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Abstract

The perturbation expansion for a general class of many—fermion systems with a non—nested,
non—spherical Fermi surface is renormalized to all orders. In the limit as the infrared cutoff
is removed, the counterterms converge to a finite limit which is differentiable in the band
structure. The map from the renormalized to the bare band structure is shown to be locally
injective. A new classification of graphs as overlapping or non—overlapping is given, and
improved power counting bounds are derived from it. They imply that the only subgraphs
that can generate r factorials in the »** order of the renormalized perturbation series are
indeed the ladder graphs and thus give a precise sense to the statement that ‘ladders are
the most divergent diagrams’. Our results apply directly to the Hubbard model at any
filling except for half-filling. The half-filled Hubbard model is treated in another place.
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1. Introduction and Overview

1.1 The Problem

Consider the following problem in many-body physics. Let A be a finite box in d-
dimensional space, i.e. A C R? or A C T, where I' is a lattice in IR?, and let co(X)
and ¢} (x) be fermionic annihilation and creation operators obeying the canonical anti-
commutation relations {c,(x),c} (x')} = 6,0:6(x — x') and let F be the fermionic Fock

space generated by this algebra!. Let Hy = H, + AV be the operator on F given by
Hy=)Y / ds(x)ct (x)(T + U)cq(x) (1.1)

where T is an operator describing the one—particle kinetic energy, U is multiplication by

a periodic potential, and [ ds(x) denotes [  dx for a continuous system and ) for a

xEA
system on a lattice. Let n,(x) = ¢} (x)c,(x) be the number operator at x for spin . The

interaction

V=¥ / ds(x) / d5(5 Y1 (%) 0t (X — XY () (1.2)

is assumed to be short-ranged (see Assumption A1l below). The Hamiltonian Hy describes
many electrons in a crystal or on a lattice, that interact with a stationary ionic background
through U and with each other through the pair potential V. If the coupling strength of
the electron—electron interaction A\ = 0, the electrons move independently according to
the one-particle Schrodinger operator T' 4+ U(z). In the continuum system T' = —A/2m
is the Laplacean and U(z + v) = U(z) for all v € T', where the lattice I' is generated
by d linearly independent vectors in R? (e.g. T = Z?%); in the case of a lattice system,
U = 0 and the kinetic energy T is defined by the hopping matrix between the sites of
the lattice. For A # 0, the potential V' takes into account interactions such as screened
electromagnetic interactions. A slight generalization of (1.2) allows for inclusion of phonon—

mediated interactions.



Let B8 = 1/kT be the inverse temperature and define the grand canonical partition
function Z, as
Zy = tr e”PHA—1NA) (1.3)

where

M=Y / ds(x)no (%) (1.4)
7 A

is the number operator, p is the chemical potential and the trace is over Fock space. For
an observable O, i.e. a polynomial in the fermion operators, the thermal expectation value

is defined as

1
(O)p = Zn tr (e_ﬁ(HA_"NA)(’)) (1.5)

The question we are interested in is whether the thermodynamic limit G = Alim G of the
—00
connected Green functions G, = (cj’ (X1)...¢or (X7,))A,conn , Which are special cases of O

above, exists and whether in infinite volume a weak-coupling expansion

G=) NG, (1.6)

can be used to determine the dependence of G on A.
For this question the most interesting, because most singular, case is that of zero tem-
perature, ' = 0. For positive temperature or the finite volume lattice case the expansion

obtained by expanding the factor eV

in X is convergent, but its radius of convergence
shrinks to zero in the thermodynamic and zero-temperature limit: at 7' = 0 and in infinite
volume, one can not even pose the question of convergence of the expansion in A because
the coefficients G, already diverge for » > 3. In the limit ' — 0, (1.5) reduces to expecta-
tion values in the ground state of the system, so physically the question is about the nature
of the many—particle ground state of the system and the validity of perturbation theory to
calculate n-point-functions. The radius of convergence of the unrenormalized expansion in
finite volume shrinks to zero as the volume goes to infinity. Thus, although the expansion
converges for the large but finite systems which these models are to describe, this is true
only if X is of order 1/volume, which is obviously unrealistic for any macroscopic system.
Consequently, the unrenormalized expansion will not give insight into the properties of the
ground state.

In this paper we consider formal perturbation theory. That is, we study the ther-

modynamic limit of the coeflicient functions G,. By an analysis similar to Ref. 2, the
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expansion is renormalized so that these functions converge as the volume goes to infinity.
More precisely, we introduce a well-defined infinite volume model obtained by cutting off
the singularity at the Fermi surface (i.e. introducing an infrared cutoff) and renormalized
by including counterterms K in the action, and then show that all coefficients G, have
limits as the infrared cutoff is removed. Although we do not go through the finite-volume
bounds here, it will be clear from the way our bounds are derived that the same procedure
can be applied to obtain an expansion in finite volume with coefficients that converge in the
thermodynamic limit. The counterterms are bilinear in the fermions and can therefore be
viewed as a modification of H, (although they are treated as extra interaction vertices in
the formal expansion). They also have finite limits as the infrared cutoff is removed. The
addition of the counterterms K changes the free Hamiltonian Hj to I-:TO = Hy + K, where
K depends on A and Hy. Thus the free part of the model is no longer fixed but changes
with A as well: introducing counterterms changes the model. One can, however, obtain an
infrared finite expansion for a prescribed free model, i.e. with Hy prescribed, by solving
I:~[0 = Hy + K(Hy) for Hy. This is far from straightforward because for the nonspherical
Fermi surfaces that we study here, the counterterms are not just constants (such as a shift
in the chemical potential 1), but functions, i.e. they change the one-particle kinetic energy
operator T in a nontrivial way. Therefore, the equation for Hj is an equation in a function
space. In this paper, we prove that it has a unique solution Hy. In a separate paper!'?, we
prove the existence of the solution. The equation relating Hy and Hy will also be discussed

in more detail below.

Except for special cases, the renormalized expansion is, as an expansion in A, not
convergent but only locally Borel summable because the coefficients behave as G, ~ rl.
The occurence of these factorials indicates that the nonperturbative ground state may
exhibit symmetry breaking. For example, if the interaction is attractive in the zero angular
momentum sector, this is the case®. One of the main results we shall prove here is that for
a very wide class of models, and regardless of the sign of the interaction, the r factorials

in individual graphs come only from ladder diagrams.

By ‘locally Borel summable’ we mean here, and in Theorem 1.2, that the Borel trans-
form is analytic in a disk of strictly positive radius R > 0. This does not imply that the
function is ‘Borel summable’ in the sense that it can be reconstructed uniquely from its
Borel transform. For that, one would need, among other things, analyticity of the latter

in a neighbourhood of the entire positive real axis.
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Renormalization has been done? for the continuum case where T = —A/2m and
U = 0. We shall refer to this case as the spherical case since the band structure (defined
below) has an O(d) rotational symmetry. The procedure for removing the divergences in
the present case is similar to the spherical case in that we have to renormalize two-legged
insertions. However, the present work is a nontrivial extension of Ref. 2 because in contrast
to the spherical case the counterterms are not constants. In brief, subtracting functions is
much more complicated than subtracting constants. In particular, the regularity properties
of the counterterms are quite subtle.

In the remainder of this introductory section, we give a non-rigorous, physical discus-
sion of why divergences occur and how they may be removed by renormalization. We hope
that this will convince the reader, before going through all the details, that the renormal-
ization subtractions are natural and the divergences of the naive expansion are artificial
in these models. We state our main results in Section 1.5 and then discuss their physical
interpretation. Finally, we give an overview of the sections containing the proofs. Every
section begins with a brief explanation of what is done and how it fits into the general

strategy.

1.2 The Formal Perturbation Expansion

The models have the formal functional integral representation
P(n,7) = /D¢D1;6A+(;”¢)+(T”J)) (1.7)

where A = —(,C~14) — AV, D)D) is the formal measure Hm’a dpo(T)dpa(z),
(5.079) = [ ds(@)is) 3 #a(e) () (o,0)a00), (18)
a,B

and

VZ/dS(fL')dS(«’B') Y Pa(@)Pp(2)iap.a e (@2 )b (@ )p (2), (1.9)
a,B,a’,B'

where now [ ds(z)F(z) stands for the integral over the spatial variable x and imaginary

time 7, = (7,x), with an appropriate measure, e.g.
ds(z) = drdix (1.10)
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for a continuous system on [0, 3] x IR and

B
/ds(m)F(az):/o dr " F(r,x) (1.11)

xeT
for a lattice system on [0,3] x T, e.g. I' = Z<. Here 3 = 1/kgT is the inverse temperature.
The imaginary time is introduced to get a functional integral representation for the trace
over Fock space in the standard way. The connected Green functions can formally be
calculated as derivatives of log P with respect to the sources 7 and 7.
In this paper, we consider the limiting case T' = 0, so 8 = oo and the configuration
spaces are R4 and R x T (e.g. R x Z%), respectively. The spin index o € {7, |}, the

interaction is assumed to be translation invariant, so that
Vap,arp (%, 2') = Vap,ap (T — 7', x —X), (1.12)

and short-range, i.e. v decreasing so fast that its Fourier transform o is at least twice
differentiable (see Assumption A1 below). Note that we do not assume that it is instan-
taneous. For simplicity, we also assume that it is spin-diagonal, i.e. Vo808 = aa'dpp' V.
In contrast to the assumption about the decay of v, the latter assumption is merely for
notational convenience and can easily be dropped.

One may imagine v to arise from exchange of (quasi)particles like photons or phonons
and formalize this by a Hubbard-Stratonovich transformation, introducing one or more
scalar fields with covariance v so that the interaction vertex is resolved as an exchange of
fields and the interaction becomes bilinear in the fermion fields. For the purposes of the
perturbation expansion we shall not need this. In particular since we assume smoothness
of 0, we shall not need a cutoff on the interaction lines, and we shall often draw graphs
with four—legged vertices instead of ones with interaction lines.

For the lattice models, we take
(C™Y) (2,2") = Bap (St (Brr — 1) — Tser) 6(7 — 7'), (1.13)

where p is the chemical potential and 7% _x+ is the amplitude for hopping from site x to
site x’, which we assume to be symmetric and short-ranged (see Assumptions A2 and A3
on e below).

A model of particular interest that is easy to formulate but difficult to analyze is the
Hubbard model, for which

Te= Y tybry (1.14)

ly|=1

7



with ty the so—called hopping parameters. In the simplest version of the model, ty =1 is
the same for all y of length one, so the operator T is just the discrete Laplacean on Z¢,
with the diagonal term omitted since it can be absorbed in the chemical potential y, and

the interaction term is on-site and spin-diagonal,
Vap,ap (X —X') = S Sapdorp - (1.15)

Various extensions of this model, e.g. with more complicated finite range hopping have
been studied in connection to high-temperature superconductivity. For suitable values of
the filling factor, they all fall into the class of band structures discussed here. For a review
of mathematically rigorous results about the Hubbard model, see Ref. 4.

Formally equivalent to P, but in fact much more convenient is the generating func-

tional for connected amputated Green functions
- 1 o oo
G(urd) =log 3 [ DYDFe(FET VAV (1.16)

where the constant Z takes out the field-independent term so that G(0,0) = 0. G, as
written above, is not a well-defined object in infinite volume; it can be made well-defined
by restricting to a finite volume A, or by introducing a suitable cutoff. If the free covariance
C is bounded and any power of it is integrable, |}\—|g A exists and is analytic in A, as was first
observed by Caianiello. However, for any realistic model, C' will not have this properties,
unless cutoffs are imposed. The radius of convergence obtained using naive bounds shrinks
to zero when the cutoffs are removed, and establishing analyticity uniformly in the cutoffs
requires techniques as in Ref. 5.

Our analysis is done in momentum space, where from now on momentum is short for
Bloch’s quasi-momentum, which can be used to label one-particle states because of the
periodicity of the one—particle potential U. In infinite volume, momentum space is the

first Brillouin zone B, i.e. the torus
B =R%/T# (1.17)

where I'# is the dual lattice to T, e.g. I'# = 27Z% for I' = Z%. In finite volume, the
momenta are in a finite subset of B, p = 27n/L with n € Z%N B if the volume is a box of
sidelength L. The eigenfunction expansions used to transform into momentum space are
discussed briefly in Appendix B for the general case; for the purposes of this introduction,

we just give the formulas for the case of a lattice model on Z¢, where we can simply do a
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Fourier expansion. The only changes in the general case are (of course) that the Brillouin
zone will differ with the lattice and that the formulas for switching between position and
quasi-momentum space involve the eigenfunctions of the one—particle Hamiltonian H, with

the periodic potential. Under the Fourier transform

9(z) = (2m) 440 [ dtpdp,eim )

A (1.18)
P(x) = (2m)~(4+Y) / d*pdp,eP T PXyp
the quadratic part of the action becomes
(5,0719) = 204 [ aipdpei(p)ipa - e(p))b(r) (1.19)
where we have dropped the hats and introduced the band structure
e(p) =¢(p) — 1 (1.20)

where
e(p) = /ds(x)e_iprx, (1.21)

and the interaction becomes, with p; = ((p;)o,P:), and

dp ddp
dtlp = dp,atp = 2 —— 1.22
p=dpd’p =5 o0 (1.22)
V= /dd+1}91 @ (2m) 1 6((p2 + pa — 1 — 13)0)67 (P2 — P1 + Pa — P3) (1.23)

8(ps — P1)P(p1)Y(p2)P(p3)(pa)-

here 6% is the delta function on B, more explicitly

§%(p) = (2;)d Z e'P* = Z S(p+7) (1.24)

x4 ~yEeT#

where the 6 on the right side denotes that on RY. In general, the solution of the one-particle
problem will produce crossing bands. We exclude this case here, and we also introduce
an ultraviolet cutoff that removes the high energy bands. For the lattice systems, such
a cutoff is already built in as the lattice spacing; for continuous systems it is not a real

physical restriction since high energies do not occur in a crystal. If there are finitely many
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bands that do not cross, the band index is just a bookkeeping device dragged along, so,
without loss, we restrict to the one—band case here.
For A = 0, the fermions do not influence each other and the model is completely

characterized by the covariance C,

_ipo7-+ipx
S(z) = [ @ttt 1.2
) / Pipo — e(p) (129

in the sense that all 2n—point functions are determinants of matrices with elements C(x; —
zj).

