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This survey is intended to introduce a class of infinite genus Riemann surfaces

to which the classical theory of compact Riemann surfaces up to and including the Torelli

Theorem extends [FKT1,2,3]. The Torelli Theorem states that two Riemann surfaces

having the same period matrices are biholomorphically equivalent. The class is specified

by means of a number of geometric axioms, that we list in the Appendix. The axioms

are not only restrictive enough to allow recovery of much of the classical theory, but also

flexible enough to include a number of interesting examples. We start with an example, in

fact the example which motivated this project, the heat curve H(q) with source q. It will

be defined precisely in §I.
To explain the significance of this particular example, we briefly discuss its con-

nection to the periodic Kadomcev-Petviashvilli (KP) equation. This partial differential

equation is related to the Korteweg-de Vries (KdV) equation and, like KdV, originally

arose in the study of shallow water waves. Let Γ be a lattice in IR2 and q a function

on IR2 that is periodic with respect to Γ. The periodic Kadomcev-Petviashvilli equation

refers to the initial value problem

utx2(x1, x2; t) =
(
3uux2 − 1

2 ux2x2x2

)
x2
− 3

2ux1x1

u(x1, x2; 0) = q(x1, x2)

The importance of heat curves in the analysis of KP arises from the facts that H(
u(·, · ; t))

is independent of t and that, at least formally, there is a formula

u(x1, x2; t) = −2
∂2

∂x2
2

log θ( ~Ux2 + ~V x1 − 1
2
~Wt+ ~Z ) + c

expressing the solution in terms of the theta function (defined in §II) of the heat curve

H(q). The formula implies that solutions of the initial value problem for the spatially

periodic KP equation are almost periodic in time. It is rigorous and well-known [K, M]

for finite zone potentials. Then (the normalization of) H(q) is of finite genus. However for

generic q, H(q) is of infinite genus. For such a formula to be true in this case, it is necessary

at the very least to be able to define a theta function on an infinite genus Riemann surface.

Conversely, KP is also extremely important in the theory of Riemann surfaces.

Firstly, because a g × g matrix R is a period matrix (defined in §II) of some Riemann
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surface of genus g if and only if R is symmetric, has positive definite imaginary part and

−2
∂2

∂x2
2

log θ( ~Ux2 + ~V x1 − 1
2
~Wt+ ~Z ;R) + c

with θ( · ;R) being the theta function determined by R, gives a solution of KP for some

constants ~U, ~V , ~W , ~Z, c [AdC,S]. Secondly, because, for each g ≥ 1, the set of Riemann

surfaces of genus g that are normalizations of heat curves H(q), with q ∈ L2(IR2/Γ) for

some rectangular lattice Γ, is dense in the moduli space of all Riemann surfaces of genus

g [BEKT].

So first we describe H(q) as an example of an infinite genus Riemann surface

satisfying axioms (GH1-6) of the Appendix. Other examples, like Fermi curves or spectral

curves of one-dimensional periodic differential operators, are described in [FKT3]. Then

we discuss the definition and some properties of theta functions for such surfaces.

§I Heat Curves

For concreteness fix Γ = 2πZZ2. Let q ∈ C∞(IR2/Γ). The heat operator with

source q is H(q) =
(

∂
∂x1

− ∂2

∂x2
2

)
+ q. Because q is periodic with respect to Γ, H(q) com-

mutes with all the operators, (Tγψ)(x) = ψ(x− γ) , in the natural unitary representation

of Γ on L2(IR2). Hence H(q) and all the Tγ ’s can be simultaneously diagonalized and the

spectrum of H(q) is encoded in

H(q) =
{

(ξ1, ξ2) ∈ C∗ ×C∗
∣∣∣ ∃ ψ(x1, x2) 6= 0 obeying Hψ = 0

ψ(x1 + 2π, x2) = ξ1ψ(x1, x2)

ψ(x1, x2 + 2π) = ξ2ψ(x1, x2)
}

The requirement Hψ = 0 makes ψ an eigenfunction of H of eigenvalue zero. (Patience -

we’ll get to nonzero eigenvalues shortly.) The requirements ψ(x1 + 2π, x2) = ξ1ψ(x1, x2)

and ψ(x1, x2 + 2π) = ξ2ψ(x1, x2) make ψ an eigenfunction for T(2π,0) and T(0,2π). It

is convenient to replace these “twisted periodic” boundary conditions with true periodic
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boundary conditions by writing ξ1 = e2πik1 , ξ2 = e2πik2 and studying

Ĥ(q) =
{
k ∈ C2

∣∣∣ ∃ φ = e−i<k,x>ψ 6= 0 obeying Hk(q)φ = 0

φ(x1 + 2π, x2) = φ(x1, x2)

φ(x1, x2 + 2π) = φ(x1, x2)
}

where
Hk(q) = e−i<k,x>

(
∂
∂x1

− ∂2

∂x2
2

+ q
)
ei<k,x>

= ∂
∂x1

− 2ik2
∂
∂x2

− ∂2

∂x2
2

+ ik1 + k2
2 + q

= i
(
−i∂

∂x1
+ k1

)
+

(
−i∂

∂x2
+ k2

)2

+ q

Even though we only look for eigenfunctions of eigenvalue zero of Hk(q), with periodic

boundary conditions, we in fact determine the full spectrum of H(q) because λ is in the

spectrum of H(q) if and only if

Ĥ(q − λ) =
{
k ∈ C2

∣∣ (k1 + iλ, k2) ∈ Ĥ(q)
}

= Ĥ(q)− (iλ, 0)

has nonempty intersection with IR2.

