A Functional Integral Representation
for Many Boson Systems
II: Correlation Functions

Tadeusz Balaban
Department of Mathematics
Rutgers, The State University of New Jersey
110 Frelinghuysen Rd
Piscataway, NJ 08854-8019
tbalaban@math.rutgers.edu

Joel Feldman*
Department of Mathematics
University of British Columbia
Vancouver, B.C.
CANADA V6T 172
feldman@math.ubc.ca
http: /www.math.ubc.ca/~feldman/

Horst Knorrer, Eugene Trubowitz
Mathematik
ETH-Zentrum
CH-8092 Ziirich
SWITZERLAND
knoerrer@math.ethz.ch, trub@math.ethz.ch
http: /www.math.ethz.ch /~knoerrer/

Abstract. We derive functional integral representations for the partition function and
correlation functions of many Boson systems for which the configuration space consists of
finitely many points.

* Research supported in part by the Natural Sciences and Engineering Research Council of
Canada and the Forschungsinstitut fiir Mathematik, ETH Ziirich.



I. Introduction

We are developing a set of tools and techniques for analyzing the large dis-
tance/infrared behaviour of a gas of bosons as the temperature tends to zero. In [I], we
developed functional integral representations for the partition function of a many—boson sys-
tem on a finite configuration space X with a repulsive two particle potential v(x,y). Let H
be the Hamiltonian, N the number operator, 8 the inverse temperature and p the chemical
potential. The main result, Theorem II1.13, of [I] is
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with the conventions(!) that e = %, $o = ¢p and T, % ‘ q=1,---,p } The

“classical” H — uN is
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where h is the single particle operator. For each r» > 0,

de (07, 8) = T [“504220 v (lo()))]

xeX

where . is the characteristic function of the closed interval [0, r]. In [I, Theorem III.13], we
need the hypothesis that the integration radius R(p) obeys
Jm - p e P’ = 0 and  R(p) < pTX (1.2)
In [I], we outlined our motivation for deriving the function integral representation
(I.1). We wish to use functional integrals as a starting point for analyzing the long distance
behavour of a many boson system. Such an analysis begins by directly extracting detailed
properties of the ultraviolet limit p — oo from the finite dimensional integrals in (I.1). These
detailed properties would, in turn, provide a suitable starting point for an analysis of the
thermodynamic limit and the temperature zero limit. The restrictions (I.2) on the domain
of integration in (I.1) are not well suited for such a program. This is particularly obvious for
the | X| dependent second condition in (I.2). In Theorem II.2, we prove a representation for
the partition function, similar to (I.1), but with functional integrals that are better suited to
this program.

(1) We also use the convention that [dx = > xex
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The choice of integration domain in Theorem II.2 is motivated by the following
considerations. For two particle potentials that are repulsive in the sense that

Ao = Xo(v) =inf { [dxdy p(x)v(x,y)p(y) | [dx p(x)?=1, p(x)>0forallx € X } >0
(1.3)
the real part of the exponent of the integrand of (I.1) is, roughly speaking, dominated by

-y {%/dx (6r (%) — dr—e()|* + /dxdy [6-(0)]” v(x, y) \¢T(y>}2}
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Contributions to the integral of (I.1) coming from the part of the domain of integration
where, for some 7 and x, ¢ (x) — ¢r—c(x)| > 1 or |¢,(x)| > ﬁ will be extremely small.
Consequently, we ought to restrict the domain of integration to be something like

{ (¢T(X>) 1667;? ‘ ‘d)T(X) - ¢T—E(X)‘ < p0(5)7

qu(x)‘ < {ViTOpO(6>’ TeT,, xeX }

for some function, pg(e), that grows slowly as e — 0.
To study the long distance behaviour of a many boson system, one needs to study
correlation functions. By definition, an n—point correlation function at inverse temperature

B is (up to a sign) an expression of the form

T AT T p(5,,x,)
Tr e_B(H_HN)

Here () refers to either ¥ or ¢t and

YD (7, x) = eM=HNIT (1) (x)e=H-1N)T

The time-ordering operator T orders the product H?:l wm(ﬁj,xj) with smaller times to
the right. In the case of equal times, 1T’s are placed to the right of 1’s. Theorem II1.2 and
(I.1) give functional integral representations for the denominator. The “times” f; appearing
in the numerator need not be rational multiples of 3. Therefore in the functional integral
representations for the correlation functions we replace the set 7, of allowed times by a
partition P = { Ty ‘ 0<t<p } of the interval [0, 8] that contains the points 51, B2, <+, Bn.
The analogs for correlation functions of (I.1) and Theorem II.2 are Theorems III.5 and I11.7,

respectively.



I1I. Another Integral Representation of the
Partition Function

Let h be a single particle operator on X and wv(x1,x2) a real, symmetric, pair
potential which is repulsive in the sense of (I.3). Throughout this section, except where
otherwise noted, we write

K:K(hJ)aXv”):HO(h7X>+V(fU7X)_“N

where, as in [I, Propostion 11.14], Hy(h, X) is the second quantized free Hamiltonian with
single particle operator h, V(v, X) is the second quantized interaction and N is the number
operator. In this section, we prove a variant of the functional integral representation of [I,
Theorem II1.13] that is better adapted to a rigorous renormalization group analysis. Recall,
from [I, Theorem III.1], that

Tre ?* = lim [ ] [duR(p)(%@ = J @ 16:)] ] [T (br—c |75 | 6r)
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with the conventions that ¢ = 5 and ¢o9 = ¢pe = ¢5. Further recall, from [I, Proposition
I11.6], that
<Oé ‘e—aK‘ ¢> _ eF(s,a , )
and, from [I, Lemma III.9], that
SR i:(X1,"',Xn)
F(e,a*, ¢) = / d"xd"y e"MF,(e,x,y y;) where _
Z ! (e )l;[ a(xi) p(yi) 7= (y1. )

In [I, Theorem III.13], we approximated e F(x,y), which is the kernel of the operator
e~ by 1 — e(h — ). Now, more generally, we approximate it by j(e,x,y) where we
only assume that there is a constant c; such that

l7() = e, | < e (IL.1)

where, as in [I], for any operator A on L?(X) with kernel A(x,y), the norm

Al = max { mase [ dy |4Ge,y)l,max [ ax [A(x3)1}

For fields, we use the norms

ol = [ £ 0P| and Jalx = maxfa)

xeX

1
x < Rlp) < p7I=T.
}X < Re, with R. satisfying Hypothesis I1.1, below. In
addition, the new domain of integration will restrict each “time derivative” ‘QSTJF& — ¢T‘ < <

In [I, Theorem III.13], the domain of integration restricted each field }QST
Now we relax that condition to ‘(}57

po(e) with pg satisfying



Hypothesis II.1 Let R. > 0 and po(e) > ln% be decreasing functions of € defined for all
0 <e<1. Assume that

R. > %po(a) and  lim VeR: =0

Theorem I1.2 Let R, and po(e) obey Hypothesis II.1 and j(g) obey (11.1). Let B > 0. Then,
with the conventions that € = % and ¢o = Ppe ,

Tre @5 = tim [ [T |dun. (67, 07) CG(0r . 67) 407 c00)]

p—r0 T7€Tp

where

Aeva*.6) = ~4lalP + [[ dxdy a("i(esxy)oty) - HolF
—5 ] dxay ot ey ot y) 0606()

E:{T:q&f ‘ q:l,...,p}
and (. (o, @) is the characteristic function of |a — ¢|x < po(e).

