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¢I Introduction

This review is devoted to the problem of rigorously constructing a class of standard
many body models, at temperature zero, in dimensions d > 2. Benfatto and Gallavotti and
coworkers [BG1,2, BGM]| are working on similar models, but have been concentrating on the
one dimensional case.

The physical system that these models are designed to describe consists of a gas of
fermions with prescribed density, possibly together with a crystal lattice of ions. The fermions
interact with each other. If there is a lattice, it provides a periodic background potential. As
well, the ions may oscillate and then the fermions interact with the lattice motion through
the mediation of phonons.

The models are formally characterized by the generating functional

S(¢,¢) = log 3 / (P4l =V WF) o= [k (ikoclicno)) brv 11_[ dPk,0 Ak o (L1)

for the connected, Euclidean Green’s functions, where the interaction

4 — —

[T dki @m)**0 (kithaks—ka) iy Wry (K1, k2| VK3, ka) Yryr, (1.2)
=1

> [T dki @m)* 8 (kithoha—ka) (k1, ka|V]ks, ka) ¥k, oWk e Vs v Pk, o

o, 7e{t.{} i=1

V(,P) =

N[>~

N[>

and the source term

(56 + o] = / dk (Dbe + Butie) = / de (B(E)9(€) + BEN(©))

The denominator Z is chosen so that S(0,0) = 0.

In these expressions, the internal and external electron fields are vectors

w0 =(3e]) o0 =(56D)

&1 ¥ 4) $(&) = (& 1) ¢ 1))

<
™
I
<
™
%

whose components (€, 0), $(€, ), B(E, @), (&, 0), € = (£,x) € RxRY, o € {1,4} , are gen-

erators of an infinite dimensional Grassmann algebra over €. That is, the fields anticommute
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with each other. The remaining notations used in (1.1,2) are k = (ko,k) € R x R?

dko dHlk
= — k = —FF
dk = o¢ & = G
Yho = / d¢ et FO-4p(E,0)  with (k&) = —kot + (k,x)
k2
e(ka,uo) = %—/ﬁo

The chemical potential pg controls the density of the system.
The abstract interaction (ki,k2|V|ks, ks4) is assumed to be real and rotation, re-

flection and time reversal invariant. Precisely,

<k‘1, kQ‘V‘kg, k‘4> = <Rk1, sz‘V‘ng, Rk4> for all R € O(d)

(S1)
(k1,k2|Vl]ks, ks) = (Tky,Tko|V|Tks, Tky)
where Rk = (ko, Rk), Tk = (—ko,k) . We shall also assume
(k1 k2|V ks, ka) = (ks ko|V| = k1,ks) = (b1, —ka|V|ks, —k2) (52)

Ezample 1: 1f a gas of electrons interacts through a spin independent two body potential
V(ix—yl), then
(k1,ko|V|ks, ks) = V (ks —k3)

satisfies (S1) and (S2). The Hamiltonian for this system is similar to the exponent of (I.1)
with ¢ = ¢ = 0 except that the momentum integrals only run over IR? (there are no
zero components ko, (k;)o), the iko term is absent and the sign —A changes to +A. In the
Hamiltonian, @Ek,a and 1)k , are operators that create and annihilate, respectively, a particle

of momentum k and spin o.

Ezample 2: If the electron gas of Example 1 is coupled to a free jellium phonon field 7 by

v [ a5 0 = (@) dysaty (my + 7-0)

where w(q) is the free phonon dispersion relation, and the jellium field is integrated out,

then

(ky, ko|Viks, ka) = V(ki —ks) — 720 (wp — w(ks — k)’ (kl—lcu;glg:—;lzi)l—ka)2
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also satisfies (S1) and (S2). Here, 6 smoothly restricts the coupling to phonons with frequency
less than the Debye frequency wp, .

Ezample 3: To obtain the generating functional for the Green’s functions of a gas of electrons
interacting with a lattice I' of ions, (I.1) is modified by replacing plane waves et {k:€) by the
Bloch waves for a periodic Schrédinger operator —Ay + > . U(x —a) and each integral
Jra+r Ak by 3, [k (ra/r#) @k where I'# is the lattice dual to I' and the sum is over
the band index v. For example, the kinetic term [ dk (ikoe(k, pio))¥xtbx becomes

EV:/]RX(MF#) dk (iko(ev () — 10)) Yok Wu,k

Here, ¢,(k), v > 1, are the band functions. The interaction is not of the form (I.2) because
crystal momentum is only conserved modulo I'#. This is not a particularly serious compli-
cation. But, we shall ignore crystal lattices and, as usual, make the jellium approximation in

the present discussion.

$II Renormalization of the Fermi Surface

Before considering the phenomenon, symmetry breaking, that dominates this prob-
lem, we discuss the role of renormalization in infrared models. For the free model, that is the

model with A = 0, the connected, two point Schwinger function S2(&1,01,&2,02) is given by

52(51,01,52,02) = <¢(51,01)'€B(f2702)> - <¢(£1;0'1)> <'§B(f2702)>

where the free expectation

<f(1/)71$)> = ZLO /f(¢7¢) e~ fdk(ikoe(k,ﬂo))d;kwk H dwk,o dqﬁk,a

k,o

- / £, duo(, D)

is integration against a Grassmann-Gaussian measure dpug(1, ). Note that the ug in dug is
not related to the bare chemical potential pg in e(k, up). The denominator Z; is chosen so

that [ 1 duo(,9) = 1. Mathematically, duo(¢,1) is characterized by
/e[$¢+1ﬁ¢] duo(, ) = <P 0>
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where, the inner product <q—5, Co) = [dgde d(6)C(£,¢") p(¢') and the covariance C is

given by the free two point function

i ) ei(k:€1—€2)
C(£1a£2) = /¢(§1)¢(f2)dﬂo(¢a¢’) = 5"1"’2 /]R«m dkm

The expression
S(d) = log & [ PPHHIVID duo(y, )

is a starting point for a rigorous construction of many-Fermion systems.

The Fourier transform of the noninteracting two point function

1

So(k = 2m)HYk-p) 0y, 5y ———————
2( 7p)‘)\:0 ( 7'(') ( p) 1,02 'Lk() _e(k,l»[/())

has a singularity on the Fermi surface ko = 0, |k| = v/2mpuo . The magnitude

1 1
liko — e(k, po)| k2 + const (k| — /2mypg)2

behaves like the distance to the origin of IR?. The following elementary calculation shows
that the singularity is locally L, but not L for any o > 2.

Denote by kr = \/2mug the radius of the Fermi surface and change variables from
k to ko,k’,n where .

k' = kpm n = e(k, po) (I1.1a)

Here, k/, the projection of k onto the Fermi surface, runs over the sphere kxS%~! and plays the
role of all the angular variables in spherical coordinates. The role of the radial variable is taken
by 1. Note that, for k near the Fermi surface n = 5= (|k| + kr) (k| — kr) ~ const (k| — k).

In terms of the new variables, Lebesgue measure becomes

d—1 d—1
d%k = (‘kﬂ> dx'dk| = (H) dk’dn
F

k| \kr
N Y a2 (IL.1b)
S S WL K’
s < + k% 7]) dk'dn

where the surface measure dk’ on kpS%! is normalized so that f 1 dk’ is the surface area
of kpS3=1. In these variables the magnitude of kg — e(k, o) = iko — n is precisely the

distance to the origin in IR? = {ko,n}. Consider any domain of integration that contains a
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neighbourhood of ky = 0,k = q for some q with |q| = kr . Such a domain necessarily con-
tains a region of the form R = {k | k' € Q, kZ+n? < €*} with Q being some neighbourhood

of q on the Fermi surface and € > 0. For such a domain of integration, the integral

) o \ #/2-1 1
441 g / dkodk'd <1 4 om ) S
/R liko — e(k, po)]® S " kr k% ! (kg + n*)*/?

m 2m d/2-1 1
> vol(Q) — (1 — —e) / dkodn——5—+
( )k'F k2. ko |2+|n|? <€ U (k3 + 2)r
d/2—1 27
2
:VOI(Q)ﬂ 1- —gne / dr/ do 7'—

m 2m d/2-1
=2 (Q)— (1 —
mvol( )k'F< k%f) /Odr o

converges if and only if o < 2.

