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I. Introduction

We are developing a set of tools and techniques for analyzing the large dis-

tance/infrared behaviour of a system of identical bosons, as the temperature tends to zero.

The total energy of the many boson systems considered in this paper has two sources.

First, each particle in the system has a kinetic energy. We shall denote the corresponding

quantum mechanical observable by h. The most common is − 1
2m∆, but, in this paper, we

allow any positive operator. Second, the particles interact with each other through a two–

body potential, v(x,y). For stability, v is required to be repulsive. We assume that the

system is in thermodynamic equilibrium and that expectations of observables are given by

the grand canonical ensemble at temperature T = 1
kβ > 0 and chemical potential µ.

Functional integrals are an important source of intuition about the behaviour of

quantum mechanical systems. They are also an important rigorous technical tool in the

analysis of, for example, Euclidean quantum field theories. In this paper and its compan-

ion [II], we derive rigorous functional integral representations for the partition function and

thermodynamic correlation functions of a many boson system.

There are many possible applications of our functional integral representations.

However, we are motivated by the following potential specific application. One may speculate

(in agreement with the standard picture of condensed matter physics) that, at temperature

zero and infinite volume, a weakly coupled, three dimensional many boson system will un-

dergo a phase transition at some critical chemical potential µ∗.

◦ For µ < µ∗, the system is in a massive phase. That is, all correlation functions decay

exponentially fast at large separation. The expected value of the field φ(x) =
〈
a†(x)

〉
,

where a†(x) is the particle creation operator at x, is zero.

◦ For µ > µ∗, number symmetry is broken. In this phase, correlation functions fail to

decay exponentially due to the presence of extended, collective excitations (the massless

Goldstone bosons). The expected value of the field is nonzero. The presence of such

anomolous nonzero amplitudes is used as a general criterion for a condensed quantum

fluid.

The intuition behind this phase transition is easily obtained by using a formal coherent state

functional integral [NO, (2.66)] to express the grand canonical partition function as

Z =

∫
· · ·

∫

φβ = φ0

∏

x∈IR3

0≤τ≤β

dφ∗
τ (x) dφτ (x)

2πi eA(φ∗,φ) (I.1)

where

A(φ∗, φ) =

∫ β

0

dτ

∫

IR3

d3x φ∗τ (x)
∂
∂τ
φτ (x)−

∫ β

0

dτ K
(
φ∗τ , φτ

)
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and

K(α∗, φ) =

∫∫
dxdy α(x)∗h(x,y)φ(y)− µ

∫
dx α(x)∗φ(x)

+ 1
2

∫∫
dxdy α(x)∗α(y)∗v(x,y)φ(x)φ(y)

Here h(x,y) is the kernel of the kinetic energy operator.

In the mean field approximation, that is, when φτ (x) is independent of τ and x, the

action A(φ∗, φ) is minus the integral over τ and x of the

“naive effective potential” = 1
2 v̂(0)|φ|

4 − µ|φ|2

where v̂(0) =
∫
dy v(x,y). We have assumed that v(x,y) is translation invariant and that h

annihilates constants. The minimum of the naive effective potential is

◦ nondegenerate at the point φ = 0 when µ < 0

and

◦ degenerate along the circle |φ| =
√

µ
v̂(0)

when µ > 0.

It is therefore reasonable that an attempt to rigorously justify the phase transition in

the chemical potential discussed above would begin with the derivation of rigorous functional

integral representations of the thermodynamic correlation functions in which the effective

potential appears explicitly. We do so in this paper and the companion paper [II].

It is common practice in condensed matter physics, to discretize space, because

the overall energy scale is low. On physical grounds, this does not affect the long range

behaviour of the system. For this paper, space is an arbitrary, but fixed, finite set X , that we

may imagine is a subset of a lattice. The second quantized Hamiltonian H and the number

operator N act on the infinite dimensional Fock space

F =
∞⊕

n=0

(C|X|n/Sn)

The long distance behavior of the system is revealed in the thermodynamic limits of grand

canonical correlation functions, such as derivatives of the partition function

Z = TrFe
−β(H−µN)

To implement the thermodynamic limit, one would take the usual family of finite spaces

XL =
{
x ∈ ZZ

3
∣∣ |xi| < L , i = 1, 2, 3

}

and send L to infinity. We shall not do so in this paper.

Our first result (Theorem III.13), stated somewhat informally, is the representation

Tr e−β(H−µN) = lim
p→∞

∫ ∏
τ∈Tp

dµR(p)(φ
∗
τ , φτ ) eF( β

p , φ
∗,φ) (I.2)
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for the finite volume grand canonical partition function. Similar representations for general

correlation functions are derived in [II]. Here, for each natural number p, the discrete time

interval Tp is given by

Tp =
{
τ = q βp

∣∣ q = 1 , · · · , p
}

For each point (x, τ) in the discrete space–time X × Tp, we have introduced the complex

variable φ(τ,x) = φτ (x). For each r > 0, the measure

dµr(φ
∗, φ) =

∏

x∈X

[
dφ∗(x)∧ dφ(x)

2πı χr(|φ(x)|)
]

where, χr is the characteristic function of the closed interval [0, r]. The sequence R(p) > 0

in (I.2) tends to infinity at an appropriate rate as p → ∞. The “action” F(ε, φ∗, φ), with

ε = β
p
, is given by

F(ε, φ∗, φ) =

∫∫
dτdx φ∗τ (x)(∂

εφτ )(x)−
∫∫

dτdx φ∗τ (x)(hφτ )(x) + µ

∫∫
dτdx φτ (x)

∗φτ (x)

− 1
2

∫∫∫
dτdxdy φτ (x)

∗φτ (x) v(x,y)φτ(y)
∗φτ (y)

where ∫∫
dτdx ψ(τ,x) = ε

∑

τ ∈Tp

∑

x∈X
ψ(τ,x)

∫∫∫
dτdxdy ψ(τ,x,y) = ε

∑

τ ∈Tp

∑

x∈X

∑

y∈X
ψ(τ,x,y)

and the difference operator ∂ε acts by

∂ε φ(τ,x) = ε−1
(
φ(τ + ε,x)− φ(τ,x)

)

In (I.2), fields φτ with τ /∈ Tp are determined by the periodicity condition φτ = φτ−β . It is

easy to check that the representation (I.2) generates the usual formal graphical perturbation

series.

In the physics literature, coherent states(1) |φ 〉, φ ∈ CX , the formal resolution of

the identity

1l =

∫ ∏

x∈X

[
dφ∗(x)dφ(x)

2πı e−|φτ (x)|2
]
|φ 〉 〈φ | (I.3)

and the formal trace formula

TrB =

∫ ∏

x∈X

[
dφ∗(x)dφ(x)

2πı e−|φτ (x)|2
]
〈φ |B | φ 〉 (I.4)

(1) We are using coherent states normalized so that < α | γ >= e
∫
dy α(y) γ(y). We

systematically use the convention that
∫
dx f(x) =

∑
x∈X f(x).
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are used to justify (I.1) as follows. Formally,

Tr e−β(H−µN) = lim
p→∞

Tr e−
β
p (H−µN)1le−

β
p (H−µN)1l · · · 1le−

β
p (H−µN)

= lim
p→∞

∫ ∏

x∈X
τ∈Tp\{β}

[
dφ∗

τ (x)dφτ (x)
2πı

e−|φτ (x)|2
]
Tr

[ ∏

τ∈Tp\{β}
e−

β
p (H−µN) |φτ 〉 〈φτ |

]
e−

β
p (H−µN)

= lim
p→∞

∏

x∈X
τ∈Tp

[ ∫
dφ∗

τ (x) dφτ (x)
2πı e−|φτ (x)|2

] ∏

τ∈Tp

〈
φτ

∣∣∣ e−
β
p (H−µN)

∣∣∣ φτ+ β
p

〉

(I.5)

Then, one argues [NO, (2.59)] that

〈
α
∣∣∣ e−ε (H−µN)

∣∣∣ φ
〉
=

〈
α
∣∣∣ ..e−ε (H−µN) .

.
∣∣∣ φ

〉
+O(ε2)

= exp

{ ∫
dyα(y)∗φ(y) − εK(α∗, φ) +O(ε2)

} (I.6)

where : · : denotes Wick ordering. If ε = β
p , one observes that there are O(p) error terms of

order O(ε2) = O( 1
p2
). “Off the cuff”, the error terms do not contribute when p → ∞ and

consequently,

Tr e−β(H−µN) = lim
p→∞

∏

x∈X
τ∈Tp

[ ∫
dφ∗

τ (x) dφτ (x)
2πı

] ∏

τ∈Tp

e
∫
dy φτ (y)

∗[φτ+β/p(y)−φτ (y)] − β
pK(φ∗

τ ,φτ+β/p)

It is the purpose of this paper, and its companion, to make this all precise.

In §II, we review the basic formalism of bosonic quantum statistical mechanics and

the formalism of coherent states in the context of a finite configuration space X . In particular,

we prove, in Theorem II.26, a rigorous version of the formal resolution of the identity (I.3)

and we prove, in Proposition II.28, that the trace formula (I.4) applies rigorously to a certain

class of operators. In this way, we obtain a rigorous variant of (I.5). See Theorem III.1.

It is by no means clear that dropping, “off the cuff”, the O(p) error terms of or-

der O(ε2) is justified, because the error terms are unbounded functions of the fields φτ .

We circumvent this part of the formal argument by directly constructing the logarithm

F (ε, α∗, φ) = ln
〈
α
∣∣ e−εK

∣∣ φ
〉
, at least for α and φ not too large. See Proposition III.6.

To this end, we derive and then solve an evolution equation in ε for F (ε, α∗, φ). It follows

that

F (ε, α∗, φ) =

∫

X

dx α(x)∗φ(x)− εK(α∗, φ) +O(ε2)

We then show, in Theorem III.13, that the “matrix element”
〈
α
∣∣ e−ε (H−µN)

∣∣ φ
〉
can be

replaced by e
∫
dyα(y)∗φ(y) − εK(α∗,φ) in the formula for Tr e−β(H−µN) of Theorem III.1, pro-

vided the integration radius R(p) of (I.2) is chosen appropriately.
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In the physics literature, one simply “evaluates” the limit

lim
p→∞

∫ ∏
τ∈Tp

dµR(p)(φ
∗
τ , φτ ) eF( β

p , φ
∗,φ) =

∫
· · ·

∫

φβ = φ0

∏

x∈X
0≤τ≤β

dφ∗
τ (x) dφτ (x)

2πi eAX(φ∗,φ)

where

AX(φ∗, φ) =

∫ β

0

dτ

∫

X

dx
{
φ∗τ (x)

∂
∂τ
φτ (x)− φ∗τ (x)(h− µ)φτ (x)

}

− 1
2

∫ β

0

dτ

∫∫

X2

dxdy φτ (x)
∗φτ (y)

∗v(x,y)φτ (x)φτ (y)

The first impulse of a mathematical physicist determined to ascribe a rigorous meaning to

this formal functional integral representation for the partition function, would be to construct

a “complex Gaussian measure” dµC , with covariance

C =
(
− ∂

∂τ + (h− µ)
)−1

out of the formal measure

exp

{∫ β

0

dτ

∫

X

dx
{
φ∗τ (x)

∂
∂τ
φτ (x)− φ∗τ (x)(h− µ)φτ (x)

}} ∏

x∈X
0≤τ≤β

dφ∗
τ (x) dφτ (x)

2πi

Normally, one starts by defining the integral of any polynomial in the complex fields

φ∗τ (x), φτ (x), τ ∈ [0, β), x ∈ X , against dµC as cumulants of “matrix elements” of the

covariance C. Then one constructs the characteristic function of dµC , as a limit of inte-

grals of polynomials, and the corresponding measure. However, the explicit calculations in

Appendix A, modelled on those of Cameron [C], show that the purely imaginary term

∫ β

0

dτ

∫

X

dx φ∗τ (x)
∂
∂τ φτ (x)

in the exponential generates oscillations that are so severe that there is no complex Gaussian

measure.

To work with the ultraviolet limit

lim
p→∞

∫ ∏
τ∈Tp

dµR(p)(φ
∗
τ , φτ ) eF( β

p , φ
∗,φ)

to, for example, construct the thermodynamic limit and justify the phase transition in the

chemical potential, one must exploit the cancellations arising from the oscillations generated

by the purely imaginary term in the action.
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One methodology for the explicit control of cancellations of this kind, when the

coupling constant λ = v̂(0) is small, is known as “multiscale analysis”. In the present case

“scales” refer to blocks of frequencies in space x and inverse temperature τ . There are

infinitely many scales. Cancellations are implemented at each scale.

Typically, the total contribution of “large fields”, for example field configurations

with φτ (x) or appropriate derivatives large, is smaller than any power of λ, reminiscent of

large deviations in probability theory. This can be proven without attention to cancellations.