The propagator in momentum space, C(p) = etPe0" /(ipo — e(p)), has a singularity at
po = 0 for all p € S, where S = {p : e(p) = 0} is the Fermi surface of the independent
electron approximation. Although the function 1/(ip, — e(p)) is in LIT°(IR x B) for all
6 € [0,1), graphs in the perturbation expansion diverge because of the singularity on S and
because in the expansion, arbitrary powers of C' are integrated. The numerator ePe0" ig
included in the standard way since we want to consider the expansion around the situation
where all states inside the Fermi surface, i.e. those with e(p) < 0, are already occupied.

Expanding G in a formal power series in A, we can write

g(";bea/l;e) — Z Argr(¢ea1;e) (126)
>0
with
~ 2m m 2m
G ) =D, ), /Hdd+lpi(27r)d+15# (sz -y pi)
m>1 21112: =1 =1 1=m+1 (1.27)

yAm

m
(G2m,r)a1,... & (pla- .. ,sz—1) H VYa, (pz)";& (pm+'i)7
i=1

where the coefficient function G, , is totally antisymmetric in the simultaneous exchange
of momenta and spin indices (see Section 2.3). Again, the 6# is periodic with respect to
I'# in the spatial part of the momentum. The coefficient Gam,r can be expressed in the
usual way as a sum over values of connected Feynman diagrams. The sum over m runs
over a finite index set for each fixed r because the number of vertices is » and the graphs
are connected with 2m external legs.

The Feynman graphs are similar to those in quantum electrodynamics: there are two

types of lines, namely fermion lines (drawn solid), carrying a direction, and interaction lines
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(drawn dashed). The vertices have two legs to which fermion lines can be connected (one
incoming, one outgoing), and one leg for an interaction line. The action determines the
assignment of propagators C(p) to fermion lines, 9(p) to interaction lines, and momentum
conservation delta functions to vertices. Equivalently, one can replace two vertices that
are joined by an interaction line by a single four—fermion vertex with exactly two incoming
fermion legs and exactly two outgoing fermion legs. The graphs then have only four-legged
fermion vertices and only fermion lines. There is one notable difference between the cases
U =0 and U # 0: In the spherical case (U = 0), where ¢(p) = p?/2m, p € R% The
corresponding ultraviolet problem (behaviour at large |p|) was solved in Ref. 2. In presence
of a crystal potential (U # 0), the integrals over the spatial part of the momentum are
over the first Brillouin zone B, which is a compact set. Thus there is no case of large p
here. Momentum conservation at every vertex means conservation in B, as given by 6%
above. If one prefers to think of the momenta in IRd, fixing momenta with 6% means that
at every vertex, there remains a sum over v € I'#. Although formally infinite, this sum
always contains only one nonzero term since there is a unique v € I'# that translates back
a vector in IR? into the fundamental domain of the translational group I'#. However, it is
natural and simpler to consider momentum space as the torus B since e is I'# periodic.

For example, in the Hubbard model,

d
e(p) = 2t Z cosp; — (1.28)
=1

is the tight-binding band relation and o(p) = 1.
The much more general class of models and the range of chemical potential u that we

treat in this paper is given by the following assumptions.

1.3 Assumptions

We assume that the one-particle problem (discussed in Appendix B) is such that we have
a Brillouin zone B which is a d-dimensional torus of type (1.17). We assume that e = ¢ —p
(see (1.20)) is a continuous function on B and that for some value pu, of the chemical

potential, the Fermi surface

S={peB:e(p)=0} (1.29)
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has only a finite number of connected components. Furthermore, there is £ > 2 and a
neighbourhood N of S such that:

A1  The interaction 4 € C*(IR x B,C). The sup norm over R x B of the first k

derivatives is finite.

A2  The band structure e € C*(N,R), and Ve(p) # 0 for all p € S.

The third assumption is a geometrical condition on the Fermi surface. It is very simple to

understand and is fulfilled for generic surfaces. Let n: § — R%, w s n(w) = |g—2|(w), be
the unit normal to the surface. By A2, S is a C* submanifold of B, and n is a C*~! unit
vector field. If S consists of more than one connected component, choose a normal field

for any component. For w,w’ € S, define the angle between n(w) and n(w') by
f(w,w') = arccos(n(w) - n(w')). (1.30)

Let
D(w) ={w' € §:|n(w) -n(')| =1} = {v' € §: n(w) = £n()}, (1.31)

and denote the (d — 1)-dimensional measure of A C S by voly_1A. Also, for any A C R4
and 3 > 0 denote by Ug(4) = {p € IR? : distance(p, A) < B} the open -neighbourhood

of A. For fixed ¢ and pu,, we assume:

A3 There is an open interval M around pu, and there are strictly positive numbers
Zo,Zy,p, B0 and & such that for all 4 € M, the Fermi surface S = S(p) = {p €
B : e(p) = 0} has the following properties: S(u) C N, and for all 5 < 3, and all
weS,

(7) volg—1 (Ug(D(w)) N S) < Z,p6"

(ii) if w' € Ug(D(w)) N S, then [sinf(w,w’)| = /1 — (n(w) - n(w'))? > Z,6*.

Throughout this paper, A1-A3 will be assumed to hold, and p will be assumed to lie in

the interval M specified in A3. We now explain what these assumptions mean.
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Assumption A1l on ¥ is a decay assumption in position space, e.g. for an instantaneous

interaction V on a lattice system on Z% and k = 2, A1 holds if

3 xV(x)| < . (1.32)

xeZZ4

For continuous systems, A1 is implied by a similar integral condition.

Assumption A2 excludes singular points. For example, a point p on S where Ve(p) =

0 is called a van Hove singularity.

The condition that e is continuously differentiable is fulfilled for the case where e comes
from a Schrodinger equation for the one-body problem with a regular periodic potential,
if there is no level-crossing. Indeed, it is real analytic. In lattice models with finite-range
hopping, e is analytic. However, infinite range hopping is also allowed: e € C* if the k"

moment of the hopping amplitude exists, i.e. Y. [x|*|Tx| < .
X
Assumption A3 is, more informally, that for every w € S

(1)  the set of points w’ where the normal n(w') is parallel or antiparallel to n(w), has

positive codimension £ > 0 in S and

(i)  if W' is not in the set D(w), where the normal is (anti)parallel to n(w), the angle

between n(w) and n(w') increases with some power of the distance between w’

and D(w).

Thus in order to violate these assumptions, the surface S must have flat regions or sub-
sets where #(w,w') vanishes exponentially fast as |w — w'| — 0. To illustrate A3, we show
in Figure 1 an example of a Fermi surface in d = 2 (i.e. a Fermi curve) on B = IR? /27 Z?
that satisfies A3. In Figure 1, the square bounds the fundamental region [—m,m)? for the
torus B, and the shaded areas indicate e(p) < 0.

13
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Figure 1: An example of a Fermi surface obeying A3

A2 and A3 imply the following bound, which we shall use in the proofs.

Volume improvement estimate: There is € > 0 and there is a constant C,,; such that

for all p € M and for all e, > 0,e, >0,e3 >0
I2(51a52a53) S C’1)0151("':2'53E (133)

where

Ir(e1,€2,63) =sup  max / d?p.d’p, 1(le(p.)| < €1) 1(le(ps)| < €2)
qQEB vi,va€{1,—1} (1 34)
BxB :

x 1(le(vaps Tv2p2 + Q)| < €3).
Here 1(E) denotes the indicator function of the event E, i.e. 1(E) = 1 if E is true and
1(E) = 0 otherwise. The additional factor €3¢ will be called the volume improvement

factor. The function I, allows us to give sharp bounds for arbitrary graphs based on a

simple characterization of graphs (explained below).

Proposition 1.1 A3 and A2 imply (1.33), with

K

€> .
K+ p

(1.35)
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Proof: See Appendix A. |

Assumption A3, and thus (1.33), hold in particular if the set of filled states {p : e(p) < u}
is strictly convex and nowhere exponentially flat in the sense mentioned above. Thus the
class of models with € > 0 contains all those where the band structure is a strictly convex
analytic function or a strictly concave analytic function, because, by definition, the sets
{p : e(p) < p} are then strictly convex sets, and the Fermi surface is just the boundary
of such a set. By analyticity, exponential or complete flatness is excluded in this case.
This is obviously a very natural condition since essentially all band structures of practical
importance in solid state models are strictly convex around the band minimum, and so
our results apply to the case where the Fermi edge is just above the minimum of a band.

The proof we give in the Appendix also shows that this non—nestedness is essentially
a transversality condition on the Fermi surface and its translates — hence the need to have
some control over the set D(w), which is essentially the set where the intersections would

not be transversal.

Examples:

1. The spherical band structure e(p) = p?/2m — u fulfills all these hypotheses for
any 4 >0, with p=1and Kk =d — 1.

2. The Hubbard model with tight-binding band structure (1.28) fulfills A1 ~A3 for
all u # 0, i.e. away from half-filling, with k = d — 1. If the band is either empty
or full (cases which are of little physical interest), the volume shrinks even faster
in d > 2. For the half-filled case p = 0, both A2 and A3 fail. A2 is not fulfilled
because of the van Hove singularities at the boundary of [—7,7]¢ and A3 does
not hold because the surface has flat regions (in d = 2 it is diamond-shaped).
This is an example where a non-generic (because flat) surface plays a role in a
physical model.

It is well-known that the half-filled band is a very special case, and that this is due
to the nesting we just discussed, as well as to the presence of van Hove singularities. A
physical way of understanding this is that the particle-hole symmetry restricts the shape
of the Fermi surface. More generally speaking, van Hove singularities must always occur at
some values of u for topological reasons: for generic e, the condition Ve(p) = 0 is satisfied

at isolated points p € B. Thus there is a van Hove singularity for each value of y for which
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the corresponding Fermi surface passes through one of these points. By way of contrast,
nesting in the sense that A3 fails is a much more restrictive condition on e(p). Stated
differently, a nesting condition requires fine-tuning of e. The occurrence of flat parts of
S and van Hove singularities at the same value of p (1 = 0, half-filling) in the Hubbard
model with the band structure (1.28) is accidential. They no longer occur at the same

value of p if next-to—nearest neighbour hopping is allowed.

3. For d =2, § = {(z,y) : " + y*™ = 1} is another example. Here p = 2n — 1 and,
as in Examples 1 and 2, k =d—1=1. Asn — oo, S approaches {(z,y) : |z| =1
or |yl =1, \/wz + y? < +/2}, which is flat away from its edges, and the lower

bound for the volume improvement exponent € goes to zero like 1/n by (1.35).

4. The two-torus imbedded in IR® is an example with p = 1 and k = 1. The
codimension « is only 1 in this example because D(w) may be a union of two

circles for some w.

5. The surface e~ 1/®" 4+ e=1/¥" = ¢=1 is an example where, due to the essential
singularity at (0,1), the condition A3 does not hold. As discussed above, under
some regularity conditions on the one—particle problem, such surfaces are ruled

out. We may well expect that they will not occur in any realistic model.

1.4 Divergences and Hartree—Fock Theory

Under the assumptions stated above, the only source of divergences in perturbation theory
is exactly the same as in the spherical case, where e is given by e(p) = p%/2m — u, namely
the accumulation of powers of the propagator due to strings of two-legged subdiagrams:
the function C(p) = (ip, — e(p))~! is singular on the set {0} x S. By the assumption
that Ve does not vanish on S and by compactness of S, we can introduce coordinates
p = e(p) and w, where w parametrizes the submanifold S, = {p : e(p) = p} (this works
in a neighbourhood of S = S, i.e. for |p| < p,. Thus p = ¢(p,w) in this neighbourhood,
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and for a < 2,

1 _ 1
| dmdtr—mm = [ dpedpd et ()| =
|lipo — e(P)| lipo — p|
[¢po —e(P)|<po [2po —p|<pPo
Po d
rar
- [ YR
[ Fw
0

(1.36)
27
where F(r) = [ df [ d*"'w|det ¢'(r cos§,w)|. The integral converges for o < 2, but since
0
F(r) > fo > 0 for all r, it diverges for o > 2.

Figure 2: Graphs with two—legged insertions

By the Feynman rules, graphs like the ones shown in Figure 2 diverge, because e.g. the
value of the first one would be [ dp, [d?pC(p)*T(p)?¥(q — p) for external momentum
q, which diverges because the third power of the propagator appears, so o« = 3, and
T(0,q) = [d**1p5((0,q) — p)Cr(p) will not vanish on the Fermi surface S where the
propagator is singular. The proof that these two—legged insertions are the only source of
divergences of values of individual graphs was given in Ref. 2 for the spherical case, and a
similar result holds in the present case (see Section 2.1). The only way a divergence could be
absent is that the function T'(p) also vanishes on the Fermi surface. However, this will not
happen by itself in general. Renormalization is done by subtracting (¢1')(p) = T'(0, P(p))
for any two-legged insertion T'(p), where P(p) is the projection of the vector p onto the
Fermi surface S, for p in a fixed neighbourhood of S.