To get an idea of what Ĥ(q) looks like, first set q = 0. Then we, of course, observe

that
{
ei<x,b>

∣∣ b ∈ Γ# = ZZ2
}

is a basis of L2(IR2/Γ) of eigenfunctions of Hk. Precisely,

Hke
i<x,b> = Pb(k)ei<x,b>

where Pb(k) = i(k1 + b1) + (k2 + b2)2

and

Ĥ(q = 0) =
{
k ∈ C2

∣∣ ∃ b ∈ Γ# such that Pb(k) = 0
}

is the union
⋃

b∈Γ# Pb of parabolas

Pb =
{
k ∈ C2

∣∣ − ik1 = (k2 + b2)2 + ib1
}

On the left below is a sketch of the set of (k1, k2) ∈ Ĥ(q = 0) for which both ik1 and k2

are real. Recall that points (k1, k2) in Ĥ that differ by elements of Γ# = ZZ2 correspond
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-1.5 -1.0 -0.5 0.5 1.0 1.5
k2

−ik1

P−b P0 Pb

−ik1

k2

to the same point (ξ1, ξ2) in H. So, in the sketch on the left, we should identify the lines

k2 = −1/2 and k2 = 1/2 to get a single “parabolic vine” climbing up the outside of a

cylinder, as illustrated by the figure on the right above. This vine intersects itself twice

on each cycle of the cylinder – once on the front half of the cylinder and once on the back

half. So viewed as a manifold, the vine is just IR with pairs of points that correspond to

self-intersections of the vine identified. We can use k2 as a coordinate on this manifold

and then the pairs of identified points are k2 = ±n
2 , n = 1, 2, 3 · · ·.

So far we have only considered k2 real. The full H(q = 0) is just C, with k2 as

a coordinate, provided we identify n
2 + im

n and −n
2 + im

n for all (m,n) ∈ Γ# \ {(0, 0)} =

ZZ2 \ {(0, 0)}.
Im k2

Re k2

Now, we have to turn on the source term q. We can determine what Ĥ(q) looks

like by studying the function Fq(k) in
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Theorem [FKT3, Theorems 15.8, 16.9] There is an entire function Fq of finite order

such that

Ĥ(q) =
{
k ∈ C2

∣∣ Fq(k) = 0
}

H(q) is a reduced and irreducible one dimensional complex analytic variety.

If L2(IR2/Γ) were a finite dimensional vector space with Hk(q) a matrix acting on

it, we would just have Fq(k) = det
(
Hk(q)

)
. Of course, this is not the case. But Hk(q) does

have purely discrete spectrum and its large eigenvalues are close to those of Hk(0). So it

easy to define a regularized determinant detreg
(
Hk(q)

)
and set Fq(k) = detreg

(
Hk(q)

)
. In

fact, there is a perturbation expansion that (rigorously) determines Fq(k) to any desired

degree of accuracy provided k is large enough (depending on the desired accuracy). This

expansion shows that, for large k2, Ĥ(q) looks a lot like Ĥ(0) except near the double points

(i.e. self-intersection points) of Ĥ(0). Indeed, except near the double points, one can solve

Fq(k) = 0 for k1 as a function of k2. The solution obeys

−ik1 = k2
2 + O

(
1

1+|k2|2
)

Just as in the free case, we may use k2 as a coordinate on H(q) away from the double

points.

Near the double point k2 = n
2 + im

n , Ĥ(q = 0) is given by the equation

P0(k)P−(m,n)(k) =
(
ik1 + k2

2

) (
i(k1 −m) + (k2 − n)2

)
= 0

In the same region, for general q and large (m,n), the equation becomes

(P0(k)−D(k)1,1)
(
P−(m,n)(k)−D(k)2,2

)
= (q̂(m,n)−D(k)1,2) (q̂(−m,−n)−D(k)2,1)

with the functions D obeying

|D(k)i,j| ≤ const
1 + |k2|2 for i = j

|D(k)i,j| ≤ const α

1 + (m2 + n2)α
for i 6= j
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For smooth q, the Fourier coefficients q̂(m,n) decay rapidly with (m,n) and α can be

chosen arbitrarily large, so the equation is of the form

(P0(k)− small)
(
P−(m,n)(k)− small

)
= very small

Under a suitable change of coordinates, which for q = 0 reduces to z1 = P0(k), z2 =

P−(m,n)(k), the equation becomes

z1z2 = t(m,n)

with the constant t(m,n) decaying rapidly with (m,n). When t 6= 0, and this is generically

the case, the set
{

(z1, z2) ∈ C2
∣∣ z1z2 = t, |z1|, |z2| ≤ 1

}
or equivalently

{
z1 ∈ C

∣∣ |t| ≤
|z1| ≤ 1

}
is topologically a cylinder or handle. Generically, the free double point z1z2 = 0,

which is the union of two intersecting complex lines, opens up when q is nonzero to become

a handle z1z2 = t.

