as the fluctuation fields associated to ¢*, ¢,
and aug, a5 as the values of ¢*, ¢ in the new large field region of the second kind where no

fluctuation fields are introduced.
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V.2 Approximate diagonalization of the quadratic form

In this subsection, we fix A € F5({) and study the small field integral, that is the
integral over the variables ¢(x), x € Ay, in the conclusion of Corollary V.2. To simplify
notation, write A = Ag. So, we study the integral

Ja(ow, B; pr, pri A9™, M)

/H d¢(x) /\dd)(x) XI'(A o — ¢)XI‘(A7¢_ /8) e_Qﬁl(a*7¢7&*la&l)_<¢*7¢>_Q62(¢*’ﬁ7&*T7&T)

xEA
eVe1 (8 @, Aur,d1)+ Ve, (&5 ", B; Aur,dr) eP1(ax,d; 01 )+D2(d", 55 pir )

(V.3)
To “compute” this integral, we use “stationary phase” in many complex variables as dis-
cussed in §I. As we saw there, if we treat ¢* and ¢ as independent variables, the critical
value of ¢* for the quadratic part of the effective action is not the complex conjugate
of the critical value of ¢. To produce a mathematically rigorous argument we introduce

independent complex variables ¢, (x), ¢(x) in C* and write (V.3) as

JQ( — / d¢ (X)Ad¢(x) QGl(a*7¢§ &*la&l)_<¢*’¢>_Q62(¢*’ﬁ§&*T’&T)

2me
(V.4)
eVe (€ 0au,0; Aur, 1)+ Ve, (€5 ¢85 Aur,@r) Di(aw,d; pi )+D2(d,f; pr)
where the domain of integration is D(cv, 8) = Xyxep D(X; s, 8) with
Dt ) = { (6.3 00x)) € € | 0209 = 61)
(V.5)

66) — . ()] < 1 609 — ) <1 |
A good approximation to the critical point of the bilinear form

Q@l(a/*v ¢7 d;*l?d;l) + <¢*7 ¢> + Q62 (¢*7Bv d;*r7d;7">

(in the variables ¢,, ¢, with au, d,, @, § considered as parameters) is()

¢ =Aje(0) a7 =Aje(6) B

(1) If one approximated QRe, (ax,¢; -) and Qg, (é«,B; -) by their pure small field parts — (ax , 7())

and — (¢« , j(6)B), respectively (see Lemma III.7.ii), the critical point would be exactly porit =
J(8) ax, ¢ = 5(§) B as in (1.13). The cutoff jc(§) was motivated near (1.24). See also Lemma
II1.10.ii, which was used to give Corollary V.2.
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where the cut off propagator j. was defined in (1.24). We shall expand around the approx-
imate critical point. Therefore we make a change of variables from ¢.(x), ¢(x), x € A to
variables z,(x), z(x) with x € A by
¢+ (X) = zu(2) + [Jc(0) ] (%), O(x) = 2(z) + [5e(d) B(x) ~ whenx €A
Under this change of variables, we have, on A,
¢r — ¢ =2 — 2+ jc(0)[al — f]
Gu — ot = 2, — [1— je(6)]
¢—B=z—[1-35(0)]8
Thus the change of variables transforms the domain D(x a., ) of (V.5) into
D/ (x; 0, B) = { (20(x), 2(%)) € €] [20(x) = (11 = 5e(0) >< )<

[2(x) = ([T - 7c(9)]8) (x \ (V.6)

2(%) = 2.(%)" = (je(9) [ ])( ) }
Observe that D’(x; a., 8) depends only on the values of the fields a, and  at points y € X
with d(x,y) < ¢. Also D'(x; aw, §) depends on h through j.(9).

For convenience, we rename ¢(x) = as(x) and ¢, (x) = a.s(x) when x € A°, and also

define z(x) = z.(x) = 0 for all x € A® and a,s(x) = as(x) =0 for x € A.
To this point, we have obtained the following expression for the function Jy of (V.3)

Lemma V.3 Set D'(cw, ) = Xxea D' (x5, 8). Then
Jat (e, B5 P, Py Quasy 05) = / 1T [% —2 (0200 | ofalanfiFizz)
D'(0 B) 2

where
fm(aﬂwﬁ; P Z*7Z) = le(Oéwﬁa Olyy Oy 2y 25 Z*?'Z)

= — (2, Nje(0)B) — (Aje(O) e, 2) — (aly, oF)
— Qs, (ax, 2 +ag'; af, a1 ) — Qe, (24 + s, B; Ao, A )
+ Ve, (8504, 2+ af; @), A1) + Ve, (€5 2« + a5y, B O, Q)
+ Di(ow, 2z + 55 o) + Doz + o, 85 o)

and

Ccr

ass = aSs(, as) = Aje(0) e + Aays a5’ = a§ (as, 8) = Nj(0)B + Aas

By Lemma III.7.ii,

faly_o=— X (Mo, ASa)
T€eZN(0,20)

Furthermore, fo + ) (ASa.r, ASa;) is history complete.
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V.3 Stokes’ theorem and the small field/large field decomposition
of the second kind

We apply [BFKT5, Lemma A.1] to the integral in Lemma V.3 with X replaced by A,
with p(x) = (je(d)[az — B]) (x), 0.(x) = (1~ je(8))ew) (%), 7(x) = ([1 ~ Gc(8)}5) (x) and

with » = r. We block the resulting sum over R into

2. =2 2

RCA QCA RCA
Q=A\L(c(8),R)

where L(c(d), R) is the set of points of X that are within a distance ¢(J) of R. This gives

Jo = Z Z H (/C dz*(x2)7/r\zdz(x) _Z*(x)z(x))
QC RCA R

C (5004, 8)
Q=A\L(c(5),R) (V.'T)
11 ( / 420" Adz(x) —z(x)*z<x>) (0 175 20)
271 zx (X)=2(x)*
XEA\R |z(x)\§r for x€A\R

with, for each x € A, C(x; au, 8) a two real dimensional surface in

P(x) = { (2(x),2(x)) € € | [z(x)], |2(x)] <R }

whose boundary is the union of the circle { (2(x), 2(x)) € C? ‘ zE(x) = 2(x), }z(x)‘ =r }
and the curve bounding D’(x; a, 3).

We now verify the hypotheses of [BFKT5, Lemma A.1], for arguments that appear
in the integral operator. For this, we must show that the function fy(a*,5; gi; 24, 2)
is analytic in X, ca P(x), for all allowed (o, 5; i), and that, for each x € A, the two
boundary curves are contained in P(x).

o As ||Dj||s,, ¢ = 1,2 are finite, X ¢ P(x) will be contained in the domain of analyticity
of fa(au, B; 3 24, z) provided

‘z*(x) + aig(x)‘ < Rss,.0(x) = 2R ‘z(x) + af(x )‘ < ke, 5(x) =2R
for all x € A and (z.(x), 2(x)) € P(x). This is the case because

|aZ5(x)| = | (e (6)a”) (x)] < [l7e(d)]l sup - [a(y)| < [l7e(O)IR+ < 'Ry <R

d(x,y)<c

The second inequality follows from the observation that |a(y)| < Ry for all y within
a distance ¢ of A. When y € A, this is enforced by the characteristic function
X25(As; o, B) in Corollary V.2. When y is not in A, but is within a distance ¢ of A,
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this is enforced by the factor of xg,, (€0 \ (Pa UA), @) in the characteristic function(?
x2,6 (1, Q25 «, a5, 5) appearing in the definition of Intg . in Corollary V.2. (Recall
that d(A, P, UQ§) > ¢(6) > ¢. The third inequality follows from Lemma II1.21.i. The
fourth is implied by Hypothesis F.7.i.

o Since r < R, the boundary circle {2} (x) = 2(x), }z(x)‘ =1} C P(x).

o The boundary of D’(x;a*, 8) is contained in P(x) provided

(1= je(@)]a™) )] + 1, [([1-4(8)]8)(x)| +r < R

If h(x) = 0, this condition reduces to |a(x)| +r < R and |B(x)| +r < R. Since x € A,
both follow from R4 + r < R. See (F.3.d) in Appendix F. If h(x) =1,

(1= 5e®]a) )| <l —je @)l sup " (y)| < 0K;e" 'Ry <R -1

d(x,y)<c

by Lemma III.21.ii, (F.3.d) and Hypothesis F.7.i.
Under Stokes’ theorem we may choose any surface C(x; o, #) that has the specified bound-
ary and lies in the domain of analyticity of the integrand. We choose C(x;a*, 8) to depend
only on the values of the fields a and 8 at points y € X with d(x,y) < ¢. This is possible
because D'(x;a*, 3) has the same property.

Combining Corollary V.2, (V.3), and (V.7) gives

I(a*,8)= > Inta-g bi(a”, as f)ba(ag, B, ar) Xas(Aa; o, B)
Q[EFg(QQ)

22Aal (/ dz. () Adz(x) —z*(x)z(x))
g Z Z H ) 271 e

QCAy RCAg xER
Q=Ag \L(c(5),R)

Zx (x)=2(x)*
for xE€Ag \R

/al,u(AQ[\R%r (Z*,z) efm(a*,ﬁ?ﬁf;z*,z)’

with, for each x € X \ Ag, the integration variable ¢(x) of Int (g4~ gy Tenamed to as(x).
Renaming the fields z,(x), z(x) with x € Ag \ Q to z.s(x), 25(x),

I= Z Z Z Int (o, roiax,8) bi(a®, as, o) ba(ag, B, pir) X25(Q; a, B)

Q[EFg;(Q()) QCAy RCAg
Q=Ag \L(c(5),R)

zes(X)=zg5(x)*
for x€Ag\R

2 Q * e A,
Zé“ |/d/~LQ,r (Z*,Z) ef(Q,R,Ql)(a ’B7pf 72*,2)

(2) The characteristic function XQ[’(;(Q;[, Q2; a, as,B) is defined in Definition A.1.
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where

Ao\Q2
Int (o, r oax,8) = Int(aiax ) 2200 o5 (A \ 250, B)

H (/ dz*é(xgﬁidz—é(X) e_z*S(X)ZJ(X)) /d“AQl\(RUQ),r (25,25)

XER C(x;a™,B)

and f(qo g, is obtained from the function fy of Lemma V.3 by

f(Q,R,Q[)(a*vﬁ; ﬁa Z*,Z> = fﬂ(aﬁwﬁ; ﬁv (A\Q>Z*6 + QZ*? (A\Q>Z5 + QZ) (V8>

2y (X), z5(x) with x € A\ Q are also “residual variables” and subsumed in p. The fields
24(x), z(x) with x € 0 are the “fluctuation fields” to be integrated out.

For each Q, R, %A = (A, P,, -+, Q) in the above sum, we define the hierarchy & with
(61,62) < G by setting X([0,26]) = X for X = Q, R, A, ---, Q. Using the recursion
relation of Lemma IT1.10.i, we have Intq ra;ax,8) = I(s;a*,8) - We set fs = flo,r2)-
Then

Lemma V.4

I(Oé*,ﬁ) = Z I(G;oz*,ﬁ) b1<04*,065,/)_ﬁ) b2<a§75710?7") X26(96;a7ﬁ)

hierarchies
S for scale 26
(61,62)<6

Zys (x):z(; (x)*
for x€Ag\R

where fg is given by (V.8).

Under the hypotheses of Theorem II1.28, we have the analogous representation

j<a*75) = Z I(@;a*,ﬁ) Bl(a*7a57pTl) EZ(OCE,B,/)FT) X25(QG;0575)
hierarchies
S for scale 26

(61,62)<6 (V'9>
Z(?'QG' /d’LLQGJ'<Z*7Z) efG (a*75;p_f ;Z*’Z)

zes(X)=zg5(x)*
for x€Ag\R

In Remark V.5, below, we give explicit descriptions of fg and fe .

V.4 Preparing for the analysis of the fluctuation integral

Fix a hierarchy & of scale 29. If 7 is a decimation interval for &, write Q(J) = Qs (J)
and A(J) = As(J). Again, we use the notation Q = Qg([0,24]), A = Ag(]0,26]). We
will sometimes also shorten Qz, + (A \ Q)25 to 2z, + 245 and Qz + (A \ Q)zs to z + z5.
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Remark V.5 The function fs(ax,S5; 0524, 2) of (V.8) that appears in Lemma V.4 is

the sum of

(i) the quadratic part

— (2 £ 205, AJe(0)B) = (Aje(O)evs, 2+ 25) — (s, aF)

- Q61(a*7 z + zs + agr; &*l,&l ) QGQ(Z* + Zx8 + 04*5, 57 O_z*rg O_Zr )
which, by the bilinearity of () and the observation that

F*62( ©y Rk + 245 + ai%, 62*7“) = F*Gz( S Z*,O) + F*GQ( *5 Rxd + ail:g,d;*r)

I's,(;anz24+2z5+0a5) =Ts,(-50,2)+ s, (-5 dr, 25 +af)
can be written in the form

- QG(O‘Mﬁ; 0_2*70_2) + 5Q(a*7ﬁ; ﬁ)
- [<Z*7 Q]c(&ﬁ) + Q62(2*7B;07&r)] - [(Qjc<5)a*7 Z> + Q61(a*7z; O_Z*L?O)]

where

0Q(aws, B; p)
= Qs (0, B; 0x, @) — Qe (s, 26 + 05 Auy, ) — Qe, (245 + 55, B3 A,y Ay )
— (g, af’) — (zxs, (AN Q2)7c(6)8) — (A\ Q)jic(0)us, 25)
= [Qs(w, B; dv, @) = Qs, (u, OF; Ay, A1) = Qes, (S, B Au, s @ ) — (S5, ) |
— [(24s, (A\ )5c(8)B) + Qs (245, 8; 0, A1)

[ A\QJC Oé*,Z5>+Q61<Oé*,25; &*l70):|
(V.10)

(ii) the quartic part Ve, (€; a4, 2+ 25 + a§'; Ay, 01 ) + Ve, (€; 26 + 245 + 0S5, B; O, Oy )

and

(i) Di(ax,z+ 25 + a5 p1) + Doz + 245 + S5, B; pr ) from the non large field terms.

Remark V.6

felg = (o 5(20)B) [ = (5(0) = je(0)]evs, [5(8) — 5e(8)1B) |,

+ (2, [5(0) = 5e(0)]8) [ + {5 (0) — ()]s, 2) |, — ) Z%O 25§Aia*” Aca)

+ [Vas(e; aw, 2+ 5(0)8) + Vas(e; ze + je(0)as, B)]]g
+ [Dl(a*;z‘f‘jc((s)ﬁ; 0) + Da(zs + jc(6) s, B O)} ‘Q
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Proof: By its definition in Lemma V.3
aGslg =Je(O)ala + A af'|g =jc(0)Bla + Aas (V.11)

By Lemma III.7.ii, the quadratic part of fg|, is equal to

o

- <Z*, ]c(5)5> }Q - <]C(5)a* ) Z> }Q - <jc(5)04*: ]c((S)B) ‘Q - <Aca*5v Aca5>
+{, §O) (2 +7B8)) g = D (Alaur, ASar)

7€(0,6)

+ <Z* +jc(5)04*, ](6>6)> }Q - Z <Af_(l/*7., Af_(l/7->
7€(6,20)

= (o, 5(20)8) | — {H(0) = Je()]aws [i(8) — 5(8)18) |,
T (2, [H00) = (@B | + (O) = je@law 2| — 3 (A0, Alar)

7€(0,29)

By Remark I11.9.i and (V.11), the restriction of the explicit quartic part in Remark V.5.ii
is [Va,s(e; au, 2+ 5c(0)B) + Va,s(e; 2 + je(8)a, B)] ‘Q , and the restriction of the term in
Remark V.5.iii is obvious. [ |

This enables us to control the small field part in Lemma V.4.
Corollary V.7

— el 3(20)B)|a+Va, 25 (g5 ax,B) oD(aw,pB) I e~ (Afaur, Afar)

d/JQ’r(Z*, Z) ef@ (05*7/8; ﬁv’Z*vz)
/ Q 7€(0,20)

where

D:f)_%g);(;(VQ,é(c?; ')3 Dl('QO)‘gy DQ(';O)‘Q>

Proof: By Remark V.6 and Definition I11.22,

/d,ug,r(z*,Z) efe(aw,B; p527,2) .

_ {0 208 | Va s e 0 G (9)) Va5 (<55(9)0..8) (Dlaasf) [T o= (Asanr Asar)
7€(0,29)

Now apply Remark IT1.9.ii. [ |
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From the contributions in Remark V.5, we shall split off the part that is independent
of the fluctuation fields z,,z. The remaining parts, that truly contain fluctuation fields,
will be integrated out. Proposition V.14 below gives the decomposition just mentioned
and thus prepares for the fluctuation integral. Lemmas V.10 and V.11 and Propositions
V.12 and V.13 below are used in the proof of Proposition V.14.

To estimate the fluctuation integral we shall apply Theorem II1.14 with the weight

system of the following definition.

Definition V.8 (Fluctuation integral weight systems) Let wgyut be the weight
system with core ) that associates
o the weight factors (m*T)
the fields &, 3,
o the weight factors A, to the fields z,, and z, with 7 € (0,20), and

o to the fluctuation fields z,, z the weight factor

to the fields ., @, the weight factors (/ch)

r€[0,26) re(0,26] ©

;\(x) _ {32r if x € Q (V.12)

oo  otherwise

o and the constant weight factor 1 to the history field b.
We write || f||auct instead of || f||wgye; -

Remark V.9 wgy,t extends the weight system we of Definition I11.15.i by weight factors
for the fluctuation fields. Thus, for a function h that is independent of the fluctuation
fields, ||h|lfuct = ||h||s. Also, it is an extension of the weight system wgyct introduced just
before Lemma IV.2.

The following Lemma shall be applied with g; = D; or g; = D; — D;.

Lemma V.10 Let g1(au, B;p1) and ga(aw, B; pr) be history complete analytic functions.

Then
lon (25 + a5 ) g | < 2l
o226+ 05,85 0o | < 2zl
and
lon (e, 25 + 055 ) = g1 (v, 25+ 05 ) o | < 28 llgulle + [l g, )
lg2(zus + a5, 8: 7) = gales + 05,85 50| L < 28 (€™ llgalles + [lg2]y, )
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Also

lor(anz + 25+ a5 ) = grlan s+ )| | <28 g, + 1], [l o,)

uct

<2 (e ™ gs]le, + (192, | ,)

g2z + 225 + a5, 8: 7) = galeas + a5, 8: 1) |

Proof: We estimate the go—terms. Observe that go(zs + 2.5 + a5, 3; pr ) is obtained
from go(cu, 5; p-) by substituting

H[Qz + (A\ Q)25 + Aje(8) e + A ]

for a,. Introduce the auxiliary weight system w,,.x that has the same weight factors as

Wauet, DUt core 29 instead of 2 = Qg. We shall apply Proposition G.1, with v = 1—9 and
C, —m<2 to prove
|92(24 + 205 + 55, 85 5 )| 5. < 28192, (V.13)

The weight factors for the fields 3, g, in Waux (namely kg 25 and kis -, K&,y As,> With
d < 7 < 2§) are smaller than the weight factors for the corresponding fields in we,
(namely kg, s and Kig,,ry K&y, rs A&y,r With 0 < 7 < §). Consequently, the hypothesis of
Proposition G.1 is satisfied if

Nag, (25 Fse,,0, A) + Nag, (A\ Q5 £u64,0: A&.5) + Nag, (A je(0) ; Kees.0, kxs,0) < 39

c. 19
Nd92 (A ) K*62,07ﬁ*6,5) < 20

(V.14)
Since A(x) = 32r for all x € Q, K.e,.0(x) = 2R for all x € Qg,, \s.s = 32r for all
x € A\ Q, kius,0(x) = 2Ry for all x € A and, by Remark IIL17, k.e,5(X) = Kee,,0(X)
for all x € A, (II1.6) yields
Nom (5 Kagz.00A) < 3Z 0 Nowm (A\ Q5 Kusy,0: Xe.5)
sz (A’% /‘6*62,0,%*6,0) < % sz(/\c; K*GZ,O,/‘G*G,é)
By Remark G.4.iii, Lemma B.1.i and Lemma III.21.ii,
Nowm (A (5e(8) = ) 3 Buey0,kxs,0) = HNom (A (5e(8) = B) 5 Kes,0, ue0)
< 25 N1 (A (e(8) = b) ; 1,1)
S 2% KJ5 eK 0

IN
N[ l\)|(‘.o
o[

IN

Since dg, < 2md, the left hand side of the top inequality in (V.14) is bounded by
% + % +N2m(Ab§ Kx&s,0, K*G,o) +N2m(A (jc(5) - f)) ; KxG2,0, /‘6*6,0)
32r | R R K;é
S T + % + 2% Kjd (&

19
<%
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by (F.3.f) and Hypothesis F.7.i, since RT = semger < % < 33 — 1=, by (IL17). The left

hand side of the bottom inequality in (V.14) is bounded by 3 < 3. This proves (V.13).
Since dg < dg,, (V.13) gives that

HQQ(Z*é + O‘i%vﬁ? ﬁr) QCHG = ng(z* + 245 + 04212575; ﬁr)

Qe llfluct

< 2%|gs|ls,

< ng(z* + 245 + 04212575; ﬁr)

Waux

As

ng(z* + zxs + a5, Bs pr ) — g2(zas + s, Bs pr) et

+ 92205 + 055, B: ) = g2(zus + 0S5, B; 1)

Qe llfluct

= g2z + 25 + a5 85 ) = 92205 + 055, B: )

Qe llfluct

it now suffices to prove that

92(2* + 25 + ai%?ﬁ? ﬁr) o 92(2*5 + Oéi%,ﬁ) ﬁT)
H Qe llfluct (V15)

< 2™ galle, + 92, Il
Write
92 = B + 8

with B = g9 — 92}92 its “Go—boundary part” and S = 92‘92 “its “Ggo—small field
part”. Each nonzero monomial in the power series expansion of B contains at least one
factor h(x) with x € Q5. Also, each nonzero monomial in the power series expansion of
B(zs + zes + S5, B; pr ) — Blzws + S5, 55 pr) 0

y € Q. Therefore, by (I1.15) and (V.13)

contains at least one factor h(y) with

|BGz. + 25 + 5. 8: ) = Bzas + a5, 8; )

Qe lifluct

< e QB2 4 25+ a5, Bi §r ) — Blzas + a5, B 7y )

Qc

Waux

<em d(9,95) B(zx + z4s + 55, B pr )

Waux

< emd @) 00 (2, + 205 + 0%, Bs Fr)

Waux

< 2% |gs e,

Finally
| S+ 205+ 05, 8: 7 ) = S+ 8 )| || <SG+ 205+ a5, 8 )
< 2°|S|le,
by (V.13), with g5 replaced by S. [ |
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Parts (i) and (ii) of Remark V.5 (quadratic and quartic terms) implicitly involve
the substitution of the critical fields af', aff (defined in Lemma V.3) in the concrete

background fields I'.g,,I's, and I'ys,,'s,. To control it, set

(Tis, (75 Qu, ) if reeZn(0,96)
D75 an, dy) = ¢ ol ifr=94

| Die, (T —0; a8, dyr) if 7 € €ZN(6,20)
(V.16)
(T, (73,0, a5") if reeZn(0,9)

I(r; d,8) =< of if 7 =6
| T, (T —6; &, B) if 7 € Zn(5,20)

Observe that (V.16) is very similar to the recursion relation of Proposition II1.6. Indeed,

replacing ofs and a§" by
Aj(0)as + Aass = o5 + A[j(0) — je(d)]ax  and  Aj(6)B+ Aas = ag" + A[j(6) — jc(0)]8

respectively, in (V.16) gives the recursion relation of Proposition II1.6, except for the

oI, and OI'. 3 terms. For convenience, we set

Js = 3(0) — je(9) (V.17)

Lemma II1.21.iii gives the estimate ||js]]| < dK,efi°e~™m¢. This discussion shows that

P*6<T; O, O_Z*) - f*(T; O, 0_2*) = aCF*T Oy

. (V.18)
F@(T; 0_27 B) - F(T7 d;? B) = aCFTB
where we set
0 if € [0,0) or 7 =26
Or =< Ajs itr=9
Ol +T0  s(G2)Ajs if 7€ (5,26)
(V.19)
O, +T2(&1)Ajs if 7 € (0,6)
6CFT = Aj5 lf T = 5
0 if 7€ (6,20 or 7=0

Under the conventions of parts (iii) and (iv) of Lemma III.7, we may also write 0.I',, =
Ol,; +T0 _(S9)Ajs for 7 = §,26 and 9.y = O, + I'2(&1)Ajs for 7 = 0,6. The

*T—0

operators 0.y, 0., are estimated in Lemma E.18.
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We use the shorthand notations

{P*G(T; Qu, dy) if 7 € (0, 25)} {PG(T; a,pB) if € (0,26)
VT = Yr =

B if =28 } (V.20)

Ol ifr=0

By the recursion relation Proposition II1.6,

Lie, (75 0, Ok) = Yur Pe, (75 &, 08) = Yrts forall0 <7 <§ (V.21)

Bound on the Quadratic Part of the Fluctuation Action

In part (i) of Remark V.5 we wrote the “quadratic part” as the sum of —Qg , Q)

- <Z*v Q]C((S)B) - Q62(2*75;07&T) = <Z* ’ 9.75 B) - <Z*7 Qj(5)5> - Q62(2*75;076~;T)

and
— (e (0) v, 2) — Qs, (au, z; Ay;, 0) = (Qjs o, 2) — (Q5(0)ax, 2) — Qa, (ax, 25 Ay, 0)

We bound these quantities in Proposition V.12, below. By way of preparation for the
bound on 6Q), recall from (V.10) that

5@ — QG(O‘*yﬁ; 0_2*7 O_Z) - Q61(a*7agr; 0_2*17 O_Zl ) - QGz(aif%B; 0_2*,”70_27") - <Oéi%7 agr>
— [{2e8, (AN Q)7(0)8) + Qe (245, 8;0,3r)] + (245, (A\ Q)75(5)8)

- [((A \ Q)j(é)a*, 25> + Q61 (a*7 Z85 O_Z*NO)} + <(A \ Q)]5<5)a*7 25>
(V.22)

We start by rewriting the first line of the right hand side.

Lemma V.11
QG(O‘MB; 0_2*70_2) - Q61(a*7agr; &*l,&l) - QGz(aifﬁﬁ; 0_2*,”70_27") - <Oéi%, Oégr>
= Z <BJF*T Qe 77> + Z <7*77 6JFTB> - <A]5 () A](SB>

7€(0,20] T€[0,26)

where
6jF*T = acr*r - j(5>6cr*7—5 ajFT = acFT - ](5) 6CFT+E

Proof: By parts (iii) and (iv) of Lemma III.7 and (V.21),
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Qs B; Ay, d) — Qs, (ax, af'; duy, a1 ) — Qs, (o, B A, dr ) — (als, af')
= Qs, (ax, Aj(0)B + Aas; A, d1) — Qe (s Aje(6)B + Aas; @y, dr)
+ Qe, (Aj(8)an + Aas, B;aur, @) — Qa, (Mje(0)as + Aus , B; d,, dy)
+ (Aj(0) e, Aj(0)B) + (Aaus, Aas) — (Aje(6)as + Aaus, Aje(0)8 + Aas)
+ Y (e (T = (@) 4) BY+ > ((0Tus4r — ()0 ws4r—c) i, Yoir )

TEZNI0,5) T€eZN(0,]

= Y (s (TUSY) — ()T, (61))AjisB)
T€eZN|0,5)

+ Y ((M%,(62) — (e, _(S2)) Ajsas, Yoir)
T€eZN(0,4)

+ (Aj()as, Aj(8)B) — (Aje(0)as, Aje(0)5)
+ Z <7*T: (8FT - j(5>6rr+s) B> + Z <(6F*5—|—T - j(5>6r*5+7—5)a*7 75—1—7‘>

T€eZNI0,5) T€eZN(0,9]
= Z <7*T: (aCFT - j(€)8cr7-_|_5) B> + Z <(8 L7 — )6 | R s)a*, 77>
T€eZN|0,5) TEEZN(H,26]

+ (Aj(0)aw, Aj(0)B) — (Aje(d)as, Ajc(0)3)

This is the desired equation, since

@F*T:{O, ¥f0<7'<5} 6jFT:{O 1f5<7<25}

Ajs ifr=96 Ajs ifr=6
= Aca5 + A]((s)ﬁ Vs = Aca*5 + A]<5)a*
so that ¢ 5
0 ifo<r<
<(9jF*Ta* %> = { ) . i }
’ Ajsa, Aj (O ifr=9
(Ajs 7(9)B) IS (V.23)
1 T
(Vir, 0T+ B) = { (Aj(8)as, AjsB) if 7= }
|

Proposition V.12 Set Ko = 2%¢*K,
(1)
| (22, e(0)B) + Qe (21, 850,80 || ey < Ko [67™) + rR1e™™ ]
H (Qc(0)a, 2) + Qs, (au, 2; &*Z,O)Hﬁuct < Kg [e‘mc(‘s) +0rRye ™ ]

(it)
H(;Q 05*757 HG < KQ [6 4mc(6) +($I'R e rnc:|
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Proof: (i) We prove the second inequality. The proof of the first is analogous. Observe
that, by the definition (II1.3),

Q61(a*7 zZ;3 O_Z*l? O) = Q€,5 (Oé*, zZ;3 F*61< © 5 Oy, &*l), F61( : )O, Z))

with the Q¢ s of (I1.10). Since z is supported in €,

s e 2) + [ (Qe(@)ae, 2) + Qea (0 2 T, (500, @), T, (50, 2)) |
= <Q]((5>Oj*, Z) + QE,(S(Q/*: Z5 F*61( 5 O,y O_Z*l>7 F61( : 707 Z))

= (e (P36 - ST (81)92)
T€[0,6)
evaluated at
Oy ifr=0
Yor = Tha, (T304, 84) =T (S + 3 T7(61)aw if 1€ (0,0)
7/€(0,7]NeZ
and with the conventions that I'J(&;) = j(§) and T'$(&;) = b.
To bound this, we first claim that for any two h—operators A and A’

| (Ao, Az < Ny (A5 405D) g ) Ngg (A e ™09 ) (V.24)

> Hﬁuct

As (A'a,, Az) is obtained from (p,1)) by the substitution ¢ = A’a,, ¥ = Az, this
inequality follows Lemma G.2.a with s = 2, d = dg, K} = Kur, k) = \, K1(x) = e
and ko(x) = e~ ™d092),

Applying the estimates (V.24) and (II1.7) we get
H <QJ(5)06*7 Z> + Qs,é (Oz*, z, P*61( 5 Oy, O_Z*l)7 PGl( 30, Z)) Hﬁuct
< Y arNon((TH(61) — (T (61))0; e, })

T€[0,6)
where
Now (15 e™ d(x,9) Kx0) ifr=0
ar = Z sz (F:;(Gl) ™ d(x,Q), ’f*r’) ifre (0’ 5)
7/€[0,8)

By Lemma B.1.ii, Lemma E.13 and the observation that emmd(xQ) < = FdxQ) <

e~ 3dAe1)  we have a, < 16eX R, for all 7 € [0,5). Therefore, by Lemma E.15.ii
with A = X, O = Q and Qe replaced by €4

| Gs 0 2+ [(9c()0n, )+ Qs(00, 2T (500, @) T, (50, 2))]
<165 R T sz((ri(csl) — T, (81))Q; e A, X)

T€[0,6)
911,2K; LR o—2md(2,05)

fluct

IN

—mc(9)

IA

e
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since 8 < 16eXir < 16e/R < ea™¢) | by (F.6.b), and d(£, Q¢) > ¢(5).