When the interaction is turned on so that A # 0, the two point function becomes

(Yptp) = (21) 18k — p)S (o, A, k) with

1

ANEk)=
S(IMO, ’ ) sz - e(k7 /1'0) - Z(,LL(), )\a k)

where the proper self energy Y(uo, A, k) obeys ¥(u0,0,%k) = 0 and is given, in perturbation
theory, by the sum of all one particle irreducible two legged Feynman diagrams. Expanding

in powers of A,

L - ! (0 h)— 4
iko - e(k, ,U,()) — E(,U,(), )\, ]{3) ’Lko - e(k, ,U,()) 7,]{30 - e(k, ,U,()) A atihe Zk() - e(k, /1,0)

we find that the higher order terms have non-L' singularities on kg = 0,k = \/2mpug unless

(10 A ) o Zo =y =

as a formal power series in A\. These non-L! sigularities produce divergent Feynman diagrams.

They arise because we are attempting to expand, in powers of A a function,
S(po, A, k), whose singular locus depends on A. To avoid these singularities, it suffices to
parametrize the models by A and p, with \/2mpu being the radius kg of the singular locus of
S rather than by A and po. That is, to perform all derivatives % with g rather than pg held

fixed. Thus, it is necessary to distinguish between the radius kr of the Fermi surface, defined
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by e(|k| = kr) — X(po, A, ko = 0, |k| = kr) = 0, and /2mpuo with the chemical potential pg
being the coefficient of the [ dkiaby, term in the action. The two need only agree in the free
model. The relationship between p and po = p + 0p(p, A) is determined by

STHu+0ut; A), X K)o ez = O

It is easy to formalize the preceding discussion by introducing the renormalized

generating functional
Su(6.) = log [ dHerye = O [T gy, )

(IL.2)
— log L / [B+FVRD) 1 (1p, )

The Grassmann-Gaussian measure has covariance [iko—e(k, u)] 7. The counterterm du(A, u)

is the formal power series in A uniquely determined by the renormalization condition

%z(o,\k\:kF,M,A)‘ —0, n>0

where now kp = /2my. In other words, Y. vanishes on kg = 0, |k| = kr and, by definition,

kr is the radius of the interacting Fermi surface. Observe that

e~ [y gy gy — L Jar(ikaeemion)) dube 11 dbr.o dBp.o
k,o

Thus, (II.1) and (II.2) agree, provided po = p+ dp(p,A) and the counterterm can
be interpreted as implementing the shift in the radius of the Fermi surface induced by
(k1,k2|V]ks, ks) . A similar, but substantially more complicated, procedure can be imple-
mented for non-spherical Fermi surfaces.

By definition, the renormalized Green’s functions Sz, are the coefficients in the

power series expansion of (IL.2) in powers of ¢, . Further expanding in powers of A

_ A"
Srp = o7 Sepn

n>0

the nt® order contribution is the sum
Sepm = Y Valg(G)
G
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of the values of all connected n*® order graphs G. Recall that, for the models of Example 1,
Val(G) = sn(G) [ 1 dey s e V(s = ) ot = £5) T O (20, x0), T
i=1 IZ

In the last expression, (t;,%;), (t;,x;) lie at the ends of the 41 interaction line, the product
is over all particle lines £ of G and (g, %), (ts,x¢) are the positions of the incoming and
outgoing vertices of £. The renormalized value Valr(G) of a graph G is obtained by
inductively replacing the value Val(T')(k) of each two legged subgraph T by

Val(T)(ko, k) — Val(T)(0, k)

Note that by rotation invariance, Val(T')(ko, k) = Val(T)(ko, k|) .

Once the chemical potential is renormalized as in the last paragraph, all Feynman
diagrams are finite. (More precisely, they are almost everywhere finite functions of their
external momenta. It is possible, for example, for a four legged diagram to diverge when two
of its external momenta add to zero.) In particular, there are no divergences that arise from
the ultraviolet behaviour [FT1], in other words the behaviour at large k, of [iko — e(k, u)] 1.
Consequently, in contrast to the more familiar (ultraviolet) field theory case, the counterterm
dp(p, A) is finite. To allow us to concentrate on the infrared part of the model, that after all
controls it at low temperature, let’s even put in an ultraviolet cutoff restricting momenta to
run over a compact region.

The following Theorem gives detailed bounds on Feynman diagrams. For simplicity
of language, we use “two legged subdiagram” in the statement of the Theorem, to refer
to a connected subdiagram that has precisely two external particle lines and no external
interaction lines and “nontrivial four legged subdiagram” to refer to a connected subdiagram
that has precisely four external particle lines, no external interaction lines and is of order at

least two.

Theorem II.1 (Boundedness of Feynman diagrams) [FT1,2] Let (k1,k2|V|ks, ks) and
its first two derivatives be L°. There is a constant K and a norm || - | such that if the

graph G is of order \™ and

(a) if G has no two legged or nontrivial four legged subdiagrams, then ||[Val(G)|| < K™A"
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(b) if G has no two legged subdiagrams, then ||Val(G)|| < K™n!A\"
(c) if all two legged subgraphs of G are renormalized, then ||Valg(G)|| < K"n!\"

Bounds (b) and (c) apply to the sum of all n*® order graphs and to the n*® order contribution
to dp(p, A). There is a small but important class of graphs that saturate bounds (b) and (c).

Here are the main lessons. First, it is necessary to renormalize two legged sub-
diagrams to ensure that graphs be well defined. Second, four legged subgraphs can make
the value of a graph very big. To tame this second effect requires the introduction of a

renormalization group flow for the four point function (see Section VI).

$III Symmetry Breaking

The moral of renormalization is simply that one should perturb about a reasonably
carefully chosen free model - namely that with the correct Fermi surface. Since we are
anticipating some symmetry breaking, it makes sense to go even further and perturb about
a free model that is close to the symmetry broken model rather than to the Gaussian model
with covariance [ikg — e(k, )]~!. We now determine what the symmetry broken two point
function looks like for |k| = kr and pick a Gaussian model whose covariance mimics it.

Set e(k) = e(k, 1). The action, that is the exponent of (I.1) with the external fields
set to zero,

AW D) = = [k (k)T — ouOp) [ b
. (IT1.1)
- % Hl dk; (2m)* 0 (kytha—ks—ka) QZkl Yy (K1, k2|V|ks, ka) @kﬁ/ﬁm
has six basic symmetries. Namely
(i) Particle number:
A%, e ) = Ay, ) Ve eU(1)
(ii) Spin:
Algy,vg") = Alw,9) YV geSU(_2)
(iii) Spatial rotations and reflections:

ARy, RY) = A($,9) YV ReO(d)

8



where (Ry)(€,0) = (R7Y,0) and (RY)(&,0) = Y(R7E,0).
(iv) Translations:

A(Tep, Tep) = A, )V € € R

where (Teth)ko = <Py, and (TgY)ro = e <FE>—qhy
(v) Time reversal:

A, 9)* = A%, )

where # is the involution on the Grassmann algebra defined by 1/);:?E = Y11 , 1/_);:?E = Yy
and by complex conjugation of scalars.
(vi) Charge conjugation:

A, ip') = A, 9)
To verify (v), note that

(k1,k2|V|ks, ka) = (k3, ka|V]|k1,k2)

follows from the reflection invariance and symmetry (S2) of V. Observe that, in contrast to
the other symmetries, neither time reversal nor charge conjugation commute with the number

symmetry. However, their product
(vii) CT:
A, )T = A, )

does commute with the number symmetry. Here, CT is the involution on the Grassmann
algebra defined by T = ipl, , »ST = 4y, and by complex conjugation of scalars.