On the other hand, oscillations are fully exploited in the complementary “small field regions”

by high dimensional steepest descent calculations around the complex critical points of the

effective actions. In the end the functional integral becomes an infinite sum over small and

large field regions. The physicists formal functional integral is morally “the dominant term”.
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II. Finite Systems of Bosons

In this section we carefully review the basic formalism of bosonic quantum statistical

mechanics and introduce the notation that we will systematically use.

Fock Space

Fix a finite set X .

Definition II.1

(i) Let n ∈ IN ∪ {0}. The action π ·f of a permutation π ∈ Sn on f in L2
(
Xn

)
is given by

π ·f(x1, · · · ,xn) = f(xπ−1(1), . . . ,xπ−1(n))

The bosonic n–particle space

Bn(X) =
{
f ∈ L2

(
Xn

) ∣∣∣π ·f = f for all π ∈ Sn

}

is the
(
n+|X|−1

n

)
dimensional complex Hilbert space of all symmetric functions on Xn with

inner product

〈f, g〉Bn
=

∫

Xn

dx1 · · ·dxn f(x1, · · · ,xn)g(x1, · · · ,xn)

In particular, B0(X) = C and B1(X) = L2(X).

(ii) The bosonic Fock space B(X) over X is the orthogonal direct sum B(X) =
⊕

n≥0 Bn(X).

It is an infinite dimensional complex Hilbert space. The inner product between f and g in

B(X) is

〈f , g〉B =
∑
n≥0

〈fn, gn〉Bn

Definition II.2

(i) Let h be a (single particle) operator on L2(X), with kernel h(x,y). Assume that h(y,x) =

h(x,y)∗ so that h is self–adjoint. The corresponding independent particle operator on Bn(X)

is

H0(h, n,X) =
n∑
i=1

h(i)

The superscript on h(i), i = 1, · · · , n, indicates that the single particle operator h acts on the

variable xi appearing in a function g(x1, · · · ,xn). That is,
(
h(i)g

)
(x1, · · · ,xn) =

∫

X

dx′
i h(xi,x

′
i) g(x1, · · · ,x′

i, · · · ,xn)
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By convention, H0(h, 0, X) = 0. The kernel of H0(h, n,X) is

H0(h, n,X)(x1, · · ·xn,y1, · · ·yn)=
n∑

i=1

δx1
(y1) · · · δxi−1

(yi−1) h(xi,yi) δxi+1
(yi+1) · · · δxn

(yn)

Here δx(y) = δx,y =

{
1 if x = y

0 if x 6= y

}
is the delta function on X concentrated at the point x.

The second quantization of h is the direct sum

H0(h, X) =
⊕

n≥0

H0(h, n,X)

acting on the domain
{

f ∈ B(X)
∣∣∣

∑
n≥0

∥∥ H0(h, n,X) fn
∥∥2
Bn

< ∞
}
.

(ii) Let v(x,y) be a real valued (two body) potential on X2 satisfying v(x,y) = v(y,x) for

all x,y ∈ X . Multiplication by v determines a (two particle) operator on B2(X). Its kernel

is v(x1,x2) δx1
(y1)δx2

(y2). The corresponding 2 particle interaction operator on Bn(X) is

V(v, n,X) =
∑

i1<i2

v(i1,i2)

Here, for each pair of indices 1 ≤ i1 < i2 ≤ n, the superscript on v(i1,i2) indicates that the

operator v acts on the variables xi1 ,xi2 appearing in a function g(x1, · · · ,xn). That is,
(
v(i1,i2)g

)
(x1, · · · ,xn) = v(xi1 ,xi2) g(x1, · · · ,xi1 , · · · ,xi2 , · · · ,xn)

By convention, V(v, n,X) = 0 for n = 0, 1.

The second quantization of the two particle interaction v is the direct sum

V(v,X) =
⊕

n≥0

V(v, n,X)

acting on the domain
{

f ∈ B(X)
∣∣∣

∑
n≥0

∥∥V(v, n,X) fn
∥∥2
Bn

< ∞
}
.

Example II.3 Let 1lX be the identity operator on L2(X). Then,

H0(1lX , n,X) = n 1lXn

where, 1lXn is the identity operator on L2(Xn). By definition, the number operator N is

H0(1lX , X).

Proposition II.4 For any single particle operator h on X, any two particle potential v

on X and any µ ∈ IR, the operator H0(h, X) + V(v,X) − µN is essentially self adjoint on{
(fn)n≥0

∣∣ fn ∈ Bn(X), for all n ≥ 0, fn = 0 for all but finitely many n
}
. It commutes

with the number operator N .

Proof: The proof is routine.
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Creation and Annihilation Operators

Let u ∈ Bm(X) and let v ∈ Bn(X) and write u ⊗ v(x1, · · · ,xm+n) for the tensor

product

u(x1, · · · ,xm) v(xm+1, · · · ,xm+n)

The symmetric tensor product u⊗s v of u and v is defined by

u⊗s v = 1√
m!(m+n)!n!

∑

π∈Sm+n

π · (u⊗ v)

and belongs to Bm+n(X). The symmetric tensor product extends by linearity to a commu-

tative, associative and distributive multiplication on B(X). If u ∈ B1(X) and v ∈ Bn−1(X),

then

u⊗s v(x1, · · · ,xn) = 1√
n

n∑
i=1

u(xi) v(x1, · · · , x̂i, · · · ,xn)

Successively multiplying u1, · · · , un ∈ B1(X) , one obtains by induction the element

u1 ⊗s · · · ⊗s un (x1, · · · , xn) = 1√
n!

∑

π∈Sn

u1(xπ(1)) · · ·un(xπ(n)) = 1√
n!

perm
(
ui(xj)

)

of Bn(X). Here perm
(
ui(xj)

)
denotes the permanent of the matrix

[
ui(xj)

]
1≤i,j≤n. By direct

calculation,

〈u1 ⊗s · · · ⊗s un, v1 ⊗s · · · ⊗s vn〉Bn
= perm

(
〈ui, vj〉B1

)

for all u1, · · · , un and v1, · · · , vn in B1(X).

Remark II.5 It is common to define the symmetric tensor product with the alternative

combinatorial factors 1
(m+n)!

or 1
m!n!

rather than 1√
m!(m+n)!n!

. We make the present choice

because the annihilation operators become derivations on the algebra B(X). See, Lemma

II.11.

Proposition II.6 Suppose ui, i = 1, · · · , |X |, is an orthonormal basis for B1(X). Then, the

family of functions {
1√
α!
u⊗

α
s

∣∣∣ α ∈ (IN ∪ {0})|X|, |α| = n
}

where

u⊗
α
s (x1, · · · ,xn) = u⊗

α1
s

1 ⊗s · · · ⊗s u⊗
α|X|
s

|X| (x1, · · · ,xn)

is an orthonormal basis for Bn(X) .

If Y is a subset of X , then B(Y ) can be identified with the subalgebra
{

f =
(
f0, f1 , · · ·

)
∈ B(X)

∣∣∣ fn(x1, · · · ,xn) is supported in Y n for each n ≥ 0
}

of B(X). Furthermore,
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Lemma II.7 Let Y and Z be disjoint subsets of X. For all u, u′ ∈ B(Y ) and v, v′ ∈ B(Z)
〈
u⊗s v, u′ ⊗s v′

〉
B(X)

=
〈
u, u′

〉
B(Y )

〈
v, v′

〉
B(Z)

Remark II.8 For each x ∈ X , the bosonic Fock space B({x}) is canonically isomorphic to

a subalgebra of B(X). The abstract tensor product of all these subalgebras is isomorphic to

B(X). By the last lemma, the global inner product completely factors.

Definition II.9 For each x ∈ X the annihilation operator ψ(x) acts on B(X) by
(
ψ(x)u

)
(x1, · · · ,xn−1) =

√
n u(x,x1, · · · ,xn−1)

for all u ∈ Bn(X), n ≥ 0. The adjoint ψ†(x) of ψ(x) is the creation operator on B(X) that

acts by (
ψ†(x)u

)
(x1, · · · ,xn+1) =

(
δx ⊗s u

)
(x1, · · · ,xn+1)

= 1√
n+1

n+1∑

i=1

δx(xi) u(x1, · · · , x̂i, · · · ,xn+1)

for all u ∈ Bn(X), n ≥ 0. The utility of these operators is due to the commutation relations
[
ψ(x), ψ†(x′)

]
= δx(x

′)
[
ψ(x), ψ(x′)

]
= 0

[
ψ†(x), ψ†(x′)

]
= 0

(II.1)

for all x,x′ ∈ X .

Remark II.10 It is easy to see that

(
ψ†(x)ψ(x)u

)
(x1, · · · ,xn) =

n∑
i=1

δx(xi) u(x1, · · · ,x, · · · ,xn)

=
( n∑
i=1

δx(xi)
)
u(x1, · · · ,xi, · · · ,xn)

In other words, the restriction of the product ψ†(x)ψ(x) to Bn(X) is multiplication by the

function
n∑
i=1

δx(xi). By definition the density operator n(x) at x ∈ X acts by

n(x) = ψ†(x)ψ(x)

Lemma II.11 For all x ∈ X, u ∈ Bm(X) and v ∈ Bn(X),

ψ(x)
(
u⊗s v

)
=

(
ψ(x) u

)
⊗s v + u⊗s

(
ψ(x) v

)

Proof: The proof is by induction on m.
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Definition II.12 Fix a natural number n ≥ 0. For each Y in the quotient space Xn/Sn set

δY = cY δy1
⊗s · · · ⊗s δyn

where (y1, · · · ,yn) in Xn is a representative for Y . The constant

cY =
1

∏
x∈X

√
µY (x)!

where µY (x) =

n∑

i=1

δx,yi

is the multiplicity of x in Y . By construction, δy, y ∈ X , is an orthonormal basis for L2(X).

By Proposition II.6, the family δY , Y ∈ Xn/Sn, is an orthonormal basis for Bn.

Lemma II.13 Fix the point x ∈ X and the set Y ∈ Xn/Sn. Then,

ψ(x) δY =

{
c−1
Y cY \{x} δY \{x} if x ∈ Y

0 if x /∈ Y

ψ†(x) δY = cY c−1
Y ⊔{x} δY ⊔{x}

n(x) δY = µY (x) δY

Here, the ‘disjoint union’ Y ⊔ {x} is the element of Xn+1/Sn+1 with

µY ⊔{x}(y) =

{
µY (y) if y 6= x

µY (y) + 1 if y = x

Proposition II.14 For any single particle operator h and any 2 particle potential v,

H0(h, X) =

∫
dxdy ψ†(x) h(x,y)ψ(y)

V(v,X) = 1
2

∫
dx1dx2 ψ

†(x1)ψ
†(x2) v(x1,x2)ψ(x1)ψ(x2)

= 1
2

∫
dx1dx2 ψ

†(x1)ψ(x1) v(x1,x2)ψ
†(x2)ψ(x2)− 1

2

∫
dx ψ†(x) v(x,x)ψ(x)

Remark II.15 We have

N = H0(1l, X) =

∫
dx ψ†(x)ψ(x) =

∫
dx n(x)

and

V(v,X) = 1
2

∫
dx1dx2 n(x1) v(x1,x2)n(x2)− 1

2

∫
dx v(x,x)n(x)

To ensure that the Hamiltonian H0(h, X) + V (v,X) is stable, we shall assume that

the interaction potential v is repulsive in the sense of the following definition.

11



Definition II.16 Define, for any real, symmetric, 2 particle potential v(x,y),

λ0(v) = inf
{ ∫

dxdy ρ(x)v(x,y)ρ(y)
∣∣ ∫ dx ρ(x)2 = 1, ρ(x) ≥ 0 for all x ∈ X

}

We call the potential v repulsive if λ0(v) > 0.

If v(x,y) is the kernel of a strictly positive definite operator acting on L2(X),

then v is repulsive with λ0(v) at least as large as the smallest eigenvalue of the operator.

If v(x,y) ≥ 0 for all x,y ∈ X and v(x,x) > 0 for all x ∈ X , then v is repulsive with

λ0(v) ≥ minx∈X v(x,x).

Proposition II.17 Let h be a single particle operator and v(x1,x2) be a real, symmetric,

pair potential. Assume that the self adjoint operator v acting on L2(X) with kernel v(x,y)

is strictly positive definite. Then

− v20
8λ0

|X | ≤ 1
2

(
λ0

N
|X| − v0

)
N ≤ V(v,X) ≤ 1

2 (ΛN − λ0)N

λ′0N ≤ H0(h, X) ≤ Λ′N

on the domain D(V ) = D(N2). Here, λ0 = λ0(v), Λ is the largest eigenvalues of the operator

v, λ′0 and Λ′ are the smallest and largest eigenvalues of the operator h and v0 = max
x∈X

v(x,x).

The leftmost bound on V is called the ‘linear lower bound’.