The function (js ., z) is obtained from (p, z) by the linear substitution ¢ =
Q j5 o, . Let w be the weight system with core €2 that associates the constant weight factor
1 to the fields ¢ and z. Clearly, || (¢, 2)|lo = 1 . It follows from Lemma G.2.a (with
§$=2, W= WAyct , W= w) that

|| <.75 Ay Z> ||ﬂuct = || <A]6 Ol 7QZ> ||ﬁuct < ng (Ajé ) 1: /‘\3*6,0) ng (Q ) 17 :\)
< 4KjeKj‘S dRye ™ 32r
since, by (I11.7), Remark G.4.i, Lemma B.1.i and Lemma IT1.21.iii,
Nag (A js i1, kee0) < Nom(Ajs; 1, kee,0) < 4 ds ]| Ry < 4Kj€Kj5 JRye™F¢

This completes the proof of the second inequality.

(ii) As in part (i) one shows that

[ (eos (AN )58 | < 2T Ry e
| oo (AN 92)5(0)8) + Qe (205, 5:0, 80| < emme®
© (V.25)

H (AN Qs 2s) || | < 27KGeRs 6rRy e

| (AN DO, 20) + Qe (s 255, 0)| | < 7o
This bounds the last four terms of (V.22).
It remains to bound the first four terms of (V.22), which form the left hand side of
Lemma V.11. By (V.23), the first sum on the right hand side of Lemma V.11 is
Z<8JF*T Oy '77'> — <](6>A]5 Ay, B> + Z <BJF*T Qe ’77'> + <ajr*26 Ay 725>

7€(0,29] T€(6,29)

= Z <ajr*7 A ’77'> + <(6jr*26 + ](6>A]5) Oy 726>
T€(6,29)
(V.26)

As in (V.24) one sees for all h—operators A and B
(A Barllq < Nag (A B0, ) Ay (B; e300,

Hence,
Z (0;Tsr o, vr) + ((0jT 425 + j(0)Ads) s, '725>H6
T€(6,29)

< Z ar Nowm (9;Tr 5 €72 998 15 )
T€(6,20)

+ a2 Nowm (0;T w25 + 7(0)Ajs; €™ 2 dA), Kx0)
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where

N2m(]15 e’ dbxh), %25) if =20
a, = ,
>rre(o,2 Nom (TF 5 €% d6N) k) if T € (6,26)
By Lemma B.1.ii and Lemma E.13, we have a, < 16e%i Ry for all 7 € (0,26]. Therefore,

by (V.26), and Lemma E.20.ii, the first sum on the right hand side of Lemma V.11 is
bounded by

| Sore o)

7€(0,29]

‘ < 16eKi Ry e 3m¢0) < o= me(®)
& S <

by (F.6.b). The second sum is bounded in the same way. Combining this with (V.22) and
(V.25) gives

10Q(cv, B; 9) + (Ajs au, Ajs )| & < 2{6—%“(5) +emme® 4 27Kjer§rR+e_mc} (V.27)

As (Ajsas, AjsB) is obtained from (p, 1) by the substitution ¢ = Ajsa., ¥ = Ajs5,
an application of Lemma G.2.a with s = 2, d = dq, K| = K., K5 = Kas, and K1(x) =

ko(x) =1 yields

| (Ajsas, AjsB) || g < Nag (Ajs s 1, 5x0) Nag (Ajs s 1, K25)

e 2 2K; §2 —2mcRp?2 (V.28)
< (4R4 [l76lll)” < 16K e 6% RZ
by (II1.7), Remark G.4.i, Lemma B.1.i and Lemma III.21.iii.
Combining (V.27) and (V.28), we have
H(SQ(Q*, B; /3')“6 < 4emame(d) 4 {28KjeKj + 16K3262Kj5R+e_m°}5rR+e_m°
< demame®) 4 {2°K;e™ + & orRye ™
by (F.4.b) and (F.6.a). [ |

Bound on the Quartic Part of the Fluctuation Action
Finally, we treat the quartic contribution to feg(cu, 3; p’; z«, 2) identified in Remark
V.5.ii. We write it as
Ve, (€ au, 2+ 25 + af'; Gy, Q1) + Ve, (€5 24 + 245 + a5y, 85 A, Oy )

= Vs (&5 ax, fB; s, @) + 0V(e; o, B; p) + Vi(€s 0w, B p; 2) + V(€5 0, B P 24)
(V.29)

where
. . d d . Cr. d d . Cr . d d
0V = Vs(e;au, f; Ay, @) + Ve, (65 ax, 25 + 55 Ay, Q1) + Ve, (€5 245 + S, B A, Q)
. cr, =— - . cr, — —
Vi=Ve,(g50u, 2+ 25 +aF; Ay, A1) — Ve, (65w, 25 + 05 Ay, A1)

Vr = VGz(g; Zy A Zxs + O‘igvﬁ; O_Z*M&T) - VGz(g; Zxs 1 O‘%?ﬁ; O_z*m&r)
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Similarly,

Ve, (55 au 2+ 25 +a§s ) + Ve, (5 20 + 245 + 0S5, B; ---)ng(%)-l—ﬁ)-l-f/g-i-]}r

where

(% O,/*,B, Oé*, )+V61(%;04*726 +O~/(C$r; &*17&l)+V62(%;Z*6 +Oéifs,ﬁ; O_Z*MO_ZT>

cr, = — . cr, = —
e, (50, 2+ 25 +ag's Ay, A1) — Ve, (55 @, 25 + 55 Oy, )

(27Z* + 246 +ai%7ﬁ7 &*T,&r) _V62<%;Z*5 +ai%7ﬁ7 O_Z*T,O_Zr)

Proposition V.13 Set Ky, = 229655,

(1)
|| Vl ||ﬂuct 3 || Vr Hﬁuct S KV 5“‘@“‘ I'Ri_
IV = Vi et > | Ve = Ve llines < Ky ed][Jof| RS
(ii)
16V e < Kvdllv]lrRE
|16V — 6V e < Ky ed|v]| rRE
Proof:

(i) We treat V,. By (V.16), (V.18) and (V.20)

Dia, (75 0, Og) = Do (75, @y) = Do (T3 s, @) = Yar

T, (75012 + 25 + af) =T2(61)z + T2(&1)25 + s, (13 01, aF)
=T9(61)z + T (61)z5 + [(7;@, )
=T%(6)2+T°(61)25 + T (r;d, 8) — 0.1,
=T2(&1)2 +T2(&1)z5 + 77 — 0T,

for all 7 € (0,6). When 7 = 0, the right hand side ., = a, and, with the convention
I'%(&;) = 1, when 7 = § the right hand side T'%(&1)2+T?(&1)2; +1(5; @, B) = z+zs +a§".
Similarly,
Do, (T — 05 20 + 245 + 055, @) =T 5(62)zy + T2 5(82)24s + Ver — Ol wrars
PGQ(T - 57 O_erﬁ) =7
for all 7 € (6,20). So, by the Definition I11.8.i of Vs,

V61(€; Oy, 2+ 25 + OégrQ &*l, O_Zl)

= —¢ Z <7*T (Pi—i—a(Gl)Z + gT+€)7 U Var (Ff--i-s(Gl)Z + gT+€)>
T€eZN|0,9)
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where 5
gT:FT S 25+7T_8PTﬁ
0( ) ‘ (V.30)
grr = Dir5(62)2e5 + ar — Oclur
Consequently,

Vi=—¢ Z |:<'7*7' (F§-+5(61)Z + 97—1—5)7 UV Yer (F§-+g(61>z + gT—I—E)>
r€ZN[0,5) (V.31)

- <’7*7’ Gr4ey U Vsr gr+s>}

To each term, we apply Corollary G.3.ii, r =4,

h(v1, -+, 7va) = (y172, vY374) AM=Xd=A3=N\=1

and the s fields aq, -+, as being z, zs, B, Qu, Que, -+, Qys_e, e, -+, Qo5_-. Recalling
that )
Ve = F27(6>a* + Z F:T(6>a*71
T'€eZN(0,9)

gr4e = Ff’—i—s(el) zs + Z F::—E(G)QT” + F?‘i—a(6>6 - BCFT-FEB
T'"€eZN(0,26)

we have, as coefficients for the substitution,

Iy =T§ =TI%.(8) =Ty =Ty

I =I5 =T7(8) = [ = 5

r; =T] =I7,.(6)Q r; =T =0
ry =T =T2.(6)A\Q) =Ty =17

ry =r{ =I%_(6) -0l =0} =T}

I3 =I5 =T7(8) =I5 =1y

with 7/ € eZ N (0,6), 7" € eZ N (0,268) and with all other I'/’s and T’s being zero. We
apply Corollary G.3.ii with L = A, d replaced by 4md, d’ = dq and 6 = Fd. The Corollary

gives

H<7*T (Ff-—l—a(el)?«’ + gT+E)7 UV Vsr (Ff'-l—s(Gl)Z + gT+5)> - <’Y*T Grter U Ter gT+E> ’ﬁuct

< 4lflv]los 0

where
o < max {0'*7-, O’T+5}

o5 < ng (Fi—l—s(Gl) Q ; e—%md(x,A)7 5‘)
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with

Our = 5 Ny, (Fz;(g); o3 d(x,A),,{M,)
T7'€[0,8)

0r = Nao (F2(81) Q3 €% N X) 4 Ny, (T7(81) (A\ Q)5 % 0N )

+ N (0cT7; €3 900 ons) + 30 Ny (TT(8); €3 400N o)
7€(0,26]

Below we prove that
o5 < 32efi ¢

O < 16597 Ry (V.32)
or < 32eKR

Consequently, the fluctuation norm of each term in (V.31) is bounded by
4|v]| (32¢5 1) (32eKiR, )% < 2226455 o] RE

Summing over 7 and multiplying by ¢ gives the desired bound on V.

By (V.31),
Vv, — ]}l =W + W,

where

Wl = _% Z [<7*T (Fi—l—a(el)'z + gT+E)7 U Yer (Ff--i—s(Gl)Z + gT+E)>
T€eZNI0,5)

- <7*7' (F§_+%(61)Z +gr+%)7 U Yt (Fi+%(61>z + gr+§)>

- <’)’*7- Gr+es U Vsr gT+s> + <'7*7- 9r+5, U Ver gr—l—%ﬂ

and

=
I
|

[[0)

Z |:<’7*7' (Fi+g(61)z + .97—1—5)7 UV Yer (F§'+g(61>z + .97-+a)>
Zn[0,5)

TEE
- <7*T+§ (Ff_+5(61)z + gT+€)7 U Ysr+ £ (Ff--i-s(Gl)Z + gT+€)>

- <7*7' 9r+es U Var gT+E> + <7*T+§ Gr+e5 U Ver+§ gT+E>]

By Lemma E.14, (V.30), (V.19) and Remark E.19,

Fi-ﬁ-%(Gl) :j(%)ri+€(61) 9r+5 :j(%)gT-i-a Vxr+5 :j(%)%@
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for all 7 € eZ N [0,0). Therefore the 7 term of W is

<7*T (Fi+5(61>z + gr—i—s): U Yar (Fi_'_a(Gl)Z + gr+a)>
= (Yor (G(5)T242(81)2 + 5 (5)gr+2)s v Yer (7(5)T74e(81)2 +(5)9r4¢))
- <7*T Gr4ey U Vxr gT+E> + <7*7j(%)gr+sa v ’Y*Tj(%)97+a>

We again apply Corollary G.3, this time part (iii), but with the same metrics, h, Fz 's and
I'’s as before and with, in addition,

A=A =A3=A3=1 Apy=As=1 Ay=A=j(5)
The corollary bounds the fluctuation norm of the 7 term by 16 ||v]|| csas (ca)® where

a < max {1l 15(5)I1} < "3

- (V.33)
as < [[7(5) —bll = K;5¢"%
by Lemma II1.21. By this and (V.32)
16 [|[v]]| o5as (0a)® < 16 ||| (32e™7 1) (K;5e%92) (32" R4 eKj%)?’
< 355 o] rRY
Summing over 7 and multiplying by § shows that
Wilgeq < 225 edffof rRE
The same bound applies to ||[Ws||guct- This gives the desired bound on V; — V).
Finally, we prove (V.32). By (II1.7) and Lemma E.13,
> Ny, (I‘I;(G); e doA) Far) < 16€™97 Ry
7'€[0,26)
: m (V.34)
> Ny, (I7(6); e> d(x’A),/{T/) < 16ef7 R,
7'€(0,26]

This gives the second line of (V.32).
If J is the smallest decimation interval that strictly contains [7,d] and has § as its right

endpoint and if 77 denotes the midpoint of 7, then

Nag (T5(&1)82; €72 10N, 3) = Nag (77 = 7) MT) (6 = 77)Q; €737 00D, 3)

< 32r|j(rg = DMl (6 = 72)l
< 32ef9r
(V.35)
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by (II1.7) and Lemma G.5.ii with d replaced by dq, R replaced by 32r and
Li=X, Lo =AJ), L3 =9, O1=A, O=X
01 =3md, 65=0, =0, d=4md, &=\
(The hypothesis that x(x) = A(x) < R = 32r for all x € Ly = Q is fulfilled by the

definition (V.12) of A). This gives the first line of (V.32).
Similarly

Nag (TS(&1) (A\ Q)5 €3 905N \5) < Ny, (T3(&1) (A\ Q) ; e 2m 40N \;) < 32Ky
(V.36)
By Lemma E.18

Ny, (8CFT; e? d(x’A), /125) < Ny, (8CFT; e_%md(x’A), @5) <4e*KiR, ((5 e ™M+ e_mc(‘s))

(V.37)
Combining these two bounds with (V.34) and (V.35) gives
or <32eMir+32eMr + 4 IRy (e ™ + e_mc(‘s)) +16ef7 Ry
< 32e5iR,
This completes the proof of part (i) of the proposition.
(ii) With the notation (V.30) we have
OV =oVi(e) + Va(e)
where
Vi(e) =¢ Z { (Yar Vrter U Var Vrte) = (Var Grder U Yar Grte) }
T€[0,6)
0V2(e) =€ Z { (Ver Yrer U Var Vrte) = (Gor Vrte, U Gor Vrte) }
TE[6,25)
We bound §V;. To treat the 7t term, we again apply Corollary G.3.ii with r =4,
h(y1,- 5 7v4) = (7172, Vy374) A=A =A3=X\ =1
This time the s fields aq, ---, ag are zs, B, Qy, Que, =, Qyg_c, Qg, -+, Qo5_c. Recalling
that )
VT = F27(6>a* + Z FIT(6>O'/*T'
T/€eZN(0,6)
VYrde = Z F:—i-a(G)aT’ + F?—i—e(G)ﬁ

T/€eZN(0,26)

Grpe=T0 (&) zs+ Y. T8y +TI% (6)8— 0T ,1f
7/ €eZN(0,26)
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we have, as coefficients for the substitution,

po=rg =T0(e)  =Dp =T

P?*T’ — Pg*rl — FI;(G) — f‘?*‘r’ — f‘g*rl

ry =TIy =0 My =T =T2..(81) (A\ Q) (V.38)
Pg = PE - in—a<6) fg = ff - in—a<6) — 07 e

M STy T () =T =T

with 7/ € eZ N (0,6), 7" € eZ N (0,268) and with all other I'/’s and T’s being zero. We
apply Corollary G.3.ii with L = A, d replaced by 4md, d’ = dq and § = 5 d. The Corollary

gives

H <7*T'77+67 07*777+€> - <7*Tg7'+€7 U7*797+€> Hﬂuct S 4 H‘Um 0-:5 0/3

where

o' <max{o, o, }
05 = Nag (12, (61) (A\ Q)3 e 24N X5) 4 Ny, (9T e 24000 p5)
< 32e™9r + 4e* IR (S + e_mc(‘s)) by (V.36) and (V.37)
with ) N
O->/|<T = Z NdQ (F:T(G)’ ez d(X,A)’ /("’*7'/) = Oxr S 166KjTR+
7/€[0,0)
0. = Nag, (T3(&1) (A\ Q)5 T M) Ns) + Ny, (0T e 109N ki)

+ Z ng (F:/(6>7 6% d(x’A)7 KT”)
7'"€(0,29]

<o, <325R,

by (V.32), twice. Hence

H <%<T’77+57 v 7*777+€> - <7*TgT+€7 v V*TgT+€> Hﬂuct
< 4|lofll [326"7r + 4e*Ki Ry (57 4 e~ ™¢D)] [32eKiR, ]
< 226! o] [r+ ™Ry (967 4+ e ™)) RY

< 2% |lof| 1RY

(V.39)

by (F.4.b), (F.6.a) and (F.6.b). Summing over 7 and multiplying by € bounds [[6V1||uct
by 223e*%5 §|||v]| rR3.. The §V> contribution obeys the same bound.

We now move onto the bound of || §V — % |- Then
JV =6V = oVi(e) —oVi(5) + oVa(e) — Va(5)
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Write
WV (e) — (Wl(%) =W, + Wy

where

€

5W1 (05*7 5; 0_2*7 0_2) =3 Z [ <'7*T'77+67 v '7*7"77—1—6) - < YerVr+5, U '7*7'77+%>
T€eZNI0,5)

— (YarGrtes VVarGrie) + < Yer9r+55 UV Vergr+5 > }

Wa(o, B; Guy@) =5 ) [<V*T%+a, U YarVrde) — { Verds Vrtes U Vert g Vrte)
T€ZNI[0,9)

— (GurVrter U GurVrie) + (ot s Vries vgw+§%+s>}
We estimate 6W,. The term of )V, with index 7 is
[(tertrtes 0Vertrae) = (Yerd (§)¥rtes 00 (§)r4e)
— (YerGraes VYargrae) T (Veri (5)grae, U%J(%)Q¢+a>]
since, by Lemma E.14, (V.30), (V.19) and Remark E.19,
Yrrg = 3(5)vr4e griz = J(5)9gr4e

We again apply Corollary G.3with the I'’s and TY’s of (V.38). This time we use part (iii)
with
A1:A1:A3:A3:]l A2:A4:b A2:A4:j(%)

as coefficients for the substitution. The Corollary, with L = A, d replaced by 4md, d’' = dg

and 0 = 3 d, gives

[ urtrses 0 rsed = (ard (§11m40r 070r (5 r42)
_ <’7*7’g7'+67 U7*797+s> + <7*7j(§)97+5, U’y*Tj(%)gT+E> Hﬂuct <16 |||U||| O‘:;a(g (O_/a>3
where, by Lemma I11.21,
a < max { [, li(3)II} < ™%

as <|l7(5) = bl = K;

N[ M

Thus

|61 < £ 216||v]| o5as (0'a)® < 6K ;e 4[| o 0" < 223855 e6|v|| rRY

Hﬂuct %

since the right hand side of (V.39) is a bound on 4 ||v|| 0% 0’®. The bounds on §W; and
the two corresponding terms of §Va(g) — 6V2 (%) are the same. [ |

112



The Structure of the Fluctuation Integrand

Proposition V.14 The function fg(ax, 5 7;24,2) of (V.8) that appears in Lemma V.J
and the function fe of (V.9) can be written in the form

f@(a*76a 57 Z*,Z> — _Qg(aﬂwﬁa d;*,O_Z> +V6(€a a*?ﬁa 62*76';>
+ Filaw, B; 75 2) + Frlas, B; 03 2+) + DV (aw, B; §) + Lis(a, B; 7)

and
fo = —Qs +V6(%; )+]:—l +J%T+15(1)+£~/6

respectively, with history complete analytic functions Fy, Fy, DU, E’e,f},]}r, D), 5’6 that
have the following properties.

(i) Fi(aw,B; 7;0) = Fr(aw, B; p30) =0 and

1 Fi]lues < Ky dorRT. + 28(e_mc(5) HDlHel + le‘al Hel)
1P+ lauer < Ky dorRE +25(e7™ ) | Dy | . + D2l I|s,)

Similarly, fl(a*,ﬁ; p;0) = ]}r(a*,ﬁ; 7;0)=0 and

||~Z}l||ﬁuct < Ky dvrR} + QS(G_mC(é) Hl?lHel + Hl?l‘al Hel)
1 Felluet < Ky 601RE + 25 (7O [ Dy + | Do, Il )

Furthermore
I = Fillauct < Ky ed0rRY + 28 (7O [ Dy = Dy + (D1 = D)l |, )

17 = Pl < Ky edorRS, +2° (e || D, = Dyl +[|(P2 = Do), s,

(i) DD|,. =DW| . =0 and

IDD s < Ky (200) 1, R34 28¢5, 4 28 5y (5F)
IDD|le < Ky (200) 1, R3 + 28 ™5, 4 28 507

where SF)
Sp = |IDi]le, + [Dslles 257 = 1D, s, + 1Pz, I,
Sp = [Dille, + | Dalles S5 = 1D1]g, s, + 1Pz, |,
Furthermore

D0~ DVl < Ky edorR + 25O Ap + 2°AE
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where 5 5
Ap = ||Dy — Dille, + [|[D2 — D2fle,

AgF) = H(IDl - ﬁl)‘ﬂlHGl + H(D2 B Ibz)‘ngez

qc = Ls and £~’6

(iii) Lls o =L and
ILslle < Ky (200) 11 RE + 28 Sp
ILslle < Kv (200)r RY +2°5p

and
L6 — Ls||s < KvedorRE +2%Ap

Proof: We set
Fila, B; p;2) = = [ (0w, 2) + Qs, (v, 25 @4y, 0)] + Vi(g; o, 85 P 2)
+ Di(aw, 2 + 25 + a§'; pi) — Di(aw, 25 + ag'; pi)
Folos, B; 05 20) = —[ (2, Qje(6)B) + Qe (24, B;0,0r)| 4 Vi(e5 s, B; 5 24)
+ Da(2x + 245 + s, B pr ) — Da(245 + s, Bs pr)
D' (0w, B p) = 0Q(as, B; ) + 6V(&; v, B; 1)
+ D1 (au, 25t g’ Ay, A1) + D245t als, B O,y O )
and
=D DY =D — L

The fact that fo = —Qs + Vs + Fi + F + DD + L is immediate from Remark V.5
and (V.29). Similarly, we set

Filaw, B; 3 2) = = [(Qe(6) v, 2) + Qs (s, 23 Gy, 0)] + V(55 s 55 5 2)
+ D (s, 2+ 25 + af'; pi) — Dilas, zs + o' fi)
Frlow, B; 7 22) = —[ (20, Qje(0)B) + Qe (24, 8:0,Gr)] + Vi (55, B 7 24)
+ Da(2 + 2es + a5, B fr ) — Da(2us + S5, B; pr)
D' (o, B 7) = 0Q(0s, B; 7) + 6V (55 s, B )
+ Di(ty, 25+ S5 @y, 61 ) + Da(zes+ S5, B; @y, &)

I

Qc Y

and Ly = D).,
(i) By Propositions V.12.i, V.13.i and Lemma V.10, with g, = D;,
1 Fillanes < Ko [e7™@) 4+ 6rRye™™¢] + Ky 6||v][rR3

+25 (e |Da| g, + [1P1]g, s, )

< Ky 6rR3 v + 2° (e‘mc@ HD1H61 + HDl‘Ql Hel)
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by (F.4.b,c) and the hypothesis that |[|v| < 5. Also, by construction,

Fi—F = Vilg a, B; f 2) = V(5 0u, B; B 2)
+ (D1 = Dy)(as, 2+ 25 + af'; pi) — (D1 — D1)(aw, 25 + af's i)

By Proposition V.13.i and Lemma V.10, with ¢; = D; — D1,

[ = Fillgge, < Ko edorRE +25 (e D1 = D, + [(Pr = Do)l s, )

(ii) DM and L are constructed so that D(l)‘ﬂc =0 and L5 =L

e - Also
DY =5Q - 6Q

e FOV =V

ae T Dilas, 26t ag's - ) — Di(aw, zst af'; +)
+ D2<Z*5+ O‘i%? 5; : ) - D2<Z*5+ Oéi%, B; ' )
Therefore, by Propositions V.12.ii, V.13.ii and Lemma V.10

Qc

Qc

DD s < Ko [e™4m@) 4 5iR e~ <] + Koy 3o 1 RS

+ 28 (e O (D ls, + IDslles) + (||P1]g,lle, + [P2lg,lls,))
< Ky 20t R3 o+ 25 (e ™5y 4 25)

by (F.3.b), (F.4.b,c). Also

DO — DO = (§V — §V) — (5V - V)

Qc
+ (D1 — D1)(au, 26+ o - ) — (D1 — Di) (s, 25+ 55 +)
+ (D2 — Do) (25t %5, B; - ) — (Do — D) (2as+ a5, B; +)

Qc

Qc

Therefore, the desired estimate on |[D™!) — DM ||g follows from Proposition V.13.ii and
Lemma V.10.

(iii) By Propositions V.12.ii, V.13.ii and Lemma V.10
ILslle = |7’

Qelle

< Kq [e7#™0) 4+ rRee™ ] + Ky d]Jvll| 1 RE + 2°|Duls, +2°| D2 e,
< Ky20ry R v+ 2°Yp

by (F.3.b), (F.4.b,c). Furthermore,

D — D' =6V — 6V + (D1 — D1)(an, 26+ a5 Gsy, 61 ) + (Do — Da) (205t a5, B G, iy )

The desired bound on HE’G _Ee H6 now follows from Proposition V.13.ii and Lemma V.10.
|
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V.5 The fluctuation integral - proofs of Theorems III.26 and III.28

Recall from Lemma V.4 that

I(a*,B) = Z I(s;a+,p) bi(a™, as, 1) b2(aj, B, o) X25(Qe; @, B)

hierarchies
S for scale 26
(61,69)<6

Zus(X)=zg5(x)*
for xEAG \R

ZngGl/d/uLQG’r(Z*,Z) efe(a*ﬁ%ﬁf;f:z)

In this section we perform the fluctuation integral to give the proofs of Theorems II1.26
and III.28.
For each hierarchy & preceded by &7 and &,, by Proposition V.14 and Lemma I1.7,
Z29e| /du%,r(z*,z) e (a™ iz 2)
_ e—Q6+V6+D(1)+L’6 Z§|QG| /duﬂg,r(’Z*? 2) e T, B; 732)+Fr(ax,B; 527)

(2%, 2) eFi(e,B; 732)+Fr (B 5327)
f d/"LQ(._:,'J‘(Z*, Z)

By Proposition V.14.i and the hypotheses of Theorem II1.26,

_  —Qe+Ve+DV 4Ly Qs fd/“LQGar
—e IS} ZZ5

17, + Follauet < 2Ky dorR3 + 28¢7(0) 53, 4 98 2 (5F)

1
< 10

(V.40)

by (F.4.c) and (F.6.a). So we can apply Theorem II1.14 with w = wayucs and f = F; + F,..

It gives the existence of a function D) (e, §;7) such that

f d/’LQG’r<Z*, Z) eJ:l (a*aﬂ;ﬁ;z)+fr(a*75; ﬁ7z*)

_ DP(a..B;p) V.41
fd“QGJ(Z*?Z) ‘ ( ' )

since F;(0, 0; 0; z) = F(0,0; 0;2*) = 0. The estimate (IIL.5) in Theorem III1.14 applies

and

2
ID?|s = PP |lguer < 1600(||F; + Folluet)

< 40(2Ky 601R3 4 28¢70) Sy W
< ) rRy + 2% Yp+2 ZD )

by (V.40). As [F + F,]

=0, also D(Q)‘QC =0. We set
Qc

Dg =DM +D?)
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By Proposition V.14.ii and (V.42)
D]l < 27Ky (20) 14 R2 v + 2Me @5y 4 214 25
By Corollary V.7,
Ds|,, 29_%;5<VQ,5( SHCHUIN Dz(';o)‘g)

The desired bound on L5 was proven in Proposition V.14. Since Kp > 28Ky, and K, >
2Ky, the proof of Theorem III1.26 is now complete.

We now move on to the proof of Theorem II1.28. The functions D® and Dg are
constructed as above and obey the corresponding estimates. By Proposition V.14.i and
the hypotheses of Theorem II1.28,

I(Fi + F) = (Fi 4 Fo) e < 2Ky edro RS + 287 ™@ Ap 4 28 AP < L (V.43)

y (F.4.c) and (F.6.a). We apply [BFKT4, Corollary I11.6] with f = F; + F, and f' =
J% + F,. Since

||ﬂ +~Fr||ﬁuct + ||(ﬂ +Fr> - (fl +f7")||ﬂuct < 41_0 + is < i4
it shows that
ID® — D) || < 4(34) (2Ky ed0 TR + 28670 Apy 4 28 ATH))
We combine this with the estimate of Proposition V.14.ii to give

IPs — Ds||g < [(4)(34)(2) + 1Ky edorR3 + [(4)(34) + 1)25 (e Ap + AT™)
< 29Ky £(260) 14 RS + 2167 Ap 4 216 ALF)

The desired bound on HE’G —EN'G H6 was proven in Proposition V.14.iii. Since Kp > 29Ky,

and K > 2Ky, the proof of Theorem III.28 is now complete too. [ |
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VI. Large Field Bounds

In this chapter we prove the large field bounds stated in Propositions I11.36, II1.37
and II1.38 and Lemma I11.40. Fix a 0 < 6 < © and an integer m > 0 and set ¢ = 279,
as in Theorem II1.35. We shall assume that ¢ is small enough that |e** — 1| < %. For
notational compactness, we set

R, =R(2"%) R/ =R'(2"¢) 1, =1(2") ¢, =c(2")

as well as x5 (€% o, B) = X2 (% o, B) and F,(Qo) = Fone(Q0).