We now have the following picture of H(q). Take the complex k2–plane C. Cut

out a compact simply connected neighbourhood of the origin. Glue in its place a compact

Riemann surface with boundary. This is the part of Fq(k) = 0 with k2 too small for us to

be able to do an accurate analysis. Also cut out of the k2 plane a small disk around each

±n
2 + im

n with (m,n) ∈ ZZ, n > 0. Glue in a handle joining each matching pair of disks.

This picture fulfills the qualitative aspects of the axioms referred to in the first

paragraph. The axioms are given in the Appendix and are numbered (GH1-6). They

require that the Riemann surface have a decomposition

X = Xcom ∪Xreg ∪Xhan
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into a compact, connected submanifold Xcom ⊂ X with smooth boundary and genus

g ≥ 0 , a finite number of open “regular sheets” Xreg
ν ⊂ X , ν = 1, · · · ,m ,

Xreg =
m⋃

ν=1

Xreg
ν

and an infinite number of closed “handles” Yj ⊂ X , j ≥ g + 1 ,

Xhan =
⋃

j≥g+1

Yj

There is a biholomorphism

Φν : Gν ⊂ C → Xreg
ν

between the νth regular sheet and a copy of the complex plane with a bunch of holes cut

in it and there is a biholomorphism

φj : H(tj) → Yj

between the jth handle and the model handle

H(tj) =
{

(z1, z2) ∈ C2
∣∣ z1z2 = tj and |z1|, |z2| ≤ 1

}
There are restrictions on the density, sizing and positioning of handles. Heat curves obey

all the restrictions.

Theorem [FKT3, Theorem 17.2] Suppose that q ∈ C∞(IR2/Γ)and that H(q) is smooth.

Then H(q) obeys (GH1-6).

§II Theta Functions

We now discuss some properties of surfaces obeying (GH1-6), in parallel with a

brief review of some of the classical theory [FK] of finite genus Riemann surfaces. Let X be

a Riemann surface (one complex dimensional manifold) of genus g. For g = 2, X looks like
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the two-holed donut on the left. For our purposes, the noncompact Riemann surface of

a1

b1

a2

b2

a1
a2

b2
b1

genus two shown on the right is more appropriate. It is gotten by deleting one point from

the donut and treating the deleted point as infinity. The topology of X is characterized

by the existence of cycles A1, · · · , Ag, B1, · · · , Bg with intersection numbers

Ai ×Aj = 0

Ai ×Bj = δi,j

Bi ×Bj = 0

Ai

Bi

Ai × Bi = 1

that provide a basis for the homology of X. If C×Ai = C×Bi = 0 for all i then C×D = 0

for all closed curves D. There is a basis ω1, · · · , ωg for the vector space of holomorphic one

forms that is dual to the A–cyles in the sense that∫
Ai

ωj = δi,j

In the infinite genus case, one also has A– and B–cycles and a basis for the space

of all L2 holomorphic forms that is dual to the A–cycles, provided the surface is parabolic

in the sense of Ahlfors and Nevanlinna [AS]. One traditional test for parabolicity is the

existence of a harmonic exhaustion function, that is, a continuous, nonnegative, proper

function on X that obeys d ∗ dh = 0 outside a compact set. For example

h(z) =
{

0 if |z| ≤ 1
log |z| if |z| ≥ 1

is a harmonic exhaustion function for C. One can weaken this test [FKT1, Proposition

3.6] to the existence of an exhaustion function with
∫

X
|d ∗ dh| <∞. We use (GH5 i,ii,iii)

to construct such an exhaustion function. The harmonic function log
∣∣Φ−1

ν (x)
∣∣, with Φν

being the coordinate map on the νth sheet, is used on the part of the νth sheet that
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does not overlap with a handle. The harmonic function c2(j) log |z1| + c1(j) log |z2|, with

x = φj(z1, z2) being the coordinate map on the jth handle, is used on the jth handle,

except where is overlaps the sheets. A nonharmonic interpolating function is used in the

overlaps.

In general, parabolicity only ensures the existence of at least one homology basis

for which there is a corresponding dual basis of ωk’s. It need not allow you to use any

Ak’s you like. In [FKT1, Theorem 3.8] we show that if the exhaustion function h obeys∫
X
|d ∗ dh| <∞ and is consistent with a given homology basis Ak, Bk, k ≥ 1 in the sense

that, for all sufficiently large t > 0

- there is an n ≥ 1 such that A1, B1, · · · , An, Bn are homologous in X to a canonical

basis for h−1([0, t]) and

- every component of ∂h−1([0, t]) is homologous to a finite linear combination of

Ak’s and dividing cycles

then there is a unique basis ωk, k ≥ 1 for the space of all square integrable holomorphic

one forms that is dual to the given Ak’s.