Proof: We have

〈
δY ,

∫

X2

dx1dx2 n(x1)v(x1,x2)n(x2) δY
〉
=

∫

X2

dx1dx2 µY (x1)v(x1,x2)µY (x2)

≥ λ0

∫

X

dx µ2
Y (x)

≥ λ0

|X|

(∫

X

dx µY (x)
)2

= λ0

|X| n
2

where Schwarz’s inequality was used in the third line. Similarly,

〈
δY ,

∫

X2

dx1dx2 n(x1)v(x1,x2)n(x2) δY
〉
≤ Λn2

12



Let u =
∑

Y ∈Xn/Sn

ϕY δY be an arbitrary element of Bn(X). We have

〈
u ,

∫

X2

dx1dx2 n(x1)v(x1,x2)n(x2) u
〉

=
∑

Y1,Y2∈Xn/Sn

ϕ∗
Y1
ϕY2

〈
δY1

,

∫

X2

dx1dx2 n(x1)v(x1,x2)n(x2) δY2

〉

=
∑

Y ∈Xn/Sn

|ϕY |2
∫

X2

dx1dx2 µY (x1)v(x1,x2)µY (x2)

≥ λ0

|X| n
2

∑

Y ∈Xn/Sn

|ϕY |2

= λ0

|X|n
2 ‖u‖2Bn

In the same way,

〈
u ,

∫

X2

dx1dx2 n(x1)v(x1,x2)n(x2) u
〉
≤ Λ n2 ‖u‖2Bn

Since a ≤ v(x, x) ≤ b, a similar, but simpler, argument gives

λ0 n ‖u‖2Bn
≤

〈
u ,

∫

X

dx v(x,x)n(x) u
〉
≤ v0 n ‖u‖2Bn

The bound on H0(h, X) follows directly from Definition II.2.i.

Coherent States

We now review the formalism of coherent states [NO, §1.5].

Definition II.18

(i) The family | zδx 〉 , z ∈ C, of coherent states concentrated at x ∈ X is given by

| zδx 〉 =
∑

n≥0

1
n! z

n ψ†(x)n1 =
∑

n≥0

1
n! z

n δ
⊗n

s
x

where 1 is the ‘vacuum’ 1 ∈ C = B0(X). That | zδx 〉 ∈ B(X) is a consequence of Proposition

II.22, below.

(ii) If φ(y) ∈ L2(X), the coherent state |φ 〉 ∈ B(X) is

|φ 〉 =
⊗

y∈X
s

|φ(y)δy 〉 = e
∫
dy φ(y)ψ†(y)

1

13



Lemma II.19 For all φ in L2(X),

|φ 〉 =
∑

n≥0

∑

Y ∈Xn/Sn

φ(Y ) cY δY

Here, φ(Y ) =
∏

y∈X φµY (y)(y) for each Y in the quotient space Xn/Sn.

Proof:

|φ 〉 =
⊗

y∈X
s

∑

n≥0

1
n!

φn(y) δ
⊗n

s
y =

∑

ny≥0

y∈X

( ∏
y∈X

1
ny!

φny(y)
) ⊗

y∈X
s
δ⊗

ny

s
y

=
∑

n≥0

∑

ny≥0

y∈X

χ
(
n=

∑
y∈X

ny

)( ∏
y∈X

1
ny!

φny(y)
) ⊗

y∈X
s
δ⊗

ny

s
y

=
∑

n≥0

∑

Y ∈Xn/Sn

( ∏
y∈X

φµY (y)(y)
)
c2Y

⊗

y∈X
s
δ⊗

µY (y)
s

y

=
∑

n≥0

∑

Y ∈Xn/Sn

φ(Y ) cY δY

Coherent states have been defined to give

Proposition II.20 For all x ∈ X and φ ∈ L2(X),

ψ(x) |φ 〉 = φ(x) |φ 〉
ψ†(x) |φ 〉 = ∂

∂φ(x) |φ 〉

Convention II.21 For any φ in L2(X) and any state f in the Fock space B(X), abusing

notation, the inner product between the coherent state |φ 〉 and f is written as
〈
φ
∣∣ f

〉
. That

is,
〈
φ
∣∣ f

〉
=

〈
|φ 〉 , f

〉
B Similarly, the inner product between the coherent states |φ 〉 and∣∣φ′

〉
is written

〈
φ |φ′

〉
.

Proposition II.22 For all α and γ in L2(X), we have
∥∥P (m) |α 〉

∥∥
Bm

= ‖α‖m

√
m!

and

〈
α
∣∣ γ

〉
= e

∫
dy α(y) γ(y)

where P (m) is the orthogonal projection from B(X) onto the m particle subspace Bm(X).

14



Lemma II.23 For any single particle operator h and any φ in L2(X),

e−τ H0(h,X) |φ 〉 =
∣∣ e−τh φ

〉

Proof: By Proposition II.14,

d
dτ e

−τH0 |φ 〉 = −
∫
dx1dx2 ψ

†(x1) h(x1,x2)ψ(x2) e
−τH0 |φ 〉

and, by Definition II.18.ii,

d
dτ

∣∣ e−τh φ
〉

= ∂
∂τ

e
∫
dy (e−τhφ)(y)ψ†(y)

1

=

∫
dy

(
− he−τh φ

)
(y)ψ†(y) e

∫
dy (e−τh φ)(y)ψ†(y)

1

= −
∫
dy ψ†(y)

(
h e−τh φ

)
(y)

∣∣ e−τh φ
〉

= −
∫
dx1dx2 ψ

†(x1) h(x1,x2)ψ(x2)
∣∣ e−τh φ

〉

As d
dτ e

−τH0 |φ 〉 and d
dτ

∣∣ e−τh φ
〉
satisfy the same first order ordinary differential equation

and initial condition, they coincide.

Lemma II.24 Suppose both f and N2|X|f belong to the Fock space B. Then,

∣∣〈φ
∣∣ f

〉∣∣ ≤
( ∏

y∈X

1
1+|φ(y)|4

)
2|X|e

1
2‖φ‖

2∥∥(N + 4|X |)2|X| f
∥∥
B

Proof: Fix P in Xn/Sn. Then,

φ(P )
〈
φ
∣∣ f

〉
=

∑

Y

CY φ(P )φ(Y )
〈
δY , f

〉
B

=
∑

Y

CP⊔Y φ(P ⊔ Y )
〈

CY

CP⊔Y
δY , f

〉
B

=
∑

Y

CP⊔Y φ(P ⊔ Y )
〈[ ∏

x∈X

µP⊔Y (x)!
µY (x)!

] 1
2

δY , f
〉
B

=
∑

Y

CP⊔Y φ(P ⊔ Y )
〈 ∏

x∈X

µP (x)∏
k=1

(
n(x) + k

) 1
2 δY , f

〉
B

=
∑

Y

CP⊔Y φ(P ⊔ Y )
〈
δY ,

∏

x∈X

µP (x)∏
k=1

(
n(x) + k

) 1
2 f

〉
B

15



It follows from Schwarz’s inequality and Parseval’s identity that

∣∣∣φ(P )
〈
φ
∣∣ f

〉∣∣∣ ≤
(∑

Y

∣∣CP⊔Y φ(P ⊔ Y )
∣∣2
) 1

2
∥∥∥

∏
x∈X

µP (x)∏
k=1

(
n(x) + k

) 1
2 f

∥∥∥
B

≤
(∑

Y

∣∣CY φ(Y )
∣∣2
) 1

2
∥∥∥
∏

x∈X

µP (x)∏
k=1

(
n(x) + k

) 1
2 f

∥∥∥
B

≤ e
1
2 ‖φ‖2∥∥(N + n)

n
2 f

∥∥
B

Adding, ∣∣〈φ
∣∣ f

〉∣∣ ∏
y∈X

(
1 + |φ(y)|4

)
≤ 2|X|e

1
2‖φ‖

2∥∥(N + 4|X |)2|X| f
∥∥
B

An Approximate Resolution of the Identity

In the physics literature, the formal resolution of the identity

1l =

∫ ∏

x∈X

[
dφ∗(x)dφ(x)

2πı

]
e−

∫
dy |φ(y)|2 |φ 〉 〈φ |

is often used. See, for example [NO, (1.123)]. However, for each φ ∈ L2(T ), the operator

norm of e−
∫
dy |φ(y)|2 |φ 〉 〈φ | is exactly one. So the nature of the convergence of the integral

in the above formal resolution of the identity is not clear. We now investigate the convergence

more carefully.

Definition II.25 For each r > 0, the measure dµr(φ
∗, φ) on L2(X) is given by

dµr(φ
∗, φ) =

∏

x∈X

[
dφ∗(x)dφ(x)

2πı
χr(|φ(x)|)

]

where χr is the characteristic function of the interval [0, r]. The measure dµ(φ∗, φ) on L2(X)

is given by

dµ(φ∗, φ) =
∏

x∈X

[
dφ∗(x)dφ(x)

2πı

]

Theorem II.26 For each r > 0, let Ir be the operator that acts on f in B(X) by

Irf =

∫
dµr(φ

∗, φ) e−‖φ‖2 |φ 〉
〈
φ
∣∣ f

〉

(a) For all n ≥ 0 and all Y ∈ Xn/Sn,

IrδY = λr(Y ) δY

16



where

λr(Y ) =
∏

x∈X

Γr(µY (x))
µY (x)! with Γr(s) =

∫ r2

0

dt e−t ts, for all s > −1

In particular, 0 ≤ λr(Y ) ≤ 1.

(b) Ir commutes with N .

(c) The operator norm of Ir is bounded by one for all r and Ir converges strongly to the

identity operator as r → ∞.

(d) For all n and r, the operator norm

∥∥(1l− Ir
)
Pn

∥∥ ≤ |X | 2n+1 e−r
2/2

Here, Pn is the orthogonal projection from B(X) onto the direct sum
⊕

0≤m≤n
Bm(X).

(e) Suppose that N2|X|f belongs to the Fock space B. Then,

f =

∫
dµ(φ∗, φ) e−‖φ‖2 |φ 〉

〈
φ
∣∣ f

〉

with the integral converging absolutely.

Proof: (a,b) To verify (a), let Y ∈ Xn/Sn and observe that

IrδY =

∫
dµr(φ

∗, φ) e−
∫
dy |φ(y)|2 |φ 〉

〈
φ
∣∣ δY

〉

=
∑

n≥0

∑

Y ′∈Xn/Sn

δY ′cY ′cY

∫
dµr(φ

∗, φ) e−
∫
dy |φ(y)|2 φ(Y ′)φ∗(Y )

We have
∫
dµr(φ

∗, φ) e−
∫
dy |φ(y)|2 φ∗(Y )φ(Y ′)

=
∏

x∈X

[∫
dφ∗(x)dφ(x)

2πı χr(|φ(x)|) e−|φ(x)|2 φ∗(x)µY (x) φ(x)µY ′ (x)

]

=
∏

x∈X

[∫ r

0

dρ

∫ 2π

0

dθ
π ρ e−ρ

2

ρµY (x)+µY ′ (x) eıθ(µY ′ (x)−µY (x))

]

=
∏

x∈X

[
δµY (x),µY ′ (x)

∫ r

0

dρ 2ρ e−ρ
2

ρ2µY (x)

]

= δY,Y ′

∏

x∈X

∫ r2

0

dt e−t tµY (x)

= δY,Y ′

∏

x∈X
Γr(µY (x))

17



Consequently,

IrδY = δY c2Y
∏

x∈X
Γr

(
µY (x)

)
= δY

∏

x∈X

Γr(µY (x))
µY (x)!

Thus Ir is a diagonal operator in the orthonormal basis {δY }. Each diagonal entry

λr(Y ) =
∏

x∈X

[
1

µY (x)!

∫ r2

0

dt e−ttµY (x)

]

is between 0 and 1. Since {δY } is a basis of eigenvectors for both Ir and N , they commute,

which proves parts (a) and (b).

(c) Each

λr(Y ) =
∏

x∈X

[
1

µY (x)!

∫ r2

0

dt e−t tµY (x)

]
(II.2)

approaches 1 in the limit r → ∞. By the Lebesgue dominated convergence theorem, if

f =
∑
n

∑
Y ∈Xn/Sn

fY δY is any vector in B(X), then

lim
r→∞

∥∥f − Irf
∥∥2 = lim

r→∞

∑

n

∑

Y ∈Xn/Sn

(
1− λr(Y )

)2|fY |2 = 0

The operator norm of Ir is bounded by 1 for all r > 0, because all of the eigenvalues of Ir are

between 0 and 1. This completes the proof of part (c).

(d) We bound ∥∥(1l− Ir
)
Pn

∥∥ = max
|Y |≤n

[1− λr(Y )]

Fix any Y with |Y | ≤ n and set, for each x ∈ X ,

βx = 1
µY (x)!