The precise definition of P is given in Section 2.2; it is defined by taking a vector field u
that is transversal to S in the sense that |(u- Ve)(p)| > uo, > 0 for all p € S, and taking
P(p) to be the point where the integral curve of u through p intersects S (see Figure 3).
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integral curve of u

Figure 3: The projection to the Fermi surface

The reader familiar with resummation methods based on the Schwinger-Dyson equations
in solid state theory, e.g. the Hartree-Fock method, may ask why one never sees these
divergences in the integral equations corresponding to these approximations, although
they are said to resum part of those diagrams which appear to be ill-defined in the formal
perturbation expansion. This point actually gives a hint at what renormalization in these
models does. Consider the Hartree—Fock approximation®, as given by the integral equation

for the two—point function

(G2) g (T3 X1, T2y X5) = <¢a(7'17X1)'%Ba'(7'zaXz)> (1.37)

which reads, denoting = = (7,x)

Go(zy,2,) = C(zq,2,) + )\/ds(m)ds(m')é(ml,w)v(z' —z)Gy(z, 2" )G, (2!, z,)
V (1.38)
— /\/ds(x)ds(m')C(:Bl,:B)Gz(w,xz)v(w' —z) tr Go(a',2')

where the trace is over spin indices. Representing the free propagator C by a thin solid

line, interaction lines by dashed lines and the interacting propagator G, by a thick line,
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this equation can be depicted as in Figure 4,

—_— = R +

\
i

> +

\
i
i

Figure 4: The Hartree—Fock equations

from which it is evident that by iterating the equation one produces a resummation to
all orders that includes graphs without polarization effects, in particular some that are
divergent in the formal perturbative expansion, as for instance the first one in Figure 2.
However, the whole point of the ‘resummation’ is to avoid summation, instead making the

ansatz

A

ip 0t /- -
Ga(p) = €™ (ipo — e(p) — X(p)) ™ (1.39)
and rewriting the integral equation in momentum space (in the translation-invariant case)
as
eipu0+

ipo — e(p) — Z(p)

~ _ ip°0+
¥(q) = —)\/dd"'lp, %(q = p)e @) + A9(0) tr /dd+1p

ipo —€(p) — 2 (140)

For a reasonable function X, the singularity of G, is again integrable by the argument
of (1.36). However, G, will be singular if p, = 0 and e(p) + 2(0,p) = 0, rather than if
Po =0, e(p) =0, so S is not the Fermi surface of the interacting system. If one attempted
to seek the solution of (1.40) by an expansion of ¥ in powers of A and exchanged summation

and integrals, one would run into divergent expressions for well-defined integrals, such as

[ = 3 [atp 2T (L41)

ipo — e(p))"*?

These divergences are part of those of the unrenormalized perturbation expansion.

The conclusion of this discussion is that in fact not the subtractions, but the diver-
gences are artificial, because they come from expanding a moving singularity in terms of
a fixed one, and that the counterterms that are added to the action to implement renor-

malization have something to do with X(0,p). This is the main idea; it remains to be
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shown that this is really so for the exact theory, where there is no such simple integral
equation for the self-energy ¥ as (1.40) for the Hartree-Fock approximation. For instance,
the Hartree-Fock resummation does not include any polarization effects and thus differs
from the exact result already in second order. It is necessary to include those effects for
renormalization, e.g. the second graph in Figure 2 also contributes a formally divergent
term to G, and thus needs to be renormalized. The Hartree-Fock graphs will, however,
turn out to be special in that they are the only two—legged graphs that are non—overlapping
to all scales. Also, the graphs contributing to the (one—particle—irreducible) Hartree—Fock
self-energy have the property that the external momentum can always be routed through
an interaction line. Thus the degree of differentiability of the Hartree-Fock approximation
to X, as defined by (1.40), with respect to the external momentum is the same as that of
the interaction ¥. For the exact self-energy ¥, the answer is not so easy.

In the four-legged case, the non—overlapping graphs, i.e. those without improved
power counting, will turn out to be the ladder graphs that are known to produce symmetry
breaking®:5. We will give an explicit bound that shows that only insertions of these four—
legged diagrams can produce the factorials in the values of individual graphs. The concept
of improved power counting, together with this result, makes precise the notion of “leading
divergences” (see Section 2.7).

The subtractions are implemented by adding counterterms to the action. These coun-
terterms are of mass type, that is, they are bilinear in the fermion fields. If both the band
structure and the potential have spherical symmetry, any two-legged diagram contributes
a value T'(po, p) = T'(po, |P|) to the two—point function, i.e. spherical symmetry forces the

function only to depend on |p|. Thus the subtracted terms are simply constants since

T(0,P(p)) = T(0,|P(p)]) = T(0, y/2mn) (L42)

for the spherical band structure e(p) = p?/2m — u. Their sum produces a shift in the
chemical potential?, and the interpretation of renormalization in that case is that the in-
teraction changes the radius of the Fermi sphere. In the case where the original band
structure or the potential does not have spherical symmetry, 7'(0, P(p)) is still a function
of the spatial part of momentum. This is easy to understand since in that case the shape
of the Fermi surface may change, but technically it is a complication because, in renor-
malization group language, there is not only one relevant parameter but instead there are
infinitely many, needed to describe the shape of the surface. To cancel the divergences,

the counterterms are chosen such that the interacting Fermi surface is held fixed. They
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determine the shift between the noninteracting and the interacting Fermi surface and thus

include part of the effects of the self-energy.

1.5 Results

The long-distance behaviour of the free electron Green function C(z — y) is a power law
falloff in |z — y|, determined by the singularity of C(p) in momentum space. If one cuts
off this singularity, i.e. forbids small values of the energy e(p), the Green function decays
exponentially, with a decay length ~ 1/energy. We do a multiscale analysis by decomposing
into energy shells and successively integrating out fields in those energy shells. This gives
rise to a series of effective actions, which can also be viewed as the Green functions with
an infrared cutoff given by the energy scale. Let M > 1 be a scale parameter (see Section
2.1), and j € Z, j < 0. The shell of scale j around the Fermi surface is the set of p
for which M?~% < |ip, — e(p)| < M’. We consider an infrared cutoff on scale M! where
I>—o00,I€Z,I<O0 (seeSection 2.1). We also call I the infrared cutoff. Let M be the
interval given in A3 and fix ¢ € M. Define the connected amputated renormalized 2m

point Green functions GZ , with infared cutoff I as the formal power series
Gim = > NGl (1.43)
A=1

where Gf,, . is the renormalized rth order Green function (see (2.72)). Without going
into the details, it is the modification of the connected Green function in (1.27) where
only the fields with energy scale > M7 are integrated over, and the interaction contains
an additional term K’ that modifies the band structure. The term ‘renormalized’ refers
to this modification since in the graphical analysis, K appears as the counterterms. We

also introduce an ultraviolet cutoff that removes the higher bands. The G4  are analytic
I

2m,r

in A for I > —o0, and we will show that the limit I — —o0, Gap r, of G exists, so that
in that limit (1.43) becomes a well-defined formal power series. For s > 0 and functions

F:R xBx{T,|} — C define the norms

F|, = sup max |[0%F,q(p 1.44
I ta
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d
where a = (ao,...,a4) € Z%! is a multiindex with o; > 0 for all 3, |a] = Y a;, and
=0

o = (82 ) S (3_fm> ‘ Similarly, for functions u defined on (R x B)"~! x {1,]}",
define

|’U,|S = sup{ Z |DauA(p1a e apn—1)| :pi € R x B,A S {T,l}n} (145)

Qg 4.y g

laa |4t |op—1|<a

WhereDa:(a) 1( o )n_l,and

Op, Opn 1

r_ d+1 d+1
= d cdlp, 1 m veeesPn1)]. 1.46
|ul / p1 p 1AE{%T}R|UA(p1 Pr-1)] (1.46)
(RxB)»—1

The self-energy X/ = 3> A"X! is given as a formal power series by
r>1

»'(p) = (1 - GiCr)'Gi(p) (1.47)

where C; is the propagator with infrared cutoff I (the inverse relation is GI = X7(1 —
C [EI)_I).

Theorem 1.2 There ts a formal power series
K'(p)=> Kl (p)\" (1.48)
r=1

such that for the interaction

V=2V 4 / 2 p(p) K (p) (1) (1.49)

the following statements hold. For all m € IN, the infrared limit I — —oo of the GL

2m,r
exists. More precisely, for every r > 1 there are ¥, € C*(R x B,C) and K, € C}(B,R)
and for all m > 1 there are Gay,,» such that as I — —oo,

() GL,—Gayinl,,

() G,
(iii) XL — %, in ||, and (£3)(p) = 2(0,P(p)) = 0.
(iv) K!—> K, in||,.

. !
— Gam,r converges in || .
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Moreover, the Green functions are locally Borel summable, that is, there are constants I',,
Ks,05 and I's,, such that
G|, <TW" 7!

|Kr|, < Kk,"r!
1.50
|2, <o, 7! ( )

|G2m,'r|, S ]-_‘Zmr rl.

Thus, to all orders in A, the Green functions of the model with one-particle band structure
e+ K can be calculated in renormalized perturbation theory, and they are given by almost
everywhere finite functions of the independent external momenta (the momentum conser-
vation delta function is already taken out). The self-energy is a continuously differentiable
function of p, and p, the counterterms K, are finite and continuously differentiable in
p. The counterterms K} are constructed recursively in r (“order by order in the expan-
sion in A7) from (2.76), the diagrams that contribute are of self-energy type. Since the
amputated function G, is first order in A, i.e. the free propagator is subtracted from the
two—point function before amputating to get G,, the unamputated connected two point
function indeed tends to (ip, — e(p) — X(p))~! in the limit I — —oo. Thus ¥ is the usual
(Dyson) self-energy. Because %(0,p) = ({/X)(p) = 0 for all p € S, the interacting model
with one—particle band structure e + K has the same Fermi surface at the given value p
of the chemical potential as the free model with band structure e. In other words, the
effect of renormalization is indeed that the interacting Fermi surface is kept fixed. This is
a much more delicate condition than in the spherical case where the function K reduces
to a constant, i.e. a shift 6y in the chemical potential.

The infrared limit of the renormalized expansion gives the same convergent Greens
functions if we choose a finite volume and positive temperature, and the same conclu-
sions hold, with functions that have a limit as the volume tends to infinity and/or the
temperature goes to zero. The point of the renormalization in finite volume and at fi-
nite temperature, where there are no divergences in the loop integrals, is to rearrange the
expansion in a way that uniformity in volume and temperature and convergence of the ex-
pansion coefficients for the Green functions in the thermodynamic and zero-temperature
limit is achieved. Of course, by the above discussion, this rearrangement amounts precisely
to keeping track of how the Fermi surface moves when the interaction is turned on.

If the bound for the coefficients (1.50) is saturated, the renormalized expansion has
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convergence radius zero, which in itself may not seem a very useful statement. However, if
one is willing to go to a slightly more technical level and consider the representation of the
Green functions as sums over values of Feynman graphs, the renormalization method also
yields much more precise and detailed statements about when and why the series diverges.
It is a well-known fact in renormalizable field theories that the only source of factorial
growth of individual diagrams is the marginal scale behaviour of insertions of four-legged
subdiagrams. In this paper we show the stronger statement that if there are no ladder
subdiagrams, the values of all graphs are bounded without the r factorial, i.e. we specify the
set of those four-legged diagrams that can really produce factorials much more precisely.
The meaning of the term that in a given graph there are no ladder subdiagrams is defined in
Section 2.5: they are the graphs that contain no four-legged non—overlapping subdiagrams
to any scale. This statement is useful because the structure of these graphs is given
explicitly in Section 2.4. The four-legged non—-overlapping diagrams are ladder diagrams,
also called bubble chains, where the fermion lines may be dressed with Hartree—Fock type
corrections. However, any vertex corrections or polarization subdiagrams make the graphs
overlapping and its scale sum convergent instead of marginally divergent. The detailed
bound is stated and discussed in Section 2.7; it also depends on the tree decomposition of

the graph. A short version is

Theorem 1.3 Let G be a graph contributing to Gom, ., and denote by V(G) the norm
of the scale sum of Val(G”), where J is any labelling of G, and the norm depends on the
number of external legs, as in Theorem 1.2. If for any labelling J, G’ does not contain
any non—overlapping four-legged subdiagrams at any scale, then V(G) < V,,", where V,,

18 a constant independent of r.

In other words, Theorem 1.3 means that a single graph in the nt* order of perturbation
theory can have value ~ n! only if it contains ladder subdiagrams. All other four—legged
insertions do not produce any factorials in the value of single graphs. This suggests that
only insertions of ladder diagrams can change the behaviour of the correlations, i.e. the
properties of the ground state, qualitatively, and that all other corrections are analytic in
the coupling. A nonperturbative proof of this requires control over the sum of all graphs,
hence an implementation of the Pauli principle, which has been done in d = 2 spatial

dimensions®.
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In the case of a strictly convex Fermi surface, only the behaviour at transfer momentum
zero can lead to factorials in the values of individual graphs because at all other values
of the momentum, the surface intersects transversally with its translate or at least there
is a curvature effect that implies the absence of a singularity. In the spherical case the
existence of a singularity at zero transfer momentum has been shown to be responsible for
the occurrence of off-diagonal long range order in the ground state3-®. If the Fermi surface
is transversal to its negative, the ladder graphs are nonsingular and analyticity in A holds

in infinite volume”.

The classification of graphs into overlapping and non—overlapping ones that will be
introduced in Section 2.4 may seem technical at first; it is, however, natural since the graphs
that are non—overlapping to all scales are the dressed ladder graphs in the four-legged case
and the Hartree—Fock graphs in the two—legged case. The four-legged non—overlapping
graphs are the only ones that do not show improved power counting behaviour, and in this

sense their resummation is a resummation of the ‘leading divergences’.

Note, however, that Theorem 1.3 is a statement about the behaviour of values of
single graphs, and does not require any resummation. Therefore it holds irrespective of
the sign of the coupling (on which the existence of solutions to the gap equations from
resummation depends). Also, it holds for the general class of non-flat Fermi surfaces given

by our Assumptions A1-A3, and not just for strictly convex Fermi surfaces.