The integrals of the ωj ’s over the B–cycles form the Riemann period matrix

Ri,j =
∫

Bj

ωi

which, in turn is used to define the theta function,

θ(~z) =
∑

~n∈ZZg

e2πi<~n,~z>eπi<~n,R~n> : Cg → C

on which much of the theory of finite genus Riemann surfaces depends. In the finite genus

case, the convergence of the theta series for all ~z ∈ Cg is an immediate consequence of the

fact that the imaginary part of the Riemann period matrix is a strictly positive definite

matrix. Even in the infinite genus case, one may use

〈~n, (ImR)~n〉 =
∥∥∥ ∑

i≥1

niωi

∥∥∥2

L2(X)
≥

∑
j≥1

∥∥∥ ∑
i≥1

niωi

∥∥∥2

L2(Yj)

and a local computation in each handle Yj to prove [FKT1, Proposition 4.4]∑
i,j

ni (ImRi,j)nj ≥ 1
2π

∑
j

| log tj |2n2
j (II.1)

Combining this with (GH2 iv) and the following Theorem gives the existence and usual

periodicity properties of the theta function for all Riemann surfaces obeying (GH1-6).
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Theorem [FKT1, Theorem 4.6, Proposition 4.12] Suppose that R obeys (II.1) with

the sequence tj ∈ (0, 1), j ≥ 1 obeying
∑

j≥1 t
β
j <∞ for some 0 < β < 1

2 . Then

θ(~z) =
∑

~n∈ZZ∞
|~n|<∞

e2πi<~n,~z>eπi<~n,R~n>

converges absolutely and uniformly on bounded subsets of the Banach space

B =
{
~z ∈ C∞

∣∣∣ lim
j→∞

zj

| ln tj | = 0
}

‖~z‖B = sup
j≥1

zj

| ln tj |

to an entire function that does not vanish identically. Furthermore, for all ~n ∈ ZZ∞ ∩ B
and all columns ~Rj of R with ~Rj ∈ B

θ(~z + ~n) = θ(~z) (II.2)

θ(~z + ~Rj) = e−2πi(zj+Rjj/2)θ(~z) (II.3)

§III Zeroes of the Theta Function and Riemann’s Vanishing The-

orem

One of Riemann’s many classical theorems is that, for each fixed e ∈ Cg and

x0 ∈ X,

θ

(
e+

∫ x

x0

~ω

)
either vanishes identically or has exactly g roots. The integral

∫ x

x0
~ω does depend on the

path from x0 to x. But any two such paths differ by
∑g

j=1(njAj +mjBj) with ~n, ~m ∈ ZZg

and, by the periodicity properties (II.2,3) of the theta function, θ(~z) = 0 if and only if

θ(~z + ~n+
∑g

j=1mj
~Rj) = 0.

To generalize Riemann’s result to our class of infinite genus Riemann surfaces we

must first show that for any path joining x1 to x2 on X the infinite component vector∫ x2

x1

~ω =
(∫ x2

x1

ω1 ,

∫ x2

x1

ω2 , · · ·
)
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lies in the domain of definition of the theta function. This, and much of the further

development of the theory, depend on bounds on the frame ω1, ω2, · · · . Suppose that one

end of the jth handle is glued into the ν1(j)st sheet near s1(j) and that the other end of

the jth handle is glued into the ν2(j)nd sheet near s2(j). We prove [FKT2, Theorem 8.4]

that, when ν1(j) = ν2(j), the pull back wν
j (z)dz = Φ∗

νωj of ωj to the νth sheet obeys

∣∣∣∣wν
j (z)− 1

2πi
1

z − s1(j)
+

1
2πi

1
z − s2(j)

∣∣∣∣ ≤ const
1 + |z2| if ν = ν1(j) = ν2(j)∣∣wν

j (z)
∣∣ ≤ const

1 + |z2| if ν 6= ν1(j) = ν2(j)

On the other hand, when ν1(j) 6= ν2(j),∣∣∣∣wν
j (z)− 1

2πi
1

z − s1(j)
+

1
2πi

1
z

∣∣∣∣ ≤ const
1 + |z2| if ν = ν1(j)∣∣∣∣wν

j (z)− 1
2πi

1
z

+
1

2πi
1

z − s2(j)

∣∣∣∣ ≤ const
1 + |z2| if ν = ν2(j)∣∣wν

j (z)
∣∣ ≤ const

1 + |z2| if ν 6= ν1(j), ν2(j)

The const is independent of j. We also make a detailed investigation of the pull backs of

ωj to the handles. For example [FKT2, Proposition 8.16]∣∣∣∣φ∗jωj(z)
dz1/z1

− 1
2πi

∣∣∣∣ ≤ 2
5π

(|z1|+ |z2|)

Here is a rough idea of how these bounds are proven. The νth sheet is biholomor-

phic to a complex plane from which a compact neighbourhood of the origin and an infinite

set of other small holes have been cut. Draw a contour Cν around the first hole and circles

|z − s| = r(s), s ∈ Sν around the other small holes. By the Cauchy integral formula

wν
j (z) = wν

j,com(z) +
∑
s∈Sν

wν
j,s(z)

where

wν
j,s(z) = − 1

2πi

∫
|z−s|=r(s)

wν
j (ζ)
ζ − z

dζ

wν
j,com(z) = − 1

2πi

∫
Cν

wν
j (ζ)
ζ − z

dζ
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Cν

First, by writing

wν
j,s(z) = − 1

2πr(s)i

∫ 2r(s)

r(s)

[∫
|z−s|=r

wν
j (ζ)
ζ − z

dζ

]
dr

and using Cauchy-Schwarz, one may get an upper bound [FKT2, Propositions 8.5,8.12,8.14

and Lemma 8.9] on wν
j,s(z) for |z − s| ≥ 3r(s) in terms of the L2 norm of ωj restricted to

the annulus Φν

({r(s) ≤ |z − s| ≤ 2r(s)
)
. To get a bound that decays like 1

|z−s|2 rather

than 1
|z−s| one exploits the fact that

∫
|z−s|=r

wν
j (ζ) dζ = 0, unless the circle |z − s| = r

happens to be homologous to ±Aj. If so, one works with wν
j (ζ)∓ 1

2πi
1

ζ−s instead of wν
j (ζ).