The proof of Theorem II.2, which comes at the end of this section, is similar in spirit
to that of [I, Theorem III.13], but uses, in place of [I, Example II1.15],

Example I1.3 For each € > 0, set
T (, ¢) = e~ H1eIP= 31017 P 9) — o= HlalP=3101% (o | =<K | )

and use *. to denote the convolution

T+ T)a) = [ 20,07 67) dun(67,0)
of [I, Definition II1.14], with » = R.. Then
Tx (o, ) = o sllel®=3llel? (o] e KR e Ky - Iz e K | ¢)
with ¢ factors of e %, Also set

5T (a, ) = e~ zllal’—zlId1* F(e0.0) {e"F1 079 (a,¢) — 1}

~1/2
where F; was defined, for |a|x, |[¢|x < [866(Hh||1’°°+”+1}0)8“1)“1’00} , in [I, Proposition

I11.6]. Here vy = maxxex |v(x,x)].

The principal difference between the proofs of Theorem I1.2 and [I, Theorem I11.13]
is that is in the latter we simply bounded each integral by the supremum of its integrand
multiplied by its volume of integration while in the former we use a field dependent, integrable,
bound on the integrand. This demands relatively fine bounds on Z}9(«a, ¢) and 6Z.(«, ¢),
which we prove in the next subsection.



Bounds on Z*%(«, ¢) and 6Z.(«, ¢)

Set A\g = Ao(v) as in (1.3). By [I, Proposition II.7],

K > M\N = uN + 3 (Mo = vo) N = 2 (&7 - vN) (IL.2)

where v = )\% max {0,vo + 11 — Aj }. Here X{ is the smallest eigenvalue of h.

Lemma I1.4 The functionals Z. (o, ¢) and dZ.(c, ¢) of Example I1.3 obey the following.

(a) For any v > 0 and q € IN,
‘I:*:q(a, gb)‘ < cle_% min{1,qe Ao}t

where

2
t=g(lal?+lIgl?) e = ettoHIX

(b) For any q € IN,

‘I:Eq(a, ¢)‘ < 02((15%06_03(1‘%2 n 6_5)

where
2
t=1(lal>+|oII>)  co=65etTIEADIXT oy = A

(c) Let B > 0 and assume that ¢ € IN and € > 0 are such that 0 < qe¢ < . If R is large
enough (depending only on v and |X|), then there is a constant const (depending only on
| X|, B, Ao and v) such that

A
720(0,0) = e HIPT I (o [0 | ) | < comst (e A 7T

Proof: (a) Recalling that P(™) denotes projection onto B, (X),

70 0)] < PO S [P0]a) | [P0y e KTy K| [P])]

n=0
< e sllal? o~ 3ol 3 I% o~ Basdo(f —vn) |%
n=0
Observe that
n? v 2
B —vn =2y = 7 (n— “X))" = (v + 29)%|X| = = (v +7)?|X]| (I1.3)
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Using that [l [[¢] < 5 (llel® + 6]?) =

oo n2 o0
‘I*SQ(Q gb)‘ < et E ﬂe—quo’Yne_%QEAO(W—V”—%’”) < et E " g =aeXovn ggedo (v+7)? | X|
€ ’ — n! — n!
n=0 n=0

_ o~ (17101 gedo(v44)?|X |

If ge oy < 1, then, by the alternating series test e~95%07 < 1—q€)\0’7+%(q€/\0"}/)2 < 1—%(]5)\07,
which implies that
‘I*EQ(Oz (b)‘ < e 31NVt ggE N0 (V) ? | X]|
£ ? —

If geAopy > 1, then

}ISEQ(a,qS)} < e~ 3teaero(v+7)? X |

(b) As

2 2
5Ix] — VN = ﬁ(n— v|X])" - 12X > -2 X

n2
we have, since |[Ig,|| < 1 and ||[P(™e=¢K|| < e (frr—rn)

70 0)] < PO Y [P0]a) | [P0y KTy K| [P0])]

n=0
o
~ 4l = 3l0l* $° Lol —daeho (i —vm) |8l
e 2 e 2 e 2 | X|
- vn! vn!
n=0
> 1 n?
§ :t_ zqs)\o(m—un)
n
oo
Z " =5 a0 ?l X
n!
: _ 2 :
If t < e, it suffices to use the bound |Z*%(a,¢)| < e~ eteasror”IX| = ga=dor’IX] gince

65ele=s > 1 implies that 626_% > e?=Xov*IX| for all ¢ < e. So we may assume that t > e.

Similarly, if 220 > 1, we may use the bound
Y X

) )
_ n 1 2 2 _ t no 1,2 2
}I;Eq(oz,qb)} <e t E 2,6 in eqs)\ou | X| <e t E (/ne') e— i —I—neqa)\ou | X|
n=0 n=0
00
— t/e)™ 2 2 —(1-1
<e t § : ( /nel) el—l—qs)\ou X el—l—qa)\ou |X|6 (1-2)t

n=0



So we may also assume that qf)?'“ < 1. For any m > 0 (not necessarily integer)

n _ 4820 2 2 n _ 4820 2 2
T2 a, @) et Y T I et X pemt N LT aR T g hor X
n: n:

n<4dm|X| n>4m|X|
aeXg 2 >
— — n —
< eqs)\ou |X| t(4m|X| + 1) sup ,6 4‘X‘ +e t § : iﬁe gelomn qs)\ou | X|
n=0

eXxg 2 —
_ 6q6>\0y2|X|6_t(4m|X| + 1) sup L t’ 4‘X(‘)n + 6_(1_e qE)‘Om)teqa)\ou2|X|
n!
n

Choose the m specified in Lemma I1.5 below with e replaced by 4= X | Applying that Lemma

gives
IZ29(a, @) < €120 1K=t (4] X | 4 1)26(HD/2 4 g=(1me "0t aeron? |

where m is the unique solution to

gaﬁm—i—lnm—i— 5 = Int
with m > 1. Since
=20 < e~ TxI™
SIxpm < m < te

we have

aeXg

‘I:Eq(a, ¢)‘ < 26q5A0u2|X|(4m|X| + 1>e—(1—e_ 2[X | m)t/2 + e—(l—e*qmom)teqs)\ou2|X|

We treat the two terms,

2
m
>

_asXo .,
T1 = 2695207 Xl (4| X | + 1)e~(1me T Y2
T2 — e—(l—efqgkom)teqa)\ou2|X|

separately.

Case 1: First term, qsf“”'n >1

€A
In thiscase 1 — e~ 2| ™ >1—e ! > % and, since m < t,

T1] < 2695207 IX] (4| X | + 1)t/ < 295207 IX] (44 X | 4 1)/
< 64eq5>‘0”2|X|\X|(1 4+ é)e—t/4 < 646(1+q€>\ou2)|X|e—t/8

Case 2: First term, q€|’\§7|n 1

X
In this case 1 —e 21X X1 > 4 |>‘| since 1 —e~* > 5 for all 0 < a < 1. Hence

>D

‘Tl‘ < 26(16)\0y2|X| (4m|X| + 1)e—qs)\0mt/(8|X|)
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Since

)\Qm 1 3
2X] ~Fm 2 Int—5 = m2

_ t
Inm = £

we have ere
}Tl‘ < 2€q€>\0V2|X|(4m|X| + 1)6_—4o|)?|t

2

< 26100 IXI (RIXL 4 1)t

X2 _4asXg 12
< 2€q€>\01/ | X| qiio (| | + |X|)€ 201X
ggXg 42
< 326(1+qs>\ov X1 qd\ e — o<t
0

Case 3: Second term, gehgm > 1
In this case 1 — e~ 9€20m > 1 _ =1 > % and

‘T2‘ < e—t/zeqa,\oy2|X|

Case 4: Second term, geAgm < 1
Now 1 — e~ 48dom > %qa)\om so that

Ag 42
‘TQ‘ < e 2q5)\0mt geXov? | X| < e~ 10q6>\0t2 geXov? | X| < geXov? | X| )\ e ‘fgl—’?lt
qeAo

since we again have m > =, as in Case 2.