∫ ∞

r2
dt e−t tµY (x)

By (II.2)

1− λr(Y ) = 1−
∏

x∈X
(1− βx) ≤

∑

x∈X
βx ≤ |X |max

x∈X
βx

The claim now follows from

βx = 2µY (x)

µY (x)!

∫ ∞

r2
dt e−t

(
t
2

)µY (x) ≤ 2µY (x)

∫ ∞

r2
dt e−t/2 = 2µY (x)+1e−r

2/2

≤ 2n+1e−r
2/2

(e) By definition

Irf =

∫
dµ(φ∗, φ)

∏
x∈X

χr(|φ(x)|) e−‖φ‖2 |φ 〉
〈
φ
∣∣ f

〉

18



By part (c) the left hand side converges to f as r → ∞. By Lemma II.24, the norm of the

integrand of the right hand side is bounded by

( ∏
y∈X

1
1+|φ(y)|4

)
2|X| ∥∥(N + 4|X |)2|X|f

∥∥
B

which is integrable with respect to dµ(φ∗, φ). Hence, as r → ∞, the right hand side converges

to
∫
dµ(φ∗, φ) e−‖φ‖2 |φ 〉

〈
φ
∣∣ f

〉
.

The Trace Formula

Another commonly used formal property of coherent states is the trace formula

(I.4). We now develop a rigorous, but limited, version of this formula that is adequate for

our purposes.

Remark II.27 We use the approximate identity Ir to prove a “cutoff” trace for any bounded

operator that computes with N . By (II.2), for each fixed Y ∈ Xn/Sn, lim
r→∞

λr(Y ) = 1. On

the other hand, for each fixed r, there is a constant Cr,X = r2|X | such that

max
Y ∈Xn/Sn

λr(Y ) ≤ 1
n!
Cnr,X

Thus the operator norm of Ir, restricted to Bn(X), is bounded by 1
n!C

n
r,X . The dimension of

Bn(X) is bounded by |X |n. Therefore, for any bounded operator B that commutes with N ,

BIr is trace class and

TrBIr = lim
n→∞

TrBIrPn

Proposition II.28

(a) Let B be a bounded operator on B(X) that commutes with N . Then, for all r > 0, BIr

is trace class and

TrBIr =

∫
dµr(φ

∗, φ) e−
∫
dy |φ(y)|2 〈φ |B | φ 〉

(b) Let B be any operator on B(X) that commutes with N and obeys

‖P (n)B‖Bn
≤ const (1 + n)−2|X|

Then B is trace class and

TrB =

∫
dµ(φ∗, φ) e−

∫
dy |φ(y)|2 〈φ |B | φ 〉
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Proof: (a) We have

Tr BIrPn =
∑

deg Y ≤n

〈 δY |BIr | δY 〉

=
∑

deg Y ≤n

∫
dµr(φ

∗, φ) e−
∫
dy |φ(y)|2 〈 δY |B | φ 〉

〈
φ
∣∣ δY

〉

=

∫
dµr(φ

∗, φ) e−
∫
dy |φ(y)|2 ∑

deg Y ≤n

〈
φ
∣∣ δY

〉
〈 δY |B | φ 〉

=

∫
dµr(φ

∗, φ) e−
∫
dy |φ(y)|2 〈φ |PnB | φ 〉

Since B is a bounded operator, e−
∫
dy |φ(y)|2 ∣∣ 〈φ |PnB | φ 〉

∣∣ is bounded uniformly in n and φ

and the dominated convergence theorem provides the limit of the right hand side as n→ ∞.

By Remark II.27, the left hand side converges to TrBIr as n→ ∞.

(b) As in part (a), but using part (e) of Theorem II.26,

Tr BPn =

∫
dµ(φ∗, φ) e−

∫
dy |φ(y)|2 〈φ |PnB | φ 〉

By Lemma II.24,

∣∣ 〈φ |PnB | φ 〉
∣∣ ≤

( ∏

y∈X

1
1+|φ(y)|4

)
2|X|e

1
2‖φ‖

2
∥∥∥(N + 4|X |)2|X| PnB |φ 〉

∥∥∥
B

≤ e‖φ‖
2
( ∏

y∈X

1
1+|φ(y)|4

)
2|X|

∥∥∥(N + 4|X |)2|X|B
∥∥∥

By the Lebesgue dominated convergence theorem

lim
n→∞

∫
dµ(φ∗, φ) e−

∫
dy |φ(y)|2 〈φ |PnB | φ 〉 =

∫
dµ(φ∗, φ) e−

∫
dy |φ(y)|2 〈φ |B | φ 〉

Since the dimension of Bn(X) is (n+|X|−1)!
n!(|X|−1)!

≤ (n+|X|−1)|X|−1

(|X|−1)!
and the operator norm of the

restriction of B to Bn(X) is bounded by a constant times (1 + n)−2|X|, B is trace class and

lim
n→∞

Tr BPn = Tr B

20



III. An Integral Representation of the Partition Function

Let h be a single particle operator on X and v(x1,x2) a real, symmetric, pair

potential which is repulsive in the sense of Definition II.16. For the rest of this paper, except

where otherwise stated, we write

K = K(h, v, X, µ) = H0(h, X) + V(v,X)− µN

Recall that H0(h, X) and V(v,X) were defined in Definition II.2.

The first step in the formal derivation of the functional integral representation (I.1)

is the application of the resolution of the identity (I.3) and the trace formula (I.4) to give the

intermediate representation (I.5). Theorem III.1, below, is a rigorous version of (I.5).

Theorem III.1 Suppose that the sequence R(p) obeys

lim
p→∞

p e−
1
2R(p)2 = 0

Then,

Tr e−βK = lim
p→∞

∫ ∏
τ∈Tp

[
dµR(p)(φ

∗
τ , φτ ) e

−
∫
dy |φτ (y)|2

] ∏
τ∈Tp

〈
φτ−ε

∣∣ e−εK
∣∣ φτ

〉

where Tp =
{
τ = qε

∣∣ q = 1, · · · , p
}

and we use the conventions that ε = β
p and φ0 =

φpε = φβ .

In Proposition III.2, below, we prove that the grand canonical partition function Tr e−βK is

well–defined. Then we prove Lemma III.4, which provides a rigorous multiple insertion of

the approximate resolution of the identity in our context. The proof of Theorem III.1 then

follows Remark III.5.

Proposition III.2 For any β > 0, the trace

Tr e−β(H0(h,X)+zV(v,X)−µN)

on the Fock space B(X) is a holomorphic function of (z, µ) on
{
z ∈ C

∣∣ Re z > 0
}
× C

Proof: Suppressing h, v and X ,

Tr e−β(H0+zV−µN) =
∑
n≥0

Trn e
−β(H0+zV−µN) =

∑
n≥0

eβµn Trn e
−β(H0+zV) (III.1)
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where Trn denotes the trace on the n particle space Bn. When restricted to Bn, the Hamil-

tonian H0 + zV is an operator on a finite dimensional vector space. Therefore, each term

Trn e
−β(H0+zV) is an entire function of (z, µ) on C2. For each n ≥ 0,

∣∣eβµn Trn e−β(H0+zV)
∣∣ ≤ eβ|Reµ|n dimBn(X)

∥∥e−β(H0+zV)
∥∥
Bn

where ‖ · ‖Bn
is the operator norm on Bn(X). By the Trotter product formula,

∥∥e−β(H0+zV)
∥∥
Bn

= lim
m→∞

∥∥∥
(
e−

β
m (H0+Re zV) e−ı

β
m Im zV

)m∥∥∥
Bn

≤ lim
m→∞

∥∥e− β
m (H0+Re zV)

∥∥m
Bn

∥∥e−ı β
m Im zV

∥∥m
Bn

= lim
m→∞

∥∥e− β
m (H0+Re zV)

∥∥m
Bn

By Proposition II.17,

∥∥e−
β
m (H0+Re zV)

∥∥m
Bn

≤ e−β[λ
′
0n+

1
2Re z(

λ0
|X|

n2−v0n)]

with the λ0 = λ0(v) of Definition II.16. Since dimBn(X) ≤ |X |n, the sum in (III.1) is

absolutely convergent, uniformly for (z, µ) in compact subsets of
{
z ∈ C

∣∣ Re z > 0
}
× C.

This gives the desired analyticity.

Remark III.3 Observe that

Tr e−β(H0(h,X)+zV(v,X)−µN) = ∞

when z = 0 and µ is strictly bigger than the smallest eigenvalue of h. This indicates that the

“free” limit z ց 0 is extremely singular.

Lemma III.4 Let β > 0 and let K be any self adjoint operator on B(X) that commutes

with N and obeys

K ≥ a
(
N
|X| − ν

)
N

for some constants a > 0 and ν. Also, let R be any map from IN to (0,∞) such that

lim
p→∞

p e−
1
2R(p)2 = 0

Then,

Tr e−βK = lim
p→∞

Tr
(
e−

β
pK IR(p)

)p−1

e−
β
pK

= lim
p→∞

Tr

p exponentials e
−

β
p

K

︷ ︸︸ ︷
e−

β
pK IR(p) e

−β
p K IR(p) · · · IR(p) e

−β
pK
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and 〈
φ
∣∣ e−βK

∣∣ φ′
〉
= lim
p→∞

〈
φ
∣∣∣
(
e−

β
p KIR(p)

)p−1

e−
β
pK

∣∣∣φ′
〉

for all φ, φ′ ∈ L2(X). Furthermore, for each 0 < η < 1, there is a constant Cη, depending on

η, β, a and ν, but independent of φ, φ′ ∈ L2(X), p ∈ IN and X such that

∣∣∣
〈
φ
∣∣∣
(
e−

β
pK Ir

)p−1

e−
β
pK

∣∣∣φ′
〉∣∣∣ ≤ e

η
2 (‖φ‖

2+‖φ′‖2)eCη |X|

Proof: Introduce the local notation

Ai =

{
e−

β
pK if i is odd

IR(p) if i is even

}
Bi =

{
e−

β
pK if i is odd

1l if i is even

}

so that
(
e−

β
pK IR(p)

)p−1

e−
β
pK =

2p−1∏

i=1

Ai and e−βK =

2p−1∏

i=1

Bi

For any n ∈ IN,

∣∣∣Tr
( 2p−1∏
i=1

Ai − e−βK
)∣∣∣

≤
∣∣∣Tr

( 2p−1∏
i=1

Ai − e−βK
)
Pn

∣∣∣+
∣∣∣Tr

2p−1∏
i=1

Ai(1l− Pn)
∣∣∣+

∣∣∣Tr e−βK(1l− Pn)
∣∣∣

=
∣∣∣Tr

( 2p−1∏
i=1

Ai −
2p−1∏
i=1

Bi

)
Pn

∣∣∣ (III.2)

+
∣∣∣Tr

2p−1∏
i=1

Ai(1l− Pn)
∣∣∣+

∣∣∣Tr e−βK(1l− Pn)
∣∣∣ (III.3)

Consider the first line, (III.2). Since
∥∥IR(p)

∥∥ ≤ 1, by part (c) of Theorem II.26, and

K ≥ a
|X| (N − ν|X |)N ≥ −a

4
|X |ν2 ≡ −K0

we have

‖Ai‖ , ‖Bi‖ ≤
{
e

β
pK0 if i is odd

1 if i is even

Since Aq − Bq = IR(p) − 1l for i = 2, 4, · · · , 2p − 2 and is zero otherwise, we have, for all

n , p ∈ IN ,

∥∥∥
( 2p−1∏
i=1

Ai −
2p−1∏
i=1

Bi

)
Pn

∥∥∥ ≤
2p−1∑
q=1

∥∥∥
q−1∏
i=1

Ai
(
Aq −Bq

) 2p−1∏
i=q+1

Bi Pn

∥∥∥

≤ (p− 1)eK0β
∥∥(IR(p) − 1l

)
Pn

∥∥

≤ peK0β |X | 2n+1 e−R(p)2/2
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Consequently, ∣∣∣Tr
((
e−

β
p K IR(p)

)p−1

e−
β
p K − e−βK

)
Pn

∣∣∣

≤ peK0β |X | 2n+1 e−R(p)2/2 Tr Pn

≤ peK0β |X | 2n+1 e−R(p)2/2 (n+|X|)!
n!|X|!

Hence, for any fixed n ∈ IN,

lim
p→∞

∣∣∣Tr
((
e−

β
p K IR(p)

)p−1

e−
β
p K − e−βK

)
Pn

∣∣∣ = 0

Now we consider the second line, (III.3). For all m ≥ 1, K
∣∣
Bm

≥ a
(
m
|X| − ν

)
m and

∥∥∥
2p−1∏
i=1

Ai

∣∣∣
Bm

∥∥∥ ,
∥∥∥e−βK

∣∣∣
Bm

∥∥∥ ≤ e− βa( m
|X|

−ν)m (III.4)

and it follows that

∣∣∣Tr
2p−1∏
i=1

Ai
∣∣
Bm

∣∣∣ , Tr e−βK
∣∣
Bm

≤ e− βa( m
|X|

−ν)m (m+|X|−1)!
m!(|X|−1)!