Fix a hierarchy & for scale § = 2"¢ with depth at most m. For a decimation interval
J C [0,6], write QJ) = Qs(J) and A(J) = As(J). Similarly, I'.s(7;a*,a*) =
Ly(r;a*,a%), T's(m;d,8) = I'(1;a, 8) and Q2 = Qs([0,6]), A = As(]0,0]). Recall that,
for each decimation interval J = [t_,t;] C [0,d], with midpoint ¢, J~ = [t_,t] and
JT =[t,t4]. Also recall, from Notation I1.5, that Ag = As = 0 and, for each 7 € eZN(0, 9),
Ay = MT;) = A([r = 27205, 7 +27°(M¢]) | where J, is the unique decimation interval
centred on 7 and the decimation index 0(7) is the smallest integer £ > 0 such that 7 € % Z.

We shall consistently use the notation

a* ifr=0 « ifr=0
Vo = {F*(T; a*,a*) ifre (0,5)} Vr = {F(T; a,p) if e (0, 5)} (VL1)
B* ifr=9¢ B ifr=90

Using this notation

— [Llel? + Qs (a”, 8 &, d@) + 3115)?]

) VI.2
= Z [_ % (Yar, Yr) + (Vo J(E)Vrte) — % <’Y*T+67’)’T+E>] ( )
T€eZN|0,5)
and
Ve (59 a*, B ar, &) = —€ Z <’Y*T’YT—|—E: v ’Y*T’YT—I—E> (VI'3>

TEEZNI0,9)
Throughout this chapter we assume that the field a.; is compatible with & in the sense
of Definition E.1, as is the case in the domain of the integral operator Z(g cq+,5)- In

particular,
|- (x)| < min{k;(x), £er (x)} |a(x)| < Kao(x) 1B(x)| < ks(x) (VL4)

for all 7 € eZ N (0,9) and x € X. We also assume that h = 1, as we did in §III.7 and, in
particular, in Theorem III.35.
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In Propositions IT1.36 and II1.37, we introduced restricted large fields regions P, (J ),
SN Q(j ). The reason for introducing these smaller large field sets is the following. When
we are decimating at time ¢, the centre of 7, we need to extract a small factor for certain
points in A(J)¢ that are not in A(J‘)C U A(j+)c. Small factors were already extracted
from the latter regions in previous decimation steps. Each time we extract a small factor
associated with a point x we will distribute it amongst all nearby points y. As a result,
when we are decimating at time t, it is not necessary to extract small factors from points
that are within a distance 2c(|Ji|) of A(J‘)CUA(j+)C. So, for example, P, (j) consists
of those points of P, (J) whose distance from A(j_)c UA(]+)C is greater than 2¢(|J7*|).

Remark VI.1 For each decimation interval J = [t_,t4],

Pal) = { x€ 207 | o (I > ROTD o 25N 0y )

() = { x €00 [ lar, G > RATD 50N 2 ech1 |

() = { e Q@) | [(Ta )] > ROTD » 4 2 s 2 s
P4(T) = { b e () | [(Var O] > RATD » oy b0 Ly b
A7) = { x € $0(J) ‘ o, (%) = u_(x)] > x(T1) d(x,Aé(i‘;féig?ﬁfi'f';c(%m) }

VI.1 Extracting Small Factors from the Quadratic Form
In this subsection, we prove Proposition II1.36. The main ingredient is

Lemma VL2 Setj(e) = e "j(e) = e=" and ¢;. = |1 —j(¢)||. Assume that ¢; < .
Then

Re Z [_ % (Yoers Vo) + (Yar, 5(E)Vrte) — % <7*T+E’%'+E>]

T€eZN|0,5)
< _i{ Z%’|7IT_’YT+€||?\$UA3_+E + Z <7;k7 []l_](g)]’77> + Z <IY::T7 []l_](g)]’7>w> }
T€[0,6) 7€(0,6] T€[0,6)
+ % Z‘ <'7>|<7— - ,y:’AT(,yT - j(€)77+€)> ‘ + % Z‘ <7T - ’7:7-7AT(7*T _j(€)7*7—6)> ‘
7€(0,0) T7€(0,9)
+3 3 Atz =)+ e =1 X [l + e ]
7€(0,0) T€([0,6]
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where, for each subset S C X, |lul|§ = 3 cq lu(x)]* = (Su*, Su).

Proof: Recall that ||a|* = (a*, @) and .o = 75, Y5 = 7} so that (v.0,70) = [[70]]* =
172112 and (s, vs) = [|7s]|?. The real part of
Z [_ % (Vors vr) + (ers 3(E)Vrte) — % <7*T+s777+6>]
T€[0,6)
=—3lol* = D (rrm) = 316l + D0 (vers i (€)rte)
T€(0,5) 76[076)
= _%||'70||2 - Z <7*T;'77> - %H%sHQ + Z<7*7777+€> - Z <'7*7-7 []1 - j(g)]7T+€>
7€(0,0) T€[0,6) 7€[0,0)
= > B3I = s ve) + 3 2] 3 [ = Bl 4 (s e = Bl
7€(0,0) 7€[0,0)
- Z <7*T7[]1_](5)]77+5>
T€[0,6)
is
Re Z [_ % (Vers Vo) + (ver, 5 (E)Vrte) — % <7*T+a777+€>]
T€[0,6)
=1 v =P =3 D e = vrsel® = D Re (Yar, (1= 5(8)]yrse)
7€(0,6) T€[0,6) T€[0,6)
> {3 =l = iz, = el = Re (vers [1= (@)
7€[0,0)
because o — B[ = ||| + [|8]|* — 2Re (a*, §). Now
Ivir =7 lIA, = llvie = vrellR,
* . . 2 *
= [[Ar7i, — Arj(e)Vrye — As (77' - ](5)’)’7--1—5) H — |l — '77'+6||/2\T
= A7 = Arj(€)raell® = 17E7 — vrelld,
+ HAT( ]( ’7’7—1—5) H — 2Re <’7*T - ( )’774_5;-/\7— ('YT _j(5)77+a)>
= [[A+(vir — ’)’7--1—5) + A1 j(e )]’YT-!—EH —Iver — ’77--1-5”?\7
+ ||A (’YT ’77--1-5 H — 2Re <’)’*7- - ( )77+57A ('77- _j(5)77'+6)>
2
= 2Re <A ('Y*T '77-1-5) ]l ] '7’7+a> + HA ]l ]( VT—I-sH
+ 1A (3 =) 4e)[|° = 2Re (yur =75 + 5 =3 )V pes Ar (3 =5 (E)7r42))
2
= 2Re <A (')/*7- ’774-5) ( ]’)/T+s> + HAT - ](5)]77'-1-6”
— A~ (VT ’7’74—5)“ —2Re <7*T V7, Ar ('YT _j(5)77+6)>
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so that
sIve — e 1? = 31ve — Yrsell® — Re (qar, [1 = ()7 e)
= — 5l = rellie = Re (Arviye 4+ A%%r, [1= 5(&)]vr1e) + 5[ A1 = (&) 7rse]|”
— A (7 = ) vr4e) || = Re (or — 75 Ar (3 — 3(€)vr4e)) + 21172 — 7o ll3e

= =57 = vrrelie = (Ve =G Vr1e) — 5l7r — j(6>%+aHiT
— Re (AL (yr = ¥ie) =G ()rrte) + AT = G()vrse|”
—Re (Yur =75 Ar (Vr = 5(E)Vr1e)) + 3172 — 7 lI3e

= =57 = Yrrelie — € (e, (M= i(E)]vrte)
— e Re (AL (Yor = Vise)s =3 r4e) + 3 A1 = 5@ e
+ (e = 1)|Ivrgel® 4 (e — D)Re (AL (Vir — Vige), Yrte)
— Llvr = §(e)7r4el5. — Re <%<T — 75 A (Ve — () vr1e) ) + 5175 — - Re

Using Cauchy-Schwarz and [AB| < $(A? + B?),

||1/2 H )]1/2774—6“

| (A (Yar = V2 e)s [N =3 vrae ) | < 1170y — Yrtellae 1T —i(e
S V Cj:5 2 (HV*T - 774—5“1\5 + <’y7—+€, — ](5)]’VT+€>>

(e = DRe (AL (Yar = Ve )s Vrte) | < gle = 1|([I7Er - %+€“?&5 e l)

%HAT[]l_j(g)hr+sH2 < H[ _' 77'+EH2 + H ' ( ]'77'+€H2
< =i ||[1- mﬁ\u #12i(e) e |
< Gje <%+g7 ]1_1( %+€>+ =1 H%%H

Thus we have

(s )+ (ers 3V V) = § (et Vo) |

%
<[V
NI

7€[0,6)
< 3 {30-emyme — et 1)z, —reelie

T€[0,6)

N Z (e — 5eTV/Eie = ¢ie) (Viges [T = i(E)]yre) }
T€[0,9)

+ 3 Gle — 1+ [ — 1) ||y
T€[0,6)

- Z 2 HW/T - 77—"‘5HA Z Re <7*T - 7i7AT (77’ - j<5)77—+5)>
7€[0,6) T€[0,6)

+3 > I — i

7€[0,0)
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and hence, since 1 — e, /¢ — e — 1| > L and e — e /65 — ¢ > 1,

Re Z |:_ % <7*T,7T> + <7*T7j(6)7T+€> - % <7*T+5777+5>]

T€[0,6)
< - Z {%HV:T o 77+5H?\$ + % <7;k+€7 []1 - j(£)]’77+6> }
T€[0,6)
- Z Re <’)’*7- - 7:7/\7(77' _j(5>77'+6)> + 2‘eau - 1‘ Z ||’77'||2
7€(0,6) 7€[0,d]
+2 Y e =l
7€(0,6)
The bound
Re [_ % <’7*T,'77> + <'7*T7j(5)'77+6> - % <7*T+677T+€>]
T€[0,6)
<= > {3 =l + 3 (e i) }
7€(0,6]
— > Re (Ar(ar = §(E)Ver—e) s 1 =) + 20 = 1] D rarl?
7€(0,0) 7€[0,6]
+3 D> I =l
7€(0,6)

is proven similarly. Taking the average of these two bounds and using

%HVIT - ’YH—aH?\g + %H'YIT - ’YT—i—aHingE > %HVIT - 77+€H?\5UA3+E

gives the bound of the Lemma.

The first line of the right hand side of the conclusion of VI.2, consists of terms that are

invariably negative. The first can be thought of as a time derivative term and the other

two as space derivative terms. These three terms are responsible for the contributions

r(|j|)2{|Q(j)| + |PL(T)| + |]5é(j)|} to Proposition I11.36. See (VI.8,a,b,c).

The terms on the other two lines are all positive. The terms on the second line will be

controlled using the “smallness” of v, — j(€)yr4e and Vir — J(€)Yer—e. See Lemma E.17.

The first term on the third line is controlled in Proposition E.11.ii, using the smallness

of vi_  — 7. The small field part of the second term in the third line is bounded in the

following lemma and gives the small field regulator Regg}((l; a, B) in Proposition I11.36.

The large field part is left explicitly in Proposition I11.36. In the proof of Theorem II1.35,

it is canceled by quartic contributions.
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Lemma VI.3

e =1 Y [l + e 1B]) < Kreg 61l [lall + 1181E] + 51271
7€[0,d]

with the K.cg of Definition I1.17.

Proof: Write, using the notation of Definition E.3,

Yoolwlla= D> > ([Fan) () [Fan)(x)

7€(0,6) T€(0,8) xeQ
71,72 €T+ (7,8)

We bound the terms with (71, 72) # (6, 6) using

Y Y W)@ e

7€(0,9) x€2
71,72 €Ty (T,8)
(T1,72)#(8,9)

< ¥ S TRy () T2 (x,2) rry (2)

T€(0,8) xeQ
71,72 €Tr(7,8) YEAZ ,ZEAZ,
(T1,72)#(3,9)

Z No(I'TH; e%d(x’A),/{Tl) No(IZ2; e%d(x’A),mT2) min {|AS |, |AS, |}

7€(0,8)
71,72 €T+ (7,8)
(71,72)#(6,9)

<0l [ 3 N7 e )]
7€(0,8) 7/€(0,0]

< §|QC| (16€KjR(5))2 by Lemma E.13

IN

and we bound the term with 71 = 75 = § using

Z Z F5a5 x) (T as) (x Z Z i(x,y)B(y) I'2(x,2)5(z)

7€(0,8) XEQ 7€(0,0) XEEQX
> > Tixy)B(y) Ti(x,2)B(z) +2/Q° > No(T; e 4N Ks)
7€(0,8) x,y,z€EQ 7€(0,6)
2 e m J(x 2
< D No(T3 L,1)7 (181G 42197 D No(Tg; €% WM k)
7€(0,6) 7€(0,6)

< 2625|1813 + 22107 (169 R(8))

We used that the operator on L2(Q) with kernel I'’ (x,y) has norm at most Ny (I‘i; 1, 1).
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We have also used that [es# — 1| < £. Consequently |e** — 1| < 2¢|u| and, all together,

e — 1] > [IellE + I1yer 3]
T€[0,d]

< e —1|{2lald + 2813 + 22 ald + 2e2 (|83 + 62| (16657 R(6))* |
< (4+ 255 | [l a3, + 1813] + 212255 8|u[R(6)? 0]
By Hypothesis F.7.i, (I1.19) and (I1.17),

12 2K 2 _ 0ol2 2K, 1—2er—2e,,.e,—2er—2e;, 1
2e*M §|p|R(0) = 27 e M K|, §7 T ER T “erptn TR <15

The claim now follows from Remark D.3. [ ]

Proof of Proposition II1.36: Define, for each t € (0,0) NeZ,
B, =AJ) N A(T7) N AT (VL5)
Observe that, for all t € (0,0) NeZ,
supp P, (J:) C By
supp ﬁ’é (jt) C By
Q(J) C By
B,NBy =10 forallt £t € J°

(VL6)

where J2 = J; \ {t £ 3|7:|} is the interior of the interval 7;. To see the last line, observe
that if ¢/ is strictly between ¢ and t + $|7;|, then A(Jti) C Ay so that B, € A(J7F) cannot
intersect By C Af,.

Now fix any 0 < p,p’ < m. Suppose that t,t" € eZ N (0,0] have d(t) = p, o(t') = p’
and t # t’ and suppose that B; N By # (). We claim that

{recZ|reg ,7#t}n{receZ|reT,, 7#t } =0
{reeZ|regl, r#t}n{receZ|7eTf, 14t } =10

(VLT)

To see the upper claim, first consider p = p/, so that | 77| = \jﬂ = 2%5. Then either

t =t or (VL7) is satisfied. So, without loss of generality, we may assume that p < p’ so

that |J, | < |J, |. If the upper claim of (VI.7) is to be violated, then it is necessary that

t’ be in the interior of 7, . But then (VI.6) provides the contradiction that B; N By = 0.
By Lemma D.4,

ST (=i = >0 (= e VM) > ope 0 N e[V ||

7€(0,6] 7€(0,6] 7€(0,6]

= ¢y e 4POH Z Z 5‘V%(b)‘2

beX* 7€(0,8]
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Applying (VI.7),

t+| T |
Z <7;k7 []l - 77’> > CHe —4pCn Z Z Z €‘V’YT
7€(0,6] beX*  t€(0,8) T=tte

supp bC B¢

t+] T, |

— cpe— 00N Z Z Z €[V, () 2 (VI1.8a)

t€(0,6) T=t+e  bex*
supp bC B¢

R W (VAR A (KA AW A]

te(0,6)

by Lemma E.12.ii. Similarly

> (e M=i(e)ver) > epe P N z_: > eV

r€[0,6) t€(0.0) r=t—17,| 05, (VL.8b)
R S (VAR (KA AWA]

t€(0,6)

and

§ 2” Vet )7+E||ACIJAC >— § : || Vet )7+E||ACLJAC || Vxr—e V7 ||Ac UAS
T 7'+E T T+€ T—¢& T
76[0,5) TE((),5)

= 3 {Iv = v lRonc, + 0ime = 2Re_uag }

t€(0,6)
> 3 {Ivt = veelB gy + Mime = uli3 ) )
t€(0,6)
> > Hr(7)? Q7))
t€(0,0)
(VI.8c)
Hence, by Lemmas V1.2 and E.17and Proposition E.11.ii,
Re Z [_ % <’7*T:’YT> + <7*T7j(5)’77'+6> - % <’Y*T+67’)/T+E>i|
T€[0,6)
S—i{ Yo sl —vrrellReons + Do M@ + Y (v [~ %H}
T€[0,6) 7€(0,6] T€[0,6)
—2me(2 |7, c
+ Y eI ALl e =1 Y (Il e ]

7€(0,0) 7€[0,6]
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ie Z ||7:T_77+a||/2\guAg+€

€0,
~ Ko Y {1172 [QUID| + 1T R (F)? [PA(T)] + |7 R (T0)* | P(0)| |

t€(0,9)
+ Z e—2me(3 77 ) |AS| + ‘65”—1} Z [||’77-||2+ ||’7*7'||2]
TE(O,(S) 76[076]
where Ko = 312 mln{cHe 400 32} with ¢y and Cy being the smallest and largest

eigenvalues of H, respectively. The claim follows from (F.4.c), (F.7.a,b) and Lemma VI.3.
|

V1.2 Extracting Small Factors from the Quartic Form
In this section, we prove Proposition II1.37. Recall that

Ve = —¢ Z <’)/*T’)/T+E7 v7*777+6>
TE€ZN|[0,9)

If we could replace .. by 7; and ;4. by 7,, we would have

= Y vy - Y ullnkllixg=—en Y w®)|

T€eZN[0,6) TEEZNI[0,5) reizem)[(o,S)
which is very negative when some x’s are in large field regions. The following lemma
expresses the error introduced by such a replacement as a sum of two terms, 5476 and ]A/g.
The first, 54 o is a pure small field contribution, which will be bounded by the “small field
regulator” Reg( ) See Lemma VI.7. The second, 176, is a large field contribution and is
bounded by the two terms in the third line of the right hand side in Proposition II1.37.

Lemma VI1.4

Ve (0, B; Oy, a) = Z € (VarYer> VVarYar) — % eV Vrs VYY)

7€[0,0) 7€(0,6]
+ 54,6(057 B) + 96(0‘{*7 6a d;*? 62)

l\’)ll—‘

where )76(04*,5; A, d) is defined in (VI.14) and bounded in Lemma VI.6 and g4,6(a,5)
is defined in (VI.12) and bounded in Lemma VI.7. The first two terms on the right hand
side are bounded in Lemma VI.5.
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Proof: We start with the difference

VG o [_ % Z € <'7::T’7*7-, /U’)/::T’)/*T> - % € <7i77—’ U"y:j")ﬁ-)
r€[0,6) 7€(0,6]

between Vg and the expressions which are manifestly large and negative in the large field
region. (See Lemma VI.5). From this, we successively pull off four controllable pieces,

Vi&, -, Va&, leaving the small field contribution g4,e;(a, B). The first step is

Ve (u, B Gy @)+ 5 > € (Vi Yors VY mer) + 5 Y e (Vive, 0737)
T€[0,6) 7€(0,6]

=-3 Z { (Ver (Ve = Var)y VVsrYrde) + YarVirs VYVar (Yrte — Vir)) }
7€[0,0)

- % Z {<(7*7'_'7:+s>77'+€: U'Y*T'YT+E> + <'77>-k+577'—|—€: v (7*7'_'7:+s>77'+8>}
7€[0,9)

= V5 (an, 8; @, @) + Vi, B; d., @)

|
|
0ol
Q

(AVir (Vrte = Vir)s VAYsrYrte) + (AverVirs 0 AYsr (Yrge — 72r)) }
T€[0,6)

N %Z{<A(V*T_V:+E)VT+5’ UA7*77T+5> + <A'7:+677+€7 UA('V*T_V;k+a)'VT+a>}
T€[0,6)

and

V16l B; d., @)

=—5 > { AN (Ve = Vi) VYerVrae) + (TerVims VA Yr (Yrae — 7)) }
7€[0,0)
B % Z { <AC(7*T B 7:‘1’5)77"'5’ U7*777'+5> + <7:—|—677'+67 v AC(’Y*T - 7:+E)’)/T+E> }
7€[0,0)
-5 Z { (AYir (Yrae = V2r)s VAV Yrpe) + (A %irvirs V AYr (Yrge — 757)) }
T€[0,6)

= 52 A =7 )Vrres VA e ) + (A e VA (s = ) Tre) )
T€[0,6)
(VL9)

Next write
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where, in the notation of Definition I1.9 and Lemma E.4.i,

Vé((l/*,ﬁ; d;*?d;> - % Z <A(F2Ta*)(’y7'+6 - 7:7'>7 UA(FE:TO'/*) (F§'+€B)>
T€[0,6)

—2 Y (A% (%), v AT %) (hrse —75)

T€[0,6)

5 Y (A =24 ) (T2 B), v AT, a*) (T2, _B))

T€[0,6)

_ & Z <A T+E T_'_EB), /UA(PY*T - 7:+6)(F§'+66)>

TE[O )

and, using the notation of Definition E.3,

VQ,G(O-/*7 Ba d;*? d;)

- — % Z Z <A(F1%— 7—1)(’77'-!-6 - 7*7‘) UA(F:E' 7'2) (F:a—aa73)>

7€[0,8) 7T1,72€T(7,9)
T3 ETr(T74¢,5)
(11,72,73)#(0,0,6)

—= > Y (A@Rer)(TZon), vATEAL) (Yree — 7))

7€[0,8) T1:72:T3€T(7,6)
(11,72,73)7#(0,0,0)

5 X X (MO (), vA(TTaL) (M 0r,)

7€[0,6) T1,72€Tr(74e,5)
T3 €T (T,5)
(11,72,73)#(6,6,0)

o % Z Z <A (P:l-l-z? T1) (P:-l-saTZ) v A<’7*T o V;k—l—s) (F:i—aaT3)>

7€[0,8) T1,72,73€Tr(T7+¢,3)
(11,72,73)#(8,6,68)

(VI.10)
Next write
Vé(as, B; @, @) = VE (. B; @, @) + Vi (0, B; @, d)
where
Vg,(a*vﬁ; Oé*, -~ 3 Z <A FO Q(l/ 77-1—6 - 7:7')7 /UA(FSTQO'/*)( T+EQ/B)>
T€[0,6)
— < Z (A(T2.Q0a") (T2,.Qa), v AT, Q0%) (Yrie —7Er))
T7€[0,6)
- § Z <A Yer — 77+5)(P§'+sgﬁ)a UA(FQTQQ*) (Fi+€Qﬁ)>
T€[0,6)
5 S (A(TL087) (T2,.98), v A (s — 1) (T2,.06))
T7€[0,0)
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and, using Q© = Q and QM) = Q¢,

=—3 Z <A(FSTQ(i)a*)(%+E — ), UA(FETQU)O&*) (F£+EQ(k)B)>
7€[0,6) #.d:.k€{0,1}
(4,4,%)#(0,0,0)
-5 > Y (A% (r,0%a), v AN a") (e 7))
T7€[0,5) #4,k€{0,1}
(i,4,k)#(0,0,0)
—3 Z Z <A(%T — Vrie) (PerEQ(i)ﬁ), UA(pSTQ(j)a*) (P£+EQ(k)5)>
T7€[0,5) #4,k€{0,1}
(4,4,%)#(0,0,0)
- % Z Z <A(F£+EQ(2)B*) (Fi—l—aQ(j)B)’ v A(’Y*T - ’)/:4-6) (F§'+EQ(k)6)>
T€[0,6) #4:k€{0,1}
(4,4,%)#(0,0,0)
(VI.11)
Finally substitute, in V{ (o, B; d., @),
Vir = Vrbe = Ve + 7 + 72
where
%/7'75 - j(T)QOz o ]<6 - T g)Qﬂ ’77(-15) = 7*7- — Vrde — 5/7-,5 5/7(',26) = 5/7-,5 - %/7',5

where  the set of all point in X that are within a distance ¢(5) of  and Y7, was defined
in Corollary E.9, and write

VE (0, B; G, @) = Ess (e, B) + Vi (s, B; @, @)

where
Ersla, = 3 (A(r%.0a)F, ., v ALY, Qa%) (I2,.08))
T€[0,6)
+ 5 Z (A(T2.Qa*) (12,.Q0), UA(FSTQa*)'ZyT’Q
T€[0,6)
e ) (VL12)
—5 > (MA.(194.98), v AT, Qa") (1, 08) )
T€[0,6)
_% Z <A(P§'+EQB*) (Ff'—i—EQﬁ)v UA%/:,E(P?'—I—EQﬁ)>
7€[0,9)
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Vie(ay, B; @y, @) = £ Z <A(FQTQQ )38 +42), v A(T9,.Qa*) (T T+595)>

T€[0,6)
+5 37 (Ar%007)(12,00), v AT, 007) (562 + 52
7€[0,9)
—5 3 (AR A2 (02.8), v AT, Q07) (12, 06))
T€[0,6)
S5 20 (A0 (19,.08), vAGE +52)"(14,.05))
T€[0,6)
(VI.13)
Of course .
Ve (o, B; @, @) = Zﬁi,e(a*,ﬁ; a,,d) (VL.14)
=1
m

Lemma VI.5 We have
ST et vyt 240 Y. o(91)? #Bs(T)

7€(0,6] decimation

intervals

J C[0,d]

N e (e 0V 240, Y 1(1TN)° #Pa(T)

76[0,5) decimation

intervals

JCl0,6]

with the Cr, of Lemma F.5.

Proof: We again use, for each ¢t € (0,9) NeZ, the notation
=AT) N AT7) N AT

of (VL.5). Since v is repulsive, its smallest eigenvalue v; > 0, so that

e vyt e Y elP=Y] Y en|w(x)

7€(0,9] 7€(0,9] x€X 7€(0,4]
t+17,"|

>Z Z Z evt |- (x) by (VIL.7)

xeX te€(0,6) T=t+e
x€EB¢

7

= > D D ennx

te(0,6) T=t+e x€EDB;

> L N 1 oR(Z)" #P5(J) by Lemma E.12.v
t€(0,0)
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Similarly

D e (Ve VYY) 2 Z T R(IZN) " #8a ()
€(0,6

T€[0,6)

By Hypothesis I1.14, 16\% lvp > i“é|]t o]l > %Lﬂ |v, and the claim now follows from
(F.7.c). |

Lemma V1.6 Recall that 17176, ]72,6, 17376 and ]74,6 were defined in (VI1.9), (VI.10),
(VI.11) and (VI.IS’) respectively.

Vis (o, B;dx, @ < ) 29N coR(e)? |k - 7T+€‘ AcUAS,
7€[0,0)
+ Y (221e3KjenR(e)3+228e4Kj |jT|nr(|jT|)R(|jT|)3> |A]
7€(0,6)
[Va,e(a, B;ds, @)| < 2175 S01(0)R(6) |A°]

| <2
Vs.e (o, Bi 6, d@)| < 275 G01(0)R(5)* Q]
Y | < 216455 Sor(6)R(6)® |Q°

Proof: We prove that

< Z } <AC(A$ UAZ L) (Ver = Vrge) Yrtes U’Y*T’YT+5> }

T€[0,6)
< 32 R B — e Pene 3D 2068 coR(e)? 1A%
r€[0,6) T re(0,9) ( |
VI.15
and
€ Z ‘ <ACATAT+€(7*T - 'Y;k+g)77+€a U7*777+€> ‘
TEEZNI0,9)
| , (V1.16)
S 92064 | 7o (| T )R (1) [AS)
7'€(0,0)
and
€ Z ‘ <A<'7*T — Vrge) Vrtes UAC'Y*T'77+€> ‘ < 21t 5o r(6 )R<5)3 ‘Acg‘ (VL.17)
T€[0,6)
and

c Y Y (A 1) (TPan), vATEal) (MRan) |

T€[0,6) T1,72€Tr(74€,8) .
(1 oy 5.0 < 21%4% do r(9)R(9)° 'ﬁq' "
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and

e Y [ (Aer = 5 | (T2,.0008), v AT, Jaf) (T2,.18])) |

T€[0,9) < 914 4K; 54 r(é)R(5)3 ‘QC‘
(VI.19)
and
= 30 [(A0a7)3, v A(T%,Q0") (12,.08) ) | < 2145 b0 x()R(8)* [A°
7€[0,0)
(VI.20)
and
e >0 (A% 00")5E, v AN, 00") (1,.08) ) | < Le ™ Osoi0  (ypa)
T€[0,6)

Four Copies of (minor variants of) 1[(VL.15)+(VL16)] bounds the first two lines of the def-
inition of V; &(a., B; @, @) in (VL9). Four copies of (minor variants of) 3(VI.17) bounds
the last two lines of the definition of V; &(ax, B; dy,d) in (VL.9). Four copies of (minor
variants of) 1(VI.18) bounds V276(0z*,ﬁ, Qly, @), which was defined in (VI.10). Twelve
copies of (minor variants of) 1(VL19) bounds ]73,6(04*,& O, @), which was defined in
(VL.11). Four copies of (minor variants of) 3 [(V1.20)+ (VL.21)] bounds Vie(ay, B; @, @),
which was defined in (VI.13).

Proof of (VI.15): By Proposition E.11.i,ii with J = 7., and (VI1.4),
% (¥)]s [rer (¥)] < 20XiR(e) for ally € X

for all 7 € eZ N [0,0]. Hence, since > v(x,y)| <o

yeX }

< Z ‘ <AC(A2 UAZL) (Yar — Vrge)Vrtes U7*777+€> ‘
T€[0,6)

< > ev 23R (e)? |vi (%) — Yrie(x)|

T€[0,6)
c c c
xE(AZUAS | )NA

ST 2 R {y () — a0 4 1)

T€[0,6)
xe(AS uAC )rwAC

< D 28 woR(e)® {|hi, - el

IN

+|ACmAC|+\AT+EmAC%|}

ASUAS
T7€[0,0)
< > 283K coR(e)® |z, — %+6\AcuAc + > 225 coR(e)® |A]
7€[0,0) 7€(0,0)
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Proof of (VI.16): We actually prove that

€ Z ‘ <ACATAT+€(7*T - 7;-1—5)'774-67 U7*77T+€> ‘

T€[0,6)
realz . (VI.16.a)
< Y 2% | Tofo v (1T )R(1T- )AL
7/€(0,0)
The proof that
€ Z ‘ <ACATAT+€ (Yar — 'V;k+a)77+€a U'Y*T'77+s> ‘
A=t
= Z ‘ <ACATAT—6<'7*T—6 - '7:)777 U’Y*T—aVT> ‘ (VIIGb)
e
< 37 256 | Tofo o(| T ) R(1T- )| AL
7'€(0,0)
is similar.