By definition, a general symmetry U of the action is broken if
AU, Y) = AlW,y)  dbut  SU, ) # S(¢,9)
In this section we study the situation when the number symmetry is broken
S(e9,eh) # S(¢,9)

but symmetries (ii,iii,iv) and (vii) above are inherited by the generating functional.

b
i 56(€1,01)
moves the factor ¢(&1,01) all the way to the left with the appropriate sign and deletes it.

Recall that the functional derivative acting on the left of a monomial

9



Similarly, the functional derivative m acting on the right of a monomial moves the

factor ¢(&2,09) all the way to the right with the appropriate sign and deletes it. For example,

g [B+g] 0 _ (B +5g] O
B e - Ve e )

= Y(£1,01) elov+ve] P(€,02)
= P(&1,01)P(&, 02) PV

so that
0 _ 0 ~ .
mé’((ba }) 50(E2, 02) ‘¢:¢:O = (P(&1,00)0(E2,02)) — (¥(&1,01)) (¥(E2,02))

where the interacting expectation value

<f(¢ w /f 0, w —V(@.9) — u(\p) f d‘kwkl/)k du(y, '@b)

The symmetry
(viii):
()= (5 ) (5
Vi) 0 e ) \ g,
— — — — 6_7‘¢ O

(Yrr Pre) = (e Ye)| o e
is a subgroup of SU(2). Applying this symmetry to the first derivatives of S we obtain
<(1_ﬁk’a> = eti? <(7Zk,g> which forces

<¢k,a> = <";kz,o> =0

for all k, o. Thus the second derivative of & simplifies to,

o

5oEn o) — ({1, 00)B(Es,2))

There are sixteen two point expectation values

(WUrrPpr)  (Urapy) (ki) (Vritpy)

(Virtpr)  (Uiatps)  (Vki¥pr)  (Dri¥py)
(brrpr)  (rrtpy)  (Prytbpr)  (rytbpy)
(Ptor)  (Prrt¥p1) (Pri¥pr)  (Pri¥p1)
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obtained by differentiating S twice with respect to (545)(5 ,0) . By conservation of momentum,
that is translation invariance, the distributions in the first and fourth rows vanish unless
k = —p while those in the second and third vanish unless k& = p . By anticommutativity,
the second row determines the third row and the second elements in the first and last rows
determine the third elements. We next show that (g1t ) and (¢g pr) vanish by SU(2)

invariance. Applying symmetry (viii)

(rrtbpy) = € (Prrtpy) (Pritbpr) = € (P Ppr)

forcing them to be zero. Similarly, applying symmetry (viii) to the four corners forces them
to be zero.
Thus there are eight

<<<11’leng> (Yrrth—py) ) ( (Prrtpr)  (—ript) )

V_kyPpt)  (P—ky¥—py) (Pkrd—p1)  (Y—r1¥—py)

potentially nonzero two point expectation values with the second matrix determined by the
first and all matrix elements vanishing unless k£ = p . The off diagonal entries of these
matrices vanish when the number symmetry (i) is preserved, but may become nonzero when
(i) is broken. Note that 9gtp_x, is a Cooper pair of momentum k.

Because of the above structure, it is algebraically convenient to combine the four

internal physical fields ¥gs, ¥_g,, &kT and 9Y_g | into a pair of 2-vectors

(24
Y gy
C(k)=(Pi(k) Pa(k)) = (Yrr k)

called “Nambu fields”. The external physical fields are combined into

_ (@R _ s ¢r
(k)= <¢2(k)> =7 (¢—k¢>
®(k) = (@1(k) D2(k)) = (Prr ¢-ky)0°

Note that the external fields are twisted by o3, the third of the Pauli matrices

1_01 2_0—7/ 3_10
ce) e Cd) el )

The twist is introduced so that the source terms [¢y + ] = [P + T P)].

K
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With this vector notation all potentially nonzero expectation values are contained

N T _ o Wmter)  Cktop) L gndrisp
(<\P<k>\v<p>>)—(<¢_wm> <¢_M_m>) — (2m)" 5k - p)S(H)
and
((@®mep)) = -((@@T®)) = —@0)™'5k - p)S(k)'
while

t _ <¢k ¢p ) <¢k QZ—P >
(<\P(k)q’ (p)>) B <<1/7—Z¢¢;> @—Zﬂ—jﬁ)

and ( <\ilt(k)\il(p)>) remain identically zero.
In terms of Nambu fields, the action (II1.1) becomes

A= —/ dk ¥y (tkoe(k)o®) Ty, — Su(X, p) / dk U oWy,
A _ _
. 5/ ds dt dg (\pt+%a3ws+%) <t+%,—t+%|V|s+%,—s+%> (\I:_t+%a3\1:_s+%)

Because the fields always appear in ¥W¥ pairs, this new notation will allow us to retain
conventional looking Feynman diagrams (with no —<— or <+— lines) even after we introduce
a symmetry broken propagator that has a nonzero value of (y1)). The generating functional

(IL.2) becomes
S(®,®) = log %/e[¢w+\1@] o~V ®)—su(Ap) [ dk T (k)0 (k) (@, b)
where
V(P, W) = %/ dsdtdg (¥ (t+4)0° T (s+2)) <H—%,—H—%|V|s+%,—s+%> (T (—t+2)0° T (-s+%))
and the formal Grassmann-Gaussian measure

(T, ) = Zioexp{— / ak \il(k)(ikolle(k)o3)\11(k)}’]C_[d‘lli(k) 0B, (k)

is rigorously characterized by its characteristic functional
/e[q>x1;+\pq>] du(W, &) = <PCE>

12



The covariance
Clh,p) = ((T(R)E(p)) ) = @m)*15(k - p)C(k)

has

1 ikoll + e(k)o® ([z’ko —e(k)]! 0 )

Ck) = kol —e(®)o® k2 +e(k)? 0 [iko + e(k)]

We now evaluate the two point function (<‘Il(k)\il(p)>) = (2m)¥*15(k — p)S(k)
on the surface kg = 0, |k| = kp. Define the real numbers A; and A, by

A1 — 1Ay

Using

Lemma III.1 [FMRT2]| Suppose the generating functional S inherits the symmetries
(i3,113,iv) and (vii) from the action A. Then

S(ko, k) = S(ko, [k|) 5(0,k) = 5(0,k)*
Sao(k) = —511(Tk) S11(k) = S11(Tk)
Szz(k) :S—zz(Tk) 512(k) :S—( )

we conclude that
A1+ 1A, B

AZ { AZ —521(0, k| = kF)

Let dua be the Grassmann-Gaussian measure with covariance

1 _ ikoll+e(k)o® + A

Ca = = -
A7 kol — e(k)od — A k2 + E(k)?

where A = Ajo! +Ay0? and E(k)? = e(k)?+ A% = e(k)?+ A2+ A2. When ko =0

and |k| = kp the off-diagonal components of

[ #0%0) dua(w.9) = o (TR LTI ) emtae-n)

are exactly the off diagonal components of S(k).