It is technically necessary to do an expansion with a fixed interacting Fermi surface,
to prevent the problems described above when one expands a moving singularity in terms
of a fixed one. In order to construct a model with a given one-particle band structure
and to see how the Fermi surface moves under the interaction, and also to clarify the
relation between the counterterm function K and the self-energy, we have to study the
map e — F = e+ K further and show that it is invertible. To invert this map, one would
like to take a derivative of K with respect to e. It is not obvious that such a derivative exists
since K is a functional of e obtained by integrating factors of 1/(ip, — e(p)), and taking a
derivative produces a square of the denominator, and thus potentially a singularity, since
the square of the propagator is not locally integrable. However, the volume improvement
bounds allow us to take this derivative. The latter is also necessary to get information
about the dependence on the chemical potential y, since the expansion has so far been done
at a fixed value of u, which then fixes the Fermi surface. Different values of y give rise to

different Fermi surfaces, and in the case without spherical symmetry, different also means
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of different shape. The renormalization would be useless if it worked only pointwise in u.
In other words, it is important to establish some continuity properties in . We show that
the counterterms and thus the self-energy and the value of any graph, are continuously
differentiable in x. More generally, we prove that this C! property holds for derivatives
with respect to e, i.e. we allow for much more general variations of the band structure

than just a shift by a constant. Let
0
DuK;(e,h) = 5K (e + ah)|azo (1.51)
a

be the directional derivative of K with in direction A.

Theorem 1.4 If A1 — A3 hold, then Ilim DyKl(e,h) exists for all» > 1 and

——00

Ilim DypKl(e,h)| < const (r) |h|, (1.52)
——00 o

Corollary 1.5 If A1 — A3 hold, then the counterterms K are continuously differen-

tiable functions of the chemical potential .

To convert this statement about directional derivatives into one about derivatives as
bounded linear operators® and to consider varying e, not just u, we have to be more
specific about the set of allowed e’s. Let § # N C B be open. For k > 0, denote the
Banach spaces (C*(B,R),| - |,) by C* and (C*¥(N,IR),|-|,) by C§;. For 1 <o <d -1,
g> > go > 0, and g3 > 0 let

A (0, N, g0, g2, 93) = {e € Car : le|, < 92,5(e) ={p € B:e(p) =0} CN,
|Ve(p)| > go for all p € N/, and n : S(e) — S¢,

B Ve
| Vel

rank dn(w) > o, and all nonzero eigenvalues m

w i n(w) (w) satisfies: for all w € S, (1.53)

of dn satisfy |m| > g3}.

Here S¢ = {a € R® : |a| = 1}, and dn is the derivative of n with respect to w € S. In

other words, dn is the derivative of n tangential to the surface S (note that dn(w) is a
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quadratic matrix since the dimension of S(e) is d — 1, and n(w) € S9¢). Let £ be the space

of bounded linear operators from Cfv to CR/.

Theorem 1.6 Let1<o<d—1and g, > go > 0. Then A= A,(0,N, go,9=) is open
in C3,. For alle € A, A2 and A3 hold, with K = 0 and p = 1. For alle € A and all
r>1, DyKI(e,h) = (K{)' (e)h with (K,{), (e) € L, and there is K| € L such that

H(K,{)I(e)—K:, — 0 as I — —o0. (1.54)

C

The function K, : A — C?\f is differentiable in e, and its derivative is given by K| € L.
The map e — K.(e) is continuous on A, and there is C, > 0 such that for all h € C3,

K. (e)h], < Culhl, (1.55)

C, is independent of e € A.

The bound (1.55) is the most subtle result of this paper. Note that no derivative acts on
h on the right side of (1.55). Because of that, K, extends uniquely to a bounded linear

operator on C?\/, and we can prove

R
Theorem 1.7 Let R>1, A€ R, and forec A let Eg‘R)(e) =e+ >, NK,(e). If

s=1
R
Y A" <1, (1.56)
r=1

then Ef\R) is tnjective on every convex subset of A. That is, if e,,e, € A with Ef\R)(el) =
Eg\R)(ez), and if (1 — s)e, + se, € A for all s € [0,1], then e, = e,.

Since A is open, the maximal ball around any e € A is such a convex subset. Thus EgR)

is locally injective. The significance of Theorem 1.7 for the problem of self-consistent
renormalization is discussed in the next section.
The set A of Theorem 1.6 is more restricted than the set of all e satisfying A3. It

comprises the case of a strictly convex Fermi surface, or that of a torus or a cylinder, but,
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e.g., not Example 3 of Section 1.3. More generally, the specification of a set of e for which
dn(w) may vanish for some w on S, but for which the exponent p > 1 is still uniform in
e, requires the existence of more derivatives (k > 2) of e. This can be formulated, but
for conciseness, we restricted to the simplest case here. The reader may construct his own
generalizations; the essential requirement is that the constants u, (defined in Chapter 2)
and the volume improvement exponent ¢ must be uniform on the set. The reason we gave
A3 as a separate assumption is that it is more general and can be checked without trouble
in examples; for instance, it is easy to see that for the Example 3, e(p) = p?" + p?" — 4,
there is an open p—interval with the desired properties, and this already suffices to prove
Theorems 1.2 — 1.5.

Finally, we define the Hartree—Fock approximation as the sum over all graphs that are
non-overlapping on all scales; equivalently, these are the graphs produced by iterating the
Hartree—Fock integral equation (1.40). This resummation also defines a map e — e + H,

where H are the counterterms in the Hartree-Fock approximation.

Theorem 1.8 The map e — e + H s invertible in every fixed order in perturbation

theory.

This Theorem is easy to prove; we shall discuss its motivation in the next section.

1.6 Discussion

The interpretation of renormalization is thus: the unrenormalized Green functions diverge
because it is wrong to assume that both the band structure and the Fermi surface stay
fixed when the interaction AV is turned on. In reality, they respond to the interaction —
if the surface is fixed, the band structure changes, and vice versa (this is similar to the
situation in KAM theory where the frequencies and actions of quasiperiodic orbits cannot
both stay fixed under a perturbation). To do the expansion, we prefer not to let the Fermi
surface move, since the moving of the singularity produces the divergences discussed above.
Instead we allow for a change in the band structure e. The function K(p) contains the

terms that are necessary to prevent the surface from moving under the perturbation. This
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function depends on the vector field u which we used to define the projection onto the
Fermi surface. The dependence on u amounts to a reparametrization of the Fermi surface
and has no physical consequences.

It has long been known in solid state theory that self-energy effects have to be taken
into account to avoid divergences in perturbation theory. In many accounts this is de-
scribed as self-consistent renormalization, with the idea that if the free two—point function
is expressed in terms of the exact two—point function everywhere, two—legged insertions
disappear, since they arose from self-energy terms. This procedure is usually called ‘self-
consistent’ renormalization and described in words in the literature. Often, one then goes
on to describe particular approximations, such as the Hartree Fock approximation. Since
none of these approximations is exact, none of them removes all the divergences, and one
point of our analysis is that we give a clear procedure how to do this to all orders in per-
turbation theory: the divergences are removed by fixing the Fermi surface. Self-consistent

renormalization is then achieved by inversion, i.e. solving the equation
E =e+ K(e,\) (1.57)

for e in terms of a given E. It is really a separate step. Once this is done, the combination
of renormalization and inversion allows one to determine how the Fermi surface moves
when the band structure is fixed.

Obviously, the solution of (1.57) requires some knowledge of the regularity properties
of the map K, which is a map between function spaces. We have established enough
regularity to show that ¢d + K is locally injective. In other words, we have proven that for
any interacting band structure, there is locally at most one bare band structure that has
the same Fermi surface, i.e. uniqueness of the solution. The existence (surjectivity) proof
requires more detailed bounds and more stringent assumptions and will appear in a sequel
paper.

Note that this regularity problem does not just arise because we use counterterms to
do the expansion correctly. Any attempt to ‘consider only skeleton graphs first and then
replace the free propagator by the interacting one on all lines’ also requires the inversion of
the map e — e + £, and the regularity problem is thus similar to ours (only harder, since
¥ also depends on p,). In brief, in any way of looking at the system, there is the question
how regular the self-energy, and thus the interacting Fermi surface, is. In the heuristic
discussion after (1.40) that motivated why the divergences are artificial, this question was

postponed by the assumption that ¥ is “reasonable”, so that (1.36) can be used to show
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well-definedness of the left side of (1.41). However, ¥ is not a function one is free to choose
or make assumptions about. It is determined by the interaction, and therefore its regularity
has to be proven. We have proven that ¥ and K are C' (Theorem 1.2). Inverting (1.57)
requires at least K € C2. The proof of this is will appear in another paper.

Regularity of the Hartree-Fock approximation to ¥ (Theorem 1.8), is easily shown: it
is obvious that the external momentum can be routed through an interaction line in every
Hartree—Fock graph, so the Hartree—Fock self-energy has the same regularity properties
as the interaction potential.

Since improved power counting plays a central role in the technical analysis done
here and since the facts on which it is based are not specific to our multiscale analysis
and therefore have wider applications, we describe briefly how it comes about. A way to
understand power counting is to weight the growth of the propagator in the vicinity of its
singularity S against the smallness of the volume of shells around the Fermi surface, where
it becomes large. We use a scale decomposition where momentum space is cut into shells
around the Fermi surface, as sketched in Figure 5 (a). It is easy to see that the p—volume
of a shell in which (say) 277! < |e(p)| < 2/ (j < 0) is bounded by a constant times 27
(see also Section 2.1). It is also easy to deduce the integrability properties of C' that we
discussed above by weighting this volume against the growth of |C| in a summation over

shells:

1 1(2971 < Jip, — e(p)| < 29)
dpodp = / dpo / dp <
/ |ipo — e(P)[* 2

: |ipo — e(P)[*
<0
lipo—e(p) <3 R B
9i
< 2<1—f)a/d /d 1297t < <2
7<0 iy B
< const 2¢ ZZ‘j“ 27 97
<0
= const 2“Z2j(2_“),
7<0

which converges if @ < 2. Up to this point, this is just a rewriting of (1.36). However,
the geometry of these shells has important consequences for nontrivial graphs, which we
discuss now.

Beyond lowest order, the momentum assignments in graphs with at least two lines

consist of linear combinations of the loop momenta with the external momenta, e.g. p and
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P + q, where p is a loop momentum. On scale j, both p and p + q must be in a shell of
thickness 27 around S. The volume of the full shell is of order 27. On the other hand, for
most values of q € B, the intersection of S and £5+q will be transversal. Thus the support
of the integrand will have a volume which is much smaller, roughly by a factor 27, since the
volume is not that of an entire shell any more, but that of a transversal intersection of two
shells around S (see Figure 5 (b)). However, for those values of q where the intersection of
the shell with its translate by q is not transversal, e.g. for q = 0, or the translation shown
in Figure 5 (c), there is no gain at all, i.e. there is no uniformity in q. The improved power
counting bound is based on the observation that if there is no nesting in the sense that
A3 holds, then the set of q for which the intersection is not transversal has small volume
itself. So, if q = k + Q where k is another loop momentum, and if there was no gain in
the integration over p, k must be in a set of small volume. This restriction produces an
additional ‘volume improvement factor’ 2¢/ in the second loop integration over k (this also
applies to the surface drawn in Figure 5). Thus, in the double integral over p and k that
appears in (1.34), there will always be an improvement factor 2¢7 . which is uniform in Q.
Therefore, Q may be an arbitrary combination of loop momenta and external momenta,
and it is not necessary to keep track of all complications of the momentum flow in general
graphs to extract the improvement factor. It is only necessary to find out which graphs
have this volume gain, i.e. contain a factor I, as a subintegral. Obviously, they must have
at least two loops, but the above condition that q = k + Q with another loop momentum
k means also that there must be a fermion line in which two loop momenta flow (the two
loop momenta p and k flow in the line with momentum p + q = p + k + Q). This is now
a purely graph theoretical question. The class of graphs for which such a line exists is

precisely that of overlapping graphs defined in Section 2.4. The non-overlapping graphs
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are classified explicitly in the two— and four-legged case (it is not hard to generalize the
characterizations given in Section 2.4 to graphs with more that four external legs, but
we do not need that here). The volume improvement bound (1.33) is proven under the
hypotheses A2 and A3 in Appendix A by the argument outlined above.

Note that the above transversality and no—nesting arguments require d > 2. Ind =1,
improved power counting is absent. This is one reason why one-dimensional many-fermion
models behave differently from the higher—dimensional ones.

The proofs in Section 2.4 are elementary and independent of the scale decomposition.
Indeed, the only property of the model that is used in Section 2.4 is that all vertices have
an even incidence number, which is true in our class of models since the interaction is
a four—fermion interaction (see also Figure 4 in Section 2.4). For vertices with an odd
incidence number, a similar classification can be done.

The implementation of these graphical statements for the volume gains in the problem
with the full scale structure is done in Section 2.5 and 2.6 and used thereafter to prove
the stated Theorems. Some of these proofs are not short, but they are in principle an

application of the simple ideas stated above.
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2. Renormalization and Convergence

In this chapter, we set up the renormalization flow and define the localization operator
that is used to subtract the value of two—legged diagrams on the Fermi surface. We then
develop one of the main technical tools, the graph structure Lemmas that are used to
extract volume improvement factors systematically for any labelled graph. We use this
to show an improved power counting bound, and then show that the renormalized Green
functions converge in every order in perturbation theory, and that the only four-legged
graphs which do not obey improved power counting are the ladder graphs.

We start with some elementary remarks that follow from the assumptions. By A2, S

is a compact (d — 1) — dimensional C*-submanifold of B. Let
Uc(S)={p:3q € S with |p — q| < €}. (2.1)

Then there is § such that G, = sup{|Ve(p)| : p € Uszs(S)} is finite, and such that
9o = inf{|Ve(p)| : p € Uss(S)} > 0. Let u be a unit vector field on a neighbourhood
Us(S) of S. We call u transversal to S if there is u, > 0 such that for all p € S,
Ve(p) - u(p) > uo > 0. Denote the integral curve of u passing through p € S by ~,, that

is, vp : (—€,6) = B, t — vp(t), 7p(0) = p, and for all t € (—¢,¢), %'yp(t) = u(yp(t)).

Lemma 2.1 Assume A2.
(7) There 1s a C™ wvector field u transversal to S, and there is € > 0 such that
U S x(—g,e) = V(S x(—¢,6)) C B, defined by ¥(p,t) = p(t), is a C*-
diffeomorphism.

(i)  There are § > 0 and u, € (0,1) such that Uss(S) C ¥ (S x (—¢,¢€)), and such
that for all q € Uzs(S) : 0 < % < uo < Ve(q) -u(q) < Go.