If we impose the stronger condition m ≥ n with n
|X| ≥ 2ν , the last inequality becomes

∣∣∣Tr
2p−1∏
i=1

Ai
∣∣
Bm

∣∣∣ , Tr e−βK
∣∣
Bm

≤ e−
a

2 |X|
m2β (m+|X|−1)!

m!(|X|−1)!

and
(m+|X|−1)!
m!(|X|−1)!

≤ (m+|X|−1)|X|−1

(|X|−1)!
≤ (cm)|X|−1

(|X|−1)!
(III.5)

where, c = 1
2ν

+ 1 . Now, we have, if n ≥ 2|X |ν,

∣∣∣Tr
2p−1∏
i=1

Ai(1l− Pn)
∣∣∣ , Tr e−βK(1l− Pn) ≤

∑
m>n

e−
a

2|X|
m2β (cm)|X|−1

(|X|−1)!

≤
∫ ∞

n

dt e−
a

2|X|
t2β (c t)|X|−1

(|X|−1)!

≤ e−
a

4|X|
n2β

∫ ∞

0

dt e−
a

4|X|
t2β (c t)|X|−1

(|X|−1)!

≤ Ce−
a

4|X|
n2β

(III.6)

for some positive constant C, depending only on β, a, ν and |X |. The first claim now follows

from the observation that this converges to zero as n→ ∞, uniformly in R(p) and p. In fact

this proves convergence in trace norm and hence convergence in operator norm and also weak

convergence, so that this also proves the second claim.
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Finally, we prove the bound. By (III.4) and Proposition II.22,

∣∣∣
〈
φ
∣∣∣
(
e−

β
p K IR

)p−1

e−
β
p K

∣∣∣φ′
〉∣∣∣ ≤

∞∑

m=0

‖φ‖m

√
m!
e− βa( m

|X|
−ν)m ‖φ′‖m

√
m!

≤
∞∑

m=0

tm

m! e
− βa( m

|X|
−ν)m

where t = 1
2

(
‖φ‖2 + ‖φ′‖2

)
. Observe that, for any γ > 0,

aβ
(
m2

|X| − νm− γm
)
= aβ

|X|
(
m− ν+γ

2
|X |

)2 − a
4
β(ν + γ)2|X |

≥ −aβ
4 (ν + γ)2|X |

Thus ∣∣∣
〈
φ
∣∣∣
(
e−

β
p K IR

)p−1

e−
β
p K

∣∣∣φ′
〉∣∣∣ ≤

∞∑

m=0

tm

m!
e−aβγme−aβ(

m2

|X|
−νm−γm)

≤
∞∑

m=0

tm

m!e
−aβγme

aβ
4 (ν+γ)2|X|

= ee
−aβγte

aβ
4 (ν+γ)2|X|

It now suffices to choose γ so that η = e−aβγ and then set Cη = aβ
4 (ν + γ)2.

Remark III.5 If R(p) ≥ c | ln p| 12+ε, then lim
p→∞

pe−R(p)2 = 0. Also if R(p) ≥ c | ln p| 12 with

c > 1, then lim
p→∞

pe−R(p)2 = 0.

Proof of Theorem III.1: By (III.6), the strong convergence of Ir to 1l, and Proposition

II.28.a

Tr e−βK = lim
p→∞

Tr e−βKIR(p) = lim
p→∞

∫
dµR(p)(φ

∗
0, φ0) e

−
∫
dy |φ0(y)|2 〈φ0

∣∣ e−βK
∣∣ φ0

〉

It follows from Lemma III.4 and the dominated convergence theorem that

Tr e−βK = lim
p→∞

∫ ∏
τ∈Tp

[
dµR(p)(φ

∗
τ , φτ ) e

−
∫
dy |φτ (y)|2

] ∏
τ∈Tp

〈
φτ−ε

∣∣ e−εK
∣∣ φτ

〉

as desired.

The logarithm of
〈
α
∣∣ e−εK

∣∣ φ
〉

Theorem III.1 is a rigorous version of the intermediate representation (I.5). As

discussed in the introduction, it now remains to show that one may replace
〈
α
∣∣ e−εK

∣∣ φ
〉

by e
∫
dyα(y)∗φ(y) − εK(α∗,φ) in the formula for Tr e−βK of Theorem III.1. In Theorem III.13,
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below, we show that this is indeed the case, provided R(p) is chosen appropriately. To prepare

for that, we explicitly find the logarithm F (ε, α∗, φ) = ln
〈
α
∣∣ e−εK

∣∣ φ
〉
at least for α and φ

not too large, and show that

F (ε, α∗, φ) =

∫

X

dx α(x)∗φ(x)− εK(α∗, φ) +O(ε2)

This expression is the same, to order ε, as

F (ε, α∗, φ) =

∫∫

X2

dxdy α(x)∗j(ε;x,y)φ(y)

− 1
2ε

∫∫

X2

dxdy α(x)∗α(y)∗ v(x,y)φ(x)φ(y) +O(ε2)

provided j(ε) = 1l− ε(h−µ)+O(ε2). For application of renormalization group methods, the

latter form is more convenient. So we show it too. We typically use the supremum norm

|φ|X = max
x∈X

|φ(x)|

to measure the size of the field φ and the norm

‖h‖1,∞ = max
x∈X

∫

X

dy |h(x,y)|

to measure the size of (symmetric) integral operators on L2(X).

Proposition III.6 For each ε > 0, there is an analytic function F (ε, α∗, φ) such that
〈
α
∣∣ e−εK

∣∣ φ
〉
= eF (ε,α∗,φ)

on the domain |α|X , |φ|X < Cε where Cε =
[
8eε(‖h‖1,∞+µ+v0) ε‖v‖1,∞

]−1/2

with v0 =

max
x∈X

v(x,x).

Let cj > 0 and j(ε;x,y) be the kernel of an operator obeying
∥∥j(ε)− e−ε(h−µ)

∥∥
1,∞ ≤ cjε

2

Define the function F1(ε, α
∗, φ) by

F (ε, α∗, φ) =

∫∫

X2

dxdy α(x)∗j(ε;x,y)φ(y)

− ε
2

∫∫

X2

dxdy α(x)∗α(y)∗ v(x,y)φ(x)φ(y) + F1(ε, α
∗, φ)

For every ε0 > 0 there is a constant const (depending only on ε0, ‖h‖1,∞, v, cj and µ) such

that for all 0 < ε < ε0

|F1(ε, α
∗, φ)| ≤ const ε2(R2 + ‖v‖21,∞R6) |X |

for all |α|X , |φ|X ≤ R ≤ 1
2Cε.

An immediate consequence is
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Corollary III.7 We use the notation of Proposition III.6. Define the function F0(ε, α
∗, φ)

by

F (ε, α∗, φ) =

∫

X

dx α(x)∗φ(x)− εK(α∗, φ) + F0(ε, α
∗, φ)

where

K(α∗, φ) =

∫∫

X2

dxdy α(x)∗h(x,y)φ(y)− µ

∫

X

dx α(x)∗φ(x)

+ 1
2

∫∫

X2

dxdy α(x)∗α(y)∗ v(x,y)φ(x)φ(y)

For every ε0 > 0 there is a constant const (depending only on ε0, ‖h‖1,∞, v and µ) such that

for all 0 < ε < ε0
|F0(ε, α

∗, φ)| ≤ const ε2(R2 + ‖v‖21,∞R6) |X |

for all |α|X , |φ|X ≤ R ≤ 1
2Cε.

We now prove a number of lemmas leading up to the proof of Proposition III.6, following

Lemma III.11.

Lemma III.8 Let ε > 0. There exists a function F (ε, α∗, φ), analytic in α∗ and φ in a

neighbourhood of the origin, such that

〈
α
∣∣ e−εK

∣∣ φ
〉
= eF (ε,α∗,φ)

F satisfies the differential equation

∂
∂εF = −K(α∗, ∂∂α∗ )F − 1

2

∫∫

X

dxdy α(x)∗α(y)∗ v(x,y) ∂ F
∂α(x)∗

∂ F
∂α(y)∗

with the initial condition

F (0, α∗, φ) =

∫

X

dx α(x)∗φ(x)

Here,

K(α∗, ∂∂α∗ ) =

∫∫

X

dxdy α(x)∗ h(x,y) ∂∂α(y)∗ − µ

∫

X

dx α(x)∗ ∂∂α(x)∗

+ 1
2

∫∫

X

dxdy α(x)∗α(y)∗ v(x,y) ∂∂α(x)∗
∂
∂α(y)∗

Proof: Set λ0 = λ0(v) as in Definition II.16. Since, by Propositions II.22 and II.17,

∣∣ 〈α
∣∣ e−εK

∣∣ φ
〉 ∣∣ ≤

∞∑

m=0

‖α‖m

√
m!

∣∣∣∣∣∣e−εK
∣∣
Bm

∣∣∣∣∣∣‖φ‖m

√
m!

≤
∞∑

m=0

‖α‖m

√
m!
e− ε(

λ0
2

m
|X|

+λ′
0−

v0
2 −µ)m ‖φ‖m

√
m!

≤
∞∑

m=0

1
2mm!

(
‖α‖2 + ‖φ‖2

)m
e− ε(

λ0
2

m
|X|

+λ′
0−

v0
2 −µ)m
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the Taylor series expansion of
〈
α
∣∣ e−εK

∣∣ φ
〉

converges for all α, φ ∈ L2(X) so that
〈
α
∣∣ e−εK

∣∣ φ
〉
is an entire function of α∗ and φ. Since

〈
α
∣∣φ

〉
= e

∫
α∗(x)φ(x) dx 6= 0, the

matrix element has the representation

〈
α
∣∣ e−εK

∣∣ φ
〉
= eF (ε,α∗,φ)

in a neighbourhood of 0, with F (ε, α∗, φ) is analytic in α∗, φ. We have

eF (ε,α∗,φ) ∂
∂εF = ∂

∂εe
F (ε,α∗,φ) = ∂

∂ε

〈
α
∣∣ e−εK

∣∣ φ
〉
= −

〈
α
∣∣Ke−εK

∣∣ φ
〉

= −
〈
α
∣∣∣
[ ∫∫

X2

dxdy ψ†(x) h(x,y)ψ(y)− µ

∫

X

dx ψ†(x)ψ(x)

+ 1
2

∫∫

X2

dxdy ψ†(x)ψ†(y) v(x,y)ψ(x)ψ(y)
]
e−εK

∣∣∣φ
〉

By Proposition II.20, the first term

〈
α
∣∣∣
[ ∫∫

X2

dxdy ψ†(x) h(x,y)ψ(y)
]
e−εK

∣∣∣φ
〉

=

∫∫

X2

dxdy h(x,y)
〈
α
∣∣ψ†(x)ψ(y)e−εK

∣∣ φ
〉

=

∫∫

X2

dxdy α(x)∗h(x,y)
〈
α
∣∣ψ(y)e−εK

∣∣ φ
〉

=

∫∫

X2

dxdy α(x)∗h(x,y)∂∂α(y)∗
〈
α
∣∣ e−εK

∣∣ φ
〉

=

∫∫

X2

dxdy α(x)∗h(x,y)∂∂α(y)∗ e
F (ε,α∗,φ)

Treating the other two terms similarly,

eF (ε,α∗,φ) ∂
∂ε
F = −

[ ∫∫

X2

dxdy α(x)∗ h(x,y) ∂
∂α(y)∗

− µ

∫

X

dx α(x)∗ ∂
∂α(x)∗

+ 1
2

∫∫

X2

dxdy α(x)∗α(y)∗ v(x,y) ∂
∂α(x)∗

∂
∂α(y)∗

]
eF (ε,α∗,φ)

The differential equation for F follows.