13



We want to treat the interacting Fermionic measure as a perturbation of dua. For
this reason, we multiply and divide by ef k FE)ATE) 16 htain
5(@,8) = log L /e[‘i"“‘i’q’] V() —oul T ] g

= log

% /e[éqf-l-\iup] e—V(\p,\i;)—5u[~i;a3\p]—[\ifA\1:]e[\i:Aq;] du

= log i /e[équrni@] e—V(\I’,\il)—(S,u[\ilag‘Il]—[\TlA\Il] dun

Define a new proper self-energy by

1
iko —e(k)o® — A — 3 (k) (

Sa(k,p) = 2m)**15(k — p)

Inverting,

(k) = S (k) —iko +e(k)o® + A

To be consistent with the definition of the physical chemical potential p it is necessary that
311(0,kp) = X92(0,kp) =0
To be consistent with the definitions of A; and As it is necessary that
S12(0,kr) = C12(0,kF) 521(0,kr) = C21(0,kp)
Since C11(0,kr) = Cy2(0,kr) =0 and
(511 512>‘1 _ 1 ( Sas —512>

Sa1 Sa2 det S \ —S21 Su

the conditions on X17(0,kr), X11(0,kr), S12(0,kr) and S31(0,kr) may be combined in
¥(0,kr) = 0 (IT1.2)

We must renormalize to ensure that the condition (II1.2) is fulfilled. That is, we

introduce the renormalized action

Ap(T, &) = —V(¥,T) — / kT, DO, 4, A) T — / dk By, (ikoe(k)o® — A) T,

14



and generating functional
Sn(®,®) = log 2 /e[‘i"l”“i’q’] e VD) [ dk F(DE®) g
One can prove [FT2] that, for each Ay, Ay and u , the counterterm

D = Di(\, p, Aot + Dy(X, i, A)o? + D3(\, p, A)o®

is uniquely determined as a formal power in A by the renormalization condition (I11.2). The

coefficient D3 is the difference between the bare and physical chemical potentials. On the

other hand, there are no physical parameters to shift to accomodate D; and D, . Therefore,

the constraints

D1(>\, /j,,A) == Al D2(>\, /j,,A) - AQ

must be imposed to ensure that

In the Nambu notation the number symmetry is given by

(k) — e W (k) (k) — W(k)e "

The result of applying the number symmetry to a quadratic monomial is

U (k)od W (p) — B (k)e 7" 677" B (p)

~ olcos20 +o02sin20 j=1
= W(k){ —o'sin20 +o%cos20 j=2 p¥(p)

o3 j=3
so that
Ar (7", We= ") = — YP(W,T) — / dk U R(20)D (A ,0) Ty,
- / dk Wy (ikoe(k)o® — R(20)A) W,
where
cosf@ —sinf 0 U1
RO)(v-0)= [ sinf cosf 0 vy | -0
0 0 1 V3
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Recalling that the counterterms are uniquely determined as formal power series, we obtain
D(X, 1, R(20)A) = R(26)D(A, 1, A)

It follows from the last identity that the set of solutions of (II1.3) is invariant under rotations.

If (IT1.3) has a nonzero solution then
DY(A, p, A) + D3 (X, A) = AT + A (IIL.5)

determines A% = A2 + A2 as a function of A and u but A;/A, is completely free.
It is shown in [FT2] that, to any order of perturbation theory, (IIL.5) is of the form

_ A 2 5/4
A= )\O/d‘kkg+e(k)2+A2p () + O(AJA]) + O(A]log AJ[A*/4)

Here p is just the ultraviolet cutoff and

Ao = Vol (kpsd—l)‘2/ dt'ds' A(t',—t'|V|s', —s')
kpSi—1xkpSd—1

is the coupling constant in the zero angular momentum sector. The power |A|°/4, rather than

|A|? is undoubtedly just a reflection of sloppy bounds. This form will also apply to the full

model, once its construction is complete. Thus, (III.5) is a nonperturbative version of the

famous BCS gap equation. There is always the trivial solution A = 0. But when Ay < 0 there

is another solution with

We shall discuss A from another point of view in §V.

How can we tell which solution the model selects? The answer is that the trivial so-
lution corresponds to an unstable Gaussian fixed point of the renormalization group flow that
will be discussed in §VI, while the nontrivial solution corresponds to a nontrivial stable fixed
point. We can see this, without having to develop all the machinery of the renormalization

group, by considering a special class of graphs called ladders.
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¢IV Ladders

The Nambu ladder graph with external momenta s,?¢ and ¢ and spinor indices

a7 187 7’6 iS
‘ 2
8 y
t> G (IV.1)
y 5

+q/2

An incoming arrow at a vertex represents the Nambu field ¥ and an outgoing arrow the
field ¥ .

Even though the arrows on the two sides of the ladder point in opposite directions,
the important components of this graph concern Cooper pairs of physical fields. The unam-
putated ladder is a contribution to the four point function <\Ilt+%,ﬁlilt_%,v\ils+%7allls_%y5> :
Combining the @ = 1 component of the \iler%’a with the 6 = 2 component of the W g5
gives a Cooper pair 9, +%T/€B—s 42y of total momentum ¢ and relative momentum s.

We shall retain, in the evaluation of (IV.1), only the most important part of the
interaction. To get some idea as to what the most important part of the interaction is,

consider the second order ladder

——q/2

8 —
IR ORI
L e

The value of this diagram, after amputation of the external lines, is
- ¥ / ak(erg kg |v|er 1) (k+ §o-3 V]t 1523 ) 070+ 1)0°) 5.0 (0°C - 1)0°)
:—)\2/Cﬁ{:<%+t,%—t‘v|%+k,%—k><%+k,%—k‘V|%+s,%—s>(030(k+%)0'3)g,a(0'30(k—%)0’3 L s

assuming V obeys the symmetry (S2). Consider the matrix element a=(3=1,y=§=2. Then
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the propagators
1090 = 1
27778 ko + 40/2) — e(k + a/2)
1
30(k — qy 3\t _
(J C( 2)0- )7’6 Z(ko — q0/2) + e(k — q/2)

To maximize the value of the integral we need both propagators to spend as much time

(c*C(k +

simultaneously near their singularities as possible. But for kg 4+ go/2 and ko — ¢o/2 to be
simultaneously zero it is neccessary that ¢o = 0 and kg = 0. For e(k + q/2) and e(k — q/2)
to be simultaneously zero k must be on the sphere of radius kp centered at —q/2 and on the
sphere of radius kr centered at q/2. The set of such k’s is much larger when q = 0 than
otherwise. The value of the matrix element is maximized when ¢ = 0 (in fact it diverges if
and only if ¢ = 0) and then the dominant contributions to the integral come from kg near
zero and k near the Fermi surface.

The argument of the last paragraph is made with greater precision in [FT2]. The
conclusion is that the most important part of the interaction is (k', —k'|V|s’, —s’) with the
prime signifying that k' = (O, |—11:|k F) and s’ run over the Fermi surface. Recall that kr now
means /2my rather than /2mpug.

View (', —t/|V|s’,—s') as the kernel of an integral operator on L?(krS?-1). By

rotation invariance we can expand it

A, =t [V]s',=s') =) Ama(t', s')
n>0

in spherical harmonics. So, m,(t',s’) is the orthogonal projector onto the subspace of
L?(kpS9=1) of angular momentum n, that is, of homogeneous harmonic polynomials of de-
gree n. We have referred a few times to “the” symmetry broken model. We shouldn’t have.
There are many types of symmetry breaking possible in the class of models under considera-
tion with the type of symmetry breaking occurring in any specific model largely determined
by the signs and the relative sizes of the \,’s. We shall now restrict our attention to the
most important case and assume that the coupling constant in the zero angular momentum
sector, \g, is attractive, that is negative, and dominates the other coupling constants.