(c)
Introduce the local notation
A — e K if i is odd B — e K ifjis odd
’ Ig, ifiiseven ’ 1 if 7 is even

so that
2g—1 2q—1

(e‘EKIR> HA and e 9K = HB
For any n € IN,
(o (7)o
<|(a| (4~ T B)Pao

2q—1

H Ai(1—Pyp)

>} (I1.4)

o)+ (o] =P

>‘ (IL5)

+ )<0z
Consider the first line, (IL.4). Observe that ||Ig|| < 1, by part (c) of [I, Theorem
I1.26] and K > —$Xo%| X/, by (IL.3) with = 0. Hence

exov?| X S
JAd) ) < {1 s odd

if 7 is even




Since Ay — By = Iz, — 1 for £ =2, 4, ---, 2¢ — 2 and is zero otherwise, we have, for all
n,qclN,

2g—1 2q—1 2q—1 -1 2g—1
H( 14 - [I Bi)P <Y | ma (a-B) 11 BiPs
=1 =1 L=1 =1 i=4+1

IN

(g = e X (T, — )P,
< qeqa)\oy2|X| ‘X| 2n—|—1 e—Rg/Z

by part (d) of [I, Theorem I1.26]. Consequently,

I(a] ((G_EKIRE>Q_1€_EK —e )P o) (IL6)

o~ Hllal®-3

< qeqs)\ou2|X| |X| 2n+1 e—R§/2
Now consider the second line, (I1.5). For all m > 1, K‘B > %)\ (% — z/)m and
Bl o, | s i
i=1 m -
and it follows that
29—1 — Lloe (e — 1 2,1 2
(o 11 A5, 9) o |(afem \¢>\ < e BeEN(Em o dlal* 4319

If we impose the stronger condition m > n with & > 2v, the last inequality becomes

(ol I Ads, |o)] + [{arferrer

Now, we have, if n is large enough (depending only on v and | X|)

2 <a >’ e lel®-3

’qu

¢>’ < e T ol + i)

B?n

—3llal?

2q—1
H Ai(]l - Pn)
=1

’ <a’e‘qEK(]l—Pn)

)

Ao 2 o0 Ao 2
< Y e A < ds e” TIXT% %
m>n n (I1.7)
__2o_ 2 > _ Ao .2 o0 1.2
<e BIXT" qa/ ds e ZIXT® 1€ = itﬁe S1%T ™ q€/ ds e” 2%
0 0
A 2 A 2
_ J8IX] sy niacl X1, ~ X7 4E
o Aoqse 2 2 <4 A qs

Choosing n = 1R2 (so that 2" < ¢3R%) and adding (I1.6) and twice (IL7) gives

T, ¢) — eIl 31017 (o | =K | ) ’

A
< 2qeqs>\ou | X| |X| —R? /4+8 |X| e—wg(‘Rﬁqa



Lemma I1.5 Let 0 <e < % and t > e. Then

2 .n
supe " % < 2e(mt)/2
n>1 )

where m s the unique solution to
2em + Inm + % =Int

with m > 1.

Proof: Recall that Stirling’s formula [AS, 6.1.38] states that for each real n > 0, there is a
0 < 6§ < 1 such that
nl = \2rn"t e

In particular, for n > 1,
V2 tzemn <n!< V2rntee !

Hence

2 2 n . _ _1
e N " < 1 1 n_—en (%) 1 n—en“4+nlnt—nlnn—35lnn (IIS)

o
Observe that, for n > 1,

Z—n[n—enz—l-nlnt—nlnn—%lnn] =1-2n+ht—lnn—1- 4+

:lnt—26n—lnn—ﬁ

Since g—n [2571 +Inn + %] = 2¢e+ % — # >0 foralln>1and Int > 2z + %, the equation
2em + Inm + ﬁ =Int
has a unique solution m > 1. This solution obeys
2em? +mlnm + % =mlnt = =™ = 6_1/2(%)771

The derivative of the last exponent in (II.8) is positive for n < m and negative for n > m.
Hence the last exponent of (I1.8) takes its maximum value at n = m and

AP S | eme—amz(L)m_ e/t 1 m(i)m/2_ e/t 1 em/Z( et )1/2
n!l = /27 m1/2 m m T V2r mi/4 mm+1/2

= Vo= miz€

< Gt e (eVER ) < 26 2 (1) < petm)/2
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For the rest of this section, except where otherwise specified, all constants may

depend on | X|, ¢;j, B and p. They may not depend on ¢ or p.

Lemma I1.6 Let Z.(a, ¢) be as in Example 11.3. There are constants const and Cr such
that, for all sufficiently small € and all |a|x, |¢lx < C—\/fg,

9. (0. ¢)| < const {&”(1 + Jal} + 16/ e~ Fla=elP=dexo(lalia+ieli) | e~

Proof: By [I, Corollary II1.7],
Re[ - Sl - 361 + F(s.a”, )]
= Re [ ol = 40l + | dx a(x)"6(x) K (0”.6) + Fofe. ", 0)
~Hla =0l +Re[—= [[ axdy a(x)hx.y)o) +en [ dx alx)ofx)

X

—£ //){2 dxdy a(x)"a(y)" v(x,y) ¢(x)o(y) + Fole, a, d))]

For any «, ¢ € L*(X), we have

S Re/ dx a(x)*¢(x) < %EH[HO‘HQ + ||¢||2}
— e [ dx (2 LolaGo + % BoloeoP)
< %X e+ grero(llalld + o)

and

— ¢ Re / / dxdy a(x)*h(x,y)o(y)

= —¢ // dxdy a(x)*h(x,y)a(y) +¢ Re// dxdy a(x)*h(x,y)(a — ¢)(y)
< ¢||h|| [[e[[Jec — ||

132 )| [lef)® + 22| h] [jo — ||

Il x| £3/2 4 WBLeB/2 g a4y + L2l o — @]

IA A

and
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- 5 Re [[ dxdy a(x)"a(y)" o(x.5) 6()9()

— e [[ axdy a(x) a0 vixy) aly)aly) - 3z [[ dxdy o000 o(x.5) dl3)"6()
+heRe [[ixdy [a()" (- 0)(x) v(x.¥) aly)"oly) +a” (alx)o(x. y)a* () (- 0) ()]
~ 3 Re [[xdy [(0 = 060000 v(x.3) a3)*6(3)+ 8" (OG5, ¥) 0 — ) (1)L

< —3edo(llaall* + 670]%) + zellv] [I|Oé*(oz =)l e ol + lla™(a = @) [

+ l™(a = @)l la* o[ + l¢™(a — o) ||¢*¢I|]

< —3exo(llallfs + 9l1E) + dellolllla = oll[lalx (lo* gl + ) + 6l (la* ¢l +ll¢*61) |
< =3exo(llallfs + 9liEe) + SavElol o = ol a6l + lla*all + a*gll + "6

< —Lexo(llallfs + 9l1E) + SEvElol e — @l [2elesglles + ol + 013 |

< —Lexo(lalld + lolld) + S VEelloll la — llllalz + S vElvl lla — olllo]2

< —texo(llaflf + 11%) + (2ChIEL)* o= 6l + Heo(llallé + ll6]%)

= —gedo(llallts + I19l1%) + (20RLL)* la - |

and, by [I, Corollary II1.7],
[Fo(a™, d)| < coe®| X[ (lalk + 1015 + [[0]1F sclolk
< coe?| X (1 + gllallz + 5160)