(7i1) Define the functions T : Uss(S) — IR and P : Uys(S) — S as follows. For
qc< Uzg(S)

(P(a),7(q)) = ¥*(q). (22)



7(q)
q=P(q) + / w(yp(e) (1)), (2.3)
so |q — P(q)| < |7(q)| and
la-P(a)] < -le(a) (24)

Furthermore, u, < CEEB < G,.
(iv) Letp € Us(S), p = e(p) and w = P(p). The map x : p — (p,w) is a C*-
diffeomorphism from Us(S) to a subset of R x S. Denoting its inverse map

by p(p,w), there are constants A, and A, such that the Jacobian J(p,w) =
det p’(p,w) obeys

1
sup |J(p,w)| < —A4, (2.5)
PEUs(S) Uo
and its derivative 8J obeys
1
sup |0J(p,w)| < — A, (2.6)
pPEUs(S) Uo

A, depends on 6, u,, and |u|,, A, also depends on the second derivative of u.

Proof: (i,ii) We show that u € C* transversal to S exists even if e is only C!. For
p € Us, (5) let n(p) = %, then n is continuous in p. So for all p € S there is
r(p) > 0 such that n(p)-n(p’) > % for all p’ € Us,(p)(P). Since S is compact, the covering
(UT(p) (p))pes contains a finite subcovering by V; = U,(p,)(Pi), 7 € {1,...,n}, and there

is § > 0 such that Uss(S) C U Vi. Uss(S) C B is open, hence a C* submanifold of B.

Choose a C* partition of unlty (Xz), that is subordinate to the cover V; NUss(S) and that
obeys supp X; C Up(p;)(pi) for all i. Define

Z Xi(P)n(p:) (2.7)

then u € C(Uss(S),R%) and by construction of x;

u(p)-Ve(p)= Y. xi(p)|Ve(p)| n(pi) - n(p) > g2—° Y xilp) = %0- (2.8)

:pEU,(p;)(Pi) i
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(i) is now obvious since S is a C*-submanifold of B, and (ii) is clear by construction of w.
(7i7) Eq. (2.3) holds by definition of the map ¥ and that of the integral curve v. It

obviously implies
m(a)

a-P(@) < | [ ulw@®)i| < |r(@) (29)

since u is a unit vector field. If e(q) > 0, then 7(q) > 0 and, since e(P(q)) = 0,

7(q) 7(q)
@) = [ Gelw@®it= [ (- Ve)lrm@®)it > uyr(@) > usla—P(a). (2:10)

The case e(q) < 0 is similar.
(iv) The map is a diffeomorphism because it is the composition of ¥ with the inverse of
(w,7) = (w,p) = (w,e(¥(w, 7))) and because

dp

E(w,T) = (Ve u) (¥ (w, 7)) (2.11)
so that % > u, in ¥~1(Us(S)). this also implies the bounds for the Jacobian and its

derivative. [ |

Remark 2.2 The choice u = 2% has most of the above properties, with u, = g, but
|V€| 9 Y
it is only C*~! if e is C*, and then the maps ¥ and x are only C*~!. In particular, with

this choice of u, finiteness of A, requires k£ > 3 in A2.

2.1 Scale Decomposition and Power Counting

Let € as in A3, u, and § as in Lemma 2.1 and M > max{4!/, ﬁ} Then |e(p)| < M1
implies p € Us(S). Let a € C*(IR],[0,1]) be such that

0 forz< M~*
= N 2.12
o(z) { 1 forz > M2 (212)
and a/(z) > 0 for all z € (M~*, M~2). Set
0 ifzr <M~
,3 a(z) ifMt<z<M?
= — 73 ) = - - 2.1

0 ifx >1,
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so that, for all z > 0, f(z) > 0 and

-1
1-a(z)= Y f(M ¥a). (2.14)
Jj=—00
Calling f;(z) = f(M~%iz),
supp f; = [M?7~* M?7], (2.15)
and for all z > 0,
fi(z) fyr(z) = 0 if [j — 5'| > 2. (2.16)
Defining
M—27 .12 ) .12
Ci(a,y) = Tl iwl) _ Jilletivl) (2.17)
iT—y iz —y
we decompose
e0” e a(pl +e(p)?) | or
- = — + e'Po0 Ci(po,e(p)). 2.18
ipo — e(p) ipo — e(P) j; i (p)) ( )

For the purposes of the present paper, we discard the ultraviolet end of the model by
removing the first term in this sum, in other words, taking (1 — a)/(ip, — e(p)) as propa-
gator. The infrared singularity, which is the physically relevant feature of the problem, is

unchanged.

Lemma 2.3 For all 7 <0
(7) 1Cj|, < M~7*2. More precisely, for all p = (po,P),

[Ci(pose(P))] < MT7*21 (|ipo + e(p)| € [M?~%, M7]) . (2.19)

(i4)  Let A, as in Lemma 2.1 and A = max{1,24, [ dw}.

/ddp 1(le(p)| <€) < u%a (2.20)
B
and
G5 = / dpodp|Cj(po, e(p))| < 2‘242 M’ (2.21)
RxB
In particular, taking
K, = 2iM2, (2.22)

36



Cjl, < KoM ™7 and |C;|' < K, M7
(79t)  For any multiindex o with s = |a| < k, there is a constant W, depending on |e|,
and M such that

|DCj(pos e(p))| < WM~V 1(Jip, — e(p)| € [M77%, M7]). (2.23)

The proof of this Lemma is easy; we leave it as an exercise to the reader. This Lemma

implies that for any 0 > I > —oo, any power of the propagator >, Cj is integrable and so
i2I

values of connected graphs evaluated according to the above Feynman rules, but with this

cutoff propagator instead of 1/(ip, — e(p)), are finite, and C* in p, and e.

2,3

The bounds given in the Lemma are similar to those in the spherical case “°, and so

the power counting is the same as in Lemma III.1 of Ref. 3. The dimension §; (see Ref. 3,
eq.(I11.5)), is &; = 1.

We now state the analogue of the abstract power counting lemma of Ref. 3. For the
moment, we refer the reader to Ref. 3 for details about labelled graphs and the associated
trees; they will be explained in more detail in Section 2.3. Let G be a connected graph
with an even number E of external lines, and two— and four-legged vertices. Let L(G) be
the set of internal lines of G and J : L(G) —» {z € Z : 0 > z > I}, l — j; be a labelling
of G, which assigns a scale to each line of G. Construct the tree ¢t = t(G”) associated to
the labelled graph G” as follows3. The forks f of the tree are the connected components
G]{ of all the subgraphs {£ € L(G’) : jo > h} with h < —1. The subgraphs are partially
ordered by inclusion to form ¢(G7). The scale of a fork is defined by

jf=min{jy: £ € L(GJJC)}

Define, in analogy to eqs (II1.9) and (III.10) of Ref. 3

D; = [L(GH)| -2 (V(GD)] - 1)
1
A = —§|{l : I internal line of G”,1 external line of G§}| (2.24)

1
A, = —§|{l : I internal line of G/, v € 1}
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where V(G) is the set of vertices of G. The value of the graph G is defined as

6#(pout pzn V(ll GJ Z H dd+ D1 le pl)6ala
spins o lEL(G)

H 6#(pout,'v - pin,'v) (u”)a(lv)...af:) (Q'v) (225)
’UEV4(G)

H 6#(pout,'v - pin,v)ev(qv)
veV,L(G)

where L(G) is the set of internal lines of G, V4(G) is the set of four-legged vertices of G and
V2(G) is the set of two-legged vertices of G, 6(g,) is the function associated to a two-legged
vertex v, U the vertex function associated to a four—legged vertex v, and the momenta g,
are given in terms of external and loop momenta by the momentum conservation at every
vertex. The spin indices on a line [ and a vertex v are the same if [ goes into v or out of

v, and the symbol “sum over spins” indicates that they are summed over.

Lemma 2.4 Let K, be as tn Lemma 2.3. Then

Val(G7)|, < (4K)HOT T 16al, [ 1tholo 2rPe% [T MUr=d=0)Pr - (2.26)
veVL(G) vEVL(G) >¢

and

‘VGZ(GJ)|’ S (4K0)|L(G)| H (|0'v|oM_jW(v)) H |u’v|o Sintsf,ea:tsv,ea:t (227)
veV,(G) veVL(G)

where | - | is defined in (1.46),

Sme= ] MPrUri@) (2.28)
>¢,internal
where the product is only over those forks of t(G”) such that GJ{ does not contain any

external vertices, and

Spew= I MA1Gr-ino) (2.20)
>¢,external

where the product is over those forks f of t(G7) such that G’; contains an external vertex
of G, and
Sv,ea:t = H MAU(O_j"(”)) (230)

v,external
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where the product is over those vertices of G to which an external leg is joined. m(v) is the
highest fork such that G¢ contains v and w(f) is the predecessor fork of f, that is, the fork
of t(G”) immediately below f.

Proof: See Ref. 3. An improvement of (2.26) will be shown in Section 2.6. |

Remark 2.5 By definition,

Dy = (2Va(Gp)| + Val@p)| - 22 ) ~2(0Va(G )|+ IVa(G) ~ 1) = (4= By) — Va(Gp)|.

(2.31)
If the graph G has no two-legged vertices, and if no ¢nternal subgraph GJJc (ie. G; contains
no external vertices) has Ef = 2, then A, < —1/2 and Ay < —1/2, and

1
szim—Eﬂso (2.32)

for all internal forks, so the scale sum ) |Val(GJ )|I where J runs over all labellings of
J

G compatible with a fixed tree ¢t %3 will be finite. This is the rigorous counterpart of
the remark in the Introduction that only insertions of two-legged diagrams give rise to
divergences. Renormalization will be done by subtracting the value of the two-legged
subgraphs on the Fermi surface. For this we need to introduce a projection onto the Fermi

surface.

2.2 Localization Operator

The localization operator implements the projection onto the Fermi surface for functions
defined on IR x B, and it is used to define the subtractions needed for renormalization.
This projection can be defined in various ways, and so the localization operator is not
uniquely determined. In the spherically symmetric case, there is exactly one choice that
is rotationally invariant. Moreover, it does not matter which projection is chosen because
rotational invariance implies that the value of any two-legged diagram T'(p,,p) depends

only on p, and |p|. In the case without spherical symmetry, there is no such independence
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and hence no canonical choice of the projection, although the geometrically most natural
one seems to be that which projects along integral curves of Ve. We project p onto S
differently, by moving it along the integral curve of the fixed vector field u transversal to
S (see Lemma 2.1). This yields bounds in better norms than using Ve (see Remark 2.2)

because Ve € C*~1, but u may be chosen in C*.

Definition 2.6  Let § be as in Lemma 2.1 and let x € C*°(B,[0,1]) obey x(z) =1 for
z € Us(S) and x(z) = 0 for 2 ¢ Uss(S). Let P be as in Lemma 2.1 (7i7). For functions
T:R x B— X, X any linear space, define

(¢T) (gor ) = { (VP (@xla) A€ Tas(5) (2:33)

0 otherwise .

IfT € CP(R x B,X), then /T € C4B,X), where ¢ = min{k, p}.

Lemma 2.7  LetD, = u-V be the Lie derivative with respect to u, and T be differentiable
on R x Us(S) with a bounded derivative. In terms of the coordinates (p,w) introduced in

Lemma 2.1,

(4T)(go, a(p,w)) = T(0,q(0,w)), (2.34)
0 D, T
—_T = 2.
57 (40,9(p,w)) (Due> (40,a(p,w)); (2.35)
In particular D,P =0 and
Dot |y, (s)=0- (2.36)
For all g = (¢o,d) € R x Us(S),
V2 .
(1= 2)7(q)| < YZJigo ~ e(@)] max{[8,T],, VT, } (2.37)
Proof: By the chain rule
0 B aq
8—pT(qo,q(p,w)) = VT (go,a(p,w)) 5—p(p,w)
0
= VT(Qoa q(paw)) : a_p’)l‘r(p) (w)

= VT (a0- a(p.)) - u(a(p. ) 57 0)
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So (2.35) follows from (2.11). D,P = 0 then follows immediately from (2.35) with
T(¢0,q9) = P(q). In other words, because the projection P(q(p,w)) = w is constant
along the integral curves of u, and the Lie derivative D, is a directional derivative tangent

to these integral curves, we have D,P = 0. If q € Us(S), x(q) =1, so

(DutT)(g0,9) = (u- V)T(0,P(q)) = (DuP - VT)(0,P(q) =0 (2.38)

and
(1 =0T (q)| = |T(g0,a) = T(0,P(q))| < |20| |86T, + |a — P(q)[|VT], (2.39)
s0 (2.37) holds by Lemma 2.1 (ii). |

To put the localization operation into contact with the flow of effective actions, we define
its action on a linear subspace of the Grassmann algebra given by “connected” polynomials
of even degree. To define this subspace, we introduce some notation. The fermions in our
model carry an index ¢ = (&, po,P), where a € {T, |}, po € IR, and p € B for infinite volume
and zero temperature. For temperature T > 0, p, € (2Z + 1)7T. For a periodic box of
side L, p € BN %Zd. For ¢ = (o, po,p) we denote 9(¢) := 14 (po, p) and similarly for .

We also write X = {1,|} x R x B and [, ds(¢)F({) := f]R dp, fB depF(a,p,,P)
ae{T,l}
(and their obvious variations for 7" > 0 or finite volume).