So take an interaction A (ki,kq|V|ks, k4) = A with A < 0. This interaction lives

purely in the angular momentum zero sector and is attractive. Then the value of a ladder

18



(after amputation of its external lines) with n loops is
An(t,s,q9) = —AA(¢)"0® @ o°

where

A@y:—A/dkpﬁcw+gﬂ®Lﬁow—gﬂ
:—A/l% [0*C(k +q)] ® [0°C(k)']

Think of ¢ as a fixed parameter and A(g) as a matrix mapping C*> ® C? to itself. So, A,, is
independent of s and ¢ but has two sets of double indices A, (%, s, q)(8,y)(a,s) With o and §
being the spinor indices of the upper and lower, respectively, external legs on the right hand
side of the ladder and 8 and v being the spinor indices of the external legs on the left hand
side of the ladder. The n*® power above refers to the n*® power of the matrix A(q).

Let us first evaluate this ladder using the propagator
-1

1 ko + ie(k) 0

C(k)=C(k)' = P(k)m = —ip(k) [ 0 ko —ie(k) |

appropriate for perturbations about the A = 0 trivial fixed point. Recall that p is a smooth
ultraviolet cutoff and that e(k) = ;.-k* — p. Since

(=A) (=) (i) dko 1 r )\sgn(Re a) (1 Rea and Reb of opposite sign
21 ko —ia ko —ib a—>b 0 Rea and Reb of same sign
we find, by direct computation, that two of A(g)’s four eigenvectors, namely e; ® es and
es ® e1, have eigenvalue

p(k + q)p(k)

—)\/ d] - sgne(k
ek+Pek—-2)>0  Figo +e(k +q) + e(k) ()

Here, e; and ey are the standard basis for C2. Set ¢ = 0 and make the change of variables

(IL.1). Then, the eigenvalue is

m om \ 9 1
> | Am—=g— |1 — —5¢ / dk'dnp(k)® —
| |(27T)dkF< k3 ) Inl<e () 2|

= +o00 .
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So Y. Ay is a geometric series with, in this case, a ratio matrix A(g) that has an eigenvalue
much larger than plus one for all small q. The series diverges. The analogous calculation
[FT2 (I1.55)] for the renormalization group flow shows that the Gaussian fixed point at A =0
is unstable.

Next, recall the symmetry broken propagator

1 _ iko + e(k)o3 + Aot

Clk)=Ck)" = plk) iko — e(k)o3 — Agt ~olk) ko +Ek)?

introduced immediately following Lemma III.1. Here F(k) = /e(k)? + A2. We now compute
the ladder using this propagator. One rung of the symmetry broken ladder takes the value

i(ko+qo) + e(k+q)o3 + Aal] [ 3tko +e(k)o® + Aot

INOEED / dk p(k)p(k+q) [03 (ko + ¢0)2 + E(k + q)2 kg + E(k)?

In [FMRT?2], the ko integral is evaluated explicitly and the matrix norm of A(q) is bounded

by
(k)2
A A dk
IA( ||/ e T

_ p(k)?
7“A/dkw(k)

A0 <~
IA(g)]| <y forg#0

is obvious for ¢y # 0 but is also true for q # 0, because the integrand is large only when

Define

The strict inequality in

both k|~ kp and |k + q| &~ kp. This region is a spherical shell for q = 0 and shrinks as |q]

increases. In particular, it is shown, by Taylor expansion, in [FMRT?2]| that, for ¢ small,
\q\Z
A <~ - COWP - 1|)\\

for some nonzero constants. This then implies that the full ladder obeys

Ap(t
nzzzl 50| S = A1 =)/ I\ + cogf + c1lal?

For v < 1 the full ladder behaves like a massive propagator.
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The BCS equation, however, tells us that, to first order in A, v = 1. That is, the
ladder with first order rungs is massless when the BCS equation is solved to first order. But
we can also view the (amputated) four point function as the sum of generalized ladders whose
“rungs” consist of all channel two particle irreducible four point functions. The “rung” A(q)
is just the first order contribution to the generalized rung. The BCS equation should be
interpreted as putting the above bound exactly on the radius of convergence of the geometric

series when g = 0 so that
A2

< -
h coqs + c1/q|?

(IV.2)

D An(tys,q)
n=1

Considering the number of bounds used in the derivation of (IV.2), one might think
that the series also converges at ¢ = 0. This is not the case. A calculation in [FMRT2] shows
that A(¢g = 0) has an eigenvector with eigenvalue precisely . The appearance of 1 as an
eigenvalue is no accident. It is a consequence of a Ward identity associated with the breaking
of the particle number symmetry in the BCS ground state. In fact the similarity of (IV.2) to
the propagator of a massless particle is again no accident. Breaking a continuous symmetry
produces a mass zero particle - the Goldstone boson. We remark that the Anderson-Higgs
mechanism, which generates a mass for the Goldstone boson, is not expected to be active for

short range interactions.

¢V The Goldstone Boson

We have already seen, in the computations of §IV, that the dominant part of the
interaction <t + 4, -t + %‘V‘s + 4, -5+ %> is that with t ~ ¢/, s &~ s’ and ¢ ~ 0. So, to see
how the breaking of number symmetry leads to a Goldstone boson we consider the interaction

%/ ds dt dg P+ P+ (¢, ' [V]s', =5) P-t+%) P(=s+4)
Indeed, we further assume that the dominant term of the decomposition A (t', —t'|V|s’, —s') =

> ns0nTn(t',s') into spherical harmonics is the zero angular momentum contribution Ag.

That is, setting Ao = —2¢2, we consider the effective interaction

Vet = —292/ ds dt dg Prt+2) Py (—t+2) Yy (—s+3) Pr(s+2)
= —292/ dp dq (/ dtz%(t%)%(—t%)) B(p, —q) (/ d8¢¢(—s+%)wﬂs+%)>
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with B(p,q) = (2m)*'d(p+q). Note that, by antisymmetry,

/ ds dt dg Prt+3) Pr(—t+3) Pr(=s+ 1) Pr(s+$) = 0

Let (71,72) be a C? valued Gaussian variable with the real, even covariance

(vi(p)vi(q)) = 6 B(p,q)

Observe that the position space covariance (v;(£1)7;(&2)) = 0;;0(§1 — &2) is also real.
Therefore, this process can be realized on SI’R(]RGLH> . Set,

A(&) = 1§ —iv2()

We have

e_veff _ /equ(A(q)gfdtz/;T(t-i-%)lh(—t—l—%)—i-K(Q)gfds ¢¢(—s+%)¢T(S+%)) d,u,('n 2)

since for all functions X (g) and Y(q)

/efgzq(X(q)A(q)+Y(q)K(q))du(71 ) = /efd‘q(X(Q)+Y(—Q))’Yl(Q)—i(X((I)—Y(—Q))’Yz(Q)d,u(,yl772)

_ o3 [ aa(X@)+Y (=) B0 (X @+Y (-0) -} [ap da(X(0)-Y (-p)) B.0) (X (0)-Y (-9))