6% )

(ledllgs + N11%)

All together, if ¢ is small enough and 2Cg ” ” < 3 and coC%||v]|? oo|X| < g5 Ao, then there

||1,o<>
is a constant const such that

Re [ — 3llal? = 5l8l1° + F(e, *, ¢)] < —5lla— olI* — Ao (llallz: + l|¢l7:) + const e

and
1Z.(a, 9)| < e~ a2l =Fsero(lala +¢l7: ) +eonst < (IL.9)

Similarly, by [I, Proposition III.6],

[Fi(a,9)] < coe| X (lalx + 6% + lvllf scledk + 0T
< coe?| X (1 + llallz + 5 l160)

%)

X (ledles + N11)

so that, if coCE[|v]13 5| X] < 550 and € is sufficiently small,

‘e_fl(g,a*,(ﬁ)‘ S Const 61_16€>\0(||QH;%4+H¢”§4)
’e‘fl(s’a*’¢) — 1‘ < conste® (1 + |a|% + |¢|§()6%5A0(||a|\j4+||¢|\j4)

12



and
0T (a, 9)| < eRel=zllel’=3l9l +F (a7, qb)]’{e Freatd) _ 1} 4 e~ P e (¢ (a, §) _1}‘
< const {e*(1 + /% + |9%) + {¢(a, 0) — 1}}e—z||0¢—¢|\2_§5>\0(||a|\j4+||¢|\e4)

which yields the desired bound. [ |

Lemma I1.7 Let 8 > 0 and assume that ¢ € IN and € > 0 are such that 0 < qge¢ < 3. Let
Z.(a, @) be as in Example I1.3 and R, obey Hypothesis II.1. Then there are constants ay, as
and as such that

[Z2%(0r, )] < @ (emoallomdl 4 gmaamole))

Proof: Let

ey = Gpe(1+AMIX]

If either ||a of ||¢] is larger than 3—% then, t > QC—q%: and, by part (b) of Lemma II.4,

2 t t 2
*Eq —C3q€t -3 2co 2C3CR -3 —csla—¢||
}Ig }_ )\Oqa +e )S/\Cte +coe” 8 < cqe
where
— _2__4_ —mndl L 2
¢4 = 02(,\001%é c3C% + 1) Cs = mm{32, 16C3CR}

Here we used that
oo — ¢|* < 2/|al|* + 2] 91> =

On the other hand if both ||a|| and ||¢|| are smaller than <
by ¢e, and part (c) of Lemma I1.4,

N then by (I1.9), with ¢ replaced
229, §)] < emllomol reonstas 4 congt L (¢~ 182 4 o~ mikTReee)

< e illa—@lP+eonstge | ogp 1 {6_%”0(5)2 +e saxT p0(8)4}

- g

< 07(6_%H0‘_¢H2 + 6_66p0(5)2)

In both cases,
[Z2%(0r, )] < @ (emallomdl 4 gmaamole))

with

ap =max{cs, ¢r},  az=c¢5, az=cs
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Proof of Theorem I1.2

Lemma II.8 Under the notation and hypotheses of Theorem I1.2 there are constants C' and
k > 0 such that

[ 12:1(0,6) SZ.(00) = dia (6", S)din (27, )
< C{e—mmin{17<Q+q+1>e}nan n e—m(a)z} min {\/g /1f}
e — 9 q5 2 e

forallO<5<1,0§q§éandQ20.
1>

Proof: By Lemmas I1.4, I1.6 and II.7 and the bounds

% < 2°(l¢lx + 1y — ¢l%)

ellallls < 3IXI,-dllall? < (1XI+1) ~5llal
(for all 6 > 0) we have
}ISEQ(Q, ¢>} < Ceraclal (e—%lla—aﬁl\ + 6—2@0(6)2) min {1, %e—m]ellél\‘}; + e—%l|¢>|\}

Z.(6,7)] < Of2 (14 Jol% + |y = % Je 10l —lemrelili =t}

< Cerelll (=2l o=2nmpo(e)®) £2(1 4 |8 e rellolis 4|y — 8|S e~xlle=7I)

I1.10
For the last inequality of (II.10), we used that, for all |¢|x < Re, ( )
e=rellol g2 (1 1 g[S erellolin 4 |y — g[S e~RlIe=) > g=reRe VIXI2 > congt e Po()?
First use (twice) that, for Qe < 1 (if Qe > 1, replace Qe by 1),
grelle|l + klla — ¢ + kQel|dl| = grel|al| + kQella — @l + KQe|| 9] (IL11)

> K(Q + q)ellall
to prove that
e~raellall (¢=2nlla=0ll | o=2kpo(e)?*) o= rel9ll (o= 2=l | o=25p0()*) o=xQell]
< e~recllell(g=2nlla=dll | e—%po(a)?) (e=(Q+Deligllg=rllo—ll 4 e—%po(a)?) (I1.12)

< e—rmin{L(@Q+a+De} ol g—rlla—dl o—rllé=v]l | go—2po(e)?
Next combine
6 (1 g—racllollls 4 o—rlél 1 3/2 —rge|| 6]y —xkll]
18]% (5=¢ “+e ) < St (kgel|9lls) ¢ +—(f<¢!|¢||)
C ( qa)J/Z)
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and

— 4 3/2 _ 4
Blfce 19N < otz (el ) el ol

S ey
< Chzrm
and
Iy — ¢|% e Flellh < ¢,
to give

(1 el I+ — ofcem161) i {1, el 4 et
o (IL13)
S CR 3+m1n{m, W}

By (IL.10), (IL12) and (IL13)

[ 229 (v, )0 (@, ) |e ™I
< 20, [352 + min {V/z, ﬁ}] (e~ min{1.(@+at e} lallg=wlla—dll g=rllo=7ll 4 go=2npo(e)?)

Hence

/ 1259 (@, 6)3Z- (6, 71) e I dyug (6%, )dpar. (17,7)

< 20, [352 1 min {\/g, qs/é\/g}] (DQe—nrnin{l,(Q—i—q—l—l)a}HozH n 3(7rR§)2|X|e_2’$p°(5)2>

with
D= /6_”'”” dp(v*,7)

/
For ¢ < g we have €2 < (15,6/572\2/5 and the bound follows. [ |

Proof of Theorem I1.2: Expand

P
(Ze + 0L, )P — 1P = Z Z TN 5 0L, % T2 % L, * -+ - x L2 % 0L, x T+t
r=1

q1,qp4120
91+ +qpp1=p—"

Hence

‘ / (Z. + 6T.)" — T")(a, @) dum_ (0", )

P
< Z Z /d,uRe ()  sup |ZFT % 0T, % - IFT % 6L, x =9+ (o, )|
r=1 q1:qp4120 |FY|XSRE

q1++qpp1=p—7T

(IL.14)
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We now prove by backwards induction that, for each r > s > 0,

sup ‘I:E‘“ k0L %+ % LU % 0T, x T+ (e, 7)‘

[7Ix <Re
< 30 r—s+1 : { , 1 }
—( ) gg_lmln \/g q?/z\/E
/duRg (Y, 7) |TET % 6T % - - % T 515(04,’y)\{e—ﬂmin{pse,l}l\v” + e‘“po(s)z}
(IL.15)
with