Now for (VI.16.a). For any 7 € 2¢eZN(0, §), we necessarily have J, . = [1,7+2¢| C T,
so that A, D A,. Hence, by Lemma E.4.ii, and recalling that Ay = 0,

€ Z } <ACATAT+€(7*T - 7j+g)'77+67 U7*777+s> }

TE€2eZN[0,5)
=€ Z ‘ <ACAT ('7*7— - 7:—1—5)77'-!-67 U7*777+5> ‘
TE2eZN[0,9)
s¢ Z Z } <ACA7F(TT)A%AU(H)A% (Yer — 7:-1—5)'77'—1-67 U7*777+a> }
T€2eZN(0,6) Tr€Tr(7.9)
T €Ty (7,8)
S < Z Z ‘ <ACA([TZ7 TT])Af'TA% (V*T - 7:—{—6)77'4—&‘7 UV*T77+€> ‘

T€2¢ZN(0,8) [1r,71]ETir(T,0)

where 7;,-(7,9) is the set of all decimation intervals (in the sense of Notation I1.2) [7, 7]
with 7, € Ti(7,9), 7 € To(7,0) and Ayp(r )y VAS N Agiry NAS # 0. If [, 7] € Tin(7,0),
then 7 € (1, 7,) so, given any decimation interval [, 7], the number of 7 € 2¢eZ N (0, J)
with [7;, 7] € Tir(7) is less than ™ and

e Y AT )AL AL (Yar = W) rtes U YerYrte) |

T€2eZMN(0,8)
[T, mr1€T1 (7,8)

< mg sup [ (ACA([m T]) AL AL (Yer — Vi) Vres U erYre) |
T€2ZN(0,8)
[71,7r] €Ty (7,6)
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We now fix any decimation interval [7;, 7] and any 7 € 2eZ N (0, 0) for which [, 7] €
Tir(7,6) and bound

%‘ <ACA([TZ7 TT])A% AL (Ver — Vrge) Vrtes UW*TVT+€> ‘
< TPTIACOAL NAL [ (e 43)r(r—n)  sup Y e (})0(%, ¥ ) (V)Y (V)]
x€A([T,7]) yeX

2
< BFTACN AL NAS | (4™ 43)r(r —m) o] [ > No(T74c(8); ¢ dehllmmd), ffw)]
7'€(0,6]

7/€[0,6)

by Corollary E.9.b. Since 7 is in the interior of [, 7] and 7 + ¢ is its neighbour and has
(T +¢) =m >0(7), T+ € is also in the interior of [, 7.]. Hence by Lemma E.13,

Tr;Tl } <ACA([7_Z, Tr])Af_ZAf_T ('7*7— - ’7:+5)7T+5, U’Y*T’YT+€> ‘
< B ACNAS NAS | (4€™9 + 3)r(r—m) |||v]]] 40°€*™ R(7 —7)?
< 2295 (1. =)o r(r, —7)R(7, —7)® AN AL NAS |

and

€ Z } <ACA7'AT+E (7*7' - 7:—1—5)’77'—1-57 v '7*7-'77'+6> ‘
T€€2ZN[0,5)

< Z 2205 (r,—1)o (1. —m)R(7 —7)? [A°NAS NAS |

decimation
intervals
[Tl 7]

< Y 25 | T (| )R(IT) AL

T/€eZN(0,6)

For the last inequality, each decimation interval |7, 7.] was assigned to a 7" € eZ N (0, 6)
by

o if [r, 7,] = [0, ], the assigned 7’ is 3.

o if [r, 7] # [0, 6], then [, 7,] is an interval of length =4 for some scale 1 < p < m. In

this case 7’ is assigned to the unique end point, 7; or 7,., whose decimation index is p.

At most 3 < 22 intervals are assigned to each 7/ and, for each decimation interval,

(rr=7)o r(7—)R(7—7)® |A°N AL NAS | < 2°| T o r(|j7/|)R(|jT/|)3 |AS
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Proof of (VI.17):

c Z ‘ <A(7*T o 7:4-5)’77-—1—57 UA67*777+8> }

T7€[0,0)
< Trélg}g) 6‘ <A ’7*7‘ ’7:4—6)77'-1-67 v A67*777'+5> ‘
< :gg%;)éiA | sup Z | (Yo (%) = V24 e (%)) V4 e (R)0(X, ) Yar (¥) V16 ()|

2
< ma 5IA%] (46 + 3)x(8) [l [ 5 N7 (8); 35, )|
T€[0,6) 7/€(0,0]

{ > No(TZ(6); e%d“"A),mw/)}
7/€[0,8)

< 6(4e’ +3)r(0) § (2'e*R(9))” |A°]

< 2Me i S r(5)R(6) |A°|

by Corollary E.9.b and Lemma E.13 (When 7 + & = §, use I'(6) = 1 and I'; (&) = 0 for
"€ (0,6), and when 7 = 0, use I'%(6) = 1 and I'7y(&) = 0 for 7/ € (0,48). In both cases,
apply Lemma B.1.)

Proof of (VI.18):  We are to sum over (71,72, 73) excluding (9,0,0). We treat the case
73 # 0. The other cases are similar.

€ Z Z } <A(’7*T - ’)/:4_5)(1—1:14_5017-1) UA(FE' 7'3) (F?—l—saTz)> ‘

7€[0,0) T1,72€Tr(7+¢€,9)
T3€7_l(7' 6)\{0}

<max s Y (A =15 ([T ), vA(TRA%) ([ an)) |

7€[0,9) 71,72 €T (T+€,8)
T3 €T (7,8)\{0}

<max s Y 37 (e 4 3)e(8)| (T ) (%) | lo(x, )|

T€[076) 71,72 €Tr(T7+e,8) X,yEA
i3627§<:,6>\+{50} :63;\23 ‘Pm (v, z \fim(Z)\(Fﬁaam)(yﬂ

2
< (4% +9)550) max (ol 5 No(T7 (8 ¢,
) 7'€(0,6]

5 NI e )

T3€(O,5)
< (4e5 4+ 3)5r(5) 2 (2%e5iR(5))” |A”]
< 2MetKi Sor(§)R(6)3 |AC|

by Lemma E.13 and Corollary E.9.b.
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Proof of (VI.19): By Corollary E.9.b and Lemma E.13,

€ Z | (Alyir — Vsl (D2,.008]), v AT, o) (T24.18])) |

T€[0,6)
S Tren[%)g)d} <A|7*T ’7:+5|( T+EQC|/B|) UA(F27-|O'/|)( T+E|/B|)>}
< IIl{%)g)é (4e™5 4 3)1(6) ‘Fi+€ (x,2)|rs(z) v(x, y)\
T7€1(0,
’;ggé\ }F*T Y,z "6*0 }FT—I—E Y,z }"("'5(Z’/>

z/ .,z eX

< (46 43) bx(8) max (ol [|01No (T8,.(8): €% 10V, )]

[NO (1—127—(6)’ e% d(X,A)), K*O):| |:N0 (FT—i—E(e)’ e% d(X,A))’ "("'5)]
< (455 4 3)6r(6) 3 (2*XIR(5))° 9]
< 2MetKS Sor(8)R(0)3 |Q°]
Proof of (VI.20): By Corollary E.9.c
€ Z ‘<A (r9, Qa* 'yﬁla), v A(TY Qa*) (T T+EQB)>‘
T€[0,6)
< max § > | (rge = s + 320 ()] | (T2, Q07) ()| [o(x, y)]
oyed |(T2:007) (y)] [(T24:928) (v)]

m 2 m x
< 36r(0) A ma [Jol][No (I, (6); €% %), o) | No (T2 (8); €2 1), )

< 3" 5r(8)0 (2eIR(5))” |A°]
< 2Me4Ki 5y r(6)R(6)% |A°|
by Lemma E.13.
Proof of (VI.21): By Corollary E.9.c
e > | <A (1% Qa*)72), v A(T, Qa*) (r£+595)> |

7€[0,6)

< max ¢ e_4md(x’9)}(7y7,5 —Yre)(X)| e4md(x’9)‘(f‘0 Qa*) (x)] [v(x,y)]

T€[0,6)
X, yEA }(FETQQ ) ‘ }( T+E ) ‘

< 6 5e7 10 max [Jvl] Nam (T2-(8); %10V, 10)

No(L2,(6)s 3 400 .0) Ny (I, (); €3 10,y
e~ 3me(9) 5y (246Kj R(é)) ° |QC|

by Lemma E.13, followed by (F.6.b).
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Lemma VI.7
‘54,6<O‘7 5)‘ < Regg{;—‘(oﬁ B)
with the g4,g(a, B) defined in (VI.12) and the Reggl])_-(Q; a, B) and Kyeg of Definition I1.17.

Proof: Applying that
(fsvg) < Mol 12y llgllzcx)

and that 0
fallzacxy < e D ) (1€ 90D g]] L

= Heg)md(x’meLﬁl(X) HQSmd(x’Q)gHLél(X)

we have

}g4,6(047 5)} <20 Tlél[g“’)g) ]l He_sm d(x’m%T,sHM(X)

5m d(x,Q)FO 5m d(x,Q)Fé

T+EQBHi4(X)}

Next use the fact [E, Theorem 9.5.1] that, for any function A : X x X — C, the norm of
the operator f € L*(X) — (Af)(x) = dyex Axy)f(y) € L*(X) is bounded by

masc { max 3 [AGey)] . max Y [AGy)| |
yeX xeX

ma { 007 L e

and the trivial observation that, for y € €, ‘65”1 dxD) A(x, y)} < }65‘“ Ax¥) A(x, y)‘ Con-

sequently
e#™ 4T a" ||y < IT I el pa) < € flafpiw)

e 9Dr2 08|, o < Il 18llsc@y < @7 1Bs(e
To bound ||e™5™ d(X7Q)§/T,EHL4(X)7 write

Vre =Qa—=B) + (i(r) = 1)Qa — (j(6 — 7 — ) = 1)QB

Set
B(O):{b:(u,v)eﬂ*‘u,vefl}
Bblz{b:(u,V)GQ*‘UEQ,VGQC}
Bbgz{b:(u,V)EQ*‘uEQc, VEQ}
and write

et” /OTdT' ([e_T/V*HVV*HV} Qa)(x) = a1(x) + az(x) + a3(x)
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with

a(x)= ) e /0 ar e~ T VMY (x,2) (V*H)(2,b) (Va)(b)

zeX
ben(0)

as(x) = Z el /OTdT' e TV MY (x,2) (V*H)(z,b) {—a(u)}

zeX
b=(u,v)EByq

az(x) = Z et” /OTdT' e~ TV MY (x,2) (V*H)(z,b) {a(v)}
e X
b=(u,v)EBpy
By (D.4)
11— em>QaHL4(X) < [p|oe’s el pa )
By (D.3), and the corresponding bounds with the sup over the right argument and the
sum over the left argument,

las|lzs(xy < 0K [Val page)

’

||e—5rnd(x,Q) —5md (2,2 )6KJ/€KJ

azlrax) <e el pa )

- ,
||e—5md(x,ﬂ) —5md (2,2 )(SKJIBK

azlpax) < e 3 ||04||L4(Q)

All together, using (D.2),

||€_5md(x’m’:Y||L4(X) < o= Blpacxy + 2K§6K3{5[M+6_5md(9’ﬂc)] [||a||L4(Q)+||5||L4(Q)]
"‘5[||VO‘HL4(Q*)+||VBHL4(Q*)]}
and
\674,6(04,5)\ < v 2K}e3Kj+K§ maX{!\Oé’\?i4(Q) ) ||5H?i4(fz)}
{llo = Bllacx) + 6 [ute O] [[lall oy +118ll s )
+ 3190l gy #1810

The lemma now follows by Remark D.3. [ |

Proof of Proposition II1.37: It suffices to apply Lemmas VI.4, V1.5, V1.6 and VIL.7
and the observations, from (F.6.a), that
219e3KicpR(e)3

22163Kj€UR(6)3 + (228€4Kj + 21964Kj)‘j‘u r(|j‘)R(‘j‘)3

IN
o )

IA
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Remark VI.8 Since Proposition I11.37 is an upper bound, rather than an equality, the
specific choice of Regfé}(a, B) that we have made is far from the only possibility. We have

chosen it to be relatively simple.

V1.3 Extracting Small Factors from the Stokes’ Cylinder

Proof of Proposition ITI.38: In this section we prove the required bounds involving
the Stokes’ cylinder Cy(x;a*, 3) introduced in Definition I1.8. For simplicity of notation,

write

r=r(s) R=R(s) R'=R/(s) ry=r1(2s) Rs=R(2s) Rt =R/(2s)
and

N =QT) Q= Q(J+) Q=0 NQ A=AJT) P,=P.(J)

As pointed out in Definition I1.8, we may choose for this cylinder any two real dimensional

surface in

{ (2:,2) €C? | |2, |2 <R }

whose boundary is the union of the circle { (z,z) € C? | 27 =2, |z =1 } and the curve
bounding
D:{(z*,z) E@Q‘ |zo —0u| <71, |z —0| <1, 2—2] :p}

where

o= ([1-jc(s)]8)(x)
o = ([1 - je(s)]e”) (x)
p= (je(s)[o = B]) (x)
For the estimates, we make the special choice suggested by [BFKT5, Example A.2]. We
introduce the interpolating set B = U0§t§1 D, where

Dy ={ (24,2) €C* | |zs —tou| <1, |z —to| <1, 2—2f =1tp }

Set Cs(x; ™, B) = Uycpe1 9Dy Obviously, Cy(x; a*, 8) has the required boundary.
We start by proving

ou]. ol < e 57 ([Jul + ™Ry + Ry ) <

ol <ty + o] + o]

(V1.22)
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For the first bound, by Corollary D.2,

o2 = | ([0 = je(s)]") ()
< sKGe! S ([Jul + o™ max Ja(y)l+ max [Va(d)))

d(x,y)<c¢ d(x,b)<c

< sezKﬂl'S([|,u| +e ™Ry + R’+) <r

The second inequality follows from the observations that |a(y)| < R4 for all y within a
distance ¢ of A and |Va(b)| < R’} for all bonds b within a distance ¢ of A. Wheny € A, this
is enforced by the characteristic function ya2s(A; cr, ). When y is not in A, but is within a
distance ¢ of A, this is enforced by the factor of xr, (Q0\ (Pa UA), @) in the characteristic
function xo s (1, Qe a, @, 8). (Recall that d(A, P, UQ§) > ¢(s) > ¢, by (F.4.a).) When
b € A*, this is enforced by the characteristic function xas(A; o, 3). When b is not in A*,
but is within a distance ¢ of A, this is enforced by the factor of xr/, (25 \ (P,UA*), Va) in
the characteristic function yg (€1, Q2; @, ¢, 8). The third inequality follows immediately
from (F.7.d).

For the bound on p observe
ol < [B(x) = a(x)| + |[([1 - 7ec()][B — a]) (x)| <14 + |ow| + o]

Since Cs(x; a*, B) C Ug<s<1 Dt part (i) follows from (V1.22) and (F.3.f). By [BFKTS5,
Remark A.3], on Cs(x;a*, 5),

Re (2:2) > 5(1* = |p?) —x(lo] + o)
> 107 - 8)  (e1 + T 40) (fo] + oo
> %(r—rJr)( +r+) —3r(|a| +|0*|) (VI.23)
> 3p(r—1y) — 6rse’™ (Uu\ +e ™Ry + R )
2 CLI‘

The second and third inequality follow from (VI.22), the fourth inequality from (F.3.b)
and (VI.22) and the last from (F.7.d).
By [BFKT5, Remark A.3], the area of Cy(x;a*, 3) is bounded by

8rr[|o| + |ow| + |p|] < 40mr?
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V1.4 Relative Sizes of Large Field Sets

In this subsection, we prove Lemma III1.40, which is used in the proof of Theorem
IT1.35. As in the part of the proof of Theorem II1.35 where Lemma I11.40 is used, we fix a

hierarchy for scale 6 = 2"¢. By way of preparation, we have

Lemma VI.9 Let J be a decimation interval of length 2Pe, for some 0 < p < n, and
x € Q(J)¢. Then there is a decimation interval J'" C J, of length 2%, with 1 < q < p,
such that

d<x L Q(T") Usupp PL(T") Usupp P(T) U Po(J') U P(J') U R(j')) <4 Y (2%

k=q—1

Proof: The proof is by induction on p. If p = 0, then Q(7)¢ = () and the statement is
vacuous. Assume that the statement is satisfied for some p > 0. Let J be a decimation
interval of length 2P*1e and x € Q(J)¢. By Definition I1.4, there is a point y; € Q(J~)°U
Q(IH)°U Pa(J) U Ps(J)Usupp P, (J) Usupp P(J)UQ(J)UR(J) such that d(x,y1) <
c(2P¢).

o If y; € QT )¢ UQ(JIT)¢, then by the induction hypothesis, there is a decimation
interval J’ of length 2%¢, with 1 < ¢ < p, that is contained either in J~ or J ™, such
that

p—1
d(yl , QT U~ U Bs(T) uR(j')) <4 Y o2
k=q—1
As d(x,y1) < ¢(2P¢), we are finished.

o If y; € P,(J)U Ps(J) Usupp P,(J) U Supplsé(j) UQ(J)UR(T), we set J' = T
and are finished.

o If y; € X(J)\ X(J), for some X € {Pa, Pg,supp P, supp Ps, Q}, then there is a
y2 € AT T)CUATN)e C QT ) UQT ) with d(y1,y2) < 2¢(2Pe) + 1 < 3¢(2P¢).
By the induction hypothesis, there is a decimation interval J' of length 2%¢, with
1 < g < p, that is contained either in J~ or J*, such that

p—1
Ay, QI U---UB(J)UR(T)) <4 > ¢(2%)
k=q—1

As d(x,y2) < 4¢(2P¢e), we are finished. |
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Proof of Lemma III.40: By Lemma VI.9, for each decimation interval 7 of length
2Pe, with 1 < p < n,

Z {volume of ball of radius

)<Y T ™ M1+ 1247

decimation

intervals J/CJ
of length 29e

+ [P4(T") + [Pal( T + | Ps(T)| + \R(J’)|}

Since, for each ¢ < p, any decimation interval 7’ of length 2%¢ is contained in a unique

decimation interval of length 2Pe¢,

o Y (uzre)+1) 199

decimation
intervals J
of length 2Pe

En: 2 : A g lume of ball of radius
< ! e. / § 9P 1 Vo -

B q:l dccimation{ |Q(j )| + + |R(j )|} P=q (E( 5) + ) { 1 + 4 ZE:CII_I c(2k€> }
intervals J/ -

of length 29¢

<> Y @) {|QWl+- -+ IR

q:l decimation
intervals J/
of length 29¢

by (F.7.e). |
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Appendix A: Large/Small Field Characteristic
Functions

The representation of the effective density given in Theorem II.16 involves the “large
field integral operator” introduced in Definition II.8. In part (i) of this definition we
associate to a hierarchy & and a decimation interval J an integral operator Z 7.+ gy . Its
definition involves a characteristic function x7(a, oy, 8) = x7,6(a, a7, ) implementing
large and small field conditions. Here, we are going to define this characteristic function.

For this definition, we use the notation that, for 0 < r < R, z € C, any set Y and any
complex valued function f on Y

_J1 if|z|§r} _{1 ifr§|z|§R}
s - ‘s t - .
xr(2) {0 otherwise X ’R( ) 0 otherwise

and

) =T x(f@)  xr¥F) =[] xnr(f(@)

zeY zeY
As pointed out in the leadup to Definition III.2, the data associated to an interval

in a hierarchy naturally split into two parts, the “first kind” of natural large/small field
conditions and the “second kind” associated to the stationary phase construction. The
following definition collects the conditions of the “first kind” that arise in Lemma A.3,

below.

Definition A.1 Let 21,02 C X, 0 > Oandlet 2 = (A, Py, Pg, P, P5, Q) € F5(1NQ2) be
a choice of “small/large field sets of the first kind” as in Definition III.2. The characteristic
function for the small/large field sets of the first kind is

X (21, Qa3 @, 6, 8) = XV (21, Qa3 0,6, 8) X (e, B) X (@, &, B)
where
XM (Q1, Q25 a, ¢, B) = Xres) (D1 \ o, @) xr(5) (22 \ Qo B) Xres) (21 UNQ) \ o, 0)

X (6) (U\Q5, Va) xre(s) (25 \ 2, VB) xre(s) (2 UQ)\Q5, Vo)
Xr(5) (QI \ QS? a — (ZS) Xr(&) (Q; \ QS? ¢ - 5)

and
X (@, ) = Xr(25)(Q0 \ (Pa UA), @) Xr(26),R(5) (P> @)

Xr(25) (S0 \ (P UA), B) XRr(26),R(5) (P58, B)
Xrr(26) (2 \ (Po UA"), Va)  xre2s),r (5)(Pas V)
Xre(26) (20 \ (P5UA"), VB)  xr(26),r(5)(Ps, V)
Xr(25) (25 \ (QUAY) , 0 = B) Xr(26),00 (@ @ — B)
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and
X(Q?) (Cl/, ¢7 B) = XR(9) (QO \ A: ¢) XR/(6) (QS \ A*7 V¢)
Xe(o) (W \ A — @) xeis) (W \ A, 6 — B)
with QO = Ql N QQ .

If A is part of the data associated to a decimation interval of length 2§ in a hierarchy
S,and Q; =Q(J ), Q1 =Q(TJ"), then
o xM imposes the “old” small field conditions on a, § and ¢ in (QUITHUQITH))\
(T NQUITT))

o Xé? ) imposes the “new” small and large field conditions on « and /3 in the region

(UT)NQTT))\A(T) , the complement of the “small field region of the first kind”
for J in the previous “small field regions”
o Xé?) imposes small field conditions on ¢ in (AT ) NQTT)) \ A(T)
Observe that g s does not depend on the values of the fields on the set A.

For the small/large field conditions of the second kind, we use (as in Theorem I1.16)
the characteristic function xs5(Y; o, 8) (defined for § > 0, a subset Y C X and fields «, )
which takes the value one if

- Jax)],|8(x)| < R(6) for all x € Y and
- [Va(b)|,|VB(b)| < R/(9) for all bonds b on X that have at least one end in Y and
- Ja(x) = B(x)| <r(0) for all x within a distance one of Y

and which takes the value zero otherwise.

Definition A.2 Let G be a hierarchy in the sense of Definition II.4, and let J be a

decimation interval for & of scale 2¢. Define

X7 (o, ¢, 8) = xa,t (UT ), UTT); o, 6, 8) x2e(MT)\ QT )5 v, B)

where

A = (MT), PalT), Po(), Pal), P4(T),Q(T)) € F5(Q(T7) NQ(TH))

The second factor imposes the small field conditions in the difference between the small
field regions of “the first and the second” kind for J.

Lemma A.3 Let Q1,95 C X and d > 0. Then
X(S(Ql;a7¢) X5<92;¢7 5)

= Z x25(Aat; @, B) Xu(s) (Aot a0 — @) Xu(s) (A2, @ — B) xa1,5(, Qa5 v, @, B)
Q‘EFg(QlﬂQQ)
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Proof: Again set 0y = Q1 Ny . By definition,
X&(Ql; «, ¢) X5(927 ¢7 B)

= Xr(s) (21, ) Xr(s) (21, 0) Xr(5) (22,0) xr(s)(Q2,5)
Xr() (27, Va) xri(s) (21, Vo) xr(6) (5, Vo) xri(5) (23, V)
Xe(6) (4,0 — ¢) Xx(s) (%5, ¢ — B)
= ¥, Q5 a,9,8) - xr(5)(Q0: @) Xr(5) (R0, 8) xr(5) (%, V) xre ) (2, VB)
- xr(s) (Q0,8) xr/(5) (2%, Vo) Xe(8) (%, @ — @) xu(s) (2,0 — B)

(A.1)
The first factor, x(V(Qq,Q2; a, ¢, B), in (A.1) was defined in Definition A.1, and involves
only fields at points of (27 UQ3)\ ©Qp. The next four factors involve only the external fields
a and 8 at points x € . To introduce the more restrictive small field conditions of scale
20, we expand

XR(9) (Qo,a) = H [XR(Z(S) (a(x)) + XR(26),R(5) (OC(X))}

XEQQ

= Y Xreo(Q0\ Pay @) Xre26),R(6) (Pas @)
PQCQO

Xr(s) (0, 8) = Z Xr(25) (20 \ Ps, B) Xr(25),r(5) (P8 B)
PgCQo

Xr(5) (20, Vo) = Z xr(26) (2 \ Ply, Vo) xwe(26),r(5) (Prys V)
Pl

XR/(8) 907 Vﬁ Z XR’(26) \Pé, VB) XR'(26),R'(6)(Péa VB)
Pacy
1= X\ Q) a—B) Xe@s)00(Q, @ = B)
QCQY
and get, for the product of the four factors in (A.1) that depend only on the external fields
on 17,
Xe(6) (0, @) Xr(s) (2, 8) Xr:(6) (%, V) Xre(6) (%, VB)
= > Xr(26) (20 \ Pay @) Xr(26),R(5) (P> @)
(A Po By, o Py, Q)€ F5 (o) Xr(26)(20\ Ps,8)  Xr(26),r(5)( P B)
Xr(26) (20 \ Py, V) xre(26),r/(5)(Pry V) (A.2)
xXr(25) (% \ P5, VB)  Xre(25),r(5)(Ps, V)
Xe(26) (0 \ Q5 @ — B) Xr(26),00 (@, @ — )
= > X (e, B) xes(Aas a, B)

A€F5(Q)
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For each & = (A, Py, Pg, P, Pj, Q) € F5(S2) we write the last four factors of (A.1)

Xr(5) (Q0,8) xr/(5) (25, VO) xu(5) (5, ¢ — &) xe(5) (2,0 — B)

=X, 0, 8) - xre) (M d) xw(s) (N, V) Xes) (A, — 6) Xua) (A*, ¢ —5\) |
3

Inserting (A.2) and (A.3) into (A.1) we get

Xo (50, 0) X6(Q2;6,8) = Y xas(Aa; @, B) Xe(s) (M @ — 0) Xags) (Adi, ¢ — B)
AcA

Xr(s) (Aats @) Xre () (Ads VO) xa,5(, Q25 v, ¢, B)
(A.4)

In Lemma A.5 below we show that
X25(As @, B) Xr(s) (A @) Xre(5) (A", VO) Xas) (A", 0 — @) Xe(s) (A", 0 — B)
= x25(As @, B) Xe(s) (A", a0 — &) xu(s) (A", 0 — B)

If we insert this into (A.4) we get

X5 (15, 8) x5(Q2; 0, B)

= Z X25(A9l;aaﬁ) Xr(5) (AEUOC_ (ZS) Xr(5) (A§U¢_6) XQ(,5(91792; «, (ZS; B)
Ae A

= Z X25 (A @, B) Xe(s) (Ao, & — @) Xe(s) (Aat, & — B) xa1,6(Q21, Q25 a, 8, B)
A A

We were free to drop the factors x.(s) (AQ \ Ag, 0 — qb) Xx(5) (AE( \ Ao, ¢ — B) from the term
Xx(5) (A5U o — ¢)Xr(5) (A&, ¢ — 5) because they also appear in xo5(21, Q2; @, ¢, B). [ |

Lemma A.4 Let & be a hierarchy for scale 25. Set e = 2-4ePth(S)(94),

(a) Let J be a decimation interval centred on . If }aT(x)| > R(e), for somex € X \A(J),
then

H Xj(OéTl7OéTC7OéTT) =0

decimation intervals

J=[r,r]CT

where T, = —”;T’“ .

(b) If |as(x)| > R(g), for some x € X \ Ag, then

xat,6 (2([0, 6]), Q([6, 20]); @, s, B) 1T X5 (Qry 0z 07,) =0
T Clo28)

where A = (As, Pu([0,26)), -+, Q([0,20])), 7o = ™47,
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Proof: We prove part (a). In the event that x € (AT 7)UQ(JTT)) \ A(J), the factor
X7 (s, ar, o, ) vanishes

o whenx € (T )UQUIT M)\ (AT )NQ(TT)) because of the xr(s) (21 UQ2) \ Qo, @)
in xM(Q1, Q250,0,8), with Q1 = QT ), Q2 = QITT), Q = AT ) NUITT),
0= %|\7‘7 ®=a;r

o when x € (UJ™) NQIT)) \ A(J) because of the factor xrs) (20 \ A, ¢) in
Xa (a, ¢, 8), with Qo = T ) NQITT), A=A(T), 6 = 3|T], ¢ = ar

Observe that, in these two cases A(J) # X, so that we necessarily have § > ¢. In the event
that x € X \ (Q(J7) U QJIH)), there is a unique decimation interval J = [r,7,] C J
having 7, = 7 with x € Q(J 1)\ Q(J). In this case, the factor X 7 (@, s, ) vanishes

o when x € QJ1)\ (Q(j_) N Q(jﬂ) because of the factor xrs)(Q2 \ Qo, ) in
X (Q, Q25 0,0, B), with Qo = QT ), Qo = UT)NQT), 6 = 3|T|, 8=a-

o when x € (Q(j_) ﬁQ(j+)) \ A(J) because of the factors Xr(26) (0 \ (PsUA), B) and
Xr(zo)1(5) (Ps: B) in Xy (o, §), with Qo = (T ) NQUT ), Py = Ps(T). A= A(J).
§=3|TJ], B=a,

o when x € A(J)\Q(J) because of the factor ya (AN\QT); a, B) in the x 7 (e, ¢, B)
of Definition A.2, with J replaced by J, 2t = |7|, 5 = a.-.

Observe that, in these three cases Q(j ) # X, so that we necessarily have ¢, > €.

|
Lemma A.5 Let § > 0 be sufficiently small and A C Qy. Assume that
lafa, [Bla < R(20) [Vala-,|VBa- < R'(20)
ja — ¢las <1(0) ¢ — Blar <1(0)
Then
[#la <R(0),  [Vela- <R'(9)
Proof: It follows from our assumptions that
IV —Valpy- < |V |¢ — alar < [[V] £(6)
where [|V]| is the operator norm of the gradient. Consequently, by (F.3.d,e),
[¢la < R(20) +1(6) < R(6)
and
[Vola- < R'(20) + V] £(6) < R'(6)
|
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Appendix B: Bounds on Weight Factors

Lemma B.1 Let & be a hierarchy for scale § and ¢ = 276 with n > depth(&). Let
T€eZN|0,9] and 7" € eZ N (0,6).
(i)

sup e 3 dxY) mar(Y) < 9 , sup e~ 5%y re(¥) < 9

x,yeX R*T(x) x,yeX KT(X) -

Kar (y)<oo k1 (y)<oo

(ii) Let 0 < k < n and set

the unique decimation interval . ’
of length 2—%§ that contains 7/ if k< D(T )

27k fk>0o(r
j*k:{[f T ] if k> (r')

=27k, 1! if B >o(r
sz{[ | > o(r)

the unique decimation interval . ’
of length 2—%§ that contains 7/ Zf k< D<T )

Then
Far () < 4e%d(y’A(‘7*’“))R(2_k5) and k. (y) < 4e%d(y’A(‘7’“))R(2_k6) for ally € A%,

The Kur (y) bound also applies when 7" = 0 if we take 9(0) = 0 and Ag = 0. The k- (y)
bound also applies when ™" = 6 if we take As = .