One also gets the analogous bound on wν
j,com(z). Second, consider the handle Yi. One

end of it is glued into sheet ν1(i) near the point s1(i) and the other end is glued into

sheet ν2(i) near the point s2(i). Denote by Y ′
i the part of the handle Yi bounded by

Φν1(i)

({|z − s1(i)| = R1(i)}
)

and Φν2(i)

({|z − s2(i)| = R2(i)}
)
. The radii Rµ(i) are chosen

in (GH3,5) to be much larger than the corresponding radii rµ(i). Using Stoke’s Theorem

and the holomorphicity of ωj [FKT2, Corollary 8.7] one gets a bound on the L2 norm of

the restriction of ωj to Y ′
i in terms of the values of wνµ(i)

j on {|z−sµ(i)| = Rµ(i)}, µ = 1, 2.

Substituting the first family of bounds into the second family gives a system of inequalities

relating the L2 norms of ωj restricted to the Y ′
i s. This family of inequalities may be

“solved” to get inequalities on the L2 norms themselves. Finally, bounds on the L2 norms

are turned into pointwise bounds on the sheets by the “first” bounds above and on the

handles by a similar method [FKT2, Lemma 8.8].

The above bounds on ~ω imply that for any path joining x1 to x2 on X, the
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integral
∫ x2

x1
~ω is in the Banach space B and that this remains the case in the limit as

x1 tends to infinity along a reasonable path. In the event that X has m sheets we can

choose m such paths each approaching infinity on a different sheet. Call the limits
∫ x2

∞ν
~ω,

1 ≤ ν ≤ m. The precise statement that θ
(
e+

∫ x

∞1
~ω
)

has exactly “genus(X)” roots is

Theorem [FKT2, Theorem 9.11] Let e ∈ B be such that θ(e) 6= 0 and θ
(
e+

∫∞ν

∞1
~ω
)
6=

0 for all 1 < ν ≤ m. Then, there is a compact submanifold Y with boundary such that the

multivalued, holomorphic function

θ

(
e+

∫ x

∞1

~ω

)
has

(i) exactly genus(Y ) roots in Y

(ii) exactly one root in each in each handle of X outside of Y

(iii) and no other roots.

That θ
(
e+

∫ x

∞1
~ω
)

has no zeroes near∞ν , except in handles, is a consequence of

the facts that θ
(
e+

∫∞ν

∞1
~ω
)
6= 0 by hypothesis, that

∥∥∫∞ν

x
~ω
∥∥

B
is small for all sufficiently

large x in the νth sheet and that θ is continuous in the norm of the Banach space B. The

proof that there is exactly one zero in each, sufficiently far out, handle is based on the

argument principle and the computation∫
AjBjA−1

j B−1
j

d log θ
(
e+

∫ x

∞1

~ω

)
=

∫
Aj

d log θ
(
e+

∫ x

∞1

~ω

)
+

∫
Bj

d log θ
(
e+ ~ej +

∫ x

∞1

~ω

)
−

∫
Aj

d log θ
(
e+ ~Rj +

∫ x

∞1

~ω

)
−

∫
Bj

d log θ
(
e+

∫ x

∞1

~ω

)
=2πi

∫
Aj

d

(
ej +

∫ x

∞1

ωj + 1
2Rjj

)
=2πi

where ~ej is the vector whose kth component is δik and ~Rj is the jth column of the Riemann

period matrix. The periodicity properties of the theta function are used twice in this

computation. We also used∫
B−1

j

d log θ
(
e+ ~Rj +

∫ x

∞1

~ω

)
= −

∫
Bj

d log θ
(
e+

∫ x

∞1

~ω

)
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and an analogous formula for A−1
j .

In preparation for Riemann’s vanishing theorem, we introduce the notion of a

divisor of degree “genus(X)” on the universal cover of X . This is done by fixing an

auxiliary point ê ∈ B with θ(ê) 6= 0 and comparing sequences of points to the “genus(X)”

many roots x̂1 , x̂2 · · · of θ
(
ê+

∫ x

∞1
~ω
)

= 0. Precisely, let π : X̃ → X be the universal

cover of X and choose x̃j ∈ π−1(x̂j). A sequence yj , j ≥ 1 , on X̃ represents a divisor of

degree “genus(X)” if eventually yj lies in the same component of π−1(Yj) as x̃j and the

vector (∫ y1

x̃1

ω1 ,

∫ y2

x̃2

ω2 , · · ·
)

lies in B . The space W (0) of all these sequences is given the structure of a complex

Banach manifold modelled on B . The quotient S(0) of W (0) by the group of all finite

permutations is the manifold of divisors of degree “genus(X)” . The construction is in-

dependent of the auxiliary point ê . We similarly construct Banach manifolds S(−n) of

divisors of index n , that is, of degree “genus(X)−n” , by deleting the first n components

in a sequence y1, y2, · · · belonging to W (0) .