Ps =qsy1+ -+ g1 +(r— )

and C the constant of Lemma II.8. When s = 0, Z9 % §Z, * --- % 9 % §Z.(«,7y) is the
kernel of the identity operator.
Consider the initial case, s = r. By (II.10),

sup ‘_’Z":te * 51.8 K oo *I‘:EQT * 6:2'—6 *I‘;‘a(bukl (Oé,fy)‘
|7l x <Re

< /dHRE(O/*7a/)

sup | (ZF9 % 6L -+ x L0 % 07 ) (a, &) I2=0 41 (o, )]
[vIx <Re

< O/d,uRe(O/*, Q) |0 % 0T, % - 5 T2 % 0T (a, o) [earrell

which provides the induction hypothesis for s = r. Now assume that the induction hypothesis
holds for s. Observe that

/d/J/RE (v*,7) ‘_’Z’:s‘h * 0T * -+ % 729 % 515(06,7)}{e—ﬁmin{psa,1}llvl\ + e—npo(€)2}

< [ dun (@ )i (8", O)dpn (77, 7) {4 ot}

}(I:qu % 0L % - x IFC1 % 61, ) (a, o) TE% (o, ¢) 6L (o, 7)}
(11.16)
By Lemma I1.8, with ¢ = g,

/dNRE(¢*7¢)dMR€ (v*, ) {e—nmin{psa,l}llvﬂ n e—npo<€>2}\1:€qﬁ(a’,¢) 6Z(¢,7)|

S C{ |:e—l{ min{(ps‘FqS-Fl)E,l}Ha’H +e_ﬁp0(€)2i| + e—I{pO(c‘:)? |:e—/{ min{(qs+1)€’1}||a/|| +e_ﬁp0(€)2i| }
min {\/E, qf/%\/g}
< 30{6_“ min{ps_1¢,1}{|a’|] + e_K/pO(E)z} min {\/E 1 }

T qdPyE
(I1.17)
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Here we used Lemma I1.8 with Q¢ = min{pse, 1} for the first term in the curly bracket and
with @ = 0 for the second term in the curly bracket. Inserting this result into (II.16) and
then applying the inductive hypothesis (II.15) yields (I1.15) with s replaced by s — 1 and
~ replaced by o’. In particular, when s = 1, inserting (I1.17) into the inductive hypothesis
(I1.15) yields

sup }I:s‘]l % 0L, * - *I:EQT * 0L, *I:EQT+1 (oz,’y)‘
lv]x <Re

(IL18)

}{e—nmin{pe,l}nau i e—ﬁpo(€)2}

< (3C)* H min {\/E, (]5/7%\/5
=1 ¢

Applying (I1.18) to (I1.14), it follows that

)/[(Is + 81, — I*%](a, a) dpg, (0", a)

p T
< Z Z (3C) ! H min {\/E, qz/ié\/g}
r=1

91 qpr4+120 /=1
g1+ +qprp1=p—r

/duRE(a*,a) {e_“min{ps’l}”a” + e‘“pO(E)Z} (I1.19)

< const i Z (3C)r*t ﬁ min {\/E, W}
0 g

r=1 q1;-: Q'r>0 =1
< const Z [3CZm1n{ g, 5/2\/_}]
q>0
Since
£ —-3/2
Swin{ve shat < S Vet Y s <const (s + L (he) )
q>0 0<q9< 73 9= 575
< const e
(I1.20)
we get that
‘ / [(Z. + 0Z.)*P — TP ] (o, @) dur, (@, @)| = 0(61_10)
and the Theorem follows from
Tre K = lim [ Z¥P(a, @) dur. (a*, a)
P—00

which was proven in [I, Theorem III.1]. |
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III. Correlation Functions

By definition, an n—point correlation function at inverse temperature 3 is an expres-

sion of the form « .
Tr e PET IT;- (B85, %)
Tr e BK

Here (1) refers to either ¥ or ¢t and
B0 (7, ) = KD ()57
The time—ordering operator T orders the product H?Zl v,ZJ(T)(Bj,Xj) with smaller times to
the right. In the case of equal times, ¥1’s are placed to the right of ¢’s. We already have
functional integral representations for the denominator, which is just the partition function.
In this section, we outline the analogous construction of functional integral representations
for the numerator.
Recall that a partition P of the interval [0, 5] is a finite set of points 7, 0 < £ < p,
that obeys
O=1<n<-<17p1<7,=0 (IIL.1)
We shall only consider partitions all of whose subintervals 7, — 741 are of roughly the same
size. We denote by p = p(P) the number of intervals in the partition P and set ¢ = ¢(P) = %.
For the rest of this section we fix > 0,n € Nand 0 =3y < 51 < B2 < --- < Bpy1 = 6.
Then
Tr e AET H;.Lzl ¢(T)(ﬁj, X;)
Tr e—PK
Tr e~ (B=Fr) Ky (1) (x,, ) e~ Bn=Bn-1) Ko (1)(x,, _1) - - - e~ (B2=BK (1) (x e~ K
B Tr e BK

Definition III.1

(a) A (Bo, -, Bnr1)—partition is a partition P = { T ‘ 0</i<p } of the interval [5o, Bp+1]
(i) that contains the points 81, B2, -+, B, and for which
(i) $e(P) < 7p—1e—1 < 2¢(P) for all 1 < £ < p.

(b) We denote by P = P (o, -+, Bn+1) the set of all (o, - -, Bnt1)-partitions. When we say
that
lim f(P)=F

pP— 0
we mean that for every n > 0 there is an N € IN such that |F — f(P)| < n for all P €
P(Bo, -+, Bnr1) with p(P) > N.

The analog of [I, Theorem III.1] is

18



Theorem II1.2 Let R(P,¢) > 0, for each P € P and 1 < ¢ < p(P), and assume that

p(P)

: —i1R(Pe)? _
Jim D e =0 (I11.2)
=1

Then,

Tr e PET I1 ¢(T)(6j,xj)

j=1
—uwm . ~ [ dy 16, )P (=) K - NG
pi}nolo H /’LR(P,Z)((ZSTe ) ¢Tz) € (ZSTIZfl € (ZSTe H ¢6j (XJ)
= ot

with the convention that ¢o = ¢g .

Example I11.3 Let C > v/2. Any R(P,/)’s that obey R(P,¢) > C/Inp(P) satisfy the
hypothesis of Theorem III.2, because

p(P) ) ) p(P) s s
D e RPN <N p(P) T2 < p(P) =€
=1 =1

Remark ITII.4 In fact Theorem II1.2 does not use condition (ii) of Definition III.1.a. It
suffices to require (II1.2). For example, any R(P, ¢)’s that obey

R(P,¢) > Cy/In n—lng,l where P = {0 =19,71, -+, 7p_1 < 7p = B} and C' > V2
work, as long as the mesh ||P|| = max (7 — 7y—1) tends to zero, because
1<t<p(P)
p(P) ) ,  P) o o
Z e_ER(P7€) < Z(TE _ TE—l)EC < HPHEC _lﬁ
=1 =1

Proof of Theorem III.2: We may assume, without loss of generality, that the number
1’s is the same as the number of 1’s so that the operator H?Zl (@D(T)(xj)e_(ﬁj“_ﬁj)K)
commutes with the number operator. Otherwise, both sides are zero. (To see that the right
hand side vanishes, use invariance under ¢,, — ¢,,€%.) So, by the definition of I, (given
in the statement of [I, Theorem I1.26]), [I, Proposition II.20] and [I, Proposition II1.28] (we’ll
prove boundedness of the appropriate operator shortly), the integral on the right hand side

can be written
p(P)