Proof: (i) We prove the first inequality. Let x,y € X. It suffices to consider the case
that k., (x) and K., (y) are both finite. Let J = [, T + 2¥¢] and J" = [, T + 2%] be the
maximal decimation intervals with 7 as left endpoint such that x € A(J), y € A(T").
Then k., (x) = R(2%¢) and k., (y) = R(2%) if 7 # 0 and k.. (x) = 2R(2%e) and
ur(y) = 2R(2€) if 7 = 0. If k < £+ 1 then %r¥) = RZeL < RS < 9 by (F3.0). If
k> 0+1, then x € A(J), while y € A(J")° for J' = [r,7+ 2] S J. Hence, in this

case, we have :*:83 = ggzz)) < e3AY) by (F.5).

(ii) Again, we prove the first inequality. Let J” = [7/, 7" + t] be the maximal decimation
interval with 7/ as left hand end point such that y € A(J"”). We automatically have
t > ¢, since A([7/,7" +¢]) = X, and t < st’ﬂ since no decimation interval having 7" as
an endpoint has length longer than ﬁ. By definition, k.. (y) = R(¢) if 7/ # 0 and
Kur (y) = 2R(t) if 7 = 0. The desired bound is trivial if 27%§ < 2¢, so assume that
277§ > 2t. Set o _ 5

j/_{[T,T+2t] if t < =67y

-t Ht) =T ift=2r
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Then y € A(J")¢ and J' G TJar, so that
Farr (y) < 2R(t) < 2e54YIR(2750)

for all x € A(Jur), by (F.5).
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Appendix C: Normalization Constants

In this appendix, we prove
Lemma I1.7 There is a unique function § € (0,1) — Z5 € (0,1) that obeys

* 2 .

29 = Z} / dz Nz oz lim $logZ5 =0

i §—0+
|1<x(5)

Furthermore,
}ln Z(s‘ < e~T(®)’

Proof: Define, for all 0 < 4§ < 1,

i0) = gylog [ it oo

z|<r(6)

and observe that i(d) < 0. The condition relating Z25 to Z5 is equivalent to
% log Z55 = %logZ(; +i(9)

Iterating gives

%log Zs = 2,—1n5 log Z9-ns + Zi(Q_e(S)
=1

Existence and uniqueness will follow from convergence of the series Y ,°, i(2_£5), which

Wwe 11OW prove.

Since
* 2 dx d 2 2 o0 2m 2 o0
/%e_dzl—/%e_@J“y):l—%/ dr/d@re_rzl—/ ds e”®
r(9) 0 r(4)?
|z<x(5) |(z,y)[>r(5)

=1— ¢’

and }ln(l —33)} < 1‘_m||x‘ < 2|z| for all |z| < 3, we have |i(6)] < %e‘r(‘s)Z. Hence the series

o0

5er(5)2 i \i(Q_Z(S)\ < Z 2ze—(r(2*55)2—r(5)2)
=1

(=1
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r(2_€5)2—r(5)2:i<r(2_p5)2—r —ptlg) ) 3 r(2770) ( Pg) —

so the series

5er(5)2 Z ‘Z(2_€6)‘ < 2256—38 _ 13/26/3@3 <1
ei —

does indeed converge and
o0

logZs=6)» i(27%) = 226_1 log/ deAdz e I#?

=1 |z|<r(2—*9)

is bounded in absolute value by e—r(9)”
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Appendix D: Bounds on the Propagator

Throughout this appendix we assume that §h = 1. Then Recall that X = Z°/LZ".
In (I1.16), we assumed that the one-particle operator h = V*HV where H : L?(X*) —
L?(X*) is a translation invariant, self-adjoint operator all of whose eigenvalues lie between
cy > 0 and C'y > 0 and for which

Dy= Y e™0)7(b;(0),b;(x))| < oo
xeX
1<i,j<D

Here, for each 1 <i < p and x € X, b;(x) = (x, x + ¢;) denotes the bond with base point
x and direction e;. Under this hypothesis, the kernel of h is

hxy) = D0 [H(bilx = i) bily =€) = H(bilx — ), b;(y))

1<i,j<Dp

— H(bi(x),b;(y — ;) + H(bi(x), bj(Y))}

The norm [|hf| < Nem(h;1,1) < 4e'?™ Dy, and the constant K; = Ngm(h — p;1,1) of
Lemma III1.21 obeys
K} < 46" Dy 4 |l (D.1)

Furthermore, we have the following bounds.

Lemma D.1 Set K| =max {|u|+4DDye'® 1}. Let S C X and A: L*(X) — L*(X).
Forall >0 andx € X,

[A(1 = (r))S) ()| < 7RG A (|l + e=™5) max|a(y)| + max|Va(b))

For all >0 and S’ C X,

2 A=) 0] < mIGe T4l ([lal-+e=759 ] ma fa(y) |+ max [Va(b)]) |S]

Proof: Write

([1—j(n)]Sa)(y) = (1 —e")Saly) + e ([1—e ™ *V]Sa)(y)

= (1—e"")Saly) + e /0217" ([e_T/V*HVV*’HV] Sa)(y)

(D.2)
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As above Smd(n) e o D 10
Zem x,z‘(jéle T )(X,Z)‘SGT e
zeX

sup Z e5rn[d(z,b)—|—1] ‘ (V*H) (Z, b)‘ < 2D’,1.L€10m
2E€X pe x

Al
(D.3)

For any bond b = (y,y’)

V(Sa)(b) = S(y)a(y') = S(y)aly)
[S(y") = S(¥)lay") + S(y)[a(y’) — aly)]
a(y")(VS)(b) + S(y)(Va)(b)

The second term is nonzero only for y € S and hence for b € S*. The first term is bounded
in magnitude by |a(y’)| and is nonzero only if b connects a point of S to a point of S¢. In
this case, possibly replacing b by —b, we can always arrange that y’ is in S.

The part of (A[1— j(7)]S«)(x) in which the last V of (D.2), multiplied on the left by
A, acts on « is bounded by

et 1 || Al e* PR 2Dy et max
beS*

KT
Va(b)] < TKje™ || Al max|Va(b)]
The part in which the last V of (D.2) acts on the characteristic function is bounded by

M7 |||A|||e47-D7.Lelom 2DH610m e—5md(x,SC) max }oz(y')‘
d(yg,g‘;g)él

< 7K "5 Afle= ™45 max |a(y)|
yEeS
The first bound now follows from
1= | < |plrel™ < |p|refT (D.4)

The proof of the second bound is similar. [ |

Corollary D.2 Let ¢/ > 0 and recall, from (II1.2), that

S T

Forall >0 and x € X,
(0= o) )| < 7K ([l +¢7™] max Ja(y)| + max [Va()|)
d(x,y)<c’/ d(x,b)<c’
Proof: Just apply the previous lemma with A being the identity operator and S the set

of points y € X that are within a distance ¢’ of x. [ |
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Remark D.3 Recall, from I1.17, that K., = 29 exp {20612mDDH}. In Lemmas VI.3 and
VI.7, we used

4+ 26255 < 4 4 262 exp {4612mDH} <20 exp {4612mDH} < Kreg

and
2K363Kﬂ'+K§' < 23K +2K; < 2¢° exp {20D612mDH} < Kreg

Here, we have used that |u| < 1.

Lemma D.4 For all a € L*(X) and all 0 < e <1,

cye PO ¢ |Val?> < (a*, [1—e =V V]a) < Oy ¢ |Val?

Proof: We have

1 1
1 — =€V HY _ —/dt do~etVIHY _ / dt eV HY e—ctV HY
0 0

Since e~¢*V "V commutes with e V*HV and all of the eigenvalues of eV MV lie between

2
e_EtCH”VH > 6—45tDCH and one

1
(a*, [1— e_EV*HV]a> > / dt ee4etPCn (a*, V*HVa) > ce4ePCn (a, V*HVa)
0
> ¢y ee 4RO HV@HQ

Similarly,

1
<a*, []l — e_EV*HV}oO < / dt 5<a*,V*’HVoz> < C’HEEHVQHQ
0
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Appendix E: Bounds on the Background Field

In this appendix we provide both pointwise and norm bounds on the background field
as well as comparisons between the background field and the original field «,. Throughout

subsections E.1-E.4 of the appendix, we fix a hierarchy & for scale § and write

a* ifr=20 Q ifr=20
Ver = {F*G(T; e, 0y) If T E (0,5)} Vo = {FG(T; a,p) if € (0, 5)}
B* ifr=90 6} ifr=90
We also fix an integer n > depth© and set ¢ = 27"§. Recall, from Notation I1.2, that, for
each decimation point 7 € N(0,6),

_0
20(7)

we also set 9(0) = 9(J) = 0 and, if 7 is not a decimation point, ?(7) = occ.
o Tr=[r—mm Ttmm) Iy = mm, ] and IF = [, 7+ 5]

o A, = A([T — %, T+ %]) By convention, we also set Ag = As = (), and, if 7 is

o the decimation index, 0(7), of 7 is determined by 7 € Z\ 232—(6)2. By convention,

not a decimation point, AS = 0.

o In this appendix, we use e, = % = 3|J-| = || = |T7| to denote the lattice

spacing of the coarsest lattice Q%Z that contains 7. By convention, we set g = €5 = 4.
In subsection E.5, we fix a hierarchy & for scale 26. We further assume, throughout this
appendix, that the field «, is compatible with & in the following sense. (In the integral
operator Zg, the field a, is compatible with &.)

Definition E.1 A field configuration a,(x) is said to be compatible with the hierarchy
S if, for each decimation interval [7_, 7],

lor (%), |er, (x)] S R(r—7=)  for all x € A([7—,74])
Vo (b)],|Var, (b)| <R/ (r4—7-) for all b e A([r_,74])*
|z, (x) — ar_ (x)] < v(r4—72) for all x € A([7—, 74])"
where we recall that, for each S C X, S* is the set of bonds with at least one end in S

and S™* is the set of points in X that are connected to some point of S by some bond.

Remark E.2 Compatibility implies

o (0] < mingr, (%), mr ()} o) < R0l [BH)] < ma(x)

for all 7 € eZ N (0,9) and x € X.
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E.1 Additional Descriptions

We now rewrite the definition, Definition I1.9, of the background field (still with j(¢)
being interpreted as the h—operator of (III.1)) in a way that makes more clear which
coefficients I'Z (&), I'7' (&) are nonzero. The coefficients I'7_ (&) =7 and I'7 (&) =7
were defined as follows. For 7 € (0, §),

o For =17/,
[T, =TT = A
o For 7 # 7/, I'T_ =0 unless 7 > 7' and [r/,7] is strictly contained in a decimation
interval with 7" as its left endpoint. If J is the smallest such decimation interval
and 0’ its length, then

Il =j(r =7 = $)MIT) (%) AS
o Similarly for 7 # 7/, T7 = 0 unless 7 < 7/ and [r,7] is strictly contained in a

decimation interval with 7/ as its right endpoint. If J is the smallest such interval
and 0’ its length, then

U7 =j(r =7 =) MT) (%) AL

Observe that if J is a decimation interval, with 7/ as right hand endpoint and which
contains 7 in its interior, then d9(7) > 9(7') and 7’ is the smallest element of £,/ Z that is
above 7. Also observe that if 9(7’) > n, then A¢, = @ so that I']. =T'7 = 0.

Definition E.3 For each 7 € (0,4), set
To(7,0) = { 7 e (r,0]NeZ ‘ o(r)<o(r), 7' =min{ 7" € Z | 7" >7} }
Ti(1,6) = { 7 el0,7)NeZ ‘ o) <o(r), ' =max{ " €eZ |7 <7} }

The figure below provides an example. In it, e = 1, n = 5 so that § = 32¢, 7 = 14¢ so that
(1) =4, e, = 2¢, T (1,6) = {16, 322} and T;(7,0) = {12¢, 8¢, 0}.

T
S L L L A R L L L L L L L B L
0 4 8 12 16 20 24 28 32

As § € T.(7,9) and 0 € T;(,0) both T.(7,d) and T;(7,0) are always nonempty. When 7
and 0 are clear from the context, we drop them from the notation. Also, for each 7’ € 7.,
let w(7") denote the predecessor element of 7/ in 7., which is the largest element of 7, that
is strictly smaller than 7. When 7’ is the smallest element of T, set w(7’) = 7. Similarly,
for each 7/ € Tj, let o(7') be the successor element of 7/, which is the smallest element of
7; that is strictly larger than 7/. When 7’ is the largest element of 7, o(7') = 7.
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Lemma E.4 Let 7 € eZ N (0,6).

(i)
Ve =Aa,+ Y (w7 (T) = 1) Aoy i (7 =7 (7)) Alars
7' €T (1,0)
Yer =Nl + Y j(Tr—0o(T) Aoy (o(7) = 7') AL,
7' €T (7,6)
(1)
Ar=J AeyNAL A= Mgy DAL
T'€Tr T'eT
provides two partitions of A, into disjoint subsets. Let 1, € T, and 7 € T;. Then we have
o(1) = €o(r) = T and 7(Ty) + €x(r,) = T If
A7T(T7-) N A,Crr N Aa(n) N Af_l # 0
then [, 7,] is a decimation interval of length min {e,,, e, } and
Ar(r) AT Aoy AT, = A([m, 7] AT AT

as well.

In the figures below, the partitions of A, stated in Lemma E.4.ii, are illustrated for

the example inside Definition E.3.

Ar = Ao(a2e) Ar = Argiee)
A128

In the proof of Lemma E.4 we need

Remark E.5

(i) If 7/, 7" € T.(7,60) and 7" < 7’ then o(7") > o(7').
If 7,7 € Ti(r,0) and 7/ < 7' then d(7") < (7).
For each 0 < 0 < 9(7) there is exactly one 7" € T;(7,6) U T,(7,0) with 9(7") = 0.

(ii) If 7,7 € Ty(7,0) U T.(7,6) and 0(7") > 0(7’), then
Az C A CA;
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Proof: (i) Let 7/ < 7 both be in 7,.(7,0) and suppose that 9(7’) < 9(7). Then both
7" and 7' are in ex~Z and 7' cannot be the element of €z Z closest to 7, which is a
contradiction.

Let 7" € Ti(r,0) \ {0} and 7" € T,.(7,6) \ {6} and suppose that ?(7') = 9(7’). Then
[7'/ — e, T+ 57/} and [%’ — ez, 7 + 5;/} are both decimation intervals of length 2,/
and both contain 7 in their interiors. So they must be identical. That’s impossible since
7' <1 <7 forces 7' £ 7.

Let 0 <9 < 0(7). There is exactly one decimation interval of length 2% that contains
7. Call it [7/,7/]. If 9 > 0, then exactly one of 7/, 7/ has decimation index d. If 0 = 0,
then both of 7/, 7/ have decimation index 0. If 9(7’) =0, then 7/ € 7. If 9(7) = 0, then
7 eT,.

(ii) All of [7‘ —&,, 7‘—}-57}, [T’ —57/,7’4—57/} and [%’ —ez, 7! —i—s;/} are decimation intervals
that contain 7 in their interiors. Since ?(7) > ?(7’) > 9(7’), the first is contained in the
second, which, in turn is contained in the third. Consequently,

A[F —ew, 7 +ew]) CA([T —er, T +er]) CA([F — 7, 7 +e5])
(If 9(7') = 0, drop consideration of [7' — e, 7 + e+ and use that Az = 0.) u

Proof of Lemma E.4: (i) We give the proof for v,. We have already observed that F;l
may be nonzero only for 7/ = 7 or 7’ € 7.

Now fix any 7/ € T,.. Then [r,7'] is strictly contained in a decimation interval with
7/ as its right endpoint, namely [7" —e, T } Denote by J the smallest such interval and
by ¢’ its length, so that

’

7 =j(r — 7= 57 =0, 7)) (%) AS

T

If ' — %/ = 7, then all elements of (7,7") have decimation index strictly larger than 9d(7)
and 7’ is the smallest element of 7.

If ' — % > 7, then 7 is contained in the interior of the decimation interval [T’ -0, 7' — %/}
so that 7/ — %/ is the smallest element of %IZ above 7. As 7/ — %/ has the same decimation
index as %/, we have 7/ — %/ € 7,. All elements of (7' — %/, 7’) have decimation index strictly
larger than that of %/, and so cannot be in 7, (because 7’ — %/ has smaller decimation index

and is closer to 1), we have 7(7") =1/ — %. In both cases, A([7" — ', 7']) = Ay (/) so that

’

LT =j(n(r') = 7) Ap(rry 5 (7" = (7)) AL,
as desired.
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If 7/ — %/ < 7, then [7/ — %/,7" | is a decimation interval that contains 7 in its interior,
contradicting the assumption that [7/ — ¢’, 7’] is the shortest such decimation interval.

The proof for v, is similar.

(ii) Observe that A C Ay for all 7/ € T and Ar C Ay for all 7/ € Ty and that
7' =0 €T, has Af = X and 7/ =0 € 7, has Aj = X. Consequently

Ar=J My NAL A= | Asy NAS

T'eT, T'eT,

provides two partitions of A, into disjoint subsets.
We have already shown, in part (i), that 7(7,) + W =7, for all 7, € 7,.
Now fix any 7,- € 7, and 7; € T; and assume that

X € AW(TT) N Af_r N Acr(n) N A7C'z =+ 0

Write, as in part (i),

(1) =T — %5; o(m) =1+ 359,

Both
[W(Tr) — %(5;, (7)) + %5;] = [Tr — 5;,74

[o(n) = 461, o(m) + 36;] = [m, 7+ &7]

are decimation intervals that contain 7 in their interiors. Hence one must be contained in
the other. Say that d;. < ; so that the first is contained in the second and Ay (-,) C Ar(7,)-
To prove the claim, it suffices to show that 7, +; = 7. — i.e. that the right hand ends
of the two intervals coincide — since then [7;, 7,] is a decimation interval and A([, 7,]) =
Ag(n) C Aﬂ(n).

Suppose that they do not coincide. That is,

o(n) — 30 < 7(7) = 30, < 7(7y) + 56, < o(n) + 36

or equivalently,

<1 -0 <7T<T.<T+0

Since 7, € (1,7, + 9;), we have J,. C [1, 71 + ;] leading to the contradiction
AS N Aoy = AMTr) NA([m, 7+ 6])) =0

The argument that the left hand ends of the intervals coincide when ¢, > §; is similar. W
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E.2 Comparison to the case “j(7) = 4”

Recall, from (I1.16), that j(7) = e """ with h = V*HV where H : L*(X*) —
L?(X*) is a translation invariant, self-adjoint operator all of whose eigenvalues lie between
cy > 0 and Cy > 0 and for which

Dy = > e 0)7(b;(0),b;(x))| < o0
xeX
1<i,j<d

Here, for each 1 < i < d and x € X, b;(x) = (x, X + e;) denotes the bond with base point
x and direction e;.
If j(7) were the j(0) = b, the background field would reduce to

Definition E.6 Define, for each 0 < 7 < 9,
Yor = Afa + >0 Ay ALbal,

7' €T (T,9)

f?T = Af_a,r + Z Aﬂ'(T’) Af_/bobr/
7' €T (1,0)

We now prove some bounds on the difference between 7., and 4(,), and derive some

consequences of the bounds.

Proposition E.7 Assume that h =1. Let 0 <7 < 4. If x € AS, then

2 —mc(e,)

[ Yer (%) = Far (%)], |77 (%) = A7 ()] < Je

If J is a decimation interval that contains 7 and x € A(J), then

[V (%) = Fer (%) s 77 (%) = 4 (x)] < (267 +1) x(|T])

bl

The proof of this proposition uses®)

Lemma E.8 Let0<7<dand T, ={m <m <--- <71 =10}

(a) If x € AS, then

Vr(X) = ar(X) + Eo(7, %) with |E,(7,x)| < Je7meEr)

(1) In Lemma E.8, we do not assume that b is identically one.
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Ifxe A, NAS,, for some 1 <L < p (with the convention that 7o = 7), then

(b) when d(x,A-,) > 5¢(er,) (automatic for £ = p) and d(x,AS, ) > 1¢(2e,, ),

)T

77 (%) = oz, (x)+ ([] (TZ_T) —b] ATE—lAf'eaTg> (x)+Ep(7,x) with |Ep(1,x)| < 2~ me(er,)

(c) when d(x,AS, ) < 3c(2e,, )

’)’T(X) = b(l/n (X> - (] (Tf—l - T) A7C'g_1 A([Tf—l ’ 7_5])[0‘7'2 - O‘Te—1]> (X>
+ ({[j (re—7)=b] = j(re—1—7) AL, [ (e —7e—1) —b] } A([7e—1, 72]) Aiﬂw) (x)
+ E.(1,%x) with |E,(1,x)| < 2e~ ™)

(d) when £ < p and d(x,Ar,) < ic(er,)

e (%) = bar, (%) + (Li(re = 7) = B]A (170, 7e1]) A o, = ar, 1) (%)

+ <{ [ (re—=7) =0+ (re—7) Ar, [ (o1 —7¢) =B FA([70, Te41]) A§Z+1a72+1> (x)
+ Ey4(1,x) with |Egq(T,x)| < 9e—mc(ery)

For x running over A = A([0,4]), we also have that
(e) if 0 <7 <L, then
Yer (%) = ((7)0") (%) + Eue()
(%) = (36 = DA([3,0)8 = 5 (3 - 7) Ai(5) ~b] A([3.6])8) ()
+ (35 =) AA([8.0]) oy — B]) (0) + Ee(x)

with Y [Bue(®)] < e ™A and Y |Be(x)| < e ™A
xEA xEA
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(f) if T = g, then

Yar (%) = (J(7)a7) (%) + By (x)
V7 (x) = (§(0 — 7)B) (%) + Ef(x)

with Z ‘E*f(x)‘ < e—mc(5)‘AC| and Z ‘Ef(x)‘ < e—mc(5)|Ac|
x€EA x€EA

(9) if £ <7 <6, then

Yer (x) = (A0, ])a" = j(r=5) ALi(8) =B A([0. £])a" ) ()

d
2
Vo (x) = (5(0 — 7)B) (x) + Ey(x)
with Z ‘E*g(x)‘ < e—mc(é)‘AC| and Z }EQ(X)‘ < e_mc(é)‘./\c|
xEA x€EA

Proof: Recall from Lemma E.4 that

P
vr = Ao, + kz G (=1 = 7) Mg, G (T — The1) AS, ur, (E.1)
=1

For each 1 < k <p,

‘ (j (Tk_l — 7') A, j(Tk — Tk_l) Aika7k> (x)
S NO (X{x}j(Tk—l - T) ATk_l ](Tk - Tk—l) A7C'k: ) ]-7 KJT]C)

—2mmax{d(x, A, , d(x, AS . .
< 4R(257k/) e 2 {d(x,Arp 1) 5 d( Afk)}m] (Tk—l _ 7_)||| [IF (Tk . Tk—1)|||
< 4€KjR<€ ) e—%mmax{d(x,ATk_l) , d(x,Af_k)}
— Tk/

(E.2)

where X(x} is the characteristic function of the set {x} and %’ is the maximum of k& — 1
and the largest ¢’ with x € A,,,. If x € A¢, then &' = k — 1. For the second inequality we
used Lemma G.5.ii with

o L; being the single point set {x}, Ly = A,,_, = A([Tk — 25Tk_1,7k]), Ls=AS,
o with d replaced by 0, 61 =0, do = 3d, § = %md, d = 5md,
o Oy =A;,, k= ks, and R = 4R(2¢,,,). This choice of R is justified by Lemma B.1.ii.

(a) First consider the case that x € AS (which forces 7 € €Z). Then, the £k = 1 term in
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(E.1) vanishes so that
}’yT(x) — aT(x)} = ’ éz (j (Tk_l — 7‘) A, j(Tk — Tk_l) Aﬁkam) (x)’

p
S 4R, ) et

<
k=2
P
< Z 4 R(e,, ) e 3me(2er) (put £ =1 in the figure below)
k=2
P
< Z% e~ 4me(2er) by (F.6.b)
k=2
P
< % e—2mc(2€.r) Ze—2mc(257k_1)
k=2
<1 e me(er) by (F.4.a,d)

(b,c,d) Now we consider the case x € A,,_, NA¢, with 1 </ < p. In particular, x € A.

Set
{l} in case (b)
K=< {{,{—1} in case (c)
{¢,0+ 1} in case (d)

As in the last paragraph

Yr (%) — Z j(Tkz—1 - 7') A j(Tk — Tk_l) Aikaﬁc

keK

< e—mc(afe)

In case (b), when d(x,AS, ) > 1¢(2e,, ) and d(x,A,) > 3¢(er,), we write the k = ¢

Te—1
term as

J(re—1 —7) Ary_y G (70 — Te—1) A, 0,
=j(re —7) A ar, — j(Te—1 — T) AL, G0 — T0-1) AL o,
= ATe_1Af'eba/Te + [] (Tﬁ - 7-) - b] AU—lAi@an

+ j(Té - 7_) A Or, — j(TE—l - T) A?‘g,l j(Té - T@—l) A’?‘[OéTe

Te—1

and bound, as in (E.2),

(J(rer = 7) v (e = 7o) Af 0, ) ()| S 4€R9R(2z,, ) e BmeCe)
e—mc(awil)

e—mc(aw_l)

NN

‘ (j (1e —7) Aie,lan) (x)’ <
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For case (c), when d(x, A, ) < 2¢(22;, ,) and hence d(x, Ar,) > 2¢(2¢,, ,), we first

P Te—1

observe that

AT@ € ATzfl = A([Tf—l — &1 Tg]) € A([Tg_1 ’ Tg])

Here the symbol A € B signifies that A is a proper subset of B unless B = X.
So the k = ¢ term is

G = 7) Apy_ G (e — Tem1) A%, ary
= j(re—7) A([re—1, 7)) A or, — G (101 — 7) AS, G (70 — Te—1) A([me-1, 7e]) AS, 07,
+j(7'€—1 - 7') Am,l j(Te - Te-1) A([TE—1 ) TE])CaTe
= A([Tg_l , Tg]) AZ ba, —j(Tg_l — 7‘) AZ, L A([Tg_l , Tg]) A%,
+{li(re=7) =] =g (re—1 —7) Ay, [5(7e — 1) = b} A([7e—1, 7)) AS, 0,

+j(7'e—1 - 7') An,l j(Te - Te-1) A([TE—1 ; Te])can

164



and the £ = ¢ — 1 term, which is only present when ¢ > 2, is

j(Tg_g — 7‘) A, j(Tg_l — Tz_z) AL, ar,,
= j(re—1 = 7) A, A(lre—1, 7)) or,,
—J (713—2 - T) A%,z j(ﬂz—1 - Te-z) A%,lA([Té—l ) Te])an,l
+ (o2 = 7) Ay G (-1 — Te—2) A[re—1, 7)) “ar,,

As in (E.2),
’(] (Te_1 - T) AT@ 1 j(Tg — To_ 1) A([Té—l , Té])cOéTe> (X) < % e—4mc(67e_1)
K] (Tz 2 — T) Aie 2 ](7'£ 1— Te— 2) (Tg 1, Tg])a/q-e_l)(x> < % e 2me(er, o)
‘(j (Te—2 —7) Ary_, G (701 — Tg_g) A([re=1, U])CQTZ_l) (x)| <% o—4me(er, )

Adding the representations of the £ = ¢ and kK = ¢ — 1 terms and using the fact that

AS, A7, =AY, |, wesee that — up to an error of at most 2e~me(Er)

() = bar, (%) = (3 (7o = 7) A%, Allrer s 7)) lar, = ar, 1) (%)
+ ({[j(n —7)=b] =g (rer — 1) AL, [ (e = e1) =B} A([re—1 5 7l Ai;m)(X)

(When ¢ =1, (j(re—1 —7) AS,  A([re—1, 7]))(x) = 0, since x € A,.)