Fix ê as above. The right hand side of

(y1 , y2 , · · · ) 7→ ê− ∑
i≥1

∫ yi

x̃i

~ω

is invariant under permutations of the yi’s and induces the analog

f (0) : S(0) −→ B

of the Abel-Jacobi map. The map f (0) is holomorphic [FKT2, Proposition 10.1] and indeed

is a biholomorphism between f (0)−1 (B \Θ) and B \Θ where

Θ =
{
e ∈ B ∣∣ θ(e) = 0

}
is the theta divisor of X .

Similarly, the map

f (−1) : S(−1) −→ B

is induced by

(y2 , y3 , · · · ) 7→ ê −
∫ ∞

x̃1

~ω − ∑
i≥2

∫ yi

x̃i

~ω

The analogue of the Riemann vanishing theorem is

14



Theorem [FKT2, Theorem 10.4]

f (−1)
(
S(−1)

)
⊂ Θ

and {
e ∈ Θ

∣∣ θ (
e− ∫ x

∞~ω
) 6= 0 for some x inX

} ⊂ f (−1)
(
S(−1)

)

In contrast to the case of compact Riemann surfaces, one can construct zeroes of

the theta function that are not in the range of f (−1) by taking limits of f (−1)([y1, y2, · · ·])
as some of the yi’s tend to infinity. The set

{
e ∈ Θ

∣∣ θ (
e− ∫ x

∞~ω
)

= 0 for all x inX
}

is stratified and studied in [FKT2, Theorem 11.1].

The Torelli theorem for compact Riemann surfaces states that two Riemann sur-

faces that have the same period matrices are biholomorphically equivalent. We prove

Theorem [FKT2, Theorem 13.1] Let X and X ′ be two Riemann surfaces that ful-

fill the hypotheses (GH1-6) of the Appendix. Denote their canonical homology bases by

A1, B1, A2, B2, · · · and A′1, B′1, A′2, B′2, · · · . Let Rij and R′ij be the associated period ma-

trices. If Rij = R′ij for all i, j ∈ ZZ then there is a biholomorphic map ψ : X → X ′ and

ε ∈ {±1} such that

ψ∗(Aj) = εA′j ψ∗(Bj) = εB′j

The proof mimics the argument of Andreotti [An,GH] for the compact case. We

look at how the tangent space TeΘ varies as e moves in directions v ∈ TeΘ. In particular,

we look for directions v such that TeΘ is stationary, equivalently such that C∇θ(e) is

stationary. In other words, we investigate the ramification locus of the Gauss map on the

theta divisor. Stationarity is given by the conditions

∇θ(e) 6= 0, ∇θ(e) · v = 0,
d

dλ
∇θ(e+ λv)

∣∣∣
λ=0

∈ C∇θ(e) (III.1)
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For generic e = f (−1)(y) we find, in [FKT2, Proposition 11.8], necessary and sufficient

conditions that the set of v’s satisfying III.1 is of dimension 1 and determine precisely

what the set is. The conditions are that the form ωe(z) =
∑

k≥1∇θ(e)kωk(z) have a

zero of precisely the right order, namely ] {i | π(yi) = π(yj)}, at each yj j ≥ 2 with one

exception, say yj = x. And that ωe(z) have one excess zero, in other words a zero of order

]{i | π(yi) = x} + 1, at z = x. Then the set of stationary directions v ∈ TeΘ is precisely

C~ω(x).

Note that the conditions (III.1) are stated purely in terms of the function θ.

They do not involve the Riemann surface that gave rise to θ. On the other hand the

statement “the set of stationary directions v ∈ TeΘ is precisely C~ω(x)” does involve the

Riemann surface and indeed assigns, in the nonhyperelliptic case, a unique point x ∈ X

to the given e ∈ Θ [FKT1, Proposition 3.26]. In [FKT2, Proposition 11.10] we find, in the

nonhyperelliptic case, a set E ⊂ Θ of such e’s, that is dense in a subset of codimension 1

in Θ. Furthermore, for x in a dense subset of X, the set
{
e ∈ E ∣∣ e is paired with x

}
is,

roughly speaking, of codimesion 2 in Θ. The pairing of points e in E with points x ∈ X is

the principal ingredient in the proof of the Torelli Theorem for the nonhyperelliptic case.

For hyperelliptic Riemann surfaces, the map x ∈ X 7→ C~ω(x) is of degree two.

Except for a discrete set of points x, #
{
x′ ∈ X ∣∣ ~ω(x′) ‖ ~ω(x)

}
= 2 . At the exceptional

points, called Weierstrass points, #
{
x′ ∈ X

∣∣ ~ω(x′) ‖ ~ω(x)
}

= 1 . For each Weierstrass

point b ∈ X, we find a set H(b) which is dense in a subset of codimension 1 in Θ with every

point e ∈ H(b) paired, as above, with b.

Using these observations it is possible to recover the Riemann surface X from Θ ,

which in turn is completely determined by the period matrix of X.