Definition 2.8 We say that Q € QF iff Q = (Q2m,r)m>0,r>1, Where for all » > 1 and
m > 0,
(2) Qam,r: X2™ P x {1,1} = C, (&1, ., &m—1,2m) = Q2mr(&1,-- - &am—1,02m)
is C* and all derivatives up to order k are bounded uniformly on X2™~1 x {1, |},
(7¢)  for all » > 1 there is m(r) > 0 such that for all m > m(r) , Qam,» = 0.
(7i1)  Q2m,r is antisymmetric under permutations of momenta and spins, i.e. AQ2, » =

Q2m,r , where A is the following operation. Define pam = ((P2m)o, P2m) € R X B
by

m—1

DP2m = Z (Pi — Pmti) + Pm (2.40)

=1
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and define £2,, = (@2, P2m ). Then

1
AQ(&1,- - - €am—1,0tm) = (m1)? > sign(mo) (2.41)
) w,0€Perm(m) .

Q(fa(l)a ce aé‘a(m)a £m+7r(1) yee a£m+7r(m—1)7am+7r(m))'

(iv) The polynomial in the Grassmann algebra associated to @ € QF is the formal

power series in \

Q) = fjvm(fj_l / T as(ée (fj pz+m>

m=0 =1 =1

x2m (2.42)
QZm,r(&la s a€2m—1a CYm) <H &(Smﬁ—z)qp(fz))
=1

Every fixed order in ) is a polynomial in the Grassmann variables. For conve-

nience of notation, we sometimes write ng?---am,amﬂ,---,azm (p1y---,P2m—1) for
Qam,»(&1,. . ,€&m—1,y). In this notation, the quadratic (m = 1) term in

Q(v, ) is given by the formal power series

i” > / A Yo, (0) QY () Pz (9)-

ap,a2

Definition 2.9 The localization operator £ : Q’j — Q’j is defined as follows. For
Qe QFandallr>1

(£Q)am, =0 if m > 2
(£Q)z2,r((a1,p1),02) = Q2,r((a1,(0,P(p1)), 2) (2.43)
(KQ)O,T’ - Qo,r-

In other words, for Q(v,%) given by (2.42),

(£Q) (%, %) = Z/v (Qor [ 479 a0, (p)mz(p))
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2.3 Flow of Effective Actions

We review briefly the definition of effective actions and their flow, as given, e.g. in [FT2].
We introduce a cutoff that regulates the fermion propagator by restricting its support
away from the Fermi surface, so that the formally divergent integrals discussed above are
convergent as long as the cutoff is present. This can also be done in finite volume and
the infrared cutoff can be removed before taking the volume to infinity. The flow is used
to study the dependence of the Green functions on the cutoff as the latter varies. The
propagator is decomposed linearly into a sum of slice propagators that are supported in
thin shells around the Fermi surface. Because the decomposition is linear, the flow has a
semigroup structure that allows one to view the Green functions as effective interactions
where the fields with momenta that are away from the Fermi surface by an amount given
by the cutoff are integrated out. Let I € Z, I < 0, be the infrared cutoff and decompose
the cutoff propagator

c= Y ¢ (2.44)

—1>5>1
Define GY by

97 (X)) Zi /dﬂc(¢,¢)ev(¢+x@+i) (2.45)
I

where duc denotes the Gaussian “measure”, i.e. the linear functional on the Grassmann
algebra generated by the 1 and 9 defined to vanish for odd monomials and determined by

its values for even monomials, which are
/ d:uC(’l)b’ ":5) H leai (wi)’l;&- (yl) = det (Caiﬁj (331', y])) 1<i,j<n" (246)
=1

In our case Cup(z,y) = 5aﬂé’(m — y), so, using the Fourier expansion (1.18), we get in

momentum space (in the sense of distributions)

/dﬂC(lea";) H ":bai (pi)q/_)&.' (]51) = det (6ai&j6(pi - ]5])0(]9,))” (2'47)

where

Cle)= Y, Ci(po,e®)) (2.48)

~1>5>1

43



g}’ is the generating functional for connected, amputated Green functions with infrared

cutoff I and vertices given by V, because, formally, a shift in the integration variables,
1 - T =1 - ~—1 -
g})(x,)_() = —(x,C"'x) +log 7 /d“0(¢,¢)e—(¢»0 XN)=(XCT ) +V(9) (2.49)
I

indicates that C~'y and YC~! appear as source terms. The effect of the C~! is that
propagators associated to external lines are removed. This is, by definition, the procedure
to get Green functions that are amputated by the free propagator.

The unrenormalized expansion has V being the bare interaction. For the renormalized
expansion we will allow V to depend on I because the counterterms will be I-dependent.

The factor
Zr = [ duc(w, ) (2.50)

ensures that g}’(o, 0) = 0. We now define precisely the fluctuation integrals used for the

flow.

Definition 2.10

(7) Let U € QF and the covariance C be a bounded integrable C* function on IR x B.

Define

1

RICU)(X) =log gy [ dmoth. D0 (251)

where ((C,U) = fduc(¢,1,5)eu("/’”/_’) so that R(C,U)(0,0) = 0. Also, define
E(C,U)(x, %) = R(C,U)(x, %) — (U(x; %) — U(0,0)) (2.52)

(i1)  Let G be a connected graph with n vertices v,,... v, and 2m external legs such
that every vertex v; has m; ingoing and m; outgoing legs (incidence number 2m;),

and let

U, : X2 1 x {1,|1} = C
(2.53)
(fla e a€2mi—laa2mi) — uv,'(fla e amei—laa?mi)

satisfy (i) and (ii¢) of Definition 2.8. Let J : L(G) — {2 € Z : z < 0} be a la-
belling of G. The value of G” is defined as the function Val(G’)(C, U, , ... Uy, ) :

44



X?m=1 x 11,1} — C, determined by
5% (Z(qi - qm+i)) Val(GT)(C,\Uy, ... s Uy ) (May- - -y M2m—1,B2m) =

Z/ H ((P1)os (P1))ar,50 4" 1)

spins IEL(G) (254)

H(g# (Z (2) pfn?+k))

k=1
Un, (8,00, (B, 1, _1)s0bin, )

where n; = (gi,5:), Zspins means that all ag) are summed over {T, | }. If the line

[ joins the outgoing leg k of vertex v; to the incoming leg k' of v;, then o7 = agc),
a; = age, ), and the momenta p( ) = pg) = pi.

(7i5) The set of all connected graphs with 2m external legs and with n vertices v,,..., v,
where v; has m; incoming and m; outgoing legs (incidence number 2m;) is de-
noted by Gr(n,m;m,,...,m,). When n = 1, the graphs are required to have at

least one internal particle line.

Lemma 2.11
(7) Val(G7)(C,U,,,...,Uy,,) is well-defined and a C* function of the external mo-
menta.
(i) € and R are well-defined formal power series in X. They map QF to QF.
(7i1)  Expanding in powers of U,

E(C;,U) = Z 8(”) Cj, (U U, ..., U)) (2.55)

(U appears n times), and expanding the EM in X and the fields as well, £ has
the expansion (see also Definition 2.8, (iv))

m(r)

e, zﬂz/nds )

5# (Z((h - Qm+i)) H (X)X (Mh-4m))

Ej,zm,”‘(u)(nl? s 7772m—17/32m)
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where N, = (qk,Br), and the kernels E;apm . are the following sum of values of

Feynman diagrams:

o 1 n
Bjam (U Z—, By o Uy U) (2.57)
with
By Moo U (s o) = DY >
A 1_11---‘_::>1r my,...,mn >1 GEGr(n,m;m,,...mz)

sign(G) AValGY(C,Uy, .y.. Uy, 2 )1y -+ B2m)
(2.58)

Here A denotes the antisymmetrization operator defined in (2.41), sign(G) €
{1,—1} is a sign factor determined by the structure of G, (j) denotes the labelling
Ji = j for all l, and U,, r, denotes the coefficient of order 7 in the formal
expansion of U,, in powers of \. The sum over the number of effective interaction
vertices n in (2.57) is a finite sum with n < r. The sums in (2.58) are finite

because the interaction U € QF and in particular satisfies (ii) of Definition 2.8.

Remark 2.12 Although lengthy, (2.58) is easy to interpret: At every scale, the Green
function is expanded in a formal power series in A. In every order in A, the functional
is expanded in powers of the external (unintegrated) fields x and k. The term with m
factors of xy and m factors of ¥ contributes to the 2m-point function, and is given by the
sum over all connected Feynman diagrams with 2m external legs, built from the effective

vertices U.

Proof: The momentum conservation delta functions at every vertex can provide a set of
loop momenta using some choice of a spanning tree for GG in the standard way. Since G
is connected, only the global momentum conservation delta function remains. It is then
obvious by the properties of the integrand to see that the function that multiplies this
delta function is C* and so (i) follows. Since (ii) follows from (4ii) and (i), it suffices
to show (4i7). Although this is quite standard, we briefly describe how the expansion in
Feynman graphs comes about since it is also very simple. By definition, £(™ takes out
the terms proportional to U, ...U,_, so it is obviously linear in every U,, . Inserting the

expansion for every U € QF, we obtain the sum over the r; and m;. Note that by definition
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of QF, all sums over r; start at 1 and therefore £ and R contain no zeroth order terms in
A. Furthermore, m; < m;(r;) so all sums contain only finitely many terms. The rules for
Gaussian integration (2.47) then join outgoing (1) legs of U, to ingoing (v) legs of Us,:.
The result can be translated into a sum over Feynman graphs by joining v and v’ by a line
and using the definition of the value of a graph given above. Since the logarithm is taken,
only connected graphs contribute (see, e.g. Ref. 9). Consequently

m(r) < max Y [mi(r:) — 1]

MyPy yeeey rp>1

ritoFrp=r 1=1

Remark 2.13 In fact, because of the fermionic nature of the fields, defining suitable
norms on Q¥ analyticity holds in a disk {|A\| < ).}, where )\, depends on the cutoff I.

Since we consider the formal expansion only, we do not need to make use of that here.

The flow is now obtained by successively integrating out the momenta of shells around the
Fermi surface. Since C is a sum of covariances, the Gaussian measure factorizes into a

product H]_:l rduc;, and g}’ can be written as the endpoint of the sequence
-1
g/ =R|> C;,v (2.59)
=3

The sequence starts with G¥ = V and may be obtained by iteration of
g;') = R(Cj’g})ﬂ) = g})+1 + 5(01'7 g})+1) (2-60)
The recursion can be summed to get, assuming V(0,0) = 0,

7 06X =VO6X) + > E(C597) (6 X)- (2.61)

Lemma 2.11 implies

Lemma 2.14 Let e € C¥(B,R), k > 1, and assume A2. If the initial interaction
V € QF, then for any scale j, g}’ € QF.
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Taking the initial interaction to be the bare one, V = AV, yields the sequence of un-
renormalized effective actions which diverges as I — —oo for the reasons discussed in the
Introduction.

The renormalized Green functions are constructed by modifying the interaction such
that the Fermi surface of the interacting system, that is, the singular surface of the in-
teracting fermion propagator, stays fixed. This requires a specific choice of V which we
denote as GI, the I indicating the dependence on the infrared cutoff. Using the similar
notation g].gf = g} for the G; obtained from this interaction by (2.59), we require, as a

condition on GZ,

G =G+ > LE(Ci,Gly) = (2.62)
I<i<-1
SO
G =— > E(Ci,Giy). (2.63)
I<i<-1

Since all g;’ are functionals of gg , this is not a definition but an equation to be solved by
GI. There are further conditions on G!: We want the form of the interaction to be similar

to the original one. Only terms bilinear in the fermion fields shall be generated:
(1-0)G =1 —-0OXV =2V, (2.64)

(2.63) can be solved order by order in ), that is, as a formal power series in A,
ng AT (2.65)

as follows. All g} are formal power series in A, with no zero*! order term since they
are connected Green functions (and since the free part is subtracted from the two-—point
function). One proceeds inductively in r, the order in A, in (2.63). To get the left side in
order r only counterterms in G 1 up to order » — 1 are needed on the right side of the
equation. No graph contributing to the right hand side of (2.63) can consist of a single
two-legged vertex with no internal lines. The left side of (2.63) can simply be used to give

a recursive definition for the counterterms.

Definition 2.15 The generating functional for the renormalized Green functions is

obtained by the flow (2.61) with initial interaction G = AV +K7, where V is the interaction
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given by (1.23) and the counterterms X! are defined as a formal power series in A by

KX( =—£ > £&(Ci,6L1)006%), (2.66)

I<i<—1
and we shall call their formal power series expansion in terms of A the renormalized per-
turbation expansion. The expansion coefficients of G! given by Definition 2.8 (iv) are the
renormalized, amputated, connected Green functions. More explicitly, the rt* order 2m—
T 9m.r» is obtained by replacing the £(C;,U) by GI = g].gf
in (2.56) and the functions Gj,, . from Section 1.5 are defined

point function on scale 7 > I, GZ
and the E; 3., , by GI

as

JZmr

GZm , T GI 2m,r (267)

The counterterms are of the form

Ko =Y / 31 %a(0) KX (D)xalp) (2.68)
® RxB

where K7 is a formal power series in ),

=Y XK[(p). (2.69)
r=1
The G] am,» are all of order r > 1 in the coupling A. In particular, the two—point function

has the zero® order propagator subtracted. Hence the formula (1.47) for the self-energy.

The recursion formula (2.60) can be written for the kernels G! as

GI ,2m,T G]—}—l 2m,r — Ejama"’(gf-l—l) (270)

To show convergence of the renormalized Green functions in the limit as the cutoff I is

removed, I — —oo, it is convenient to arrange (2.61) in the form

= AV 4+ (1= 0E(C:,GL1) + D (—DE(C:, GL ). (2.71)

2] i<j

Iteration of this equation for g]l generates a tree structure, corresponding to layers of G;.
Expanding this out to scale zero, one recovers the scaled graph G/ from Lemma 2.4. For

the unrenormalized expansion, the scales of lines in G are strictly higher than those in
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Gy if f' > f on the tree. In case of the renormalized expansion, this holds for r-forks,
generated by the second term in (2.71). The third term in (2.71) gives rise to the c-forks
of the tree. The scales of a c-fork f are summed from I to j.(s) since ¢ < j in the third
term of (2.71).