Te—1

(
For case (d), when ¢ < p and d(x, A-,) < 3¢(e-,) so that d(x,AS, ) > 3¢(2e,,_,), we
first observe that x € A( [Te, Tg+1]) and that

AT@+1 c ATZ = A([Tg — &7, Tg+1]) c A([Tg, Tg.H])

So the k = /¢ term is
j(Tg_l - 7') A, j(Tg - Tg_l) Aieozn
= j(’Tg — 7‘) A([Tg, Tg+1]) A7 o, -l—j(Tg — 7‘) A([Tg, Tg+1])can
—j(re—1 = T) AL, G —Tem1) AL o,
and the k = ¢+ 1 term is
j(Tg — 7') A, j(Tg+1 — Tg) Ai@rlozﬂZ+1
= j(Tg — 7‘) A, A([Tg , Tg+1]) A7, an,,
+j(re—7) Ay, (j(Te+1 — 1) — b) (e, Teqa]) A5, rp
+j(7—€ - T) AT[ j(TZ—i—l - Tf) A([Té ) T@—i—l]) Qrp iy
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As in (E.2)

‘ (j (1 —7) A([re, Te41])° ) —2me(er,)

‘(J(Te 1 —7) AL, (e — Te—r) ozn>
‘(j (7e = 7) Ary 5 (Tegs — 7e) A([7e, Te11]) aTe+1>(x)
Adding the representations of the £k = ¢ and kK = ¢ + 1 terms and using the fact that
AC Ai{«kl - A%z’

Ve = (1 = 7) A(l7e, Tesa]) AL o, + 5 (70 = 7) A ([, Te1]) S, ary s
+j(re —7) A, (j (Te41 —72) — f)) A(lre, Teal) AS,,  or

= j(TE - T) [A([TE ’ Té-l-l]) Af-e+1aﬂe+1 + A([Té ) Tf-ﬁ-l]) Af-e [Oén - O‘Tz+1]}

A
I

(&

—me(er, ;)

INA
T

(&

IN

1 _—2mc(er,)
1 € ‘

we see that — up to an error at x of at most 2e~™¢(em) —

(e =) A, (3 (ress = 70) = B) Allre, Tea]) A%, 0y,
Writing, in the first term, j (Tg — 7') =bh+j (Tg — 7') — b] and evaluating at x, we have

(%) = bar, () + ([i(re = 7) = B]A([7e, 7eaa]) AS, L myy, ) (%)
+ (1(re = 7) = 0IA([re, 7e4]) AL, [, = 0, ]) (%)

+ (j (Tﬁ - 7_) ATe [] (Tf-i-l - TZ) - h] A([Tﬁ ) Tf-i-l]) A7C'g+1a7'£+1) (X)

up to an error of at most 2e~™(e7,)

(e,f,g) We give the proof for 7.,. Recall from Lemma E.4.i, that, on A,

Vir = ) ](T —o(r )) AU(T’) ]( (T ) - T,) AL
7' €Ti(T,6)

As in (E.2), if 0 < 7 < 0 (otherwise T;(7,d) is empty),

Z )(] (t—0o(7") Aoy j(a(r') = 7') Aﬁ,a7/> (x))

xEA
€T (7.6)\{0, 5}

< Y No(MJ(r = () Aoy (o) = 7 AL 5 Lk ) AS]

T E'TZ(T 5)
T'#O,%

< Z 4€K7R(5) e—%md(A,Af_,) |AC‘
7/67_1(7',5)
T'#O,%

Z 4€KjR(5) e—%mc(Qs_r/) ‘AC‘
7'eT(r,6)\{0}

> fe™ B A by (F.6.b)
7'€T(1,6)\{0}
<1 e M) |A°| by (F.4.d)

IA

IA
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Case 0 < 7 < &: In this case 7/ = & ¢ T;(7,6) and the 7/ = 0 € T;(7,§) contribution to
7*7’
3(r = 0(0)) Ao(0) (0(0)) a = j(r)a — j (1 — 0(0)) AE(O)J'(U(O)) a

For 7 = %, 0(0) = 7 and the second term vanishes on A. For 0 < 7 < , by Lemma B.1.i,

S| (i~ o) Ay i(e @) o) < 32 15— 0(0) 6 3] [i(5(0)) (v, 2) s0(2)
xEA

xEN,zeEX

yEAC = (0)

< AR(§)e A0 BT (= o (0)) G y)| 2P0 (0(0) (v, )00

xEN,zeX
AC
YR (0)

< AR(8)e 2 A0 A o (7 — o (0 ))\H ll7 (e (0))l
< 4e%iR(6)e gme(8/2) ‘AC( )‘ since 7'< , so that 0'(0)<g and €4(g) < %

VAN

1 emamel) |Ae| by (F.6.b)
(E.3)
Case § < 1 < §: In this case 7/ = & € T;(7,6). The 7/ = 0 term is
(1= 0(0) Aoy i (0(0)) a = (T — §) Aj(5) @
= (M) A([0,3])a =5 (r = 3) A% (3)A([0, 3])a + 5 (r = §) Ai (3)A([0, 5]) e
=Ji(MA([0,3]) @ =5 (r = 5) ALi(3) = B]A([0, 3])a =5 (m = 5) AA([0, 5]) o
+3(r = 3) Ai(3) A([0,3]) e

and the 7/ ‘S term is

J(r=(3)) Mgy 3 (0(3) = 5) Agas = j(m = 3) A°A([0, 5]) ey
—3(7 = 0(3)) A5y 3 (0(5) — §) A°A([0, 5]) s
+3(7 = (8)) A3 i (@(3) — 3) A([0,3]) s
As in (E.3),
S (56— ) A5 () A([0.3])0) ()| < et/
xEA
S| (57 = o)) AL gy i (0(2) = $)AA([0,3])ag ) ()| < Eemtme6/2 e
xEA
> (5 =0(3) Asg)i(o(3) = £ A([0.3]) g ) ()| < dem 0/
xEA
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Proof of Proposition E.7: For x € AS, 4,(x) = a,(x) and J.; = a,(x)* and the
desired bound follows immediately from Lemma E.8 and its analog for ~... For the rest
of the proof we restrict to x € A.

We prove the bound on |v;(x) — 47(x)|. The bound on }’y*T(x) - ’}*T(x)} is proven
similarly. Write 7, = {11 < 72 < -+ < 7, = 6} and fix any 1 < ¢ < p, any decimation
interval J containing 7 and any x € A;,_, N A$, N A(J). Note that A, NA(J) is empty
unless | 7| < €, and that 2e™™¢(er) < 2 < 1r(|7)) by (F.4.c).

For case (b) of Lemma E.8, it suffices to bound

(e = 7) = WA, A% 07, ) ()

< (re = )RS ([l + ¢S]

max |ar, (v)| + max |Va,(0)])

YEA, 4 T

<2, Kot ([la] + B R 2z, ) + R 2er, )

< »STZK;eK;' ([|,u| +e ™ R(er,) + R’(672)> by (F.3.a.e), (F.4.a)
< 551(er,) < 551(17)) by (F.6.c), (F.3.b)
In the first inequality, we used Lemma D.1. In the second inequality we used that both 7

and 7, are in [7y—1 —€&,,_,,Te—1 +€7,_,] to bound 7y — 7 by 2¢,, ,. In the third inequality
we repeatedly used tR() () < 2¢tR()(2t), which gives tR() () < (2¢4) R()(2%) for all £ € IN.

For case (c), we use the bounds
(1570 = 7) = WA([re-1,72]) A% 0, ) ()| < (1))

|
(s = ) 85,1 (e = 7o) = WA (o1, 7)) A% 07, ) (%) < 52(1T)

which are proven as above, together with

(1= 7) 85, Al 7)o, = ar, 1) ()

—md(A(T),AS .
<e (A7) 5*1)|||] (Tg_l — 7‘)||| sup }an(}’) - (1/7-4_1(}’)}
yeAS,  NA([re—1,7e])
S e_md(A(j)7A:e_1) eKj r(€7_571)
e [HEn) £ 207D 1T < 26r
<e
e—rnt(2€-rg—1)r(€7_[71) < 257_5710 1"(57571) <1< I‘(|j‘) if |j| > 257—271

by (F.3.b), (F.4.c) and (F.6.a). For case (d) of Lemma E.8, it suffices to bound
(1 = 7) = WA([re s 7ea]) AS, e, =, ]) ()] < €2(r,)
(1o = 7) = WA (e, 7ea]) AL, @ ) ()] < dyren,)

‘(j (re = 7) Ar, [ (g1 — 70) — WA([re, Te11]) A:Hlaml) x)| < Lr(en)

since, as we have observed, | J| < e,,. These bounds are proven as above. [ |
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Corollary E.9 Assume that h = 1.

(a) Let 0 < T < 0. If x € AS, then
|Yar (%) — 7 (x)"| < e7meCEr)
Let J be a decimation interval of that contains 7. If x € A(TJ), then

[Yir () = 7 (%)*] < (4”7 +3) x(|T])

(b) Let 0 < 7 < 6. If T € 2¢Z and x € A(T), then
[Yir (%) = Yree (%) "] < (4™ +33) 1(|T])
|77 (%) = Yirae (%) < (4™ +3) (|T))
If T+e€{0,0} and x € A(J), then

‘V*T(X) o IYTie(X)*‘
|77 (%) = Yirae ()| < 2(e" +1) x(|T))

(c) Let 0 < 7 <6 and set

j(T)O&—j(a—T—E—:)A([%,dDB if0< 1< g —€
Fre =1 (1) —j(6 — 7 —£)B ifr=9%-¢13
FOA([0,8])a—j(0—T—¢)B ifS<T<S
and
Vre = §(1)Q0 = (8 — 7 = )OB
where Q0 the set of all point in X that are within a distance ¢(5) of ([0, 6]). Then

D er ()" = Arpe(x) = Are(x)] < 3" 1(8) A

xEA

and

Ze 4md(xQ)‘,y ’77'5 )‘ S% —3mc(5)|Qc|
x€EA
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Proof: (a) The result for x € A¢ follows immediately from Proposition E.7, so we restrict
to x € A, for the rest of the proof.

To prove the bound on |y (x) — - (x)*| it suffices to prove that |4 (x) — 4-(x)*|
r(|71]), which we now proceed to do. By Definition E.6 and Lemma E.4.ii, for x € A(J)

A,

<
C

Fur (%) = 47(0)" = D Arr) (XA, () Aoy ()AS, (%) [, ()7 = ar, (x)7]
Tr€Tr(71,8)
T €T (T,8)

and furthermore, since U:Tlg%r Ar(ry) NAS N Agr) NAY, is a partition of A, into disjoint

subsets, at most one term in this sum is nonzero and it is
A([m, 7)) ()AL, (AT, (%) [orr, (%) = ar, ()]

This term is bounded by r(7, — 7). If |J| > 7. — 7, then at least one of 7;, 7. must be
in the interior of J. If, for example, 7; is in the interior of J, then [1, — e, 71 +¢,,] C T
so that A(J) C A;, and our one potentially nonzero term is in fact zero for all x € A(J).

Hence the one possibly nonzero term is bounded by r(|7|).

(b) To prove the bound on |v.r(x) — vr4(x)*| in the case that 7 € 2¢Z, we prove that
H*T(x) — %ia(x)*‘ < r(|J|). Again, by Definition E.6 and Lemma E.4.ii, for x € A(J) C
AT C Ariay

Fur (%) = Arsc ()" = D A (X)AS, () Ag(ry (XA, (%) [ar, (%)* = @, ()]
TrETr(T%e,68)
T €Ty(T,8)

o If 7. € T.(T £ ¢,0) happens to have e, < e,, then, A, has 7 as an end point and
is properly contained in [7‘ — &, T+ 57]. Hence A; C A, and AY A, ;) = 0 for all
1 € Ti(T,0).

o No 7, € T.(T +¢,0) can have e, = £, because the first element of ¢, Z = ¢,Z above
T+ ¢ is 7+ ., which does not satisfy ;4. = ¢;.

o If 7, € T,(7—¢,0) happens to have e, = e;, then 7, = T and AS Ay(r) = ASAy () =0
for all 7, € T;(7,9).

o If . € T.(T+e,d) happens to have €, > €., then, because 7 +¢ is a nearest neighbour
of 7 and is in eZ\ 2¢Z, it is necessary that 7,. > 7 and indeed 7, is the smallest element
of €., Z above T too so that 7, € 7,.(7,d) too. Conversely, every 7, € T,.(7,9) is also in
T-(T +¢,6). Denote by 7'(7,) and 7(7,) the predecessor elements of 7,. in 7,.(7 + ¢, 6)
and 7,.(7,d) respectively. If /() > €x(s.), then 7'(7.) = w(7). If err(r,y < €rs,),s
then 7(7.) =7 and Ay (7, )(X) = Ar(r,)(x) = 1.
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Hence, once again,

Fur (%) = Arae ()" = D () (S, () Ay (XA, (%) [0, (%)* =, ()]
Tr €Ty (7,8)
T €T (T,8)

= Hur(x) = 4+ ()"

and the desired result follows from H*T } <r(|JJ)-

Finally, we prove the bound on }’y*T ) Vrte(x)* } in the case that 7 £ ¢ € {0,d}.
In this case, either 7 = € so that v,4.(x)* = ap(x)* (x)* or 7 = 0 — ¢ so that
Yrte(X)* = as(x)* = B(x)*. We prove that ‘7*7 — ar4e(x)*] < 1(|7]). Again, by
Definition E.6 and Lemma E.4.ii, for x € A(j) C A,

ﬁ*T(X) - ﬁTis(X)* = Z AU(T;)<X)A% (X) [O‘Tz (X)* - O‘T:ﬁ:€<x)*}

T E€T(T,9)

In the case that 7 = ¢, T;(7, §) contains exactly one element, namely 7, = 0 = 7+¢, and the
right hand side is exactly zero. In the case that 7 = d —¢, 7;(7,9) = { §—2¢ ‘ 1<j<n }
so that

Fr (%) = Arace (X ZA5 2112 (O)AG 52 (x) [05-212(%)" — a5(%)"]
—ZA 5~ V2, 8]) (x) A5 _312(x) [05-20(%)" — as(x)’]

Since U?:l As_9i-1.A§_,;_ is a partition of As_. = A; into disjoint subsets, at most one
term in this sum is nonzero. If this term is the 5", it is bounded by r(2’¢). If | J| > 27¢,
then A(J) C As_oi. and our one potentially nonzero term is in fact zero for all x € A(J).
Hence the one possibly nonzero term is bounded by r(| 7).

(¢, first bound) It suffices to combine parts (e), (f) and (g) of Lemma E.8 with the bounds

> |(06 == AA([5 Do — A1) )
> i - =&y [lag -8l

xEA
yEACA([S,8])

< Y -9y ()

xEA
yeAcA([$,6])

<I3(3 =7 =l [ATx(5) < 2™ x(8) |A°]

IA
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and, using Lemma D.1,

ZA\(J«%—T—e) A°li(2) — 1A ([5.9])8

< Y G- =9ty [{1i(E) - WA(5.9])8} )

xXEA
yEAC

Z ‘j ——T—a)(x y)‘ 5md(x,y) 6K/6Kj’g

xXEA
yEAC

=IO ([[pf e MEADY] max [5()]+ _max [VA(E)])
zeA([4,8]) beA([S,8])*

N~——~
—~
»
~—

<35 =7 — &)l 1] 3255 ([ + e~ omaMAEDINR(S) + R/ (§) )
([l + e CRIR(S) + R (5) ) 1A

r($ )|AC| < =r(0)[A°] by (F.4.a), (F.6.c), (F.3.b)
when 0 < 7 < 2 — ¢ and the similar bounds

o[ (30 = ) aa (0. 8] frg - al) 0] <26 6) A
(j( — ) A0 (8) ~ WA([0,8])a) ()| < F5x(6) |A°

<

5 K
2
1
< 5T

xEA

when g < 17 < . We have used the compatibility assumption of Definition E.1. Since

(255 + 2e7me®) 4 LY r(8) |A°] < 3K £(0) |A°|, by (F.4.c), the desired results follow.
(¢, second bound) We have
J(r)Qfa —j(6 — 7 —e)Q°A([S,6])8 f0<T<i-—¢
:77'76_;)’7,5: J(r )Qca_j<5_7'_5)ﬁcﬁ iffzg—&%
F(M)QA(]0, 8] —j(6 —T—e)B if S <T <6

All terms are bounded in the same way. For example, by Lemma B.1.i and Definition
11.13,

Z e~ im0 | (j(r)Q%) (x)| < Z eV (7) (%, y)| Ruo(y)

xEA xEA

yeQe
SAR() 37 [(r)(x, ) e FUey) hmdbey) gmimdly 2)
;?g;

< 4§ ()] e UHEIR(S) |2
< 4l e 4me@IR(§) Q]
< Le @0 by (F.6.b)
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Lemma E.10 Assume that h = 1.

(i) Let t € eZ N (0,0) and x € A with
d(x,A) > c(e)  d(xA(t—e0,8])) > e(e)  d(x At t+e4])) > cley)

(Ift ¢ 2¢Z, then A([t—e4, 1)) = A([t—¢¢,t])" = 0 and the conditions d(x, A([t—¢¢,t])°) >
c(er) and d(x, A([t,t +&4])°) > c(e;) are vacuous.) Then

}%( ( (t+ et — 7)Bxe, t—l—atat"‘f‘:t)(x)‘ emeler) ft<tT<t+es
|y (%) = (Gt —7) Bx S ASa)(x)| < e gt e, <7 <t

[Yar () = ((T — ) B e, Afa} ) (x)] < e™™ ) ift <r<tte

|Yer (%) = (§(r =t + 5t>Bx atAi L)) e e <7<t

for any set
Bxe D {y€X |dxy) <cle) }

(1i) Let x € X obey d(x,A([O,é])C) > ¢(0). Then
177 (%) = (j(0 — 7)BxsB) (x)| < e7™ @ if0<T <6
[7er (%) = (§ (1) Bx,sa™) (x)] < e7™@) o <7 <6

for any set
BysD{yeT|dxy)<c0)}

Proof: (i) We prove the first bound. The proofs of the other three bounds are very similar.
Fix any 7 € eZ obeying t < 7 <t + & By Definition IL9, v,(x) = >_ 5, (F;laT/)(x).
Fix any 7 < 7/ < § with I'7" # 0. By Lemma E.4.i, 7/ € {7} U T.(7, ). Set

Ly ={x€X |d(x,A) >c(e), d(x, A([t—e1,1])°) > c(er), d(x, A([t,t+e4])°) > e(er) }

when ¢t € 26Z and L, = { x € X | d(x,A¢) > ¢(e) } when ¢ ¢ 2¢Z.

Case 1: 7 < 7' < t+¢e;. In this case e+ < &, (as is true for all times in (¢,¢ 4+ &¢)) so that
any X € L, obeys
x € A([t,t+e4]) C Ay

By our rules for constructing small field sets, either AS, = 0, or A([t,t + &]) = A

t
(in which case £, = 1, and the distance from x to A¢, is at least c(e;) = ¢(2&,/)) or
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d(A([t,t +ei]),A%) > ¢(2e,). So the distance from L, to A¢, is at least ¢(2e,), unless
A¢, = 0. Therefore, for 7 =7/, (F;laﬂ)(x) =0 and for 7 < 7/,

(7 a7 ) (x)] = [(G(7(7") = 7) Amryd (7 = 7(7)) ASs ) (%)
< No(Lpj(m(7") = 7)Ao (7" = (7)) AL 5 1, K40)
< 4R(5t) e—4mc(2sT/)eKj (7'—7)

by Lemma G.5.ii with k = K/, R = 4R(e¢), L1 = L, C A([t,t + 5t]) = 02, Ly = Ar(r)
and L3 = A¢,. For this and all other applications of the lemma in this proof, d is replaced
by 0, 61 =0, 0> = 2d, § = 4md and d = 5md.

Case 2: 7' >t +¢;. In this case 2¢; < 2e,(r) < € (since all times t' € (77 — 2e,(+1),7'),
including t + &; have ey < 2€7T(7-/)). Now t — &; is the element of 2¢,Z below t + &; that
is nearest t + ;. As 7' — 2.,y is an element of 2¢;Z that is below t + &, we have
T =26, St—gp <t+e <71’ Hence Ar(ry = A([7' —2ex(+), 7']) C As. So the distance
from L, to Ay, is at least ¢(g;). Therefore,

(07 o) ()] = [ (G (7 (7)) = 7) Mgy (77— 7(7")) ASs i) (x)]
< No(Lpj(m(7") = 7)Ao (7" — (7)) AL 5 1, k40)
< 4R(267r(7_/)>6—4mc(6t)eKj(T/—7')

by Lemma G.5.ii with R = 4R(2e(;+)), L1 = Ly, Oz = Ly = A7y and Lz = AS,

Case 3: 7' =t+¢e;. If T =1t + & too, then
(P7 o) (x) = (ASar) (%) = (j(t+ e — 7) B, Af o, Quge, ) (%)

In general e,/ > 2e, () and €.+ > 2¢;. Furthermore, since t = 7/ — ¢, < 7 < 7/, we have
2e(71y < €. Hence A([t,t 4 &¢]) C A([7" — 2ex(+1), T']) = Ar(7y. So the distance from x
to A7y is at least c(e¢). As well, by definition, the distance from x to By _, is at least
c(g¢). Therefore, setting L1 = { y € X | d(y, A([t,t +&4])¢) > c(er), d(y, BE Et) > c(er) },
‘(F:/O‘T’)(X) - (](t +&¢ — 7)Bx £t t+stat+6t)(x)‘
‘({]( )AW(T/)](T/_W( ))_j(T _TBxEt}A ’aT)(X”
‘({j -7 Bf( . —j(7r(7' ) — T)AW(T/)j (T — (7 )}AT,aT/)(X)‘
No(Lij(r" = 7)Bg . NS5 1, krr)

xatrv

+ Ny (Llj (77(7_ ) — T)AW(T’)j (T/ - W(7/>)Ai/ ;1 /‘\'/7")
< 8R(e, e~ tme(e) K3 (')

| /\
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by Lemma G.5.ii with R = 4R(ey), Ly = AS),
02 = A([T/ — Et,T,]) = A([t,t-ﬁ-&g]) D) Ll

and Ly being By . for the first bound and A7 ) for the second bound.

We have now shown that |y, (x) — (j(t + & — 7)Bx,e, Afy., e, ) (x)| is bounded by

Z 8R(€t)e—4mc(miﬂ{5t7287—/ DeKi < Z %e—%mc(min{at,2sT,})

T e{rIUT:(7,6) T e{T}UT.(7,9)
< e—me(et) Z e—%mc(eT/) < e—me(et) Z e—%mc(?la) (E.4)
T/ e{T}IUT(7,9) /=0
< e—mc(st)

by (F.6.b) and (F.4.a,d).

(ii) We prove the first bound. The proof of the second bound is similar. Fix any 7 € ¢Z
obeying 0 < 7 < ¢. By definition v,(x) = >/, (FZ/aT/)(x). Fix any 7 < 7/ < ¢ with
I'” #0. By Lemma E.4.i, 7' € {r} U T,(7,6). Set

Ly ={x€X|d(x,A([0,0])°) >c(5) }

Case 1: 7 < 7' < 0. By our rules for constructing small field sets, either AS, = ), or
A([0,6]) = A (in which case e, = 2) or d(A([0,4]), AS,) > ¢(2,). Consequently, if A, #

0, the distance from L, to AS, is at least ¢(2¢,/). Therefore, for 7 = 7/, (FZ/aT/)(x) =0
and for 7 < 7/,

(7 ar) ()] = [(5(7(7') = ) An(ey (7 = 7(7)) ALs ) ()]
< No(Lpj(m(7") = 7)Apond (7" = (7)) AL 5 1, K40)
< 4R(6>e—4mc(267_/)eKj(T/—T)

by Lemma G.5.ii with k = k., R = 4R(d), O» = A([0,6]) D Ly = Ly, Ly = Ay(,y and
L3 = Af_/.

Case 2: 7/ = 6. As A([O,é]) C A([5 — 267T(T,),5]) = A;(r) the distance from L, to A¢

w(7r’)

is at least ¢(6). We are assuming that the distance from x to By ; is also at least ¢(d) so
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that, setting L, = { y € L, | d(y, B 5) > ¢(d) }, we have

|(T28) (%) = (4(6 — 7) Bx.s3) (%)]
= |({i(x(r") = ) An(eni (7' = m(7")) = §(6 — 7) Bx,5 } B) (%)
= |({4(6 = 7)Bg 5 — j(n(7") = T)AS (i (7" = 7(7)) } B} (%)
< No(L1j(6 = 7)Bg s 5 1,56)

+ No(Laj(m(r") = T)AS i (7" = 7w (7)) 5 1, k5)
< 8R(0)e4me(9) K5(9=T)

by Lemma G.5.ii with R =4R(9), Ls = X
0, = A([0,6]) D Ly

and Ly being By ; for the first bound and A7 ) for the second bound.
The desired bound now follows from (E.4) with ¢, = 4.

E.3 The Size of the Background Field

In this subsection, we show that the background fields 7., (x), v-(x) obey roughly the
same bounds as the large and small field conditions impose on the integration variables

ar(x).

Proposition E.11 Assume that h = 1.

(i) Let T € eZ N (0,9) and J be a decimation interval that contains T in its interior. If
x € AN(J), then

[Yer (X)], [rr(x)| < 40e™R(1T])

bl

(1i) For all T € eZ N (0,0) and x € AS

1, —mec(er)

¥r(x) —ar(x)| < ze

}'Y*T(X) - O‘T(X>*} )

Proof: (i) The proof follows Lemma E.13, below.

(ii) follows immediately from Proposition E.7. [ |
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Lemma E.12 Assume thath = 1. Let [t_,t]| be a decimation interval in [0, 6] with centre
t=(ty+to). Refall that fhe sets P (), ]Sé(j), Q(J) were defined in Proposition III.36
and that the sets Po(J), P3(J) were defined in Proposition I11.37.

(i) If b € P.([t_,t4]), then

Vvr (0)] = AR (ty —t—)  forall t— <7<t

(ii) If b € Pj([t—,t4]), then

IVr-(b)| > 3R (b4 —t=)  forall t<7<t,

(iii) If x € Q([t—,t4]), then

et (30) = Yoo (30)| + [rere () = 7(x)] = dalts — )

(iv) If x € Pa([t_,m_]), then

[Vir (x)| > 3R(t4 —t—)  forall t_ <7<t

(v) If x € PB([t_,t+]), then

v (x)| > 3R(t4+ —t-) forall t<71 <ty

Proof: Set ¢y =c(t—t_) =c(ty —t) and

Jrx(%,y) = je (T)(x,y) = {g(T)(X, y) ;ftﬁgc‘;v}ifs)eﬁ Ct

Recall that j(7) = e™ e~V "V with H obeying (I1.16).

(i), (ii) We give the proof for part (ii). The proof of part (i) is similar. Let ¢t < 7 <. As
be ﬁé([t_,ur]), both end points x € b satisfy the hypotheses,

d(x, A([t—,t4])), d(x, A([t—,¢])°), d(x, A([t, t4])°) > et

of Lemma E.10.i. (Again, when t4 —t_ < 2¢, A([t—,t]) = A([t, t+] = X and the conditions
d(x, A([t—, 1)), d(x, A([t,t4])¢) > cx are vacuous.) Furthermore, all points y within a
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distance ¢y of either end point x € b, are in Aj C Af . Hence, by Lemma E.10.i, with
BX,Et = { y e X ‘ d(X,y) <oy }7

‘V(VT - (Jt+_7’iat+))(b)‘ < 21;122( ‘77— (Jt+_7-’:t04t+)(X)‘ S 2€_mci

Write b = (x,x + €;) = bj(x). As J;, _, 4 is translation invariant

V((Jt+—7,iat+))(b) = (Joy—rrar, ) (x4 €) = (Jop—r 0y, )(x)
=S s ey o 3) = S (%, y) au, (3)

y

= Z i, —rx(X,y — i) ag, () — Z Jr—r (X, y) ar, (y)

- (E.5)
— Z Joo—re(X,y) o, (y +€i) — Z Ji 7 x(X,y) ar, (¥)

== Z Jt+—7',i(xv Y> (VO&t+>(bz(y>)

Since b € ﬁé([t_,ur]), we have |Vay, (b)| > R/(t4 —t_) and

IV (0)| = (T, —ra Ve, ) () + V(vr — Tty —r e, ) (D)]
| (Jep—rxVau, ) (b)] — 27
} a, (b } — } (1= Jiy—ra)Vay, ) (b)| — 27

Ri(ty —t-) — ‘((ﬂ - Jt+—7,i)vat+)(b)‘ — 2e” M+

AVARNAY]

v

where we are using (J¢, .+ Vay, ) (b) to refer to the last line of (E.5). By Lemma ITL.21.ii,

(1 i)V ) ) < 10 (ke — I sup { [V, (by)] | doey) < e )
< (t+—t)KjeK ity = t)sup{ }Vothr bi( y } ‘ d(x,y) < cy }

For all y with d(x,y) < ¢4, b;(y) is necessarily in A([t, t+])*. Hence,
Vo, ()| < Rt — 0

so that
(1= Je, —r 1)V, ) ()] < K70 (1 — R (ts — t)

(V- (b)] > Rty —t-) — K;eo 0 (¢, — )R/ (1, — 1) — 2e7 ™ > 4R/ (14 — 1)



by (F.3.e), (F.4.c) and Hypothesis F.7.i.

(iii) Since x € @([t_,t+]), we have |y, (x) — ay_(x)| > r(ty —t_). Hence at least
one of |ay, (x) — au(x)|, |ou(x) — a;_(x)| must be at least 3r(t; — t—). We prove that
in the former case |y (x)* — ’yt+5(x)} > lr(t; —t_). The proof that in the latter case
| Vit—e (%)* =72 (x)| = r(t; —t_) is similar. So assume that |ovy, (x) — o (x)| > ir(ty —t_).
As in the proof of part (ii), using the third and first bounds of Lemma E.10.i,
"Y*t(x>* - ’Yt-l—a(x)‘ = ‘Oft(x) — Oy (x) + (’7:,5 - Oét)(X) + (]1 - Jt+—t—a,i)at+(x>
- (’Yt+a - Jt+—t—a,iat+)(x>’
Z %I’(t+ - t_) - ‘(]1 - Jt+_t_€7i)ozt+ (X)‘ — 2e M+

since Ay, C Ay so that d(x, A;) > ¢4 implies that d(x, A;, ) > ¢4+ too. By Lemma D.1 with
S={yeX|dxy)<cs}

(U1 e, (9] < (4RGeS ([lare™ max o, () Vo, 0)])

Again, any y within a distance ¢y of x € @([t_,t+]) is necessarily in A([t,t;]). Hence

max o, (¥)| < R(ty —t) max |Voy, (b)| < R'(t4 — t)
y *

besS
so that
(1= Jesmtep)ar, (x)| < K550 (8, ) (|ulR(t4 —t) +e "™ R(ty —t) + R (t4— 1))
< Lr(ty—t) by (F.6.c) and (F.4.a)

and
r(ty —t_) — g5r(ty —t) — 2e™ ™

r(ty —t_) by (F.3.b) and (F.4.c)

‘V*t(x)* - '7t+€<x)} >

vV
= N

(iv,v) We give the proof for part (v). The proof of part (iv) is similar. Let ¢t < 7 <t . As
x € Pg ( [t_, t+]), it satisfies the hypotheses

d(x, A([t—,t4])), d(x, A([t—,€])°), d(x, A([t, t4])¢) > ex

of Lemma E.10.i. (Again, when ¢ty —t_ <2, A([t—,t]) = A([t,t+] = X and the conditions
d(x, A([t—,t])°),d(x, A([t, t4])¢) > cx are vacuous.) As well, all points y within a distance
¢t of x, are in Af C A7 . Hence, by Lemma E.10.i, with By ., = { yeX ‘ d(x,y) < cq },

—mc4

‘PYT(X> - (JtJr—q-,iCl/tJr)(X)‘ <e
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Since x € PB([t_,t+]), we have }at+(x)} > R(ty —t_) and

}’77' ‘ ‘(Jt+—7' iat+)(x) + (’77' - Jt+—77iat+)(x>}
> \(Jt+ a0, ) (x)] — e
= ‘ - ‘( ]l - Jt+—T:i)O‘t+)(x)‘ —e

e
Rty —t) = [((1= Joy —ra)v, ) (x)| — e

v

By Corollary D.2,

‘((]1_ Jt+—ﬂi>at+)(x)‘
< (t, — t)K;eKé(t+—t)<[|u| +emomes] max low, (y)| + max |Vozt+(b)|)

d(x,y)<cyt d(x,b)<c4

Ally € X with d(x,y) < ¢, are necessarily in A([t, t+]) and all bonds b with d(x,b) < ¢y,

are necessarily in A([t, t+])*. Hence,
o, (y)| < R(t4 —t) and [Vay, (b)| < R'(t4 — 1)
so that, by (F.4.a), (F.6.c) and (F.3.b),

(12— Jt+_7i)at+)(x)‘ < K<eK3(t+—t> e(ty —t) ([Iu| +e | R(ty —t) + R/ (ty — t))

= 16 (t-i-_t )

and, by (F.3.d) and (F.4.c),
(D) 2 R(ts = t) = fr(ty —t-) — e > LR(t, — 1)
|

Lemma E.13 Let 7 € eZ N (0,6) and J be a decimation interval that contains T in its

interior. Then

Z N4m (FI;—7 6% d(x,A(j)), K*T’)

T7/€[0,8)

IN

{406Kﬂ R(IT]) if T S [0,9]
16ef57 R(6)  if T =10,9]

2 N4m(P:l’ e%d(va(J)),/{T/)

7/€(0,0]

IA

40e"5,0=") R(|T]) if T S [0,0]
1655 (0=7) R(§) if J =10, 0]
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Proof: We prove the first bound. The proof of the second is virtually identical. Write
J = [r—,74] and let 7 — 7 = 558. We first consider the case that ' € T;(7,4) with
3(o(7")) > p. We claim that J is exactly the decimation interval 7., of Lemma B.1.

o If 0(7") > p, then, since 7’ is the largest element of €,/ Z below 7 and 7_ is an element
of e/ Z below 7, we have 7 < 7/ < 7 < 74 so that J the unique decimation interval
of length 54 that contains 7’.

o Ifo(7") <p < 0(o(7')), then 7_ < o(7'), since o(7’) is the largest element of ﬁz
below 7. And 7 > 7/, since 7_ is the largest element of Q%Z below 7. And it is
impossible to have 7/ < 7_ < ¢(7’) since then 7_ would be in 7;(7, ) and o(7") would
not be the successor of 7/. So 7_ =7 and J = [7'/, T+ 2%]

Consequently,

Nim (T75 €% WMD) ) = N (§ (7= 0(7)) Aoy (0 (7)) =7 )AS; €3 WMD) )
<AR(|TJ)) e T MDD N (G — 0 (7)); 1,1) Nom (5 (0 (7)) = 77); 1,1)
<AR(|J]) e € XATAD Y 5(r — o (=N i (e () = 7)|
< 45 R( 7)) {i_%c('j”') if | 77/| < |7

otherwise

For the first inequality we used Lemma G.5.i.c with d replaced by 4md,

L1 =X, Ly=MA,(71), L3 =A%, O1=02=A(J)

01 =2d, 0 =2d, §=2d, d=5md, k= k., R=4R(|J|)
and Do > (L3, 01) = +md(A(J),A%). (The hypothesis that k(x) = K (x) <
Re®2(:02) — 4R(|T]) eF41AMIT)) for all x € X is fulfilled by Lemma B.1.ii, since, as
we observed above, J is the decimation interval 7., of that Lemma). The last inequality
follows from Lemma IT1.21.i.