— 2 JdvaaX(p)B(pa)Y (—a)
Changing variables and combining terms,
/dq (A(Q)g/ d‘t%<t+%)w¢(—t+%)+z(q)g/ dszﬁ¢(—s+%)¢¢(s+%)>
= /d‘q <A(Q)g/d“;T(H%)QZJ,(—H%)+Z(—Q)Q/dt¢¢(—t—%)¢T(t—%))
_ o (0 A [ Yre—4
B g/ dg @t (r(e+8) Vit )(A(—Q) 0 ) (¢¢<—t+%)

= 0 A = 0 a
= g/ dq dt W (t+3) <K(_q) é")) Pi-3) = g/d£ 246 (K(g) ég)) )

where
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are the Nambu fields introduced in §III. For convenience set

_ 1 2 _ 0 A

Then,
o= Vet _ /exp (g/dé: (e 7(5)‘I’(£)> dpu(y)

Performing the fermionic integration

/ e Vel dp(w, &) = / / exp (g / d§ ‘il(m@)‘I’(a)) (v y2)Ap (T, )

= [ det (1-9 O)ducr

we obtain (the exponential of) an effective interaction for the intermediate boson field =y .
Here, « is a multiplication operator in position space acting on IR¢*!-valued functions and

C' is the multiplication operator in momentum space given by

) = —plp) Dot R

pg + e(p)?

where p(p) is the characteristic function of the set { p € R | p3+e(p)? <1 }. Thus p(p)

imposes an ultraviolet, but no infrared, cutoff on the Fermions.

The determinant det (ll—g C'y) is a complicated function of . To get some feeling

for it we consider constant 4’s and introduce the periodized fermionic covariance P;(§),
Pi(&) = ) Ce~o)
Cc

The sum runs over the lattice M~9Z% so that P; is periodic on a large box A of side M 7.

Lemma V.1 If v is constant on A, then

logdet(l1 — g Pjy) = [A] Z |T1| log (1 + ggleﬁgl)

p

where the sum is over p in 2rMIZ* and where with abuse of notation Y2 = (V+42)1,
1772

is identified with (y2 +~2) .
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Remark. Notice that Zp ﬁ — f]RaLH dp as j — —oo . On the other hand, the usual
volume prefactor |A| = M~@NI tends to infinity since the operator Cv is not trace class

when <y 1is a nonzero constant.

Proof: Set v = —io3y = 4,02 —yo0!. Using this notation the momentum space kernel

of the operator C+v appearing in the determinant is

ipo + e(p)o®
pg + e(p)?

_1% (poy(p—q) + e(P)V* (0—1q))

Clp)y(p—q) = —p(p) v(p—q)

Periodizing the covariance,

logdet(1 — g Pjy) = Tr log (“—gﬁﬂ

— _tr Z%(ig)" > (p;%%gg;a p(p))"
p

n>1

Expanding the power tr (pO’y + e(p)yH )" produces a sum of terms each of which contains

a factor

2 k,f even
tr (o) e (g2}t = { ;
r(e?) (o) 0 otherwise

with k+Z = n . Consequently, the expression above is zero when n is odd. Squaring
e # 2 2
(B o) = (55%57) " (807 + poe(P) (17 +7%7) + (@) (1H)?)
2
= (#225) (f + e(0)®) (7 +73)

Substituting the last expression

1 n
Trlog (1-g 58 sy) = -2 ) 5 2 (28 (v +13))
p

( 9228 (1 +43))

I
@M
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Formally,

det(T — g Cy) du(y) = eosdet@-90N=3 [ 1By [T gy
EE]Rd+1

_ e_%(fdg'y(g)?—logdet(]l_gcﬂ) H dy(e)
geIRd+1

Thus, the full effective potential in a box A of side M7 evaluated at the constant field

configuration -y is

; 1
—(d)j (1.2 _ il 2__p(p) 2
M= (27 2. Al to (1 9 e ) )
p
We want to show that its graph is a Bordeaux wine bottle (also referred to as a Mexican hat)

and determine its dimensions.

1

To do this it is convenient to replace the sum A]

by an integral and study the

mean field effective potential per unit volume
_ 1,2
E(r) = 31° — /dp log (1 + g2pgi(e’3,)2 r2>

where 7 = /22442 . In terms of the variable s = 72 (but, by abuse of notation, retaining the

name &)

E(s) = %s — /dp log (1 + g2pgf_(ejz)p)2 s)

dE . 9°p(p)

“i) =L |4

60 = [
d*& 4
) = /dp : g9°p(p) i

s (5 +e(p)? + 5)

Hence £(s) is continuous on [0,00), is zero at s = 0 and grows like s/2 at s = co. The first

derivative diverges logarithmically to —oco at s = 0 and converges to 1/2 at s = co. The
second derivative is always positive. Thus £(s) has a unique critical point s, and this critical
point is a global minimum.

Integrating over the angular variables, changing variables to 1 = e(p) and then

using polar coordinates to replace py and 7

d—1
E(s) = 35— %/ dpo dlp| [p|* " log (1 + gngig;)g S)

a—2
d—1 2
= %S — mk%_2%/ dpo d’f} (1 + %n) log (1 + g2p§$2’2 3)

_ 1 d—2 |84 ! ) g%s
= 58— mkg (@) dR R(1+O(R )) log 1+ﬁ
0
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When d =2 the O(R?) term is absent. When d > 2 we used oddness to show that the
O(n) term vanishes.

When d =2 we can explicitly evaluate the integral in

1 g2
m s
1
:%s—— dx log(l—{——)
0
1
= 35— 2 [(x + g%s) log(z + g%s) — xlog:v} .
= 55— 2[(1+ %) log(1 + g5) — g%slog(g®s)]
The critical point obeys

2 1 2*
_ﬂlog(y)zo
g~ S«

so that

or, in terms of the intermediate boson field,

7l = = R — exp

et

when the coupling constant ¢ is small. At the critical point

1 eXP{—mZ2} 1 { 7r}

m 9 m 2T
m 2T m 9
S e WP
and
d?& d?& m g2 m
gz () = A = e Y Y

By way of resumé, the graph of the effective potential is a Bordeaux wine bot-

tle whose absolute minimum is at g¢g|y[« ~ exp {—m”gz} and has depth approximately
—(g|v|+)? and curvature at the minimum approximately —g? . The picture in dimen-
T

sions d > 2 is similar. Note that the depth, M~ (#ig|y[,, of the effective potential
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M~ ()] (%72 — Zp ﬁ log (1 + g2 pgigg)y 72) ) in the whole box is enormous due to the

volume factor M~ (#1)J Tt is deep enough to break the symmetry of the whole model.

§VI Scales and the Renormalization Group Flow

To analyze the singularity at the Fermi surface and implement, nonperturbatively,
the intuition developed in the previous sections, we divide momentum space into a ‘geometric
series’ of shells.

Fix M > 1 and for each j € Z set

rw>:{1 M <7 < M
I 0 otherwise

The partition of unity

o0

1 = Z 1; (ki + e(k)?)

j=—o0
divides R¥*! into shells that force |ko|+ ‘ k| —k F‘ ~ M7 . For simplicity, we have introduced
a sharp partition of unity even though a smooth one is required for the full, technically correct

analysis. Set
c 5 ar CE e e
](£17§2) 01,02 /]Rd+1 iko —e(k) J( 0 +e( ) )

Summing,

Cler,6) = D Ci(61,&)+ Y, Cj(&1,&)

7<0 7>0
To focus on the infrared end of the system we impose an ultraviolet cutoff at scale

J =0 and for each 72 < 0 introduce internal electron fields
ey — (%) DE) — (4 "
we = (BED) a© = (aen diew)

whose components are generators of a Grassmann algebra over C. The “infrared” generating

functional

I($,) = log L / e VRO [T dpsy (s, )

<0

with the renormalized interaction
Val,5) = V0.9 + 5uhp) [ db b
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where

v o= > Yo=Y

<0 <0
is our starting point for a renormalization group analysis. The new functional Z is better
adapted for iteration in the renormalization group flow than (I.1). It generates the connected
Euclidean Green’s functions amputated by the free propagator.