Lemma III.9 The function F (ε, α∗, φ) of Lemma III.8 has an expansion

F (ε, α∗, φ) =
∞∑

n=1

∫

X2n

dnx̃ dnỹ enµFn(ε, x̃, ỹ)
n∏
i=1

α(xi)
∗φ(yi) where

x̃ = (x1, · · · ,xn)
ỹ = (y1, · · · ,yn)
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in powers of the fields α∗ and φ. Furthermore

F1(ε,x1,y1) = e−εh(x1,y1)

Fn(ε, x̃, ỹ) = −1
2

∫ ε

0

dτ

∫

Xn

dnx̃′ (e−(ε−τ)Hn
)
(x̃, x̃′)

n−1∑
m=1

Sx̃,ỹ

m∑
j=1

n∑
k=m+1

v(x′
j ,x

′
k)

Fm(τ, x̃′
[≤m], ỹ[≤m])Fn−m(τ, x̃

′
[>m], ỹ[>m])

where Sx̃,ỹ denotes independent symmetrization in the x variables and the y variables,

Hn(x̃, x̃
′) =

n∑

k=1

h(xk,x
′
k)

∏

1≤ℓ≤n
ℓ 6=k

δxℓ
(x′
ℓ) + 1

2

n∑

j,k=1
j 6=k

v(xj ,xk)
∏

1≤ℓ≤n
δxℓ

(x′
ℓ)

and

x̃′ = (x′
1, · · · ,x′

n) x̃[≤m] = (x1, · · · ,xm) and x̃[>m] = (xm+1, · · · ,xn)

Proof: Expand F in the power series

F (ε, α∗, φ) =
∞∑

n=1

∫
dnx̃ enεµFn(ε, x̃, φ)

n∏
i=1

α(xi)
∗

in α∗ with coefficients Fn(ε, x̃, φ) that are symmetric under permutation of the xk’s. The

constant term is zero because
〈
α
∣∣ e−εK

∣∣ φ
〉 ∣∣
α=φ=0

= 1. Each Fn(ε, x̃, φ) has degree n in

φ because the fact that e−εK preserves particle number implies that F (ε, e−iθα∗, eiθφ) =

F (ε, α∗, φ) for all real θ. Observe that

enεµFn(ε, x̃, φ) =
1
n!
∂
∂α(x1)∗

· · · ∂∂α(xn)∗
F (ε, α∗, φ)

∣∣∣
α=0

and

1
n!
∂
∂α(x1)∗

· · · ∂∂α(xn)∗

∫∫

X2

dxdy α(x)∗h(x,y)∂∂α(y)∗ F (ε, α
∗, φ)

∣∣∣∣
α=0

=

n∑

k=1

1
n!

∫

X

dy h(xk,y)
∂
∂α(y)∗

∏

ℓ6=k

∂
∂α(xℓ)∗

F (ε, α∗, φ)

∣∣∣∣
α=0

=

n∑

k=1

1
n!

∫

X

dx′
k h(xk,x

′
k)e

nεµFn(ε,x1, · · · ,xk−1,x
′
k,xk+1, · · · ,xn, φ)

and

1
n!
∂
∂α(x1)∗

· · · ∂∂α(xn)∗
G(α∗)H(α∗)

=

n∑

m=0

S
[

1
m!

m∏

ℓ=1

∂
∂α(xℓ)∗

G(α∗)
][

1
(n−m)!

n∏

ℓ=m+1

∂
∂α(xℓ)∗

H(α∗)
]
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where S denotes the symmetrization operator in the variables xk. Thus Lemma III.8 gives

the system of equations

∂
∂ε
F1(ε,x1, φ) = −

∫
dx′

1 h(x1,x
′
1)F1(ε,x

′
1, φ) and for n > 1

∂
∂εFn(ε, x̃, φ) = −

∫
dnx̃′ Hn(x̃, x̃

′)Fn(ε, x̃
′, φ)

− 1
2

n−1∑
m=1

S
m∑
j=1

n∑
k=m+1

v(xj ,xk)Fm(ε,x1, · · · ,xm, φ)Fn−m(ε,xm+1, · · · ,xn, φ)

(III.7)

with the initial condition

F1(0,x1, φ) = φ(x1), Fn(0, x̃, φ) = 0 for n > 1

The “integral” form of these equations is

F1(ε,x1, φ) =
(
e−εhφ

)
(x1)

Fn(ε, x̃, φ) = −1
2

∫ ε

0

dτ

∫
dx̃′ (e−(ε−τ)Hn

)
(x̃, x̃′)

n−1∑
m=1

S
m∑
j=1

n∑
k=m+1

v(x′
j ,x

′
k)

Fm(τ,x′
1, · · · ,x′

m, φ)Fn−m(τ,x
′
m+1, · · · ,x′

n, φ)

We remark that the fact that Fn(ε, x̃, φ) is of degree n in φ also follows by induction on n

from these equations. Writing

Fn(ε, x̃, φ) =

∫
dỹ Fn(ε, x̃, ỹ)

n∏
i=1

φ(yi)

for each n ≥ 1, with the Fn(ε, x̃, ỹ)’s symmetric under permutations of the yk’s too, defines

the functions of the Lemma.

We now estimate the norm of the operator e−εHn of Lemma III.9, acting on functions

F : Xn ×Xn → C. The space of functions is equipped with the norm

‖F‖1,∞ = max
1≤j≤2n

max
xj∈X

∫

X2n−1

|F (x1, · · · ,x2n)|
∏

1≤i≤2n
i 6=j

dxi

Lemma III.10 Write

Hn(x̃, x̃
′) = hn(x̃, x̃

′) + Vn(x̃, x̃
′)

where

hn(x̃, x̃
′) =

n∑

k=1

h(xk,x
′
k)

∏

1≤ℓ≤n
ℓ 6=k

δxℓ
(x′
ℓ)

Vn(x̃, x̃
′) = 1

2

n∑

j,k=1
j 6=k

v(xj ,xk)
∏

1≤ℓ≤n
δxℓ

(x′
ℓ)

30



For all F : Xn ×Xn → C, we have

(a)
∥∥e−εhnF

∥∥
1,∞ ≤ enε‖h‖1,∞

∥∥F
∥∥
1,∞

(b)
∥∥e−εVnF

∥∥
1,∞ ≤ e

1
2nεv0

∥∥F
∥∥
1,∞ where v0 = max

x∈X
v(x,x)

(c)
∥∥e−εHnF

∥∥
1,∞ ≤ enε(‖h‖1,∞+ 1

2 v0)
∥∥F

∥∥
1,∞

(d)
∥∥HnF

∥∥
1,∞ ≤ n

(
‖h‖1,∞ + 1

2
(n− 1)|v|X

)∥∥F
∥∥
1,∞

Proof: (a) The kernel of e−εhn is

e−εhn(x̃, x̃′) =
n∏

k=1

e−εh(xk,x
′
k)

So we may view e−εhnF as

n factors︷ ︸︸ ︷
e−εh ⊗ · · · ⊗ e−εh ⊗

n factors︷ ︸︸ ︷
1l⊗ · · · ⊗ 1l =

n∏

k=1

k−1 factors︷ ︸︸ ︷
1l⊗ · · · ⊗ 1l⊗e−εh ⊗

n−k factors︷ ︸︸ ︷
1l⊗ · · · ⊗ 1l

acting of F , viewed as an element of L2(X2n). The bounds

sup
x

∫
dx′

∫
dz1 · · ·dzm

∣∣L(x,x′)
∣∣ ∣∣G(x′, z1, · · · , zm)

∣∣

= sup
x

∫
dx′ ∣∣L(x,x′)

∣∣
∫
dz1 · · ·dzm

∣∣G(x′, z1, · · · , zm)
∣∣

≤ ‖L‖1,∞
∥∥G

∥∥
1,∞

and

sup
zm

∫
dx dx′

∫
dz1 · · ·dzm−1

∣∣L(x,x′)
∣∣ ∣∣G(x′, z1, · · · , zm)

∣∣

= sup
zm

∫
dx′dz1 · · ·dzm−1

[ ∫
dx

∣∣L(x,x′)
∣∣
] ∣∣G(x′, z1, · · · , zm)

∣∣

≤ ‖L‖1,∞
∥∥G

∥∥
1,∞

imply that

∥∥∥
k−1 factors︷ ︸︸ ︷
1l⊗ · · · ⊗ 1l⊗L⊗

n−k factors︷ ︸︸ ︷
1l⊗ · · · ⊗ 1lF

∥∥∥
1,∞

≤ ‖L‖1,∞
∥∥F

∥∥
1,∞ (III.8)

Part (a) now follows by repeated application of (III.8) in conjunction with

∫
dx′ ∣∣e−εh(x′,x)

∣∣ =
∫
dx′ ∣∣e−εh(x,x′)

∣∣ ≤
∞∑

n=0

∫
dx′ 1

n!ε
n
∣∣hn(x,x′)

∣∣

≤
∞∑

n=0

1
n!ε

n‖h‖n1,∞ = eε‖h‖1,∞

(III.9)
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(b) Since v(x,y) is the kernel of a positive definite operator

n∑

j,k=1
j 6=k

v(xj ,xk) =

n∑

j,k=1

v(xj ,xk)−
n∑

j=1

v(xj ,xj) ≥ −v0n (III.10)

so that
∣∣e−εVnF (x̃, ỹ)

∣∣ ≤ e
1
2nεv0

∣∣F (x̃, ỹ)
∣∣

(c) follows from the Trotter product formula

e−εHnF = lim
p→∞

(
e−

ε
phne−

ε
pVn

)p
F

and repeated application of parts (a) and (b).

(d) By (III.8),
∥∥hnF

∥∥
1,∞ ≤ n‖h‖1,∞

∥∥F
∥∥
1,∞

Since
∣∣∣

n∑

j,k=1
j 6=k

v(xj ,xk)
∣∣∣ ≤ n(n− 1)|v|X

we also have
∥∥VnF

∥∥
1,∞ ≤ 1

2
n(n− 1)|v|X

∥∥F
∥∥
1,∞

and the claim follows.

Lemma III.11 The functions Fn(ε, x̃, ỹ) of Lemma III.9 obey

‖Fn(ε, · , · )‖1,∞ ≤
(
8ε‖v‖1,∞

)n−1
enεK1 1

n3

where K1 = ‖h‖1,∞ + v0
2 . Furthermore there is a constant const , depending only on ‖h‖1,∞

and ‖v‖1,∞, such that

F2(ε,x1,x2,y1,y2) = −1
4
εv(x1,x2)

[
δx1

(y1)δx2
(y2) + δx1

(y2)δx2
(y1)

]

+ F2+(ε,x1,x2,y1,y2)

with

‖F2+(ε, · , · )‖1,∞ ≤ const ε2 ‖v‖1,∞e2εK1
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Proof: We first prove the bound on ‖Fn(ε, · , · )‖1,∞ by induction on n. The case n = 1

follows immediately from (III.9). So assume that the bound has been proven for all m < n.

In general, if

F (x1, · · · ,xn+m) =

∫
dy1dy2 G(x1, · · · ,xn,y1)ω(y1,y2)H(y2,xn+1, · · · ,xn+m)

then

‖F‖1,∞ ≤ ‖G‖1,∞‖ω‖1,∞‖H‖1,∞
This is proven by repeated application of

∣∣∣∣
∫
dx2dy f(x1,y)g(y,x2)

∣∣∣∣ ≤
∫
dy |f(x1,y)|

∫
dx2 |g(y,x2)| ≤

∫
dy |f(x1,y)| ‖g‖1,∞

≤ ‖f‖1,∞‖g‖1,∞

Hence, by the inductive hypothesis, Lemma III.9 and part (c) of Lemma III.10,

‖Fn(ε, x̃, ỹ)‖1,∞ ≤ 1
2

∥∥∥∥
∫ ε

0

dτ

∫
dx̃′ (e−(ε−τ)Hn

)
(x̃, x̃′)

n−1∑
m=1

Sx̃,ỹ

m∑
j=1

n∑
k=m+1

v(x′
j ,x

′
k)

Fm(τ, x̃′
[≤m], ỹ[≤m])Fn−m(τ, x̃′

[>m], ỹ[>m])

∥∥∥∥
1,∞

≤ 1
2

∫ ε

0

dτ e(ε−τ)K1n
n−1∑
m=1

m∑
j=1

n∑
k=m+1

‖v‖1,∞ ‖Fm(τ, · )‖1,∞ ‖Fn−m(τ, · )‖1,∞

≤ 1
2
enεK1

(
8‖v‖1,∞

)n−2
∫ ε

0

dτ τn−2
n−1∑
m=1

m∑
j=1

n∑
k=m+1

‖v‖1,∞ 1
m3

1
(n−m)3

= 1
16e

nεK1
(
8ε‖v‖1,∞

)n−1 1
n−1

n−1∑
m=1

1
m2

1
(n−m)2

≤ 1
16e

nεK1
(
8ε‖v‖1,∞

)n−1 1
n−1

8
n2

≤
(
8ε‖v‖1,∞

)n−1
enεK1 1

n3

The equation for n = 2 in Lemma III.9 yields

F2(ε,x1,x2,y1,y2) = −1
2

∫ ε

0

dτ

∫
dx′

1dx
′
2

(
e−(ε−τ)H2

)
(x1,x2,x

′
1,x

′
2) v(x

′
1,x

′
2)

1
2

[
e−τh(x′

1,y1) e
−τh(x′

2,y2) + e−τh(x′
1,y2) e

−τh(x′
2,y1)

]

= −1
4
εv(x1,x2)

[
δx1

(y1)δx2
(y2) + δx1

(y2)δx2
(y1)

]

+ F2+(ε,x1,x2,y1,y2)

where the second order Taylor remainder

F2+(ε,x1,x2,y1,y2) =

∫ ε

0

dτ ′ (ε− τ ′) ∂
2

∂ε2
F2(τ

′,x1,x2,y1,y2) (III.11)
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By (III.7)