We next consider the case that 7' € T;(7,0) with p > (o (7')). In this case Ay() C
A(J) and

Nim (F:;—Q e d(x’A(J)): /{*T’) < Nim (j(T_U(T/» AJ(T’) j(0(7,> _T,>ch-'§ 1, /{*T’)
<AR(|To () Nom (§ (7 — 0(7)); 1,1) Nom (4 (o (7') — 7'); 1,1)

< AR(|Toe) ) 7 (r = (NI (o () = 7l
<4 TTIR(| ()
(E.7)
by Lemma G.5.ii with d replaced by 4md,
Ly =X, Ly=Ayrry, Ly =A%, O2=A,0
§=01 =0, 0o =2d, d=5md, &=k, R=4R(|Tp|)
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Finally, as I'] . = AS |

Nim (I‘IT; e™/2 A6 A(T)) /{*7) = Nim (Ai; 1, hiyre ™2 d(x’A(j))) < 4R(|j|) Nim (Ai; 1, 1)
= 4R(l71)
(E.8)
Again we used Lemma B.1.ii.

Using (F.4.d) to sum (E.6) over 7/ € T;(7,0) with 9(7") > p+ 1 (so that |T-/| < |T|),
using (E.6) up to twice more for the cases 9(7') = p + 1 (so that |J| = |J|), and
(1) < p < 0(o(7')), using (F.3.c) to sum (E.7) over 7/ € T;(7,) with 9(c(7")) < p and
finally adding (E.8) gives the bound for J & [0,6]. When J = [0, 6], the case d(o (7)) < p
is absent. ]

Proof of Proposition E.11.i: For all x € A(J)

> (Mhar)(x)

7' <T

< 37 AD(ITL: H A )

7' <T

}'Y*T(X)‘ <

by Remark E.2 and the assumption that d(x, A(J)) = 0. Now just apply Lemma E.13.
The proof of the bound on ~v;,(x) is similar. |

E.4 Comparison of v,,. and j(¢)v,

Lemma E.14

(a) Let 7,7 € (0,6] and t > 0. If [T —t,7) NeZ =0, then

7, =it T(r—4a8) =jt)T(r;ap)

(b) Let 7,7 €10,0) and t > 0. If (1,7 +t|NeZ =0, then

U7, =TT T(T 4t ., d) = j(t) D(1; a., @)

Proof: We prove part (a). It suffices to prove the 7/ formula, since the other one follows
from it. Since AS, = () for all 7/ with 9(7") > n, it suffices to consider 7" € ¢Z N (0, d]. If

7> 7/, then 7 — t > 7/ too, so that 7, = 'T" = 0. So it suffices to consider 7 < 7/.

Case 7" — 17 > ¢: Let [T’ — %,7" } be the shortest decimation interval with 7/ as right

hand end point that properly contains [7,7’]. (If no such decimation interval exists, then
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7 ,=T7 =0.) Since 7/ —7 > ¢, we have d < n and 7/ — % € eZ. Hence [7/ — 2, 7]
also properly contains [T — ¢, 7] and

(' == o) A = 7)) i)

J(r =+t = gie) A7 = 52, 7]) d(z) AT

imry

FT

T

/
7_/
FT—t

Case 0 <7 — 7 <e: Inthiscase 7/ — 7+t < € too, since otherwise 7/ — ¢ would be an
element of eZ in [T — t, 7). Let J, and J,_; be the shortest decimation intervals with 7/
as right hand end point that properly contain [r, 7] and [T — t, 7’], respectively. Both are
contained in [7" — ¢, 7]. Hence A(J;) = A(Jr—+) = X and

7 = (7" —7 = 3|71) ATy 5(3|T:]) AL =j(r' —7) AS
F:/_t = j(T/ -7+t %|j7-—t|) A(T-—+) j(%|j7-—t|) AL = j(T/ — 7+ t)AL
=17
|
Lemma E.15

(i) Let T € eZ N (0,0). If 0(1) = n (that is, T € eZ \ 2¢Z), then
As [’Y*T - j(5>7*7—5} = A, [’77' - j(g)’)/T-i-E} =0
If 0 <0(7) <n (that is, T € 2¢Z), then

S Nam (AA[TD — 5T )5 1, Roupr) < €760
7/€(0,6)

2 Nam (AT [F:/ - 3(5)Ff+a] ;1 ’ir’) < e me(er)
7/€(0,0]

(ii) Let O C Qg = Q([O, 5]), r > 0 and define the weight factor
A(x) = { r ifxe 0

oo ifx¢0
Then
> Now([IL = j(eTL_]JO; eI, X)) < defls pem2m 008
7€(0,0]
> Now ([T = j(e)TE,]O;5 e d0) X)) < 4ef5 pem2m U006
€[0,6)

Here we set T =T = j(6) and T =T$ = 1.

* *
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Proof: (i) The vanishing when 9(7) = n is proven in Lemma E.16, below. Now assume
that 0 < 9(7) < n and write e, = 2%. (That is, 9 =n — 9(7).) The same Lemma gives

Z N3m (AT [F:/T - .7(5>sz-/7—€] ;L K*T')
7/€[0,0)

= Nsm (ATj(%éT)A([T — 67,7])Cj(%€T)A§_ET 1, /i*T_gT)
-1

+ ZNgm (ATj (25_15)]\([7 — 2%, T])j(2€_15) SEPYI /1*7_2145)
=1

+ N3m (A7j<€)Ai_€ ; 17 K/*T—E)
For each 1 </ <0 — 1, we apply Lemma G.5.i.a, with d replaced by 3md,

Ll = AT, L2 :A([T—QZE,T]), L3 = A7C'—2557 01 :X, 02 = AT

51 =0, 0o =2d, § =3d, d=>5md, k=r,, o, R=4R(2¢,)

and Dy > 3md(A;, AS_,, ) > 3mc(2¢1e), to get

T—2te) =

Nam (ATj (26_15)]\([7' — &, T])j(2€_1€)Ai_€e i1, /i*T_ge)
< AR(2e,) € #5215 )
< 4K 2£€R(257> e—%mc(Qe'Ha)

e Smc(2Tte)

IA
=

by (F.6.b).
For the last term, we again apply Lemma G.5.i.a, this time with

Ly :AT, L2:L3:A§_E, 01 :X, 02 :AT

51 =0, 0y =2d, § =3d, d=>5md, k= k., R=4R(2e,)
and Dp > 3md(A;, AS_.) > 2mc(2¢), to get
Nam (Arj(e)AS_ 5 1, Kur—e) < AR(2e,)efi%emamel2e) < ie‘gmc(%)

For the first term, the same Lemma gives

N?)m (AT.](%gT)A([T —E&r, T])Cj(%gT)Af-—gT ;1 "{*T—ET)
_§m T— 1€ . .
< 4AR(2e,) e 2 A ALY 15215 ()
< 4e"i5 R (2¢,) e~ 2me(er)

1 —%mc(aT)
< ;€
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Using (F.4.d) to bound the sum over 1 < ¢ < 9 —1 and adding the bounds on the first and

last terms gives the desired bound for A,[I'7. — j(e)I'7. __]. The proof of the other bound

*T—€&

is similar.
(ii) We prove the first bound. If 7 # 2% for all £ € {0,---,n}, then T'0_— j(e)['Y___
by Remark II1.5.iv. If 7 = 2%¢ for some £ € {1,---,n — 1}, then
I — i)Y, _. = A([0,27'e]) j(2%) — 5 (2" e) A([0, 2%]) 5 (2 'e)
= —A([0,2 1)) %5 (2%) + 7 (27T e) A ([0, 2%]) 5 (2 te)

=0

Therefore,
Now ([0, = ()T, _.]O; e7™ 49 )
< Nom (A([0,241€])%j(2%) O e 4O) ))
+ Naw (7 (27 Te) A([0,2%€]) 5 (2 1e) O e 409 N)
< pem2mdONO2 D) | (2l ) || 4 e mAOA2 D) (261 ) |2

< 2reki2's { e IRHOSEIHET H1<e<n -2
B e—2md(0,Q%) ifld=n—-1
In the second inequality we applied Lemma G.5.ii with d replaced by 2md,
Li=X,L3y=0,=0,=0, 6 =md, 6o=0, §=2md, d=5md, k=X, R=r
and .
. A([0,25F%])"  for the first summand
° A([o, 2£€]>C for the second summand
Similarly, for 7 = ¢,
Now ([0 = §(e)T%] 05 e7™ 15N N) = Now (A([0,2¢]) ()05 e 40590 3
< Te—Qm[d(O,QCG)-I-C(Qs)]est
and, for 7 =9,
Now ([T25 = §(e)T05_.] 05 ™I \) = Now (§(5)A&H (5)05 e7™ 1))
S Te—2md(O,QCG)eKj6

Summing up the last three bounds, using (F.4.d), gives
S N[00, — ST, J0s e i) 3)

7€(0,6]

n—2
< i —2md(0.9%) |:Z2e—ch(2e+1€) + 2 + 1]

(S

_ _ c _ o+1

SGKJ’I“G 2md(O,QG)|: 2“1_1{5e 2mc(2°7 e) + 2 4+ 1:|
£=0

< 4K p e—2m d(0,Q%)

o O

3
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which is the desired result.

|
Lemma E.16 Let 7 € eZ N (0,6). Recall that € = 27" with the integer n > depth®.
(i) If o(7) = n (that is, T € eZ \ 2¢Z), then A- (v — j(€)Vyr4e) = 0.
If 0 <o(1) < n (that is, T € 2¢Z), then
A ('77 - j(€)’77+5) = A; {] (%57)-/\([7_7 T+ 57])Cj(%5T)Ai+aTO‘T+ET
n—0o(7)—1
— Z (2£_15)A([T, T+ 285])3'(2@_15) ot Qryote
=1
- ](5>Ai+aa7+s}
where, if T =0 —e;, then a;y._ = .
(ii) If o(7) = n (that is, T € €Z \ 2¢Z), then A (Vir — j(€)Vir—e) = 0.
If 0 <o(1) < n (that is, T € 2¢Z), then
Ar (Yr = J(€)Vir—e) = Ar{j(%ET)A([T —er, 7)) 5 (3en )AL g
n—o(r)—1
— > @) A ([ — 2%, 7)) (25 ) ALy ot o,
=1

where, if T =¢,, then qur—. = a*.

Proof: We give the proof for part (ii). The proof of part (i) is similar. For 7 € (g, 0)
and 7" € [0,9), directly from Definition II.9,

/ 0 ifré¢ (', 7" +e)
ATT = Aj(r—7' 2" ) A([7, 7/ +2™¢e])j (2™ te)AS, if 7 € [T/ +2™m e, 7/ +2™¢)
with m > 1, 2"e < e

(so that, in particular, A,T'7 # 0 only for £, < £,/) and

if ¢ (7,7 + /]
RN ¥ OIC ifr =1+ e
NP wr=e =N jlr—r/ —2m ) A([7, 7427 e])j (27 )AL, if T € (7427 e, 7 427 e

e
with m/ > 1, 2"e < e/

(so that, in particular, j(e)I'T,

*T —€

# 0 only for e, < e, or 7=7"+¢e.).
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o If 7 =7"+¢ with 7/ € eZ \ 2¢Z so that ¢,» = ¢, then

AATT — (T, } = A

This gives the last term in the statement, for the case 7 € 2¢Z.
If 7 =7/ 4+ & with e+ > ¢, then m = 1 and

AATT =TT} = AA([ 7 +26])() A — Ari(e) A =0

since A, = A([r/, 7/ 4 2¢]). This (together with the last o) gives the d(7) = n case in
the statement.

If 7 = 7/ 4 2k¢ for some k > 0 with 2¥¢ < ¢/, then m = k+ 1 and m' = k. As
e; = 2%, we have A, = A([r/, 7/ + 2F*1¢]) and

AT, — (T, )
— A([T 72 f(2Re) — (A, 7+ 2R (2 ) A,
= A j2F ) A([r, 7 + 2Fe])e (28 te) AC

T/

In this case ¢ < 2¥¢ = e,. This gives the first term in the statement, for the case
T € 2e/.
If 7 =7' 4+ &, with e+ > ¢, then FI'T =0 and 2™'c = £, so that

AT{F:; _j *T a} - )A([T,77J +€T']>j(%57">A$"

In this case €, > £,/. This gives the /' term in the statement, with ¢ determined by
2fe = ¢/, for the case T € 2¢Z.

If 7 € (7/,7" 4+ e) but 7 # 7/ + 2% for all k > 0 with 2¥¢ < e/, then m = m’ > 1
with 27 = 2"'¢ < e, and 7. = j(e)T'7,

*T—¢E"

Finally, we consider 7 = ¢. Then

*e €

Ve = DSoaf + T = Alat + A([0, 2¢])(e)

so that

Acvie = A([0,2e])j(e)a*  Acj(e)yeo = A([0,2¢])j(e)r”

AT (7*7 - j(g)'Y*T—a) =0
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Lemma E.17 Assume that b = 1. Then

7€(0,9) 7€(0,8)
> Hor =i A (rer — (& nare)) | <7 D0 e A
7€(0,9) 71€(0,6)

Proof: We prove the first bound. Write e, = 2%. (That is, 9 = n — 0(7).) By Lemma
E.16.i, for 0 > 0,

A ('YT - j(g)%-—l-s) = Ar{j (%ET)A([T: T+ 57‘])Cj(%57')Ai+aTO‘T+ET
0—1

—Zj(2£_16)A([T,T+2£€])j(2£ Te)AS gt Qrgate
(=1

A yearse )
and, if 0 = 0, then A, (’77 - j<€)77+5) =0.

For most terms that result from inserting this into the left hand side of the first claim,

we shall use the bound
‘ (yer =7, ArAAT )

< sup |Ver(y) = 9 (¥)*| No(A-AAS; 1 k) |AS)]
YEA,

< 80e™iR(2e,) No(A;AANE/; 1, krr) |AS)|
by Proposition E.11.i. Using this bound, we have, for each 7 € (0,6) with 7 € 2¢Z and
each 1 </<0-—1,
[ (ror =72 A (2T A (o + 2 (2N )|
< 80 ™IR(2e,) No(Arj(2 7 e) A([7, 7+ 2%]) 5 (27 ) AT 1pees 1 o pee) [AG L oe |
< 320 SR (2e, )2 eKi2iee T mAlb A ue) | £e
< 320 R(e,)2eKiemtme o) e |

< Lemmee) pc by (F.4.a) and (F.6.b)

by Lemma G.5.ii with d replaced by 0, 6; = 0, d2 = Fd, § = 4md, 6 =5md, k = Kriole,
R =4R(2e,), Oy = A; = Ly, Ly = A([r, 7+ 2%]) and L3 = AS e,
We also have, for each 7 € 2¢Z N (0, ),

T4+2¢te |

T+2¢¢ |

‘ <'7*T — Y A7j<5)Ai+aO‘T+€> ‘
S 80 eKjR(2ET> NO(A ( )Af'—i—aﬂ 7’€T+E) |AT+E|
< 320 eKjR(QeT)2 e g ame(2e) A |

< 1 —mc(s) ‘A +€|
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by Lemma G.5.ii with d replaced by 0, 01 = 0, 02 = Fd, § = 4md, 6 = bmd, Kk = Krte,
R =4R(2e;), O = Ar = Ly = Ly and L3 = A% _, followed by (F.4.a) and (F.6.b).
We still have the “A([r,7 + 57]) =A° ” terms to deal with. For these, we use

T+2 T

(e =5 A (o)A L G () Ao o, ) |
Z ‘7*7(X>_77 X ‘AT X)j(g )(X Y>AT+ gT(Y>j(%57')(YvZ)Af-—i—aT(Z)‘aT—I—ET(Z)‘

x,y,ze€X

< ) 320eMR(e,)? ¥ A (x)j (350 ) (x,¥)AL L ()7 (580) (v, 2)AT L (2)

x,y,z€X
by Proposition E.11.i, and the fact, from Lemma B.1.ii, that

‘O‘H—sf (Z)‘ < Frge, (2) < 4R(5T)e%d(z7A([T7T+ET]) < 4R(e,)e s 0%

when x € A, C A([T, T+ 67]). For all x, y, z for which the summand does not vanish,

Bdxa) < AN ) amdcy) B o TR L) smd(xy) Smd(y 2)
and we have
%
| (ver = 9 Ari () A2 s i (Ber) Mo e )
—4rnd(1\,-,AC 1.

< Y 320MR(e,)? e el AL 1. ()17 (ze-)

yeX
< 320 ™R (e, )05 em ) AL, |

< gemGe A

by (F.4.a) and (F.6.b). All together

Z ‘ <’7*7‘ - ’7:7 AT (’77' - j(5)77'+5)> }

7€(0,6)
n—0o(r)—1
< Y e e S e )
T€2eZN(0,6) £=0
< Z %e_mc(af’) |AS, [#{ T€(0,8) | T+ie, =7}

7/€(0,6)
F#{ (10 | 7€(0,0),0<<n—0(r)—1,7+2%=1 }}

Here, we have used that 7 + 2% € (0,6) for all 7 € (0,6) and £ < n — 9(7). On the

/

other hand, given any 7" € (0,0) there is at most one 7 € (0,9) with 7 + %67- =T
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(because it is necessary that e, = &,/), and there is at most one pair (7,¢) with 7 € (0,9),
0<¢<n—0(r)—1and 7+ 2% = 7' (because it is necessary that 2‘c = ¢,,). So we end
up with

Z ‘ <7*T - 7:7/\7' (77' - j(5>77+a)> ‘ < Z ie—mc(aT/) }Af_,
7€(0,9) 7€(0,5)

E.5 Error Terms in the Recursive Construction

Now assume that & is a hierarchy for scale 26, preceded by hierarchies (&1, S3) for
scale 6. Let ¢ = 27§ with n > max {depth(&;),depth(&2)}. For simplicity we again
write A = As. Asin (V.19) we set

0 if 7 €[0,9) or 7 =26
Ol =< AJjs ifr=9

OTwr + 19 s(S2)Ajs if T € (6,26)

or, +T°_(&1)Ajs if 7 €(0,6)
AL, =4 Ajs if 7 =35

0 if 7€ (4,20 or7=0

with js = j(6) — j.(0) and, as in Proposition II1.6,
Ol s = j(r—3-2"")A([5,6+2™e]) G (2™ e)Aj(6) for T € [+2™ e, 5+2™¢)
or, = j(5—2m_15—7)A([5—2m5, 6])Cj(2m_15)Aj(5) for 7 € (§—2"¢,6—2m"L¢]

with 1 <m <n.

Lemma E.18

Nowm (T r; €72 900N) ) < 46255 R(26) (7™ ¢ + e7m<(%))
Now (9cT5; e73md0N) Lo 5) < 4eK5 R(26) (e ¢ 4 7))

Proof: We prove the first bound.
In the case 7 = § we use Remark G.4.i, Lemma B.1.i and Lemma III.21.iii to see that
NQm (acr*é; e—%md(x,A), /{*0) = N2rn (Ajé; e—%md(x,A), /{*0) = N2rn (Ajé; 17 /{*0)

< [ll7slll 2R(20) sup (e—md(xm%>
x,y€X -

< 45 K;R(20)efi%e me
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Now let 7 € (8,25). There is a unique 1 < m < n such that 7 € [§+2™ e, §+2™Me). We
estimate Nap, (8F*T; e_%md(x’A), K*O) and Ny, (FET_(;(GQ) Ajs; e_%md(x’A), /1*0) sepa-
rately.

By [BFKTA4, (IV.1)]
Nog (9T, 5 e~ 3md00A) e o)
= Now (G (1 — 6 = 27 2e) A([6,8 + 2€]) (2™ Le) Aj () 5 e 30 )
< sz(j(T —5—2m" 1), e_%md(x’A), e_%md(x’A))

Nom (A([6, 6 + 27¢]) (27 o) Aj(8) ; e 34N )
(E.9)
Using Remark G.4.i, we bound the first factor on the right hand side of (E.9) by

Nog (j(r = 6 = 277 1g) ; = 2mdOol) o= 3mdGeA))

_Bmadl(y,
<lj(r =5 —2me)|| sup e 3mdbey) 2
x,yeX e 2 ’

S eKj(T—5—2'm716)
The second factor on the right hand side of (E.9) is bounded by
Nom (A([6,6 +27€]) (27 &) Aji(8) ; e~ 340N i )
< 4R(20) e AHADSEZTET i m e |15 (6|
< 46Kj(6—|—2m*15)R(26> e—mc(2ma)
Here we used Lemma G.5.ii with d replaced by 2md and
L1 = A([5,6+ 2m€])c, LQ = A, L3 = X, 01 = 02 =A
0 =3md, § =2d, § =md, d=5md, k= kK., R=4R(25)
Putting the last two estimates together we get
Nom ((9F*T; e_%md(x’A), K*O) < 462Kﬂ'5R(25)e—m‘(2m5) < 4efi R(25)e‘mc(6)
Similarly
NZm (F27—5(62)Aj5 5 e—%md(x,A), "3*0)
= Now (T =8 = 27""e) A([8,6+27]) j(27"e) Ajss e 2™ 10N )
< NZm(j<T _5— 2m_1€); e—%md(x,A),e—%md(x,A))
Now (A([8,8 + 2m€]) j(2™ Le) A ;e 2450 e 0)
< M2 aR (20) (52 e sl < 4€™ITR(26) 6K e
< 4K ;e R(26) e ™ ¢
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Remark E.19
(a) Let 7 € (0,0] and ¢t > 0. If [t —¢t,7) NeZ = (), then IT';_; = j(t) O ;.

(b) Let 7 € [0,6) and ¢ > 0. If (7,7 +¢]|NeZ =0, then OT,rit = j(t) O .
Proof: For all 7 € (0, 4]
.8 =Te(r;@,8) — Ts, (101, Asj(6)8 + AGas)

Apply Lemma E.14. [ |

Lemma E.20 Write 0,T; = 0.L'«; — j(€)0ir—e.

(i) 9Ty =0 if 7€(0,25)\ {6,0 +&,0+e1,--, 0+ 3,26}
Furthermore
0;ilss = Ajs
0T w5 e = M([8,6 +2¢])° j(e)Aje(5)
O s 100e = A([6,6 +27¢])° 5(2%) A5 (0) — 7 (2 1) A([6,6 +2%])° 7 (2 &) Ajic(9)
fort=1,---n—1
0T 25 = —j(0)Ajs — j(5) A([6,20])" j(5)Aje(6)

(ii)

E Nam (ajr*r§ e 2 d(X7A): /“3*0) + MNsm (6jF*25 + ](§>A]5 : e 2 d(xaA)’ /“3*0) < e—%mc(é)
7€(6,20)

Proof: (i) If 7 € (6,26) and m=min{ m' | 7€ (6,0 + 2 ¢) } then, by construction

OTr = OTsr +T9,_5(S2)A js
=j(r—8—2"""e) A([6,5 +2™¢e]) 5 (2™ e)Aj(0)
+j(r—6 —2m"1e) A([é, J+ 2m5]) Jj(2mte) Ajs
= j(T = 8)Aj(8) — j(r =6 =27 e) A([6,6 +2™e]) j(2™ ') Aj(S)
+i(r—86—2""1e) A([6,6 +2™¢]) j(2™ e) Ajs
=j(r = 6)Aj(8) — j(r — 6 — 2™ e) A([6,6 +2™¢]) j(2™ 'e)Aj(0)
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Consequently, if 7 € (8,26) is not of the form ¢ + 2% for any £ = 0,---,n, then 9.y, —
§j(€)0Tr_c = 0. If 7 = § + 2% for some £ =1,---,n — 1, then
OLsr — §(€)0Ture = —A([6,6 + 27 1e]) j(2%)Aje(0)
+5(2 ') A([6,6 +2%]) 7(2° "e)Aje(5)
= A([6,0 +2e])" ji(2)Aje(9)
—§(27e) A([0,6 +2%])° 5 (2" e) Aje(6)
If 7 € (0,6), both O.I'x, and j(g)9.I'«,_. are zero.
For 7 = ¢, we have 0.'yxs — j(€)0. [ws—ec = Ajs.
For 7 =0 + ¢,
Oclsste — J(€)0:Tws = j(e)AJ(8) — A([6,0 + 2¢]) j(e)Aje(d) — j(e)Ads
= A([6,6 + 2¢])° j(e)Aje(S)
For 7 = 24,
8CF*25 _j(g)ﬁcr*Qé—s = _](5)A]( ) +](%) ([57 25]) J
(

(

2)Aje(5)
= —j(8)Ajs — j(5) A([6,20])" j(5)AJ

(6)
(ii) By part (i),

Z N?)m (ajr*r ) e—%md(x,A)’ /“3*0) + N3m (6jr*25 + ](6>A](5 ) e—%md(x,A), "3*0)
T€(6,29)

n—1

<N Nam (A(6,8 + 2°416]) §(2%)Aje(8) ; e T d0eM) i )

~
I
o

n

> N (527 1e) A([6,6 +2%])° (2 ) Aje(8) 5 e 2 AN e )
(=1
(E.10)

To bound the terms of the first sum on the right hand side of (E.10), we use Lemma
G.5.ii with d replaced by 3md and
Ly =A([0,6 +2€])", Lo=A, L3=X, O1=0,=A
, 0=

51 = 2d, 5y = 2d md, d = 5md, k= k., R=4R(20)

wlg

to get

N (A([6,6 +241e]) j(2%)Aje(6); e~ 2™ AN k)
< AR(28)emAAABIH2TID 52l || [[17(6) |
< 4O+ OR (28)e M)
(E.11)
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To bound the terms of the second sum on the right hand side of (E.10), we use

[BFKT4,(IV.1)] to see that

N (7(2'716) A([0.0+2'€])° (27 ) A je(0): €741 )
< Nsm (j (28_15) - em3md(A) e—%md(x,A))

N (A([8,0 + 2%€]) § (257 1e) Ajie(9); e~ 7™ 40N e )

Remark G.4.i gives the bound

N (527 16) ;730 omm 6oy < (2 1) || sup e #mdbew) 27000

oy eX e—%md(x,A)

< eKjQ[ilE

for the first factor on the right hand side. (E.11), with ¢ replaced by ¢ — 1, shows that the

second factor is bounded by 4eKﬂ'(5+2E_15)R(25)e_m‘(2£5) . Consequently

Nom (5(2°71e) A([0,8 +2%])° (2" 1) A j(8) ; e 2™ 0o )
< 46Kj(6+2ZE)R(2(5>6_mC(2eE)

Inserting (E.11) and (E.12),

n—1 n
(ElO) < 46Kj25R(25){ Z e—mc(2€+1€) + Ze—mc(ﬂs)} < e—%mc(é)
=0 =1

by (F.4.d) and (F.6.b).
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Appendix F: Properties of the Various Constants

The model under consideration is determined by the kinetic energy h = V*HV, the
two—body potential 2v(x,y), the temperature T" > 0, and the chemical potential p. We
are assuming that both H and v are exponentially decaying. That is, there is a “mass”

m > 0 such that
D’H = Z 66 md(x,0) }H(bz(0>, bj (X))}

xeX
1<i,j<d

vl = sup ZX M) [y (x, )|
X yeE

are finite. See (II.16) and (II.5). We have also assumed that there are constants 0 <
cy < Cy such that all of the eigenvalues of H lie between ¢y and C%. In Lemmas I11.21
and D.1, we introduced constants K, K; (depending only on Dy;, m and p) for bounds
on the semigroup j(t) = e *®~#) Our bounds are uniform for two-body potentials lying
in the annulus v < [|v]| < 3v and for which the lowest eigenvalue obeys v; > ¢,][|v]|.
See Hypothesis 11.14. The constant v > 0 must be sufficiently small and the constant
¢y € (0,1) is arbitrary. The chemical potential u is required to obey |u| < max {Ku pen, 1}
with strictly positive K,, and % <e, <1

For the bounds and the construction of the large field /small field decomposition, we
introduced, in (I1.17)—(11.20), the cutoff functions

r(t) = (£)" R = (&) r(t) R()= (1)) F1)
c=log® L ¢(t) =1log” & ot) = (&)
with strictly positive exponents e, er, eg/ and e; that obey
3er +4e, < 1 1 < 4degr + 2e, 2(er +e) <e, <1
. (F.2)
er’ +e <1 5 < er e < 2e;

€R
1/3 -

1/4 4Q (0.1, 0.2)

1}4 1/'2 €r

Our main results Theorems I1.16 and I1.18 apply when v and the time interval length
0 are sufficiently small. The precise restrictions are determined by a number of technical
condtions that are specified in Hypothesis F.7 at the end of this appendix.
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Clearly

R(2() < R(¢) < 2R(2¢) (F.3.2)
r(28) < r(t) < 21(21) (F.3.b)
S R(2"t) < 6R(Y) (F.3.0)
n=1

Lemma F.1 There is a constant tymax > 0, depending only on e;, er and er: such that,
for all0 <t <tpmax and 0 < v <1,

R(2t) +x(t) <R(?) (F.3.d)
R'(2t) + (V]| (><R’ )<2R’( t) (F.3.e)
) 5To (F.3.f)

Proof: These all follow directly from the definitions (F.1) and conditions (F.2).
|

Lemma F.2 There is a constant 0 < vy < 1, depending only on m, such that, for all
0<t<iand0<v< vy,

¢ < ¢(2t) < c(t) < 2¢(2t) (F.4.a)
e M < (F.4.b)
e~ 3™ <) < min {tv, &5} (F.4.c)
Lo s < (F.4.d)
k=0

Proof: Parts (F.4.a-c) are obvious. For (F.4.d),

oo

??‘|'3

k k k k

1 —k 2 1 2 2 2 2 2k

}kte smc(277¢t) § :elog ——gmlog” 3+ < 2 :elog ——2log % < 2 :6 log 4+ § :
k=0 k=0 k=0

= 2tv

For the first inequality we used %mlog % > 2 and for the second inequality we used v < 1.
|
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Lemma F.3 There are constants tynax > 0 and 0 < vpax < 1, depending only on m, such
that the following is true for all 0 < § < tpax and 0 < v < V.. Let © be a hierarchy for
scale 0 and let [J’ ; J be decimation intervals for &, with lengths t' and t, respectively.
Forallx € A(J) andy € A(J")¢ we have

R(Y) < eFIYIR(1) (F.5)
Proof: Recall from (F.3.a) that R(¢) < 2R(2 ) So
<

2t R
t’

2
R(%)
and, by Definition I1.4,

d(x,y) > c(t') =log® ;= = (log 2 + log 7= ) > 2log 51=log 2 > 2 Jog 2

assuming 2 log % > [ |

3
E.
The next Proposition involves the constant Kg = supyex > v ex e~?%¥) > 1, which is

a characteristic quantity of the spatial lattice X alone and was defined in the proof of
Lemma I11.42.