By definition, the generating functional at scale j is

Z;(g;) = log % / e Vel o) T dpa(shi, ) (VL1)
J 024>4
where
ij(Z ¢z‘,z¢z‘) gj=<¢+2¢i,¢+2¢i>
0>i>j 02i>j (/] 1<J
The denominater Z; is chosen so that Z;(0) = 0. Here, the components of the ex-

ternal field g; are elements of the Grassman algebra generated by ¢(§,0), ¢(§,0) and
Vi(&,0), Yi(&,0), (&,0) € R x {1,1} ,i < j. As we successively integrate over mo-

mentum shells approaching the Fermi surface, the field g; approaches (¢, $) . At scale zero,

To(go) = —V=r(90)

It is not hard to show using Gram’s inequality (see, [FMRT1], Lemma 1) and a
cluster expansion that the generating functional Z;(g;) exists. Precisely, there is a disk D;
around the origin of radius o(1/j) such that for all p > 1, the associated Green’s functions

Gjp(&i,, -+, &p; A) are analytic functions of A in D; with

max Sup/ 1 den|GipErs- )| < oo

l<m<2p Em n#Em

It is no surprise that the radius of D; tends to zero as j tends to —oo, since the sponta-
neously broken number symmetry, discussed in §III, generates a mass A ~ e~°"st/A in the
two point function that is not analytic in A. However, the estimate that one obtains by a
straightforward application of Gram’s inequality reflects a singularity much more severe than
e—<onst /A A much more careful analysis of the Pauli exclusion principle in the presence of a

Fermi surface is required to reconcile the difference. See [FMRT 1].
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Exponentiating Z;(g;) and writing g; = g;—1 + (¥;, ;) ,

Tj1(gj—1) = log ﬁ/e_VR(flergjl) [T dpi(vs i)

i>7—1

_ log/ eLi(gi-1+(%;%;)) dﬂj(%‘ﬂ;j) + log Zfil

- log/ eLi(@i—1+(;.9;)) dpi (i, 95) — log/ e Li ($5%;)) i (;.55)

To pass from the second to the third line observe that

_ _ 7.
0 = Z1a(0) = log [ exp (Z;((5.5))) g5, ) + log 72

By definition, the map from Z;(g;) to Z;1(gj—1) given by
Tia(gj-1) = log/ oLi(gi—1+(;,9;)) duj(ﬂ)jﬂ/;j) _ log/ e Li ($5:9;)) dﬂj(%‘v@j)

is the renormalization group transformation at scale j.

For any Grassman valued function U( - ) on the Grassman algebra set

& (U, gj—1) = 10g/eXP (U(gj—1+ (¥5,95))) dpi(;,%;) — U(gj-1)

Then, iterating the renormalization group transform generates a solution to the first order

difference equation
Zia(gj-1) = Zj(gj-1) + & (Zj,95-1) — & (Z;,0) (VL2)

where,
Zj(gj-1) = I (gj—l + (ij”/_’j))‘(wj,@ho

We want to construct a solution to (VI.2) such that the limit

I(6.6) = Jm_Z;(0.9)

exists and satisfies the renormalization condition
X0, k| =kp,pu,A) = 0

introduced in §II. The renormalization condition is now a boundary condition at 7 = —o0.

29



Let f(1,v) be any Grassman valued function homogeneous of degree 2p. That is

Fy, ) = v f (4, )

To implement the renormalization boundary condition that fixes the value of the two point

function on the Fermi surface, define the two point localization operator L2 by

_ f =0and f€C
Lo f(,9) = { T(0, k| = kr) [ dkribr p— Land f = [ dkT (k) Yrix
0 otherwise

The operator Lo extends by linearity to all formal power series on the Grassman algebra.

For example,

+Z¢i)

(A /]

)+ xw)

1<g

£T0) = Lo [ akGah) (7 + X 6:) (0
= Gial0, 1 =kr) [ dk (6 + 3 v
= 5,(0, K| :kp)/dk; (¢ + P 6i) (o + )y v:)

Gia(k) = S;(R)(1+ Y (COR)Z;(R)")

n>1

and the covariance of the Guassian measure [[,,;. ; dp;(vs, ;) obeys

CO0, k| =kr) = > Ci(0,k| =kp) = 0

1>]

by construction. Thus,

lim £27(6.) = 20, \k|—kp)/d‘k 5o

Summarizing the discussion of the last two paragraphs, our problem is to construct

a solution to the boundary value problem
Zja(95-1) = Zj(gi-1) = & (L, 95-1) — & (Z;,0)

Zo(90) = —V= (90)
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Forall £k <j—-1

Tia(gk) — Zi(gr) = & (Zj,9x) — &5 (Z;,0)

where

Ij(gk) = (gk+ Z (¢za¢z |(1p i)=0

k<igyg k<i<j

It follows that
Z_1(g95) — Zo(g5) = &o(Zo,95) — &0 (Zo,0)

Z 5(95) —Z-1(95) = €-1(Z-1,95) — €-1(Z-1,0)

Zi(95) —Zia(g95) = € Tjn,95) — €1 Zjn, 0)
Summing, we obtain the “integral equation”
Z; (gj) = IO gj + Z 5 zagj) & (Iiao)
1>7

The boundary value at j = —oo is

hm LoTi(p,d) = LaZo(d,d) + Z Ly &; Iz7¢ Cb) & (Z;,0)

I <0

Thus, if we chose
0
Zo(go) = —V(g90) — ,_Z (L2 &(Zi, g0) — & (23, 0))

then the solution Z;(g;) of the ‘initialized’ integral equation

Ti(g9;) = —V(gj) — 20: (L2&i(Ts, 95) — Ei(Z5,0)) + Z (& (Ti, g5) — €i(Zi, 0))

i=—00 i>j
is a solution of (VI.2) satisfying
li LoT 1 Lo E I 7Z;,0) = 0
Am Ly (6, 0) J\{mooz 2&i (Ti, 6, 0) — & (Z;, 0)

i<g

since L2V = 0. It follows that du(A, p) is determined by
0

Sp(A, ) /qu‘sqs = > (L& (Zi, ¢,0) — & (Z;,0))

1=—00
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Finally, we rewrite the initialized equation as

Ti(g5) = —V(g5) — X L2&(Tivgy) + Y (1 L2)E (Ting) + X &(Zi,0) (VL)

(/] i>j (AN/]

What have we accomplished? The infrared generating functional Z(¢,$) has been
expressed as a limit of approximations Z;(g;), 7 < 0, that successively probe the Fermi

surface singularity in the free propagator

_
iko — e(k)
These cutoff functionals satisfy “integral equation ” (VI.3) in which the quadratic part is
carefully split at each scale by the operators L5 and 1 — L5 into counter and renormalized
terms that implement the renormalization of the chemical potential discussed in §II.
We can construct a formal power series solution to (VI.3) by iterating it, starting

with Z;(g;) = —V(g;). For example, after one iteration, Z; is

“V(g;) — L La&(=V,95) + D (M= L) (=V,g5) + X E(=V,0)

1<J i>j 1<)

Repeated iteration generates a tree expansion. See [FT1,2, Ga]. Expanding &; (U,g;) in a

Taylor series in U and then collecting terms of the same degree in V' generates a perturbation
. . P k2 k 2

expansion. The lines of the graphs generated by & have propagators % Roughly

speaking, 1 — L, replaces the value

1;, (k2 +e(k)? 1, (k2 +e(k)?
i(koo—e(k) )T(k) z'<k0—e(k) )

of every two legged subgraph, whose external legs lie at scales 71, j2 below those of its internal

lines (note that the range of summation for ) (1 — £L2)&; (Z;, 94) is ¢ > j), by

15, (kb +e(k)?)
iko —e(k)

1, (kg +e(X)?)