∂
∂εF2(ε,x1,x2,y1,y2) = −

∫
dx′

1dx
′
2 H2(x1,x2,x

′
1,x

′
2)F2(ε,x

′
1,x

′
2,y1,y2)

− 1
2Sx,yv(x1,x2)F1(ε,x1,y1) F1(ε,x2,y2)

and hence

∂2

∂ε2F2(ε,x1,x2,y1,y2) = −
∫
dx′

1dx
′
2 H2(x1,x2,x

′
1,x

′
2)
∂
∂εF2(ε,x

′
1,x

′
2,y1,y2)

− Sx,yv(x1,x2)F1(ε,x1,y1)
∂
∂εF1(ε,x2,y2)

Using part (d) of Lemma III.10 and the bounds on F1 and F2 already proven, we have

∥∥∂
∂εF2(ε, · , · )

∥∥
1,∞ ≤

∥∥H2F2(ε, · , · )
∥∥
1,∞ + 1

2‖v‖1,∞
∥∥F1(ε, · , · )

∥∥2
1,∞

≤ 2
(
‖h‖1,∞ + 1

2 |v|X
)∥∥F2(ε, · , · )

∥∥
1,∞ + 1

2‖v‖1,∞
∥∥F1(ε, · , · )

∥∥2
1,∞

≤ 1
2‖v‖1,∞

[
1 + 4ε

(
‖h‖1,∞ + 1

2 |v|X
)]
e2εK1

Using the bound ∥∥∂
∂ε
F1(ε, · , · )

∥∥
1,∞ =

∥∥he−εh
∥∥
1,∞ ≤ ‖h‖1,∞eεK1

we similarly get

∥∥∂2

∂ε2F2(ε, · , · )
∥∥
1,∞

≤
∥∥H2

∂
∂εF2(ε, · , · )

∥∥
1,∞ + ‖v‖1,∞

∥∥F1(ε, · , · )
∥∥
1,∞

∥∥∂
∂εF1(ε, · , · )

∥∥
1,∞

≤
(
‖h‖1,∞ + 1

2 |v|X
)
‖v‖1,∞

[
1 + 4ε

(
‖h‖1,∞ + 1

2 |v|X
)]
e2εK1 + ‖v‖1,∞ ‖h‖1,∞ e2εK1

≤
[
‖v‖1,∞

(
2‖h‖1,∞ + 1

2 |v|X
)
+ 4ε‖v‖1,∞

(
‖h‖1,∞ + 1

2 |v|X
)2]

e2εK1

≤ const ‖v‖1,∞e2εK1

Hence, by (III.11) ∥∥F2+(ε, · , · )
∥∥
1,∞ ≤ const ε2 ‖v‖1,∞e2εK1

as desired.

Proof of Proposition III.6: We routinely write x̃ for (x1, · · · ,xn) and ỹ for (y1, · · · ,yn).
The value of n should be clear from the context. By Lemma III.11,

∞∑

n=3

∫
dx̃dỹ

∣∣enεµFn(ε, x̃, ỹ)
n∏
i=1

α(xi)
∗φ(yi)

∣∣ ≤
∞∑

n=3

|X | enεµ
∥∥Fn(ε, · , · )

∥∥
1,∞ |α|nX |φ|nX

≤ |X |
∞∑

n=3

(
8ε‖v‖1,∞

)n−1
enε(K1+µ)|α|nX |φ|nX

(III.12)
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This gives us the desired domain of analyticity. Since
〈
α
∣∣ e−εK

∣∣ φ
〉
and eF (ε,α∗,φ) are both

analytic on this domain and since they agree for all sufficiently small α, φ, they coincide on

the full domain.

Set

F1(ε, α
∗, φ) =

∫
dxdy

[
eεµF1(ε,x,y)− j(ε;x,y)

]
α(x)∗φ(y)

+

∫
d2x̃d2ỹ

[
e2εµ − 1

]
F2(ε, x̃, ỹ)

2∏
i=1

α(xi)
∗φ(yi)

+

∫
d2x̃d2ỹ F2+(ε, x̃, ỹ)

2∏
i=1

α(xi)
∗φ(yi)

+

∞∑

n=3

∫
dnx̃dnỹ enεµFn(ε, x̃, ỹ)

n∏
i=1

α(xi)
∗φ(yi)

so that

F (ε, α∗, φ) =

∫∫

X2

dxdy α(x)∗j(ε;x,y)φ(y)

− ε
2

∫∫

X2

dxdy α(x)∗α(y)∗ v(x,y)φ(x)φ(y) + F1(ε, α
∗, φ)

If |α|X , |φ|X ≤ R, then, by (III.12),
∣∣∣∣

∞∑

n=3

∫
dnx̃dnỹ enεµFn(ε, x̃, ỹ)

n∏
i=1

α(xi)
∗φ(yi)

∣∣∣∣ ≤ |X |
∞∑

n=3

(
8ε‖v‖1,∞

)n−1
enε(K1+µ)R2n

≤
64 |X |ε2‖v‖21,∞e3ε(K1+µ)R6

1− 8ε‖v‖1,∞eε(K1+µ)R2

≤ 128 ε2R6 |X | ‖v‖21,∞e3ε(K1+µ)

Similarly, by Lemma III.11,
∣∣∣∣
∫
d2x̃d2ỹ F2+(ε, x̃, ỹ)

2∏
i=1

α(xi)
∗φ(yi)

∣∣∣∣ ≤ |X |
∥∥F2+(ε, · , · )

∥∥
1,∞R

4

≤ const ε2R4 |X | ‖v‖1,∞e2ε(K1+|µ|)

and
∣∣∣∣
∫
d2x̃d2ỹ

[
e2εµ − 1

]
F2(ε, x̃, ỹ)

2∏
i=1

α(xi)
∗φ(yi)

∣∣∣∣ ≤ 2ε|µ| |X |
∥∥F2(ε, · , · )

∥∥
1,∞R

4e2ε|µ|

≤ 2|µ|ε2R4 |X | ‖v‖1,∞e2ε(K1+|µ|)

and ∣∣∣∣
∫
dxdy

[
eεµF1(ε,x,y)− j(ε;x,y)

]
α(x)∗φ(y)

∣∣∣∣

≤ |X |
∥∥e−ε(h−µ) − j(ε)

∥∥
1,∞R

2

≤ cjε
2R2 |X |
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Since

R4‖v‖1,∞ = R
(
R3‖v‖1,∞

)
≤ 1

2

(
R2 + ‖v‖21,∞R6

)

the desired bound on F1 follows.

Example III.12 Here is a simple example that shows that
〈
α
∣∣ e−εK

∣∣ φ
〉
can have zeroes so

that the logarithm of
〈
α
∣∣ e−εK

∣∣ φ
〉
need not be defined for all α, φ ∈ L2(X). If the finite set

X , which plays the role of space here, consists of just a single point, then each n–particle space

Bn with n ≥ 1 has dimension exactly one. So any operator that commutes with the number

operator must be a function of the number operator. In particular, K = H0+V −µN , which

is of degree two in the annihilation operators and of degree two in the creation operators, is

a polynomial in N of degree two. As a simple example, we take K = N2 −N . Then

〈
α
∣∣ e−ε(N2−N)

∣∣φ
〉
=

∞∑
n=0

(α∗φ)n

n! e−εn(n−1)

Set

f(z) =
∞∑
n=0

zn

n!
e−εn(n−1)

Observe that f fulfills the functional equation

f ′(z) = f(e−2εz)

since

f(e−2εz) =

∞∑

n=0

zn

n! e
−2εne−εn(n−1) =

∞∑

n=0

zn

n! e
−εn(n+1) = d

dz

∞∑

n=0

zn+1

(n+1)!e
−εn(n+1)

= d
dz

∞∑

n=1

zn

n!
e−εn(n−1) = d

dz
f(z)

We claim that f necessarily has a zero on the negative real axis, somewhere between 0 and

− 1
1−e−2ε = − 1

2ε+O(ε2)
.

Proof: Set κ = e−2ε < 1, so that f ′(z) = f(κz). By inspection, f(x) > 0 for all x ≥ 0.

Now assume that f has no zero on the negative real axis. Then

h(x) = − log f(−x)

is well defined for all real x and fulfills the equation

h′(x) = f ′(−x)
f(−x) = f(−κx)

f(−x)

= eh(x)−h(κx)
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In particular h′(x) > 0 for all x ∈ IR and h is monotonically increasing. The second derivative

h′′(x) = (h′(x)− κh′(κx)) eh(x)−h(κx)

=
(
eh(x)−h(κx) − κ eh(κx)−h(κ

2 x)
)
eh(x)−h(κ x)

As κ < 1 and h(0) = 0, we have h′′(0) = 1 − κ > 0. Next we show that h′′(x) > 0 for all

x ≥ 0. If this were not the case we would have a smallest positive zero x0 of h′′. Then h′

would be monotonically increasing in [0, x0]. By the formula for h′′ above

eh(x0)−h(κ x0) − κ eh(κx0)−h(κ2 x0) = 0

so that

h(x0)− h(κx0) < h(κx0)− h(κ2 x0)

By the mean value theorem there exist ξ1 ∈ [κx0, x0] and ξ2 ∈ [κ2 x0, κ x0] such that

h(x0)− h(κx0) = h′(ξ1) (1− κ) x0

h(κx0)− h(κ2 x0) = h′(ξ2) (1− κ) κx0

Then

h′(ξ1) (1− κ) x0 < h′(ξ2) (1− κ) κx0

and

h′(ξ1) < h′(ξ2) κ

As ξ2 ≤ ξ1 ≤ x0 and κ < 1 this contradicts the monotonicity of h′ on [0, x0].

Since h(0) = 0 and h′′(x) > 0 for all x ≥ 0 we have h(κx) ≤ κh(x) for all x ≥ 0 and

therefore h(x)− h(κx) ≥ (1− κ) h(x). In particular

h′(x) = eh(x)−h(κ x) ≥ e(1−κ)h(x) ⇒ e−(1−κ)h(x)h′(x) ≥ 1 ⇒ − 1
1−κ

d
dx
e−(1−κ)h(x) ≥ 1

Integrating both sides and using the initial condition h(0) = 0 gives

− 1
1−κ

[
e−(1−κ) h(x) − 1

]
≥ x ⇒ e−(1−κ)h(x) ≤ 1− (1− κ)x

for all x ≥ 0. Thus h(x) must have a pole at some 0 < x < 1
1−κ and f(x) must have a zero

at some − 1
1−κ < x < 0.
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A Functional Integral Representation of Tr e−βK

Let h be a single particle operator on X and v(x1,x2) a real, symmetric, pair

potential which is repulsive in the sense of Definition II.16. One of our precise formulations

of the standard physics representation (I.1) for the partition function Tr e−β K , where K =

H0(h, X) + V(v,X)− µN is the second quantized Hamiltonian of a boson gas, is

Theorem III.13 Suppose that the sequence R(p) obeys

lim
p→∞

p e−
1
2R(p)2 = 0 and R(p) < p

1
24|X|

Then

Tr e−β K = lim
p→∞

∫ ∏
τ∈Tp

[
dµR(p)(φ

∗
τ , φτ ) e

−
∫
dy [φ∗

τ (y)−φ∗
τ−ε(y)]φτ (y) e−εK(φ∗

τ−ε,φτ )
]

with the conventions that ε = β
p and φ0 = φpε . The function K(α∗, φ) was defined in

Corollary III.7.

This Theorem will be proven after Example III.17. During the course of the proof, we

will modify the factors
〈
φτ−ε

∣∣ e−εK
∣∣ φτ

〉
of the integrand in Theorem III.1, using the

representation of these factors in Corollary III.7. In Proposition III.16, below, we develop

some machinery to assist in proving that such modifications do not change the limit.

Definition III.14 Let r > 0. Define, for I : C2|X| → C, the seminorm

‖I‖r = sup
α,φ∈CX

|α|X,|φ|X≤r

|I(α, φ)|

The “r–product” of I,J : C2|X| → C, with ‖I‖r, ‖J ‖r <∞ is defined to be

(I ∗r J )(α, γ) =

∫
I(α, φ)J (φ, γ) dµr(φ

∗, φ)

which is just the convolution with respect to the measure dµr. The qth power with respect

to this product is denoted

I∗r q =

q factors︷ ︸︸ ︷
I ∗r I ∗r · · · ∗r I

Example III.15 For each ε > 0, set

Iε(α, φ) = e−
1
2‖α‖

2− 1
2‖φ‖

2

eF (ε,α∗,φ) = e−
1
2‖α‖

2− 1
2‖φ‖

2 〈
α
∣∣ e−εK

∣∣ φ
〉
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Theorem III.1 states that, for R(p) obeying lim
p→∞

pe−
1
2R(p)2 = 0,

Tr e−βK = lim
p→∞

∫
dµr(φ

∗, φ) I∗rp
ε (φ, φ)

∣∣∣
r=R(p)
ε=β/p

The operator K is bounded below. Suppose that K ≥ −K01l. Then

∣∣ 〈α
∣∣ e−εK

∣∣ φ
〉 ∣∣ ≤ ‖α‖eεK0‖φ‖ = e

1
2‖α‖

2+ 1
2‖φ‖

2

eεK0

implies that

‖Iε‖r ≤ eεK0

for all r > 0. Furthermore

I∗r q
ε (α, φ) = e−

1
2‖α‖

2− 1
2‖φ‖

2
〈
α
∣∣∣
(
e−εKIr

)q−1
e−εK

∣∣∣ φ
〉

Thus, by part (c) of Theorem II.26,

‖I∗r q
ε ‖r ≤ eqεK0

for all r > 0.