Tr [[ e ) 5wy Inep ¥/
(=1
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where the product is ordered with smaller indices on the right,

v, = ﬁ {w(xj) if 8; = 7¢ and ¥ (x;) = ¥(x;)

iy 1 otherwise

and
v =TI {W(Xj) if 55 = o and 9 (0(x;) = ¥ (x;)
i1 1 otherwise
Replacing all the Ig(p)’s by 1 gives the trace on the left hand side.
Recall that P("™) is the orthogonal projection on the m particle space B,,(X) and
that P, is the orthogonal projection on ,.,, Be(X). Since K and I, preserve particle
number, 1T increases it by one and decreases it by one, there are, for each m € IN U {0},

integers m —n < my <m-+n, 1 << p(P), such that

p(P) p(P)
p(m) H 6_(”_”—1)K\Ifg_IR(P,Iz)\1’1}F = H P(me)e_m_n_l)K\PE_IR(P,IZ)\IJZ
(=1 =1

Recall from (I1.2) that, if X7 = 2V (the constant v was defined just after (I1.2)) and 7 > 0,
then .
2
[PmeK|| < e~ (I11.3)
By [I, Lemma I1.13], the local density operator 1 (x)1(x), when restricted to the m particle
space B,,, has eigenvalues ¢ running over the integers from 0 to m. As a consequence

[ex)P"™ || <vm  and  |[P™Myl(x)|| < vm (I11.4)

Hence if each Jy, 1 < £ < p(P), is either Iz(py) or 1, we have
p(P) o )
| P T e Kuz gw || < e (i ) 8
=1

assuming that ”&” > 2v. Pick any v > 0 with 2v < i‘&ﬁ'. Then there is a constant

(depending only on ~, ;\&6' and n) such that

p(P)
Hp(m) H e_(T[—T[—l)K\IIZ_Jg\Ifz_H < const e~ 2ym?
/=1

This supplies the boundedness required for the application of [I, Proposition I1.28] referred
to earlier. As in [I, (IT1.6)], this also implies that

p(P)
Te(1— Pp) [[ e 0 K07 Jpuf| < Ce™™ (IIL5)
=1
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for all sufficiently large m.
If one J, with 1 < £ < p(P), say £ = Lo, is Ig(p¢) — 1 and each of the others is either

Ir(p,e) or 1, then, by part (d) of [I, Theorem II.26] and the fact that K > —Kq (where, by
(11.2), Ko = 321%|X])

p(P)
Hp(m) H e_(n_n_l)K\Pg_JZ\I’?H < eKoB(m+n)%|X|2m+n+1e—R(P,£o)2/2
=1
and
p(P) ,
‘Tﬁr Py [] e_(”_”—l)K\Ile_Jg\Ilﬂ < Cpe RPH)7/2 (I1L.6)
o=

with the constant Cy, depending on K3, n and | X | as well as m. Using the usual telescoping
decomposition of a difference of products and applying the bounds (IIL.5) and (III1.6) now

gives
. p(P)
Tr e BET le(T)(ﬁmxj) — Ty H e_(”_T‘“l)K‘IJZIR(P,e)‘I’Z‘
1= /=1
p(P) p(P)
_ ‘Tr H e_(Te_q-g_l)K\Ije—]l\I,Z — Ty H 6_(”_”_1)K\115_1R(P,€)\112_
=1 =1
p(P)
<2067 4 37 Cre MR
lp=1

for all sufficiently large m. The claim follows by choosing, for each £ > 0, m large enough

that 2Ce= ™" < 5 and then choosing p large enough that the remaining sum is smaller than
g

. n
The analog of [I, Theorem III1.13] is

Theorem II1.5 Let

1
P g < (_L_\ SR
1§%1§)}((P)R( 0 = (&)

for each P € P and assume that

p(P) ) )
. —IR(P0)? _
Jm, 2 e 0
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Then,

Tr e PET Hl w(T)(ﬁj, x;)
]:

p(P) * * *
—lim [ [] [ N o [ dy [67,30)=0%, , N]ér, () e—(n—n_nK(%_l,W]

pP—>00
n
H d)ﬁj XJ

with the convention that ¢o = ¢g. Recall that K(a*, ¢) was defined in [I, Corollary II1.7].

Proof: We give the proof for the case that 0 =3y < 51 < 2 < --- < B, < B = Bp+1- The
proofs for the other cases require only very minor changes. Let, as in [I, Examples I11.15 and
I11.17],

T.(a, ¢) = e 3loIP=319I° F(c.a®.9) = e 3lelP =311 (o | ==K | )
I.(o, ) = o zlal?=310l° o F(e.0™0)=Fole,a™,0) _ ,—3llel*~5le) {a }e_EK‘ ¢>>e‘fo(€7a*’¢>

where F( was defined in [I, Corollary II1.7]. Recall that
Z.(a,0) =exp { = dal = 3ol + [ dx a” (x0o(x) - eK (o)

For any partition P={0=19 <71 <--- <7, =} € P, set, for 1 </ <m < p(P),

ﬁ,m(¢ Cb ) ( €0 *R(P,0) Iag+1 *R(Pe+1) " XR(P,m—1) Ia,n)(¢7 ¢/)
(Cb ¢ ) ( ey *R(P0) Iag_,_l *R(Pe4+1) " KR(P,m—1) Ia,n)(¢7 ¢/)

LJI

where £y = 7y —1y_1. The convolution *, was introduced in [I, Definition III.14]. By Theorem
L2, if 8; = 7, for 1 < j <,

Tr e PET H w(ﬂ(ﬁj X;)
j=1

n (IIL7)
= lim /HdﬂR(P,ej)(quj,%J H 10540 (9855 98,40) HQ% x;)!
j=0

pP—00

where by = By = 0, 41 = p(P), ¢g,.,, = ¢o and R(P,0) = R(P,p(P)). On the other hand,
the right hand side of the claim of the current Theorem is

i [ L dincr(@3,000) 1] 3001000 (05,: 65,0 chgj ()¢ (I1L8)
=0 =0

pP—00
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We apply Proposition II1.6.b, below with Z, replaced by Z.,, T, replaced by ige,
(o = 5:2/2, re = R(P{), k = %, p = p(P) and Cg = B. If p(P) is sufficiently large, the
hypotheses of the Proposition are satisfied because then

L

n 1 301 2
Cg (m m?xrg)( +3)(1X[+1) ¢ < 57T(”+3)(|X|+1)(5(}))355(1 ) < 287 (nTIXI+D) 28 < ¢,

1
since ﬁ < %, and, by [I, Example II1.17] with r = (%) XD >y, 1y,

1

- 1 T
||Ise —IaeHT(HM S eaeKO const 8%(%) 41X |X| econSt|X|€122(2/5€)4‘X‘ S 52’/2 = CZ
and, as [I, Example II.15] (just replace the ¢ — 1 appearances of I, by I,,, ---, I, and
the ¢ appearances of e=¢K by e=5¢K ... e=emK)
||IEe i, _’Z'E“_l Krper ot K, Iam ||7“e_1,rm < e(Ee—l—-..—l—sm)Ko
The Theorem now follows by Proposition I11.6.b, (II1.7) and (III.8). [ |

Proposition III.6 Let Ko > 0, 0 < x <1, Cg > 1 and p € IN. Let ro,---,7p > 1,
€1, ,6p >0 and ¢, -+, > 0 and assume that 1 +---+¢, < Cg. For each 1 < { <p, let
Ig,ig -2 . Define, for each 1 < ¢ < m <p,

’JZ,m - IZ *r, Iﬁ—l—l *re+1 R S Im ’JZ,m — -,Z.K *rp -,Z.K—I—l *Tg+1 HRE O S Im
and assume that
||I€ _iZHW—l,Te < Cﬁ ||j€,m||rg_1,r7n < e(Ee+~~~+Em)K0
where
|Z|rr = sup ‘I(¢7 ¢/)‘
¢,¢’eCX
¢l x <7, |¢/| x <r’

(a) If

C/j (71—7%—1)”(| Zl_n(ﬁr?)p(l < € fOT‘Z = 17"'7p

th tting ¢ =
en, setting ¢ max Ce,

< elerttep) (Ko+C")

||jl,p r0,Tp —

Hfjlﬂp o jl,p”?"oﬂ"p < CH€(€1+"'+EP)(KO+C“)

(b) Let n € N and 0 < {4y <---</l, <p. Ifry,---,rp, <71 with
Cj (wrz)(n+3)(|x|+l)cgl_“ <g forl=1,---,p
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then

n

p—1 D
‘/Hduwwz,w H (de—1, b0) H
=0 =1

p

/Hdﬂw &7, Pe) H (be—1,b¢) H (%))

n n

‘/Hduw ¢€ 7¢€ H Li+1,0541 ¢€w¢€j+1 H¢€ (x])( )

n

[Tt 6,000 T3 100600000 I
j=0 Jj=0

< Cﬁe(€1+~~+€p)(Ko+<”)
where o =0, {41 = p and, as usual, ¢, = ¢o.