(T(k) —T(0,kF)) Fy—

The zero of T'(k) — T(0,kr) on the Fermi surface moderates the singularity of the neigh-

bouring m .

We now turn to the more subtle problem of extracting from quartic contributions

to Z a dominant “local part” that, in the language of Theorem II.1, generate dangerously
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large factors of n!. The following definition of “local part” is motivated by the discussion of
the third paragraph of §IV. Suppose f(2,%) is a Grassmann valued function homogeneous
of degree 2p. For each 7 < 0 set

La,; f(&; Y) =0 when p # 2
and, for p= 2’

£4,j /dt ds qu(t737Q) J)’h (t + gaa)/&h (_t + %,M)¢i4(_3 + %,M)%s (S + (_217 O[)

= [|<Mj*dtdeqK(t’,s’,O)lzh(t+g,a)¢i2(—t+%,u)¢i4(_3+g,ﬂ)¢i3(s+%’a)
ql<

where the sum over repeated spin indices has been suppressed, and

j* = % (.7 + max {ilai23i3ai4})

s’ = (s0,8) = (0, |§—|kp)
= the projection of s onto the Fermi surface
The operator L4 ; extends by linearity to the whole Grassmann algebra.
Observe that q is restricted to a ball of radius M7™ centered on the origin in RY.

The radius shrinks to zero as j — —oo. In the approximation that q is set to zero in the

fields ({p)in, the quartic local part becomes

L / dtds dq® K(t',s',0) i, (t + L, )i, (—t + T, )i, (=5 + &, )iy (s + &, )

with the notation o
7 = (9,0)

v = / dq
lal<M7*

The local part of a quartic is, up to sign, a reduced interaction. In fact, it is the analog in the
functional integral formalism of the interaction term in the usual BCS reduced Hamiltonian
> e®ay oo+ Y (ki, —ki|[Vika, —ka)ayl 0Ty g0k, gk, q

ko le(ky)|<e
le(ka)|<e

The kernel K (t',s’,0) of the quartic local part generates a rotation invariant integral
operator on L2 (k FS‘H) . Decomposing into spherical harmonics

K(t',s,0) = 3 Anmn(t', s")

n>0
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Here, m,(t',s") is the projection onto the spherical harmonics of degree n and A,,n >0,
is the spectrum of K . Suppose that the zero angular momentum sector of K is dominant.

That is, |Ao| > |An|, n > 1. Then,

L / dt ds dq® 200w, (t + 5 Dy (=t + 5, D, (=5 + 5, Db (s + L, 1)

is the leading contribution to the quartic local part. It is the familiar BCS interaction. See,
for example, [FW], p.333.

To exploit the quartic localization operator L4 ;, denote by
Filg;) = La;Zi(g5)

the quartic local part of the generating functional at scale 5. We have

Folgo) = —La0V(90)
= _% > . dtdsdq<t’,_t1|V|3',_3'>7ﬁi1(t+%,a)1/;z‘2(—t+%,ﬁ)1ﬁi4(—s+%,ﬂ)@bi3(3+%7a)
lg|<MOC"
=) e dt ds dq Fo(s', ') s, (t+5.00%i, (~t+4 8)%iy (~s+§.0Pi (s+§ )
ql<MO*

where the sum is over all 2q,1%9,13,74 < 0 and all repeated spin indices. Recall that, 0* =

1 max{i1, is,43,94}. In general

Filg;) = 2 dt ds dq Fj(s',t") i, (t+2.0)0i, (—t+2.8)0i, (—5+%.8)0is (s+$,0)

lql<MI*

Rewriting (VI.3) so as to isolate the quartic local part, we obtain the coupled system

of “integro-differential” equations”

Zi(g;) = Fi(g5) + X (Lo — L6-v) Filgs) — > L2&(Zi,95) + O &i(Zi, 0)

>3 (AN) i<y

— (1= Lo)V(g;) + 22 (U= Li-)& (Ti, g5)

1>]

Fi—1(9j-1) = Laj-1F;(9;) + Laj-1&;(Z;,9;)
(VL4)

for Z;(g;), F;(g;) j < 0. Here, for each ¢ <0,

L) = La® Ly
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is the direct sum of the quadratic and quartic localization operators. Observe that Z;(g;)
has been decomposed in (VI.4) into a local quadratic piece
= 2 L£26(Zs,95) + 32 &i(Zi, 0)
<] i<
an effective quartic interaction
Filg;) + X (L) — La-1) Filgs)
i>j
and a renormalized piece
—(1— L©)V(9;) + g:ﬂ (1 — L-1))& (Z;, g5)

As before, we can construct a formal power series solution to (VI.4) by iteration,
starting with Z;(g;) = —V(9;), Fj(9;) = —L4;V(g;). Expanding &;(U,g;) and collect-
ing terms generates a perturbation expansion at scale j in which the corresponding graphs
contain generalized two legged vertices, generalized four legged vertices representing the ef-
fective interactions F;(g;), ¢ > j, renormalized two legged insertions, and renormalized four
legged insertions (1 — L4,-1)&; (Z;,95) , ¢ > j. Again, lines introduced by integration of the
Gaussian measure in &; have scale <.

The system of flow equations (VI.4) has been organized so as to isolate the “singular”
part of the model in relatively simple local parts. To test whether or not £ really captures
the singular part of the model, and in particular whether or not L4 ; really captures the
singular part of four legged graphs that produces the dangerously large factor n! in Theorem
I1.1(c), consider a truncated flow

Zi(g;) =—(1—L©)V(g;) + DZJ (I - La-0)&; (T, g5) (VL4)p

from which the local parts have been removed by hand.

Theorem V1.1 [FT2] Let G be a graph appearing in the expansion generated by the truncated

flow (VI.4)r. Then there is a norm and a positive constant K such that
|va(@)| < &
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The lesson here is that any anomalous behaviour of perturbation theory is isolated

in the local parts F;(g;) . Everything else, “is irrelevant”

in renormalization group language.
Theorem (VI.1) is a result about individual graphs.

At least in two space dimensions, one can use the Pauli exclusion principle to prove
the analogous non-perturbative result. Theorem 2 of [FMRT1] says that, roughly speaking,

the series

DI LD DI ()

n>0 graphs G without 2
or 4 legged sub—graphs

is analytic in a neighborhood of A = 0. It should be easy to extend this to show that the

series

LG Y V@)

n>0 graphs G without
local sub—graphs

in which all subgraphs are renormalized is also analytic in a disk around zero.
On a perturbative level, the flow of the local part is studied in [FT2]. It diverges

away from the trivial fixed point whenever the initial interaction

M, =V, =5y = Y Auma(t,s)
n>0
is attractive in any angular momentum sector m,(t',s’). If the interaction is attractive in
the zero sector Ao < 0 and this sector is dominant, that is |Ag| > |An|, n > 0 , then it is
shown in [FT2] that, after truncating perturbation theory at any finite order, the local part
flows toward an effective theory “near” the BCS model, at least until the flow reaches energy
scales in which the Goldstone Boson becomes important. It is expected that the local part
remains near the BCS model even at those energy scales. We are now attempting to prove

that this is indeed the case.
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