Proposition III.16 Let K0, ε, ζ > 0 and 0 < κ < 1 and r, Cβ ≥ 1 obey

Cβ
(
πr2

)3|X|
ζ1−κ ≤ ε

Let I, Ĩ : C2|X| → C obey

‖I − Ĩ‖r ≤ ζ ‖I∗r q‖r ≤ eqεK0 for all q ∈ IN

Then, for all q ∈ IN with q ≤ Cβ

ε ,

‖Ĩ∗r q‖r ≤ eqε(K0+ζ
κ)

‖Ĩ∗r q − I∗r q‖r ≤ ζκeqε(K0+ζ
κ)

∫
dµr(φ

∗, φ)
∣∣∣Ĩ∗r q(φ, φ)− I∗r q(φ, φ)

∣∣∣ ≤ ζκeqε(K0+ζ
κ)

Proof: For notational convenience, we suppress the subscript r on ∗r. We first prove, by

induction on q, that

‖Ĩ∗q‖r ≤ (A+B)q ‖Ĩ∗q − I∗q‖r ≤ qB(A+B)q−1 (III.13)
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where A = eεK0 and B =
(
πr2

)2|X|
ζ. The case q = 1 is obvious. So assume that these

bounds hold when q is replaced by ℓ < q. Then

Ĩ∗q =
q−1∑

ℓ=0

I∗ℓ ∗ (Ĩ − I) ∗ Ĩ∗q−ℓ−1 + I∗q

Since ∫
dµr(φ

∗, φ) ≤
(
πr2

)|X|

we have

∥∥Ĩ∗q∥∥
r
≤

q−1∑

ℓ=0

‖I∗ℓ‖r
(
πr2

)|X|‖Ĩ − I‖r
(
πr2

)|X| ∥∥Ĩ∗q−ℓ−1
∥∥
r
+
∥∥I∗q∥∥

r

≤
q−1∑

ℓ=0

Aℓ B (A+B)q−ℓ−1 + Aq

and
∥∥Ĩ∗q − I∗q∥∥

r
≤

q−1∑

ℓ=0

Aℓ B (A+B)q−ℓ−1

Then (III.13) follows from

(A+B)q =

q−1∑

ℓ=0

Aℓ(A+B)q−ℓ −
q−1∑

ℓ=0

Aℓ+1(A+B)q−ℓ−1 + Aq

=

q−1∑

ℓ=0

AℓB(A+B)q−ℓ−1 +Aq

and

(A+B)q −Aq =

∫ 1

0

dt d
dt
(A+ tB)q ≤ qB(A+B)q−1

To complete the proof, we observe that

A+B = eεK0 +
(
πr2

)2|X|
ζ ≤ eεK0

(
1 +

(
πr2

)2|X|
ζ
)
≤ eεK0

(
1 + εζκ

)

≤ eε(K0+ζ
κ)

and

qB, qB
(
πr2

)|X| ≤ Cβ

ε

(
πr2

)3|X|
ζ ≤ ζκ
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Example III.17 Let

Iε(α, φ) = e−
1
2‖α‖

2− 1
2‖φ‖

2

eF (ε,α∗,φ) = e−
1
2‖α‖

2− 1
2‖φ‖

2 〈
α
∣∣ e−εK

∣∣ φ
〉

be as in Example III.15 and set

Ĩε(α, φ) = e−
1
2‖α‖

2− 1
2‖φ‖

2

eF (ε,α∗,φ)−F0(ε,α
∗,φ) = e−

1
2‖α‖

2− 1
2‖φ‖

2 〈
α
∣∣ e−εK

∣∣ φ
〉
e−F0(ε,α

∗,φ)

where F0 was defined in Corollary III.7. Observe that

Ĩε(α, φ) = exp
{
− 1

2‖α‖
2 − 1

2‖φ‖
2 +

∫
dx α∗(x)φ(x)− εK(α∗, φ)

}

Let r satisfy r ≤ 1
2

[
8eε(‖h‖1,∞+µ+v0) ε‖v‖1,∞

]−1/2

. Then, by Corollary III.7,

|F0(ε, α
∗, φ)| ≤ const ε2

(
r2 + ‖v‖21,∞r6

)
|X | for all |α|X , |φ|X ≤ r

Consequently (assuming that r > 1 and allowing the constant to depend on ‖v‖1,∞ too)

‖Iε − Ĩε‖r = sup
|α|X ,|φ|X≤r

∣∣∣e− 1
2‖α‖

2− 1
2‖φ‖

2 〈
α
∣∣ e−εK

∣∣ φ
〉 [

1− e−F0(ε,α
∗,φ)

]∣∣∣

≤ eεK0 const ε2r6|X | econst ε2r6|X|

Proof of Theorem III.13: We apply Proposition III.16 with I = Iε, Ĩ = Ĩε, as in

Examples III.15 and III.17, ζ = ε3/2, r = R(p), p = β
ε , κ = 1

12 and Cβ = β. If ε is sufficiently

small, the three hypotheses of the Proposition are satisfied because then

Cβ
(
πr2

)3|X|
ζ1−κ = βπ3|X|R(p)6|X|ε

3
2 (1− 1

12 ) ≤ βπ3|X|(β
ε

) 6
24 ε

33
24 ≤ ε

and, by Example III.17,

‖I − Ĩ‖r ≤ const ε2
(
β
ε

) 1
4|X| |X |eεK0 econst |X|ε2(β/ε)

1
4|X| ≤ ε3/2 = ζ

and, by Example III.15,

‖I∗r q‖r ≤ eqεK0

By the last conclusion of Proposition III.16,

lim
p→∞

∫
dµr(α

∗, α)
∣∣Ĩ∗rp
ε (α, α)− I∗rp

ε (α, α)
∣∣
∣∣∣
r=R(p)
ε=β/p

= 0

Recall, from Example III.15, that

Tr e−βK = lim
p→∞

∫
dµr(φ

∗, φ) I∗rp
ε (φ, φ)

∣∣∣
r=R(p)
ε=β/p
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so that

Tr e−βK = lim
p→∞

∫
dµr(φ

∗, φ) Ĩ∗rp
ε (φ, φ)

∣∣∣
r=R(p)
ε=β/p

= lim
p→∞

∫ ∏
τ∈Tp

[
dµR(p)(φ

∗
τ , φτ ) e

− 1
2‖φτ−ε‖2− 1

2‖φτ‖2+
∫
dy φ∗

τ−ε(y)φτ (y) e−εK(φ∗
τ−ε,φτ )

]

= lim
p→∞

∫ ∏
τ∈Tp

[
dµR(p)(φ

∗
τ , φτ ) e

−‖φτ‖2+
∫
dy φ∗

τ−ε(y)φτ (y) e−εK(φ∗
τ−ε,φτ )

]

= lim
p→∞

∫ ∏
τ∈Tp

[
dµR(p)(φ

∗
τ , φτ ) e

−
∫
dy [φ∗

τ (y)−φ∗
τ−ε(y)]φτ (y) e−εK(φ∗

τ−ε,φτ )
]
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Appendix A: A Cameron Style Model Computation

We consider the formal infinite dimensional complex Gaussian measure

1
N

∏

0≤τ<1

dφ∗
τ dφτ

2πi e

∫
1

0
dτ φ∗

τ (∂+µ)φτ

where µ < 0,

∂φτ = lim
ε→0+

1
ε

[
φτ+ε − φτ

]

and the normalization constant N is chosen so that the integral of the function 1 with respect

to this measure is one. This is the formal Gaussian measure of (I.1) when β = 1, IR3 is replace

by a single point and h = v = 0. Suppose one attempts to construct this measure as the limit

lim
p→∞

1
Np

∏

τ∈Tp

dφ∗
τ dφτ

2πi exp
{

1
p

∑

τ∈Tp

[
φ∗τ p(φτ+1/p − φτ ) + µφ∗τφτ

]}
(A.1)

of finite dimensional complex Gaussian measures. Here, Tp =
{

q
p

∣∣ q = 0, · · · , p − 1
}
and

we use the convention that φ1 = φ0. The normalization constant

Np =

∫
dνp(φ

∗, φ)

where

dνp(φ
∗, φ) =

∏

τ∈Tp

dφ∗
τ dφτ

2πi exp
{

1
p

∑

τ∈Tp

[
φ∗τ p(φτ+1/p − φτ ) + µφ∗τφτ

]}

The following proposition shows that (A.1) cannot be a well–defined complex measure.

Proposition A.1 Let µ < 0. Then

lim
p→∞

Np =
1

e−µ − 1

However, if p is a multiple of 8 and is large enough, then

∫ ∣∣dνp(φ∗, φ)
∣∣ > 10p/8

Proof: Think of Tp as the discrete torus 1
p
ZZ/ZZ. Denote by L2(Tp) the p complex dimen-

sional Hilbert space of functions on Tp with the usual inner product
(
ψ, φ

)
=

∑
τ∈Tp

ψ∗
τφτ .

Define the operator ∂p on L2(Tp) by

(
∂pφ

)
τ
= p(φτ+1/p − φτ )
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Set, for each 0 ≤ n ≤ p− 1

en(τ) = e2nπı τ

Then
{
en(τ)

}
n=0,···,p−1

is an (orthogonal) basis for L2(Tp) and each en(τ) is an eigenvector

for any translation invariant operator on L2(Tp). Since

∂pen(τ) = p
(
e2π

n
p ı − 1

)
en(τ)

the eigenvalues of ∂p are

λn,p = p
(
e2π

n
p ı − 1

)
, n = 0, 1, · · · , p− 1

The 2p real dimensional Gaussian integral

Np =

∫ ∏

τ∈Tp

dφ∗
τ dφτ

2πi e
1
p (φ,(∂p+µ)φ) =

p−1∏

n=0

[
− 1

p (λn,p + µ)
]−1

We have

lim
p→∞

p−1∏

n=0

[
− 1

p (λn,p + µ)
]
= lim
p→∞

p−1∏

n=0

[
1− µ

p − e2π
n
p ı
]
= lim
p→∞

(
1− µ

p

)p − 1 = e−µ − 1

since
p−1∏

n=0

(
z − eı

2πn
p
)

= zp − 1

On the other hand, assuming that p is divisible by 8,

∫ ∣∣dνp(φ∗, φ)
∣∣ =

∫ ∏

τ∈Tp

dφ∗
τ dφτ

2πi

∣∣e 1
p (φ,(∂p+µ)φ)

∣∣ =
p−1∏

n=0

[
− 1

pRe (λn,p + µ)
]−1

and

p−1∏

n=0

[
− 1

p
Re (λn,p + µ)

]
=

p−1∏

n=0

[
Cp − cos(2π n

p
)
]

where Cp = 1− µ
p

= (Cp − 1)(Cp + 1)

p
2−1∏

n=1

[
Cp − cos(2π np )

]2
since cos(2π p−np ) = cos(2π np )

= (Cp − 1)C2
p(Cp + 1)

p
4−1∏

n=1

[
C2
p − cos2(2π np )

]2
since cos(2π p/2−np ) = − cos(2π np )

= (Cp − 1)C2
p(Cp + 1)(C2

p − 1
2
)2

p
8−1∏

n=1

[
C2
p − cos2(2π n

p
)
]2[
C2
p − sin2(2π n

p
)
]2

since cos(2π p/4−np ) = sin(2π np )
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Now

[
C2
p − cos2(2π np )

]2[
C2
p − sin2(2π np )

]2
=

[
C4
p − C2

p + sin2(2π np ) cos
2(2π np )

]2

=
[
C2
p

(
− 2µp + µ2

p2

)
+ 1

4 sin
2(4π np )

]2

≤ 1
10

if p is large enough, since lim
p→∞

Cp = 1 and lim
p→∞

(
− 2µp + µ2

p2

)
= 0. If p is large enough, we

also have

(Cp − 1)C2
p(Cp + 1)(C2

p − 1
2)

2 = −µ
pC

2
p(Cp + 1)(C2

p − 1
2 )

2 < 1
10
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