Lemma F.4 There are constants tymax > 0 and vmax > 0 (depending only on egr, er/, €,
e, Ka, Ky, K and K;), such that

28 K€% tor(t) R(t)® < & (F.6.a)

96 ' R(t)e~ 7™t < 1 (F.6.b)

2K HE; t{R’(t) + e MR() + \N\R(t)} < La(t) (F.6.c)
19 4 4D + 10log R(t) < 4(2t) (F.6.d)

for all 0 <t <tmax and 0 < v < Opax.

Proof: For (F.6.a), just recall that tor(t)R(¢)® = (tv)! ~3°r~4¢ and 3er + 4e, < 1.

By (F.4.c), R(t)e~ ™) < tp R(t) = (tv)L~°r~¢ tends to zero as tv — 0 and (F.6.b)
follows.

Since (F.4.b)

2K, t{R’(t) e ™R(E) + |u|R(t)}

S 62K3/‘+Kj {tl—eR/ + (tU)l_eR +Kut1_eRUe'u_eR}r(t>

IN

51 (t)
and the constraint (F.6.c) is satisfied if ¢ is small enough.

The inequality (F.6.d) is satisfied since the ratio between logR(t) = (er + ;) log =

and £(2t) = (Qw)ee converges to zero as tv tends to zero. |
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As in the proof of Proposition III.36, set K12 = 55 min {cHe 400 32}

Lemma F.5 There are constants’) Cp, and tmax such that, setting L(t) = Cpr(t)?,

K2t R'(1)” > L(t) (F.7.a)

Kror(t)? > L(t) (F.7.b)

Lo toR(t)* > L(t) (F.7.c)

62 (t[|u| + e PR(2) +R/(1)) < HE < S(x(t) — r(21)) (F.7.d)

911 Zz (27¢) ( ) c(zkg))g < L(2%) (F.7.c)
k=q—1

for all 0 <t < tmax, 0 < 0 < Opax (with the Vyax of Lemma F.2) and all e > 0 and n € IN
with 2" < tmax-

Proof: Using (F.4.b), the constraint (F.7.d) will be satisfied if

6625 (#17eR (K0 R + 05~eR] - t1=en Ye(t) < 2 = Cpr(t) < L(1 - g )re(t)

As long as v is smaller than the v, of Lemma F.2 and ¢ is small enough, we may choose
L(t) to be a small constant times r(#)2. We may also choose this constant to be smaller
than 1 5K 12 and £75. Then constraints (F.7.a,b,c) are also satisfied.

Observe that, for any 0 < 2tv < 1 and real b > 1,

(log £)"™ = (log 2 +log 2)"*" > (log )" + (b + 1) (log 2) (log 5=-)"
b+1 b
> (log%) + + (log%)

Iterating, we have, for all e > 0 and 0 < m < n with 0 < 2"¢v <1 and any real b > 1,

n n
b+1 b+1 b b b+1
(log 2"1150) > (log 2”150) + Z (log 2jlen) = Z (log 2jlan) < 2(log 2’“150)
j=m+1 j=m

and hence

(20))" <24 Y 0(2%) (log )’

pP=q

<22 (log 35)” Y £(2¢)

pP=q

p—l
ot ZE 2P¢) (
k

=q—1

(1) The constant Cp, depends only on ¢y, Cy, Co, ers and er. The constant tmax depends only on Cf,,
Kj/'v Kuv €u, ER;, €r, €p
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Since, for any e, > 0,

the left hand side of (F.7.e)

23

n p_l 3 e
e (|2 09) < e (e ) ()
p=q -1

is indeed smaller that L(2%) = Cp (57 )26r if ey < 2e, and 2"¢v is small enough. u

24¢p

During the construction, we introduced the auxiliary constants
o Kr= 212KJ2 and K = 223 in Theorem I11.24,
o Kp = 23555 and K = 2%8¢5%5 in Theorem I11.26,
o Ka = 2%el%K; in Theorem I11.27 and

o Kg = 29¢2K5 and Ky = 22%¢%%5 in Propositions V.12 and V.13, respectively.

Lemma F.6 There is a constant tyax > 0 (depending only on er, e, and K;), such that,
for all 0 <t <tmax and 0 < v <1, we have

tK Kzeszt —mec 5+er LKt 2
e i j 2er vKgr te 2 Kje"i
21_25r + KR (2tU) ! + (21_51'{_251" (tD)ER+25Y + /KR ) S 1 (F'8'a’)
2K 16}(jeskﬁt641nc 2106—-%rnc 920

1 o651 3
T Centie) T Kpr(20°R(@0%0 ®p 2 (2to)r(2t)R(2t)° + KeoREDZ T Ky = 1 (F.8.D)
27225 1 9% (to)r()R(1)* < 1 (F.8.c)

Proof: (a) Since e; < 75,
LK 2 Ter ety 2 1 1 2Kt o T 2Kt
S (TR () < T

By (F.4.b), all remaining contributions may be made arbitrarily small by choosing tmax
small enough.

(b) Since 1 — (2eg + 4e;) =1 — (3er + 4e;) + er > er > &, by (I11.17), we have

2tK 20

ey + =2 2t0)r(2OR(2)° + 2 <1 &

by (F.6.a), if t is small enough. Using (F.4.b) and (11.17), the remaining two terms can
be made arbitrarily small.

(c) is obvious. [ |
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The precise smallness assumptions on 6 and v in Theorems I1.16 and I1.18 are

Hypothesis F.7

Coy 1_272(736R74er)
248075 (1+K3)7 217 10K;

1
(1) 0 is smaller than )172%74er and each of the tmax’s of

Lemmas F.1 to F.6.

1
(ii) v is smaller than (2126%&) TR and each of the Vmax s of Lemmas F.1 to F.5.

These are also all of the restrictions that we put on the constants © and vy of Theorems
I11.24, TI1.26 and Proposition I11.29.
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Appendix G: Changes of Variables and Estimates

of Operator Norms

The basic change of variables formula for the operator norms of Definition III.18 is
Proposition I11.19. It, and consequences of it, are proven in [BFKT4, §IV]. For the purposes
of our construction, we need variants of these results for special situations, namely that
the operators implementing the change of variables have restricted ranges or that the
functions to which the change of variables is applied are polynomials. The first is treated
in Proposition G.1 and the second in Lemma G.2 and Corollary G.3. Also, in Remark G.4
and Lemma G.5, we develop tools to bound the operator norms of Definition ITI.18.

We work in the same abstract environment as in [BFKT4, §IV]. We are given weight
factors k1,---,Kks on an abstract metric space X with metric d. We consider analytic
functions f(aq,---,as;h) of the complex fields aq,---, s and the additional “history”
field h. Denote by w the weight system with metric d that associates the weight factor
r; to the field «;, and the constant weight factor 1 to the history field b (see Definition
I11.12).

Proposition G.1 LetI';, 1 < j < r, be h-operators on CX. Let A C X and, for each
1 <35 <7r, Aj be either A or A°. Set

f(ab c '7055—17B17' ' '7BT; b) = f(ah e, 05, ZT: A]PJBJ7 b)
j=1

Furthermore let Ry, 1 <1 <s—1and \;, 1 < j <r be weight factors. Let w be the weight
system with metric d that associates the weight factor k; to the field a;, for1 <i<s—1,
the weight factor \; to the field B;, for 1 < j <, and the constant weight factor 1 to the
history field §. Assume that k;(x) < ki(x) for all1 <i<s—1 and x € X and that there
1s a v > 1 such that

Y Na(ATji ke, M) <L and d " Na(ATj5 kg, Ay) < 4
1<j<r 1<j<r
Aj=A Aj:AC

Then
(e liVV)Z ny <e
||f||zb SCquHw with Cy, = % ife<v<A4
1 ifv>4
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Proof: We introduce auxiliary fields { B;-}l <j<r and {'yl, ’)’2} and define

filon, -+ as1, 71,72 b) = fan, - asmn, Aya + A%y b)
f//(ab"'7055—17B17"'751/ﬂ;b):f/(ozl,...,as_l, Z B;, Z 5;7b)

1<j<r 1<j<r
Aj=A Aj=Ac

Then

.]E(Oéh te '7055—17517 te '757“; h) = f,/(ab v '7055—17A1P1517 T '7AT‘FT‘/BT‘; h)

Set, for each 1 < j < r, t; = Ny (Aij; Ks, )\j) and introduce the auxiliary weight system
w’ with metric d that associates the weight factor one to the history field,

o the weight factor x; to the field «;, for each 1 <i <s—1,

o the weight factor \}(x) = t;ks(x) to the field 3}, for each 1 < j <r, and

o the weight factors &} (x) = > tjks(x) and k5(x) = ) tjks(x), respectively, to

1<j<r 1<j<r
A=A Aj=Ac

the fields v; and ~s.
By [BFKT4, Proposition 1V.4],

H.]E(Oéb"'7055—17B17"'7Br7 ||w_ Hf,/(ah O‘s—hﬁiv"'?ﬁ;;h)‘w/

since

Nd(Aij; )\;,)\]) = Nd(Aij; tj/‘\',s,)\j) = %Nd(Aij; KJS,)\]‘) =1

J

By [BFKT4, Lemma IV.5.i], applied twice,

’

Hf//(ah'"7055—17B17"'757/~;b)‘

w! < Hf/(ah Ty Os—1, 715, 723 b)‘

since,

) Sup (x) ) S“P ! (x)

1<j<r " 1<j<r 2

Aj=A A —AC
By part (iii) of [BFKT4, Lemma IV.5], with r replaced by 2,

|/ (a1, a1, 71,723 ) ||, < o[ flan, -, s b)),
since €, = C), 2 and
W= Y h<y and  swiEgg= 34
1<5<r 1<5<r
Aj:A Aj:Ac
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In §V, we use a refinement of [BFKT4, Proposition IV.4] for functions of low degree
in the fields that exploits exponential decay of operators away from a given subset L of X.

This estimate is contained in

Lemma G.2 Let Ay,---, A, be h—operators on CX and let KY, -+ K. be weight factors.

Furthermore, let f(aq, -, as;h) be a polynomial in the fields oy, -+, as and set

fllar, -+ ash) = f(Aroa, -+, Asag; b)

(a) Assume that f(ai,---,ash) is homogeneous of degree d; in o for each 1 < j < 's.
Then

1 N < 1 Fllw [ ] Na(Ays 55, 65)%
j=1

where w s the weight system with metric d that associates the weight factor /{;- to the field
aj and the constant weight factor 1 to the history field b.

(b) Let ty,---,ts € R with t; + -+ +ts < 0. Also, Let d' and § be metrics that obey

S
d>d +( 3 t1~> 5
30

Denote by w' the weight system with metric d' that associates the weight factor /{;- to the
field aj and the constant weight factor 1 to the history field b.

Assume that f(aq,- -+, as;h) is homogenous of degree one in each of the fields aq, - -, as.
Then, for any subset L of X,

1 Moo < W1 f 1w 1_[1 N (Aj; rjet°%0) )
J:

Proof: (a) follows from [BFKT4, Proposition IV.4] by scaling.

(b) Denote by w,ux the weight system with metric d’ that associates the weight factor
kjetid0oL) o the field a;. We claim that

f Mo < 1S Nl (G.1)

The claim follows from (G.1), since, by part (a),

1 o < 1 F e TT Nar (A5 5e"9°00) K1)

j=1
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To prove (G.1) we may assume that there is » > 0 such that ¢;,---,¢, > 0 and

try1,--,ts < 0. By hypothesis, Y t; < > (—t;) . Therefore there are a;; > 0,
i=1 j=r+1
t=1,---,r, j=7r+1,---,s such that

ti= >, aj fori=1,---,r

= (G.2)
(=tj)>> a;; forj=r+1,---,s
i=1
Now fix x1,---,Xs € X, £ >0 and Z € X*. Let T be a tree whose set of vertices

contains Xi,---,Xg, %1, -, Z¢. Denote by lengths(7") the length of T with respect to the

metric 6. For each 1 < ,j < s, the points x; and x; can be connected by a path in T

Therefore
d(xi, L) < 0(xj, L) + lengths (1)
Consequently
Ztié(xi,L) = Z Z Qg (S(Xi,L)-i- Z tié(xi,L)
=1 1=1j=r+1 1=r+1
<> X ayd(x;, L)+ >0 >0 agilengths(T)+ >0 t;6(x;, L)
i=1j=r+1 i=1j=r+1 j=r+1

I
(]
—~

~

<
I
3

+
[

i+ > aij) (x5, L) + 3 t; lengthy(T)
=1 =1

<

—

t;) lengths(T)

(2

—_

by (G.2). Therefore

S
length, (T') + > t;6(x;, L) < length,(T)
i=1
This holds for any tree T', whose set of vertices contains xi,---,Xs, %1, -+, %¢, SO that

S
Td/(X1, o '7XS7Z) + Z tzd(X27L> S Td(xlv e ,XS,Z>
=1

If we expand

flag, -+ ash) = g > ar(x1, 0, Xs1Z) an(xa) - as(Xs) B(z1) - h(ze)
>0 xl’;‘ew;%EX

and apply Definition II1.12, we get (G.1) [ ]
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Corollary G.3 Let h(y1,- -,V b) be a multilinear form in the fields ~v1,---,7,. Fur-
thermore, let

P% f& Ajandf@

(i=1,---,7; j=1,---,5) be h-operators on C~. Set

filar, -+ aih) = h( 3 Tag,- -+, 3 Mayih)
j=1 j=1
falan, -+ aih) = h( X Tdag, -, 30 Tagsh) = a( X Tag,- -, 3 Tagih)
j=1 7j=1 7j=1 7j=1
falar, -+ agh) = h( 3 Ailay, -, Y ATjagib) = h( 3 AiT{ag, -, 3 A,Tay;b)
Jj=1 Jj=1 j=1 j=1
~ (X Aay, -, 3 AMagih) +a( 3 Ailay, -, 3 ATaysh)
Jj=1 Jj=1 Jj=1 Jj=1

Let A, -+, A be weight factors. Let w' be the weight system with some metric d' that
associates the weight factor k; to the field o;; and let wy be the weight system with metric

d that associates the weight factor \; to the field ~;. Let § either be 0 or a metric which
obeys

d>d +(r—1)4
and let L C X. Then

(i) Il < Wl TTiy (52 N (T35 24 €49690), )

where each t;, 1 < i <, is either 1 or —(r — 1) and at least one of them is —(r — 1)

(1) [ follw < 7 [[Allwy 05 07"
where

0= max max{ Z Nd/(Fg;)\i 65(X’L),mj), > Nd/(f‘g;)\i e‘s(x’L),mj)}
i=1,--,r j=1 j=1
75 = x5BT - )
500 T ]—

(i) I f5llwr < 72 [Allw, o505 (0a)"
where
a = max max {Nd/ (Az; Agetd L)\ et L)) Ny (A \; BLICHARPWELIES L))}

i=1,
t= 17(7“ 1)

as = max Ny (A; — A \etd L) )\iew(x’L))
t= 1 —('r 1)
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Proof: (i) It suffices to prove that, for each choice of 1 < jyi,---,j, < s, the | - ||w
norm of h(F{lajl, -+, Tira; 5 h) is bounded by ||Allw, [T;_; Ng (D755 \; et005L) o). This
follows from Lemma G.2.b and [BFKT4, Lemma IV.5.i] (when two or more of the j;’s

happen to be the same).

(ii) Write the telescoping sum

f2(041: 703):h<2(ri_f{>a37 ZF%O(J, ) ZF£QJ>
+h( % Fag, X (0 = M)y, 3 Tay) +
J:l J:l J:l

+
>
e
<
v
LR
—_s
Q
<
it
[
NS,
Q
<
i
~
5SS
|
=
5SS
Q
<
N—

and apply part (i) to each of the summands. For term number iy, which contains I‘] F‘ZO,

choose t;;, = —(r — 1) and t; = 1 for all i # ig. (We have suppressed the argument h and
will do so for the rest of the proof.)

(iii) Write the telescoping sum

f3(a17 ) as)
=h( S AT = ay, -, ZA Mag) = h( LA, = )ay, -+, 3 A,Tay)
j=1 j=1 j=1
+ e +
(LA ag, e S AT = Thay) = h( X AiTday, o, 30 A — T)ay)
j=1 j=1 j=1 j=1
We claim that the || - ||, norm of each of the r lines is bounded by 7 ||k, osas(ca)™t.

We prove this for the first line. The proof for the other lines is similar. We again write a

telescoping sum

h( ZlAl(F{ —Thay, ZA rﬂaj) - h( S AT~ Tay, -, Zﬁrrgaj)
b=

7j=1 7j=1 7j=1
+ h( ST A (D] = TY)ay, Yo(Az — A)Tay, -, ZArFr%>
J=1 J=1 Jj=
+ “ e +
+h( AT = T)ay, ¥ AeThay, -+, (A, — A,)Tay)
=1 7j=1 7j=1



By the first bound, the || - ||,, norm of the first term is bounded by

||h]|wk< N ((Ay—Ay)(T9 —Td); Aye=(D30eL), ,@j)) I1 ( S N (AT At Gl ,@j))

Jj=1 i=2 Jj=1

< [Alupy Nar (Ay — Ap; e (rDO0L) 1)) o= (r=1)o(e, L)y ( ZlNd/ (D9 =T Ao~ (o0 L) nj))
J:

T

11 (Nd’(Ai§ Aie? 09 X;ed Ry 57 N (1 Aieé(x’“,ﬁﬂ)

i=2 j=1
< Nl (a5 3 Nar (0] = Ts dem D58 1)) TT (50 @ Nar (T3 Aie® ™5, ;)
i=1 i=2 J=1

< ||, osas (0a)" ™"

by [BFKT4, Remark IV.3.ii]. The norm of the second term is bounded by

o 32 Nar(An(1] = ) Ao 007000, w)) ( 3 Nar((As = Az)Ths dae"5, 55))
Jj= j=

T

I1(;

S
i=3 J=1

Nd/ (A,F{, /\i66(X’L), /ﬁ)j))

< ||h||w>\ (05a>(0a6>(0a>T—2

Similarly, one bounds the norms of each of the other r — 2 terms by ||hw, osas (ca)"!.
|

In order to apply Proposition I11.19, [BFKT4, Corollary IV.6] or Lemma G.2 we need
techniques to estimate operator norms. They are given in Remark G.4 and Lemma G.5,
below.

Remark G.4 Let A be an h-linear map from CX to CX. Let di,ds> be metrics with
di1 — do > d. Furthermore let k, k" be weight factors.

(i)

Na(A; 5, K') < Ny, (A; 1,1) [ sup e %) H’(y)) sup n/(x))

x,yeX K//(X) xEX K/(X)
A(x,y)#0 A(x, - )#0
Na(A; 5, 1) < Noy (A; 1,1) [ sup e D) (0 gyp £ )
d\4, I, = IVdp \ 4y 4, yex k(%) ex w(y)
A(x,y)#0 AC y)#0

(ii) Let ¢ > 0 and define the h-linear operator A, by

oo J AxZy) ifda(xy) <
AC(X7Z7Y) - {0 if d2(x7 Y) > ¢
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Then
Na(Ac — A K, k") < e “ Ny, (4; k, k)

(iii) Denote

/
x,y€X R(x)
A(x; - 5y)#0

Then
Nd(A; K, /i/) S KNd1 (A, 1, 1)

(iv) Let J be a linear operator on €~. Then

Ny (exph(]) K, ,g) < eNa(J3k:k)
Na(exph(J) = bk, k) < Ng(J; K, k) eNa(J3k,r)

Proof: To prove parts (i) and (ii), observe that, for all x,y € X and all Z € X ()

eTa(supp (x,i,y))|A(x; Z,y)| f:((;’)) < e~ d2(x¥) gTa, (supp (x,i,y))|A(X; Z.y)| f:((;’))

This immediately gives part (ii). The two inequalities of part (i) follow by writing

(y) _ K(y) K(x) _ ky) F()
r(x) k'(x)  k(x) k(x)  k(y)

Similarly, part (iii) follows from

eTa(5upp (5ZY))| A(x; Z; y) f;’((z)) < Ked2() emalsupp (523))| A (x; 7, y )|

< KeTi (5wp (%23))) A (x- 7 y)|

Part (iv) follows from the expansion
exph(J)=e’ =h+ 3. L J
(=1

and [BFKT4, (IV.1)].
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In Appendix E, we use a more sophisticated

Lemma G.5 Let

o) Ll,LQ,Lg,Ol,OQ cX

o A1, As be h-linear operators on CX

o 81,09,0,d metrics on X

o R> 0 and k a weight factor such that k(x) < Re?>®02) for all x € Ls.
et Dy = max{é(Ll, Lo), 6(Lo, L3), 6(L3,L1)}

DO == maX{DL y (5(L1, 01> y (S(LQ, 01> y (5(L3,01)}

(i) Assume that d + 65+ 6 < d. If
(a) L; C Oq for at least one j € {1,2,3} and D = Dy,

or if

(b) L;j C Oy for at least one j € {1,2,3} , 61 > 6 and D = Do
or if

(c) O1 COy ,01>54+062 and D = Do
then

Nd (L1A1L2A2L3 3 eél(x’Ol), /i) < RG_D NJ(LlAlLQ; 1, 1) NJ(LQAQL?,; 1, 1)

(ii) Assume that d 4+ 01 + do + 3§ < d and that L; C Oy, L; C Oy for some 1 <i,j < 3.
Then

Nd (L1A1L2A2L3 3 6_61(X’Ol), KJ) S RG_DL NJ(LlAlLQ; 1, 1) Nd"(LQAQL?); 1, 1)

Proof: We may assume that R = 1 and that x(x) = ¢%2*02) We write the kernel of
the operator L1 A1 Lo AsL3 as

(L1A1LaAsL3)(x;2;y) = Z (L1A1Ly) (x;Z15u) (LaAgLs)(u; Za;y)

ueLsy
#1,7,ex(1)
Zjo(u)oZgo=2Z

(i) Fix x € L1,u € Ly,y € L3, 71,72 € X, Then
— 01(x,01) + Ta(supp (x; Z1 o w0 Zs;y)) + da2(y, O2)
< 74(supp (x;Z1; 1)) + 7a(supp (w; Z2;y)) + 0(x, u) + 6(u,y) + d2(y, O2)
—01(x,01) — 0(x,u) — 6(u, y)
< 77(supp (x;Z1;u)) + 75(supp (u; Z2;y)) — d2(x,u) — d2(u,y) + d2(y, O2)
—01(x,01) — 0(x,u) — 6(u, y)
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As x e Ly,u€e L,y € L3
d(x,u) + §(u,y) > Dy,
d(x,01) + d(x,u) + §(u,y) > Do
If L; C Oy for at least one j € {1,2,3} then
—02(x,u) — d2(u,y) + d2(y, 02) <0
Therefore
—02(x,u) — da(u,y) + d2(y, O2) — 01(x,01) —d(x,u) — (u,y) < {
In case ¢), §1(x,01) > d2(x,02) + 6(x,01) so that
—da(x,u) — d2(u,y) + 02(y,02) —01(x,071) — d(x,u) — d(u,y)
< —da(x,u) — da(u,y) + d2(y, O2) — 02(x,02) —d(x,01) — d(x,u) — §(u,y)
< -Do
Consequently, in all three cases
—01(x,01) + T4 (supp (x; Z1 cuo Zy;y)) + d2(y, O2)

—Dy,  in case a)
—Do in case b)

< —D + 7;(supp (x; Z1; 1)) + 7;(supp (u; Z2;y))
so that
6—51 (X,Ol)er(SuPP (x;Z10u0Zs ;y)) ‘ (LlAlLQ) (X, le u) (L2A2L3) (u’ ZQ, y) ‘ /i(y)

< e~ D gmalsupp (x:Z1;u)) } (L1A1L2) (x; Z1; u)} eTa(supp (w;Z2;y)) ‘ (L2A2L3) (u; Zo; y)‘
If we define the auxiliary h-linear operators A; and A, by
Ai(x;Zsy) = TaCPR I A (s 2 y) | As(xiZiy) = €TIEWPP O5EY) | Ay (x; 2y y )|
we now have, by [BFKT4, (IV.1)],
Ng(L1A1LoAsLy; ™00 ) <Re P No(LiA1LaAsLy; 1, 1)
<Re P No(L1A1Ly; 1,1) No(L2A5L3; 1,1)
=Re P Nj(L1A1Ls; 1,1) Nj(L2AsLs; 1,1)

(ii) As in part (i), fix x € Ly,u € Lo,y € L3, 71,72 € X" and bound
81(x,01) + Ta(supp (x; Z1 couo Za;y)) + d2(y, O2)
< 7a(supp (x;Z1;u)) + 74(supp (u;Z2;y)) + d(x, u) + 6(u,y) + d1(x,01)
+ 02(y, O2) — 6(x,u) — d(u,y)
< 75(supp (x;Z1;u)) + 75(supp (w; Z2;y)) — (1(x,u) + &1 (u,y) — 61 (x, 01))
— (52(x, u) + da(u,y) — da(y, 02)) — (5(x, u) + 5(u,y))
< =Dy, + 7;(supp (x;Z1; 1)) + 7;(supp (u; Z2; y))
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Appendix H: Symbol Table

Notation Definition Comments
\% (VH((x,y) = fly) — f(x) discrete gradient
Il SUPaex Yyex €9V [u(x,y) (IL5)
[IIA]l Nom(4;1,1) Definition I11.20
X0 (s a, B) Theorem I1.16 small field conditions
G} Definition 11.4 hierarchy
dpa,(2%,2) | Tleq COLAE) o =2097209) \ (|2(x)| < 1) before (I1.1)
Da.o(g; o, B) before (I1.2) part of effective action
Da.o(ou, B) lim,;, 00 D (27765, B) (I1.2)
d(x,y) standard metric on X
o(7) Notation II.2.iii decimation index of 7
exph (J) eh7hp Definition I11.4.iii
I'es, I's Definition I1.9 background field
I7(6), I'T(&) Definition I1.9 coefficients
h V*HV kinetic energy
H kernel in kinetic energy see beginning of Appendix D
Iy(a*, B) limy, 00 1 (2770; *, ) Theorem I1.16
I,(g;a*, B) (1.3), (I1.10) effective density
T(&;0+,8) Definition II.8.ii large field integral operator
L7 a%8) Definition II.8.i large field integral operator
I Notation II.2.iii decimation interval centred on 7
J- Notation II.2.iii left half of J-
J+ Notation II.2.iii right half of 7,
J(t) exph ( — t(h — p)) (I11.1)
) y) iy {o s ()

if d(x,y) > ¢
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Ky sup 3 edxy) in proof of Lemma I11.42
yeEX xeX

Kp 235 0K Theorem I11.26

Ka 24010K; Theorem II1.27

Kg 223 Theorem 111.24

K 2480k Theorem I11.26

Ko 3—12 min {0%6_4]307" , 3—12} in proof of Proposition II1.36
Kq 292K Proposition V.12

Kg 212[(]2 Theorem I11.24

Ky 2256K; Proposition V.13
A(T) Definitions 1.4, A.1, §V.1 small field set

Ns(A; k, k) Definition IT1.18 weighted L!'-L> operator norm

QT) Definitions 1.4, §V.3 small field set

Po(J), Pp(J)

Definitions I1.4, A.1, §V.1

large field sets

Po(J), P3(T)

Definitions 11.4, A.1, §V.1

large field sets

Q(T)

Definitions 11.4, A.1, §V.1

large field set

Qs,é(a*7 B3 Vs 5;)

(IL.10)

dominant quadratic part

Q@(a*76; 0_2*762>

Qs,é(amﬁ; F*@(aa*va’*)vre(a&aﬁ))

(11.9), (IIL3)

R(J) Definitions I1.4, §V.3 Stokes’ large field sets
Ra.t before (II.1) renormalization group operator
Va.s(e; au, B) (I1.1) principal interaction
Vaso(as, B) limy, 00 Va0 (27760; o, B) (I1.4)
Ve (s, B; Ay, @) (I1.11) dominant quartic part
v(X,y) two—body potential see Hypothesis 11.14
X Z°)LZ" space
Y= bonds with at least one end in Y just before Notation 1.2
Y~ points within distance one of Y just before Notation II1.2
Zs Lemma II1.7 normalization constant
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