Appendix. The Geometric Hypotheses

In this Appendix we list the axioms used in [FKT1-3]. They concern a class of

marked Riemann surfaces (X; A1, B1, · · · ) that are “asymptotic to” a finite number of
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complex planes C joined by infinitely many handles. Here, X is a Riemann surface and

A1, B1, · · · is a canonical homology basis for X. To be precise, the notation

X = Xcom ∪Xreg ∪Xhan

denotes a marked Riemann surface (X; A1, B1, · · · ) with a decomposition into a compact,

connected submanifold Xcom ⊂ X with smooth boundary and genus g ≥ 0 , a finite

number of open “regular pieces” Xreg
ν ⊂ X , ν = 1, · · · ,m ,

Xreg =
m⋃

ν=1

Xreg
ν

and an infinite number of closed “handles” Yj ⊂ X , j ≥ g + 1 ,

Xhan =
⋃

j≥g+1

Yj

with Xcom ∩ (
Xreg ∪ Xhan

)
= ∅. Each handle will be biholomorphic to the model handle

H(t) =
{

(z1, z2) ∈ C2
∣∣ z1z2 = t and |z1|, |z2| ≤ 1

}
for some 0 < t < 1

2 .

(GH1) (Regular pieces)

(i) For all 1 ≤ µ 6= ν ≤ m , Xreg
µ ∩Xreg

ν = ∅ .
(ii) For each 1 ≤ ν ≤ m there is a compact simply connected neighborhood Kν ⊂ C

of 0 with smooth boundary. There is also an infinite discrete subset Sν ⊂ C

and, for each s ∈ Sν , there is a compact, simply connected neighborhood Dν(s)

with smooth boundary ∂Dν(s) such that

Dν(s) ∩Dν(s′) = ∅ for all s, s′ ∈ Sν with s 6= s′

Kν ∩Dν(s) = ∅ for all s ∈ Sν

(iii) Set Gν = C r
(
intKν ∪

⋃
s∈Sν

intDν(s)
)
. There is a biholmorphic map Φν ,

Φν : Gν → Xreg
ν

between Gν and Xreg
ν .
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Remark. Informally, the closure of the regular piece Xreg
ν , ν = 1, · · · ,m , is biholomor-

phic to a copy of C minus an open, simply connected neighborhood around each point

of Sν and an additional compact set Kν . One end of a closed cylindrical handle will be

glued to a closed “annular” region surrounding Dν(s) in Gν . One connected component

of ∂Xcom will be glued to ∂Kν .

(GH2) (Handles)

(i) For all i 6= j with i, j ≥ g + 1 , Yi ∩ Yj = ∅ .
(ii) For each j ≥ g + 1 there is a 0 < tj <

1
2 and a biholomorphic map φj

φj : H(tj) → Yj

between the model handle H(tj) and Yj .

(iii) For all j ≥ g + 1 , Aj is the homology class represented by the oriented loop

φj

({
(
√

tj e
iθ,
√

tj e
−iθ)

∣∣ 0 ≤ θ ≤ 2π
})

(iv) For every β > 0 ∑
j≥g+1

tβj <∞

(GH3) (Glueing handles and regular pieces together)

(i) For each j ≥ g+1 the intersection Yj ∩Xreg consists of two components Yj1, Yj2:

Yj ∩Xreg = Yj1 ∪ Yj2

For each pair (j, µ) with j ≥ g + 1 and µ = 1, 2 there is a radius τµ(j) ∈(√
tj , 1

)
and a sheet number νµ(j) ∈ {1, . . . ,m} such that

Yjµ = φj

({
(z1, z2) ∈ H(tj)

∣∣ τµ(j) < |zµ| ≤ 1
}) ⊂ Xreg

νµ(j)

There is a bijective map

(j, µ) ∈ {
j ∈ ZZ

∣∣ j ≥ g + 1
}× {1, 2} 7→ sµ(j) ∈

m⊔
ν=1

Sν (disjoint union)
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such that

φj

({
(z1, z2) ∈ H(tj)

∣∣ |zµ| = τµ(j)
})

= Φνµ(j)

(
∂Dνµ(j)(sµ(j))

)
(ii) For each j ≥ g + 1 and µ = 1, 2 there are

Rµ(j) > 4rµ(j) > 0

such that the biholomorphic map gjµ : Ajµ =
{
z ∈ C

∣∣ τµ(j) ≤ |z| ≤ 1
} −→ C

defined by

gjµ(z) =


Φ−1

ν1(j)
◦ φj(z,

tj

z ) , µ = 1

Φ−1
ν2(j)

◦ φj(
tj

z , z) , µ = 2

satisfies ∣∣gjµ(4τµ(j)eiθ) − sµ(j)
∣∣ < rµ(j)∣∣gjµ(eiθ/4) − sµ(j)
∣∣ > Rµ(j)/4∣∣gjµ(eiθ/2) − sµ(j)

∣∣ < Rµ(j) <
∣∣gjµ(eiθ) − sµ(j)

∣∣
for all 0 ≤ θ ≤ 2π.

Remark. The parameters that control the overlap Yj1∪Yj2 between Xreg and the handle

Yj are introduced in hypothesis (GH3). The map sµ(j) specifies that the end of the handle

H(tj) containing
{

(z1, z2) ∈ H(tj)
∣∣ |zµ| = 1

}
is glued to the annular region Φ−1

νµ(j)(Yjµ)

in Gνµ(j) . The component Yjµ of the overlap is specified in two charts; in the plane

region Gνµ(j) , and on the model handle H(tj) . The map gj,µ describes how Yjµ is glued

to Gνµ(j).