Proof: The proof is very similar to the proof of [I, Proposition III.16]. [ |

The analog of Theorem II.2 is

Theorem IIL.7 Let R. and po(e) obey Hypothesis 1.1 and j(g) obey (II.1). Let B > 0. Set

R(P, ) = Re(p), for each partition P = {O =T0< T << Tp= B} €EPandl <l <p(P).

Then, with the conventions that € = e(P) = % ,p=p(P), e¢ =70 — Te—1 and ¢o = ¢35,

Tr e PET .Hl w(T)(ﬁj, x;)
J:
p—00

p . n

3 * A ' PN *

= hIIl EHI |:d,LLR€ <¢Tg7 (ZSTE) C€(¢T[,17¢T[) € (ae ¢ -1 d) Z):| | | ¢BJ (Xj)( )
= =1

where

Alee,a*,8) = —Laf]? + // dxdy a(x)"j(es %, y)é(y) — 1161
-4 //X dxdy a(x)"aly)" vixy) 6)(Y)

and (. (o, @) is the characteristic function of |a — ¢|x < po(e).

We prove this theorem following the proof of Lemma II1.10, below. Until we start
the proof of Theorem III.7, we fix a partition P = {O =T0< T < < Ty = ﬁ} € P and
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set € = % ,eo=1p— 11 and r = R.. We let Z. and 0Z. be defined as in Example I1.3 and
write Z, for Z., and ig for Z., 4+ 0Z.,. Thus

Ig((l/, ¢) %H 12— ||¢|\2€F(€z,a*7¢) — —1a a2 H¢||2 <a }e_E?ZK} ¢>
Zo(a, @) = —%H IP=3161% F(cesa” )= Fileea™ D) (@, )
515((]5’ d)) _% ‘O‘HZ ||¢H2 F(Eé [e4 a¢){e .7'—1(62,& ¢)<‘ (Oé ¢ _ 1}

where F; was defined in [I, Proposition II1.6]. Recall that

—Hlal> = (|8l* + F(ee, a*, ¢) — Fi(er, o, ¢) = Aler, o, ¢)

We also introduce analogs of Z, and Z; that contain the appropriate correlation fields from

H?:l Ps; (Xj)(*)~

Co(e, @) = To(a, 9)0e(8)  Colc, ) = Zo(er, 9)De(¢)  6Cu(cr, ) = 0Ty(cx, §)Do(9)
(I11.9)

where

¢p, (x;)* if B; =7 and YD (x;) = ¥T(x;)

J 1 otherwise

o [ 98, (%) if B = 1 and (D (x;) = (x;)

The various convolutions are

j@,m(¢7 ¢/) = (Ié *p IE—i—l oo Ky Im)((ba (ZS,)
Q:E,m(gb, ¢/> = (CE *p CZ-i—l koo Xy Cm) (¢7 ¢/> (IIIlO>
étg’m((ﬁ, ¢/) = (é@ *p é€+1 Kp ook ém) (¢7 ¢/)

We have proven, in Theorem II1.2, that the left hand side in Theorem III.7 is

lim [ & p(a,a) dug_(a”, )

p— 00

On the other hand, the right hand side in Theorem IIL.7 is

lim | € ,(a,) dugr.(a*, )

p— 00

Lemma II1.8 Let1 </ <m <pand writeE=¢cy+ -+ ¢&,,. Then

(a) For any v > 0,
‘j&m(a, ¢)} S Cle_% min{l’E?AOFY}t

where
= L(lalP+[817) e = ePoTIX]
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(b) We have

where

=y 2
t=L(lall? + 6]%) e =650+ NXT oy = Ao

(c) Let B > 0 and assume that 0 < ey +---+¢e, < B. If r is large enough (depending only on
v and | X|), then there is a constant const (depending only on |X|, 5, Ao and v) such that

_ A 4 —
Tem(a, @) — e 2131017 (o [ =K | o) | < const { (1 — )4 + L™ 51 7'¢}

The proof of this lemma is virtually the same as the proof of its analog, Lemma I1.4.

For the rest of this section, except where otherwise specified, all constants may
depend on |X|, v, ||h
particular, on € = £(P) or p = p(P).

1,00, Cj, B, i and n. They may not depend on the partition P and, in

Lemma IIL.9 Let J; (v, ¢) be as in (II1.10). There are constants a1, az and as such that
‘jé,m(ay (ZS)‘ S (5} (e—a2||o¢—¢”2 + e—a3p0(5)2)

forall1 <t <m <p.
The proof of this lemma is virtually identical to that of its analog, Lemma II.7.

Lemma III.10 Under the notation and hypotheses of Theorem III.7 there are constants
C and k > 0 such that the following holds. Let 0 < e <1 and 1 < ¢ < m < p and set
g=m—L{+1. Write |y|+ = max{1, |v|x}.

(a) Denote by n' the total number of ¢pg, (x;)) % in €, as defined in (111.9) and (II1.10).

Then / _ 2
sup € (,9)] < C ol {emrminttactlal 4 mrmler*)
¢

enote n'" 1s the total number o (X, s in €y 0C11, as defined in .9) an
(b) D by n' is the total number of ¢, (x;)™) ’s in €pm 6Cimy1, as defined in (I11.9) and
(II1.10). Then
[1€im(@0) sCniaon] 11l e du (6 b (77,
A AR A

foralln+n" <n and Q > 0.
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Proof: We start by observing, just as in (I1.10), that

130 (, 0)| < 2ne|\a||( —srlla=dll  ¢=3xp0(9)*) i {1 1relellya e—nnw}
7€
}6Im+1 (6,7 } e relloll —3ﬁ|\¢—’yll+e—3ﬁpo(€)2) 52(1+|¢|§(6—K6|I¢H§4 +]y — ¢|§(6—%H¢—’7|I)
(ITL.11)
(a) From the definitions (II1.9) and (III.10), we have
k
€om (e, @) < [ TT dpn(65,05) |Tees (b0, 01)| |01 |x [Ters1,00 (01, D2)| |2|x -
j=1 (IIL.12)

. }jfk-%l,m((f)k, ¢k+1)‘ | P (Prr1)]x

Here ¢pg = « and ¢y 11 = ¢. If k =0, then £, = £ — 1. The n’ of the statement of the Lemma