The semigroup structure of the renormalization flow is obvious from the way it is
defined by fluctuation integrals. It is a consequence of the linear decomposition of the
covariance C into a sum of C;’s. It allows one to interpret the formula for G; in various
ways. By definition, G; is the amputated connected Green function with infrared cutoff j.
Alternatively, one can also view G, as an effective action, i.e. the G;T +1,2m are vertex func-
tions of effective interaction vertices with 2m external legs. These vertices are connected
by Cj-lines to form the effective action on scale j, G;. The process of expanding different
parts of the tree, or equivalently, expanding the effective vertices in terms of higher—scale
objects, can be done to various degrees. One can choose to iterate selected parts of the
tree, i.e. resolve selected vertices up to a certain higher scale or “trim the tree” at a fork
f by regarding the subgraph G]{ as a vertex with £ (Gf ) external lines and vertex factor
&% (p fout — Pf,in)Val (GJ{) We shall make use of three variations on this theme, which we

now briefly describe.

Remark 2.16 (7) Resolve every vertex up to scale zero, as described above; this gives
sums over values of the standard labelled graphs G’ of Lemma 2.4. More precisely, this

leads to the following formula for the amputated connected Green functions:

=T 55 5 vae) (2.72)

i>I t fet TG Jeg(ti)

where (as follows from (2.56), (2.57), see also Section VI of Ref. 2) the second sum is over
all planar trees ¢ with r leaves. The root is denoted ¢, and for each fork f, ny > 1 is the
number of upward branches. (ny = 1 is possible because we do not use normal ordering).
The factorial is that from (2.56). The sum over graphs G runs over all G compatible
with ¢, that is, connected graphs with 2m external legs, » ordered vertices, constructed
according to the Feynman rules of the model. The leaves of ¢ correspond to the four-legged
interaction vertices of G. For any fork f € t, there is a connected subgraph Gy of G, such
that the quotient graph é({ f}) (obtained by replacing all G, with n(g) = f by effective

vertices) has ny vertices. The set J(t,j) of scale families J consists of all (j¢) ., ordered
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according to the partial ordering given by the tree ¢,

J(t,7) ={(if)set : jo = 4, if f € t is not a c-fork, js € {jx(s) +1,...,0}

(2.73)
if f is a c-fork, jy € {I,...,jx(5)}}

This definition is understood recursively, i.e. the root scale jg4 is fixed to j; if f is a c—fork
with 7(f) = ¢, then j; runs from I to j,. If 7(f) = ¢, but f is not a c-fork, j; runs from
Je +1 to 0. This assignment of scales is now continued upwards on the tree, determining
the range of j; in terms of j.(5) and the r/c label on the fork. All leaves b of the tree ¢
have scale zero, and the vertices of G associated to them are the interaction vertices of the
original action. The labelling of the graph G, £ — j,, is: all lines £ in é({ f}) get scale
Je = jf. Finally, Val(G’) is defined according to the Feynman rules for labelled graphs,
with a propagator of scale j; associated to each line . In our case, there is no hard/soft
labelling for the lines because we do not use normal ordering.

(77) Resolve everything except for one-particle irreducible two- and four- legged insertions.
More algorithmically, let G' be a graph contributing to G;. For every vertex v, U, is again
the sum of values of graphs on scale > j+1. If v has < 4 legs and is 1PI leave it. Otherwise
repeat the same procedure for the graph whose value is i,. Continue to resolve until all
graphs that are not resolved are 1PI (for details, see Section 2.7). The result is a labelled
graph G’ that has no nontrivial one—particle-irreducible two— or four-legged subdiagrams
but instead two— and four-legged vertices with scale-dependent vertex functions. This
will be used to trace back the factorials in values of individual graphs (the reason for their
occurrence are the non-overlapping four-legged subgraphs) and to order the inductive
proofs, since the scale-dependent vertex functions are themselves values of subgraphs of
lower order. The vertices are scale-dependent because the trimming procedure splits the
summation over J. Trimming a tree ¢t at a fork ¢ decomposes ¢ into two subtrees ¢, and

t, with v is a leaf of ¢, and ¢, is rooted at . Then

J(t,7) ={0Us)ret : Jo = (Jf)ret, € To = T (t1,5)

. ' (2.74)
and J, = (]f)fetz €J.= j(tza]d))}

The vertex function P,V,, of the vertex w in G' that corresponds to Gi is on scale j,

and it is obtained by summing over the scales in 7,, keeping those in J, fixed,

Vo= Va(Gp). (2.75)
J2€T>
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The projection P, € {{,1 — £,1} is given by the r/c labelling of the forks of t.
(7i7) Resolve according to families of non—overlapping subtrees rooted at forks belonging to
two—legged diagrams; this will play a major technical role in the estimates of the derivative

with respect to the band structure e. For details, see Section 2.5.

For further reference, we give the formula for K explicitly,

K =-YY S [[= 3 va(@)o,pw). (2.76)

¢ ’l’Lf. .
G j=It~G fct JET(t,5)

Note that K! actually only depends on P(p) € S. The sum over G is over all two-legged
and one—particle irreducible (1PI) graphs G with r interaction vertices. The graphs have
to be 1PI since e(P(p)) = 0 implies C;(0,0) = 0, and since the value of a 1P-reducible

graph would contain such a factor.

2.4 Non-Overlapping Graphs

In this section, we give an explicit characterization of two— and four-legged graphs
that do not contain any overlapping loops. These graphs turn out to be dressed bubbles in
the four-legged case and graphs of the type encountered in the Hartree-Fock resummation
in the two-legged case.

To make contact with the graph structure in our problem, and for convenience of the
reader, we show explicitly how certain low-order diagrams look when the interaction lines
are collapsed to four—fermion vertices, in Figure 6. Graph numbers 1, 5 and 6 each contain
two loops which do not overlap. The last three graphs each contain two loops that do
overlap.

We wish to single out those graphs which have overlapping loops. Their value contains
a volume integral that can be bounded by the function I, defined in (1.34), which gives
an additional convergence factor in scale sums. This will serve to show that derivatives
converge and that a large class of 4-forks is actually not marginal, that is, that the power
counting behaviour Dy = 0 is not saturated. For the graphs without overlapping loops,

there is no such improvement. But these graphs have a rather special structure (see Figure
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Figure 6: Replacement of interaction lines by vertices

6). In particular, the momentum of the external line will not enter in any of the loop lines if
the graph is two—legged and non—overlapping. The two Lemmas in this Section characterize
graphs G that have no overlapping loops explicitly for E(G) = 2 or 4. They are stated
for the more general class of graphs that arise naturally when expanding the fluctuation

integral for the effective action at some scale (see (2.54) and below it).
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In the following, let G be a connected graph constructed from particle lines and
generalized vertices v that all have an even incidence number E, > 2. Such graphs occur
naturally in the flow of effective actions. We call G one-particle irreducible (1PI) if any
internal particle line of G can be cut without disconnecting the graph. We also use L(G)
for the set of all internal lines of G, E(G) for the set of external lines of G, V(G) for the set
of all vertices, and, Vi (G) for the set of all vertices with incidence number k. For v € V(G),
G — v denotes the graph in which v and all lines going into v are deleted. For | € L(G),
G — 1 denotes the graph in which only the line [ is removed (but not its endpoints). Denote
the set of directed lines of G by L(G),

L(G) ={(¢,v,w) € L(G) X V(G) x V(G) : £ connects v and w}.

Definition 2.17

(7) Let n,,n, € Ny, n; < m,. A path Pin G is amap P : {n,,...,n,} — L(G),
n +— (Vn, Wy ), such that for all n € {n,,...,n, — 1}, w, = v,y1, and such that
each vertex of GG is visited at most once by P.

(ii) Aloopin G isamap P :{0,...,s8} — L(G) such that P |z . 1} is a path, and
(in the notation of (7)), ws = v,, and the line from v, to w, is a line of G (the
case s = 0 is a line from a vertex to itself, also called ‘self-contraction’).

(7i5) The trace 8(P) of the path or loop P is defined as the subgraph consisting of
lines and vertices visited by P.

(iv) We say that two loops P, and P, are independent if their traces are distinct,
0(P,) # O(P,).

For example, under Definition 2.17, the object shown in Figure 7(a) is not a path because
it is self-intersecting. However, the object shown in Figure 7 (b) is a loop consisting of one

line (a ‘self-contraction’).

Remark 2.18
(i)  We sometimes write the path as a finite sequence (P(n,),...,P(n,)).
(i)  If P is a path, so is its inversion P~!, defined as going over the same lines as
P, but in opposite direction. If P is a loop, so is its shift by m, P,,, defined as
P, (1) = P(l — m mod s).
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Q 0

(a) (b)

Figure 7 (a) A self-intersecting walk  (b) A self-contraction

Usually a loop is defined to be an element of the first homology group H,(G,Z).
For the purposes of the following analysis of overlapping and non—overlapping
graphs, it does not really matter which of the definitions one takes.

Let T be a spanning tree for a graph G. Let £ € L(G)\ L(T'). Then the subgraph
of G gotten by taking the union of £ with the linear subtree of 1" that joins the

endpoints of £ is the trace of a loop under Definition 2.17.

Definition 2.19 G is called overlapping if there is a line of G which is part of two

independent loops.

Remark 2.20

(2)
(i)

If G is non—overlapping and S a connected subgraph, then .S is non—overlapping.
If G is non—overlapping, G a quotient of G obtained by replacing a connected
subdiagram with a vertex, then G is non-overlapping.

If G is connected and S a subgraph that is overlapping, then G is overlapping.
If G is a non—overlapping graph, and G is obtained from G by forming a self-
contraction of two external legs of a vertex v of GG, then G is non—overlapping.
If G contains a subgraph consisting of two vertices v, and v,, joined by n > 3

lines [,,...,l,, then G is overlapping.

Proof: (i), (i) and (iv) are obvious. (ii) Let G a quotient of G obtained by replacing

a connected subdiagram H by a vertex. Let G be overlapping. Then there are two
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independent loops L, and L, in G that have a line £ € G in common. As a path in G,
L, either crosses at most one external vertex of H, in which case L, is still a loop in G,
or it stops at two distinct external vertices of H. Since H is connected, there is a path
connecting these vertices, and the composition of L, with this path is a new loop in G
that still contains £. Similarly, L, either is already a loop in G or can be completed to
one, and so G is also overlapping. This shows (i7). (v) Let the vertices be v, and v,. Since
n > 3, the loop L, going from v, to v, over [, and back over [, and the path L, going
from v, to v, over [, and back over l3 are independent. Both contain [,. So the subgraph

is overlapping, and the same follows for G itself by (7). [

(d) ii
Figure 8 (a) A string of two-legged diagrams (b) An ST diagram (c), (d) GST diagrams

Definition 2.21 Let G be a connected graph with two external legs and N vertices

all having even incidence number.



(7) If G,,...G, are two-legged graphs, the string G, ... G, is the graph shown in
Figure 8 (a). The G; may be two-legged vertices (i.e. vertices with incidence
number two).

(i) G is called a self-contracted two-legged (ST) diagram if G consists only of one
two-legged vertex with two external legs or if G has exactly one vertex v, to
which both external legs of G connect, all other vertices have two legs and the
remaining legs of v, are joined pairwise by strings of two—legged vertices to form
loops. See Figure 8 (b).

(7it) A generalized ST diagram (GST) with IV vertices is defined recursively: if N =1,
G is an ST diagram. If N > 2 and GST are defined for all N' < N — 1, a GST
with N vertices is a graph such that G has exactly one external vertex v, to
which the two external legs of GG join, and all other legs of v, are joined by strings
of GST with at most N — 1 vertices, to form loops (we call that ‘generalized
self-contractions’). For an example, see Figure 8 (c) and (d); in (c) the GST

insertions are marked by crosses.

Lemma 2.22 Let G be a connected graph with two external legs and all vertices of G
having an even incidence number. If G is non—overlapping, it is a string of GST graphs.

If G 1s non—overlapping and 1PI, then G s a GST graph.

Proof: 'The second statement is obvious, given the first. To prove the first, do induction
in the number of vertices N. For N =1, an F = 2 graph with one vertex must obviously
be an ST diagram. It is instructive to look at N = 2 first. There are two cases: (1) only

v; has incident external legs, and (2) v; and vy both join to an external leg.

(1) Denote the incidence number of v; by n; and that of vy by ny. Since two legs of v;
are external and every self-contraction binds two legs, there must be an even number n
of lines between v; and vy (see Figure 9). If n > 4, G is overlapping by Remark 2.20 (v)
(there are n — 1 > 3 independent loops containing any of the lines between v; and v;). So
n = 2, which means that the graph is a GST.

(2) ny and ny are even, and v; and vy each bind one external leg of G. Since self-
contractions bind an even number of lines, v; and v, must be joined by an odd number n
of lines. If n > 3, G would be overlapping by Remark 2.20 (v). So n =1, and G is a string
of two ST graphs.
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Figure 9: An ST diagram with two vertices

Let N > 2 and assume the Lemma to be true for non—overlapping graphs with N’
vertices, N' < N — 1, and let G be a non—overlapping graph with N vertices and F = 2.

Call the vertices where the external legs join external vertices.

OENONOF O

U1 U1

Figure 10: The case of one external vertex

(1) If there is only one external vertex, v,, G takes the form shown in Figure 10 (a).
Decomposing the subgraph B = G — v, into its connected components Ci,...,C; we see
that G must be as drawn in Figure 10 (b). Denote the number of lines joining v; and Cj
by ng. Let k € {1,...,£}. Since all vertices in C} have an even incidence number and

legs are joined pairwise to form internal lines of C%, the number n; of external legs of Cy
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is even. As in the case N = 2, if ny > 4, the subgraph consisting of v, and Cj shown
in Figure 10 (c) is overlapping by Remark 2.20 (v) and (4¢). By Remark 2.20 (ii7), so is
G. Therefore ny = 2 for all k € {1,...,£} and, by Remark 2.20 (¢), being a subdiagram
of the non-overlapping graph G, Cy is non-overlapping and two—legged with even-legged
vertices and at most N — 1 vertices. By the inductive hypothesis, C; is a string of GST,
so G is a GST by definition.