The preimage φ−1
j (Yjµ) in H(tj) of the overlap Yjµ is

{
(z1, z2) ∈ H(tj)

∣∣ τµ(j) < |zµ| ≤ 1
}

We imagine that τµ(j) is relatively close to the radius of the waist
√
tj so that the overlap

on H(tj) is large.

The preimage Φ−1
νµ(j)

(
Yjµ

)
of the overlap Yjµ in the other chart Gνµ(j) is the

annular plane region surrounding sµ(j) whose inner boundary is ∂Dνµ(j)(sµ(j)) and
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whose outer boundary is Φ−1
νµ(j) ◦ φj

({
(z1, z2) ∈ H(tj)

∣∣ |zµ| = 1
})
. It strictly contains{

z ∈ C
∣∣ rµ(j) ≤ |z − sµ(j)| ≤ Rµ(j)

}
. We will assume, (GH5)(ii), that rµ(j) and rµ(j)

Rµ(j)

are both asymptotically small. Consequently, the “holes” Dν(s) , s ∈ Sν , in Gν are also

asymptotically small and the overlap is asymptotically big.

Passing from the chart Gνµ(j) to H(tj) , the image of the circle |z − sµ(j)| =

Rµ(j) lies in
{

(z1, z2) ∈ H(tj)
∣∣ 1

2 ≤ |zµ| ≤ 1
}

and the image of the circle |z − sµ(j)| =
rµ(j) lies outside

{
(z1, z2) ∈ H(tj)

∣∣ |zµ| = 4τµ(j)
}

If ∂Dνµ(j) is counterclockwise oriented, then, by construction, Φ
(
∂Dνµ(j)

)
is

homologous to (−1)µ+1Aj.

(GH4) (Glueing in the compact piece)

∂Xcom = Φ1(∂K1) ∪ · · · ∪ Φm(∂Km)

Furthermore A1, B1, · · · , Ag, Bg is the image of a canonical homology basis of Xcom under

the map H1(Xcom,ZZ) → H1(X,ZZ) induced by inclusion.

(GH5) (Estimates on the Glueing Maps)

(i) For each j ≥ g + 1 and µ = 1, 2

Rµ(j) < 1
4 min

s∈Sνµ(j)
s6=sµ(j)

|s− sµ(j)|

Rµ(j) < 1
4dist

(
sµ(j),Kνµ(j)

)
(ii) There are 0 < δ < d such that

∑
j,µ

1
|sµ(j)|d−4δ−2

<∞

and such that, for all j ≥ g + 1 and µ = 1, 2

rµ(j) <
1

|sµ(j)|d Rµ(j) >
1

|sµ(j)|δ

|s1(j)− s2(j)| > 1
|sµ(j)|δ
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(iii) For all j ≥ g + 1

∣∣|s1(j)| − |s2(j)|
∣∣ ≤ 1

4 min
µ=1,2

min
s∈Sνµ(j)
s6=sµ(j)

|s− sµ(j)|

For µ = 1, 2 ∑
j

∣∣|s1(j)| − |s2(j)|
∣∣

|sµ(j)| <∞

(iv) For µ = 1, 2

lim
j→∞

log |sµ(j)|
| log tj | = 0

(v) For µ = 1, 2

lim
j→∞

Rµ(j)
min

s∈Sνµ(j)
s6=sµ(j)

|s− sµ(j)| log |sµ(j)| = 0

(vi) For each j ≥ g + 1 and µ = 1, 2 we define αj,µ(z) by

αj,µ(z)dz = (gj,µ)∗
(

1
2πi

dz1
z1

)
− (−1)µ+1

2πi
1

z−sµ(j)dz

We assume

sup
j,µ

∥∥∥αj,µ(z)dz
∣∣
{z∈C | rµ(j)<|z−sµ(j)|<Rµ(j)}

∥∥∥
2
<∞

and, for µ = 1, 2

lim
j→∞

Rµ(j) sup
|z−sµ(j)|=Rµ(j)

|αj,µ(z)| = 0

Remark. Morally, (GH5)(i) says that the holes Dν(s) are separated from each other and

from the compact region Kν . The first and last parts of (GH5)(ii) and (GH5)(v) bound

their density at infinity. The second part of (GH5)(ii) implies that rµ(j) and rµ(j)
Rµ(j) are

both asymptotically small. The condition (GH5)(iii) forces the two ends of a handle to

be attached at approximately the same distance from the origin on the regular pieces.

(GH5)(iv) relates the size of the waist of the handle Yj to the distance from the origin at

which it is attached to the regular piece. Finally, (GH)(vi) measures the derivative of the

glueing map gj,µ by pulling back the holomorphic form dz1
z1

on H(tj) and comparing it
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to the meromorphic form 1
z−sµ(j)dz . The intuition is that both of these forms have the

same Aj period and should be the leading part of ωj .

(GH6) (Distribution of sν)

For all ν = 1, · · · ,m such that

#
{

(j, µ)
∣∣ νµ(j) = ν, ν1(j) 6= ν2(j)

}
<∞

that is, such that the sheet Xreg
ν is joined to other sheets by only finitely many handles,

one has

lim sup
j→∞

ν1(j)=ν2(j)=ν

|s1(j)− s2(j)| = ∞

Remark. Many of these Hypotheses, particularly in (GH5), may be substantially weak-

ened. However, at this point in time, the weakened versions are even uglier than the

versions here. See [FKT 2] for the details.
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