® L {k if @y (dsr) = 1
k+1if ©p(rs1) # 1
Insert the first bound of (III.11) into (II1.12). Set ¢3 = €1 — ¢ + 1, g2 = {5 — {1,
o qr = Uy — lp—1 and qr41 = m — . Also set & = Ty, — Te—1, E2 = Te, — Tey, s
€k+1 = Tm — Tz, - By the second condition in part (a) of Definition III.1, each &; > %qie. Also
g1+ +qk+1 = ¢q. When inserting the first bound of (III.11) into (II1.12), discard all factors
min {1 e —r&ill9ilea 4 o=rlls } To this point, the right hand side of (II1.12) is bounded by

a constant times

k+1

2 k k
.Hl {e—f@quH(ﬁz‘le (6_?%”%*1_%” + e~ 3kpo(e) )} .Hl |: ] x [P (Prr1)|x Hl d#r(ﬁb;, ¢])
1= 1= 1=

We now deal with the factors H?:ﬂ‘f)i‘X and |®,,(dr+1)|x. Use that, for any field
lp|lx <r,a>0and 0<b< 1
< emello=ellg|, + ||a — ¢|le=@No9l 4+ pe=apo(e)® (I11.13)
< Cyp(emablloa=dl 4 gmabro()7) o)
to “move” each of the n’ < n fields in Hle |di| x |Pm(Prs1)|x to |Po]l+ = |a|r. We may

choose b so that 3kb™ > 2k. Consequently, to this point, the right hand side of (II1.12) is
bounded by an (n—dependent) constant times

k+1 k
aft [ T1 {emactomi(eiod g co2om@) ) ] du (6], )
i=1 j=1
’ 2 k+1 k
< |O¢|¢ / [2164—16—2%170(8) + 11 (e_"@‘h"f”(ﬁifl||e_2ﬁ|‘¢i—l_¢iH>i| I1 dﬂr(¢;7¢j)
i=1 j=1
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Now use that, for Qe <1 (if Qe > 1, replace Qe by 1),
raiell ol + kll¢ — VIl + £Qellv[| = raiellpll + £Qell — || + £Qe|lY|
> K(Q + gi)elloll
to prove that
e raiclldll g=26ll o=l o=rQellVll < o—rmin{L,(Q+ai)e}lIll o —rllo— (I11.14)

Applying this k& times we have that the right hand side of (II1.12) is bounded by a constant
times

/ . k+1 k
[ [phtemamier  emmmintuSacilel T oslom=o1] [T dun(05,0,)
]:

=1
< |(1/|:L_/ |:2k+1(ﬂ_r2>k|X|e—2npO(5)2 +er min{l,Eiqis}HaHDk}
with

D= /e‘”'”” du(y*,7)
As Zerll ¢; = q, the bound follows.

(b) The proof is similar to that of Lemma II.8. |

Proof of Theorem IIL.7: We need to show that, in the notation of (III.10), the integral
i [él,p — Cl,p} (o, @) dug, (a*, o) converges to zero as p = g — 00. Recall that C; = Cy + 6Cy
and expand

—C1p = Z Z €1 g1 *r 0Cqy *r Cgy 1,51 %7 0Cqy *p - -+

p=1 1<q1<g2<<qp<p
*r Cqp_141,q,—1 *r 0Cq, *r g 41p

Hence

[ &1 - €1, (00) din(a”, )

p
S Z Z d/“”r(a*7 a) sup }Q:l,q1—1 *p 5cq1 O P 5qu *p €qp+1,p(a7 ’7)}

p=1 1<q1<--<q,<p lvIx <r

(I11.15)
We now prove by backwards induction that, for each p > o > 0,

sup ‘Ql,ql_l s 0Cq, *p ** 5qu *,. qu+1,p(04,’7>}

lvlx <r
P
< Oy I] min{ve, Gz |
{=0c+1
. 2
/dur(v*,v) |€1,g11 %7 0Cq, #p -5 0Cq, (00, \Ivl”"{ —emin{(p=ao)e,LH 4 g=rpole) }

(I11.16)
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where n, is the number of ¢g, (x;)*)’s with 8; > 7, and C is the constant of Lemma ITI.10.
For the final case, o = 0, the factor € 4,_1 %, dCq, *, - - - %, 6Cy_ (e, 7y) in the integrand is to
be replaced by the kernel of the identity operator.

Consider the initial case, o = p. By Lemma II1.10.a,

sup ‘Q:l,ql—l sk 0Cqy *p v+ - %y (5qu *,. Q:qp—H,p(Oéa 'y)}
[vlx <r

< /dur<7/*7 7,) sup ‘Q:L‘h—l *r 5cq1 O 5qu <a7 7,) Q:qp+1,p(7,7 7)‘

[v|x <r

< O [l 7) €08y 008, (7| i el g oot

which provides the induction hypothesis for ¢ = p. Now assume that the induction hypothesis
holds for o. Observe that

/dur(’y*,’y) | €1 g1 %7 0Cqy #p -+ % 0Cy (aty )| Y[ {e_min{(p_q“)s’l}””” + e‘”p°(€)2}

* * * n —kmin{(p— —K 2
< /d,uT(o/ o) dpr (0%, @)dpr (Y, ) |y {e {(p=a0)e,1}HIvIl 4 g=rpo(e) }

‘(€I,Q1—1 . 0Cqy *p o %y 5Cq0_1)(oz, o) ng—1+1,qa—1<a/7 }) 6Cq, (¢, '7)‘
(I11.17)

By Lemma III.10.b, with / =¢,_1+1land m=¢q¢, —landg=m —¥¢+1=q, — g5—1 — 1,
. 2
/d,ur<¢*7 ¢)d/~l/r<'7*7 '7) h/m_g{e—/{ mln{(p_QG)E,l}H7”_i_e_/{pO(Ef) }‘Q:qg_rl-l,qg—l(a/, ¢) 5cqg (¢, 7)‘
< o[t {[ermint@ma el o))

—kpo(e)? | —K min —Qo—1)E o’ —kpo(e)? :
1 e—rpole) [e {(g0=as-1)=.1} e[| 4 o=rpo(e) ]}mm{ﬁ, (%_%711_1)5/%}

< 3C o/} {e—nmin{<p—qg_1>e,1}||a’|| n e—np()(s)?} min {\/g 1 }

’ (QG_qo—1_1)5/2\/g
(IIT.18)

Here we used Lemma II1.10.b with Qe = min{(p — ¢, )&, 1} for the first term in the curly
bracket and with ) = 0 for the second term in the curly bracket. Inserting this result into
(IT1.17) and then applying the inductive hypothesis (II1.16) yields (III.16) with o replaced
by 0 — 1 and ~ replaced by «’. In particular, when o = 1 and gy = 0, inserting (II1.18) into
the inductive hypothesis (I11.16) yields

sSup }elm—l k. 0Cqy *p =+ %y 5qu *p qu+1,p(04, ’Y)‘
|v|x <r

p
3 — Kk min{pe «@ —K €)?
< 3O Jaft [T min{ Ve, gty f{e e tlol 4 emmm (@ )
=1

(I11.19)
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Applying (I11.19) to (II1.15), it follows that
‘/ [étl,p - Q:I,p] (o, ) dpr (o, @)
P P
< Z Z ()™ H min {\/E, (qe—qe_11—1)5/2x/5}
p=1 1<q1<--<qp<p =1
/dw(a*,a) Jafi {emrmin{a Il 4 g=rmier*)

p P
< const » > 30 ] min {\/5, (q[_q271£1)5/2¢g}

p=1 1<q1<---<qp<p =1
00 p
< const 30! min{ € %} with G = g0 — qr—1 — 1
< ZZ B ] v o= qe — qe—1
p=1 G1,+-,Gp>0 =1

1
< const €10

by (11.20). The Theorem follows from
Tr e KT [T D (85,%x;) = lim [ € p(e,a) dur. (¥, )
=1

j pP—0

which was proven in Theorem III.2.
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