(2) If there are two external vertices v, and v,, let G, = G — v, be the graph obtained
from G by deleting v, and all the lines going into it. Let C,,...,C, be the connected
components of G,, where C, contains v,. Then G takes the form drawn in Figure 11 (a).
Consider the quotient graph G, where all C are replaced by vertices ci (see Figure 11
(b)). Denote the number of lines from v, to ¢; by ng. Then for all & > 2, ng must be
even, since all the vertices of the graph Cj have even incidence number. Since both ¢, and
v, join to one external leg, the number n, of lines between them must be odd. If n, > 3
or for any k > 2, ng, > 4, G, is overlapping by Remark 2.20 (v). So n, = 1 and n; = 2
for all & > 2, and G takes the form shown in Figure 11 (c¢). Thus for all & € {1,...,7},
Cy is a two-legged non—overlapping graph with at most N — 1 vertices. By the inductive
hypothesis, all the C; are GST graphs or strings of GST graphs, so G is a string of GST
graphs as well. [

o

v

(¢)

Figure 11: The case of two external vertices

We now turn to the four-legged case, and begin by a simple characterization of one—particle

reducible four-legged graphs.

Remark 2.23  Let G be a four-legged graph and all vertices of G have an even incidence
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number. If G is one—particle-reducible, G is obtained from a 1PI four-legged graph G’ by

attaching strings of two—legged diagrams to the external legs of G’, as shown in Figure 12.

Figure 12: General form of a one—particle reducible four-legged graph

Proof: Induction in the number of vertices of G. Let G be 1P reducible and [ a line
such that cutting [ disconnects the graph. Upon cutting [, G — [ falls into two connected
components. Their numbers of external legs must add up to six. Since by assumption,
any subgraph of G must have an even number of external legs. one of them must be four—
legged and the other one two-legged. Apply the inductive hypothesis to the four-legged
subgraph, then the statement follows for G itself. [

(0)

(¢)

Figure 13: Examples of GSF and DBC' diagrams
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Definition 2.24

(7) A GSF graph is a graph G with four external legs, all joining to a single vertex
v, of G, such that upon deletion of two of the external legs, G becomes a GST
graph.

(i) A dressed bubble chain (DBC) of length » > 0 is a four-legged graph as follows.
There are r + 1 GSF graphs G,,...G 41, such that for all ¢ € {1,...,r} G, is
joined to G;4+1 by exactly two strings of GST graphs, and the external legs of
G, and G,y are connected to the external legs of G by strings of GST graphs

(which may consist of only a single line).

Remark 2.25 If an external vertex v of a non—overlapping four-legged diagram has
at least two external legs, joining them to form a self-contraction gives a non—overlapping
two—legged diagram which must be a GST string. This is used in the proof of the following
Lemma. An example for a GSF graph is shown in Figure 13 (a). The thick lines in this
figure stand for strings of GST diagrams. An example of a DBC with » = 2 is given in
Figure 13 (b), again denoting strings of GST diagrams by thick lines and denoting GSF
graphs by four-legged vertices with a box. An example with » = 1 where all vertices and
lines are drawn is shown in Figure 13 (c). A DBC of length » = 0 is a GSF with strings of
GST diagrams attached to the external vertex of the GSF.

Lemma 2.26 Let G be a connected graph whose vertices all have an even incidence
number, and with number of external lines E(G) = 4. If G is non—overlapping, then G is a
DBC. More precisely, let Vg € {1,2,3,4} be the number of external vertices of G (a vertex
v is called external if an external leg of G joins to v). If G is 1PI and non-overlapping,

then Vg < 2 with G a GSF for Vg =1 and a DBC of length r > 1 for Vg = 2.

Proof: For Vg < 3, one of the external vertices, v,, must have at least £, > 2 exter-
nal lines going in. Two of the external lines of v; can be joined to a self-contraction [*.
By Remark 2.20 (iv), the resulting two-legged graph G* is still non—overlapping, so by
Lemma 2.22, it is a string of GST graphs. Cutting [*, we see that G itself is a DBC.
This is proven by the same induction process as is used to define GST. See Figure 14

for an example of how a DBC is generated when [* is cut. If E, > 3, G is a DBC of
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length » = 0. If Vg = 3, the two-legged graph G* constructed from G has two exter-
nal vertices. Since it is non—overlapping, it must be 1P reducible by Lemma 2.22 and
Definition 2.21 (ii¢), so G is also 1P reducible. Thus Vg = 3 is impossible if G is 1PL

M — XXX

Figure 14: Cutting a line of a GST diagram can produce a DBC

If Vg = 4, we use Remark 2.23 to decompose G into the 1PI graph G’ and the strings of
two—legged subdiagrams attached to G'. By Remark 2.20 (7), G’ must also be non—over-
lapping and the strings must consist of GST diagrams. If Vg(G') < 2, we know by the
above that G', and hence G, is a DBC. Vg(G') = 3 is impossible since G’ is 1PI. Thus,
to complete the proof, we only have to show that Vg(G') = 4 is impossible as well for a
four-legged non—overlapping 1PI graph G’. So assume that Vg = 4, let v be an external
vertex of G, and let S = G' — v. Since Vg = 4, v binds only one external leg of G', so
v connects to S by an odd number of lines. Let C,,...,C}, be the connected components
of S. One of them must connect to v by an odd number n* of lines. But if n* =1, G’ is
reducible, contrary to our assumption, and if n* > 3, G' is overlapping by Remark 2.20(i?)

and (v), again a contradiction.

The alternatives are sketched in Figure 15. The black box K consists of v, to-
gether with all connected components of S that do not contain an external vertex. In
the Figure K is drawn four-legged; in general it may have a larger incidence num-
ber. (a) is the case n* = 3. The two loops joining K and S overlap. (b) and (c)

are cases where n* = 1. The figure can be disconnected by cutting a line leaving K.
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(a) (0) (¢)

Figure 15: The case Vg(G') = 4

2.5 Decomposition of the Tree of a Labelled Graph

We now consider labelled graphs and show how to decompose the associated tree into
subtrees corresponding to overlapping and non—-overlapping graphs. It was mentioned in
the motivation of the classification of graphs into overlapping and non—overlapping ones
that the bound for the value of overlapping graphs contains as a factor the function I,
defined in (1.34). As discussed in Section 1, this factor arises because the propagators
of scale j < 0 are supported in a shell of thickness M7 near the Fermi surface, and the
intersection of such a shell with its translate by some momentum p is transversal for
all p outside a set whose volume shrinks with the thickness of the shell. Therefore, the
arguments ¢ in I, will be M % where j; are scales of the lines involved. The volume
improvement factor might arise only at a relatively high scale, and to exploit it as much as
possible, it is therefore very important in our analysis to keep track of the scale at which
this volume improvement factor arises. We do this by decomposing the tree of the labelled

graph G into maximal subtrees corresponding to non-overlapping subgraphs.

We start with an example to illustrate the idea behind the procedure. In Figure 16,
a graph with scale assignments 0 > h’ > h > j is shown from top to bottom on decreasing
scales. The interaction lines appear only on scale zero. On the lowest scale j (root scale),
the graph is non—overlapping, since all lines of higher scale are collapsed into effective

vertices. On scale h > j, the graph is overlapping, and the volume improvement factor
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arises at scale h in this example. In general, the strategy will be to go from lower to higher
scales (from bottom to top in Figure 16), resolving (i.e. expanding) the effective vertices
until either scale zero or a scale on which the graph overlaps is reached. With a properly

chosen spanning tree for the graph, the volume gain is then extracted.

scale

hl

Figure 16: A labelled graph at several scales

Definition 2.27
(i)  Let G’ be a labelled graph with tree t. For a (connected) subtree ¢’ of ¢ (we shall
denote this as ¢’ C t), rooted at a fork ¢4, define the projected graph G(t') as a
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(i2)

(iii)

quotient graph of G(Jﬁt, as follows. If " ¢ t' is a fork directly above t', i.e. there
is a fork f' € t' such that n(f") = f’, replace Gf,, by a vertex with the same
external legs as G]{,,, and with vertex function Val(G?,). The lines in subgraphs
G{ with f € t' join these vertices to form the graph G(t') (leaves of t that are
also leaves of ¢’ remain the same vertices they were before).

For a subset A of the set of forks and leaves of ¢, define
o(A)={fet\A: f fork, If € A:n(f') = f}
A(A)={f'et\A: f fork, Ifc A: f' > f}.
Thus A(A) is the set of all forks of ¢t \ A that are above A and o(A) is the set of
all forks of ¢ \ A that are immediately above A.

For f € t, denote by ¢ the subtree of ¢ rooted at f that contains all forks and
leaves in A({f}).

Remark 2.28

(4)

(i7)
(iii)

G(t') is the graph where all subdiagrams belonging to forks above ¢’ are collapsed
to effective vertices, and where all subdiagrams belonging to forks in ¢’ remain
subdiagrams.

G(t') is connected.

The mapping th, — é‘(t’ ) also acts naturally on sets ¥ of lines of G(Jﬁt, . Those
lines in ¥ corresponding to t'-forks are left unchanged. All others are absent in
the projection. The projections of paths L etc. will be denoted as L, or f/(t’) if
necessary. Note that the projection of a path need not be a path in the sense of
Definition 2.17 because it may visit a vertex more than once and hence fail to be
injective.

t' may be trivial, that is, consist only of its root fork; then we write t' = ¢y and

G(t') = G(¢).

To do the tree decomposition, we need some more facts about non-overlapping graphs

which we state in the following Lemma. If G is a graph and H a connected subgraph with

2m external legs, we denote by G/H the quotient graph obtained by replacing H by a

vertex with incidence number 2m. In our convention, external legs of a connected graph

are not counted as lines of the graph, and the statement that two subgraphs A and B of a
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given graph are disjoint means that they share no vertex (so an external vertex of A may

be connected to an external vertex of B by a line which belongs neither to A nor to B).

Lemma 2.29 Let G be a connected graph.
(7) Let G have only vertices with an even incidence number, let T' be a connected

two—legged subgraph of G, and assume that G/T is non—overlapping. Then
G 1is overlapping <= T s overlapping.

(7))  Let G, and G, be disjoint connected subgraphs, and assume that G, = G/G, and
G, = G/G, are non-overlapping. Then G is non-overlapping.

Proof: (i) “<” is obvious by Remark 2.20 (7i7). “=": There are two independent over-
lapping loops K and L in G. Since G/T is non-overlapping, their traces must differ in
T. If T were non—overlapping, 7" would be a string of GST, and by the structure of GST
graphs and the condition that any path may visit a given vertex at most once, both K
and L would have to step over the same lines in 7. So then §(K) = 6(L), which is a
contradiction.

(7t) Assume G to be overlapping. Then there are independent loops K and L such
that the set of lines which are part of both loops is not empty. Thus there exist ‘splitting
points’, which are vertices as follows: v is a splitting point if v is endpoint of a line /, that
is part of both K and L, and of lines k and £ such that & is a line of §(K) but not of §(L),
and £ is a line of #(L), but not of §(K). In other words, a splitting point is a vertex at
which the two paths deviate after going over the same line(s). Let v be such a splitting
point, and £,,£ and k be as defined above. Also, denote the second endpoint of £, by w.

If v € G,, we will construct loops K, and L, in éz as follows. First we reparametrize
K and L (using the shifts and inversions described in Remark 2.18) so that they start at
w and the first line is £,, and the second is k for K and £ for L, etc. Since v € GG,, and
since G, and G, are disjoint, none of £,, £ and k can be in G,, so £,,£ and k are all in G,.

If wis in G, we take K, to be the restriction of K up to the first point when a vertex
of G, is hit by K; this is a loop in G,. L, is defined similarly. By construction, 6(K.,)
contains k but not £, and (L) contains £ but not k, so these loops are independent, and

both contain £,. So G, is overlapping, which is a contradiction.
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If w is not in GG,, we take K, to be identical to K up to the first point where K hits
G.; then we continue it to be K from the last time K visits a vertex of G, (if K does
not visit G,, K, = K). L, is defined similarly. Again, these loops are independent, and
overlap at £,, which is a contradiction.

If v ¢ G,, we construct loops K, and L, in G, starting again at w, and going over
£, and k or £, this time taking out the parts between first and last visits of G, to avoid
multiple visits at the vertex of G, that replaces G,. Since v is not in G,, the lines £, ¢
and k are all in G,, so K, and L, are again independent overlapping loops in G,. This

contradicts the assumption that G, is non-overlapping. [

Remark 2.30 If the vertices are allowed to have odd incidence numbers, (7) does not
hold, as can be seen from the following graph (the subgraph H is the part of G inside the
dashed circle).

Figure 17: A graph with vertices with odd incidence number

Lemma 2.31 Let G7 be a labelled graph, t its tree, and f € t a fork.
(7) Let f1,...,fn € t be forks or leaves such that w(f;) = f Vi, and assume that

foralli e {1,...,n}, G (]}’) is non—overlapping. Then G (fl f2 f F ) 18
non—overlapping as well.

(ii)  Let G(f) be non—overlapping. Then there is a unique mazimal tree 7§ C t, rooted
at f, such that é(Tf) is non—overlapping, i.e. if T is such that G() is non—over-
lapping and such that ¢, = f, then 7 C 5.

(7i1)  There is
N c{s}U{f: E’(G;) = 2,G(f) 1PI and non—overlapping} (2.77)

such that
(a) ¢ € N if and only if é’((,b) s non—overlapping
(b) if f,f € N with f # f' then 74 and 74 are disjoint
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c) 1 ut =2 and G 18 and non—overlapping then there
f f ¢ N but E(G}) = 2 and G(f) is 1PI and ! hen th
is an f' € N with 75 C 74

Here ¢, 7§ are the mazimal trees associated to f, f' in part (i7).

Proof: (i) follows as in Lemma 2.29(3i).
(i3) Let S = {t' C t; : G(t') non—overlapping}. Since G(f) is non—overlapping, § # 0.
Build up the tree 7; recursively as follows: for all forks or leaves fi,..., f, with f = «(f;),

add ]}’ to 75 if G <j;:> is non—overlapping ( note that if o is a leaf then G <}r> is always

non—overlapping if é( f) is non-overlapping since G (; = é( f). The resulting tree

A Fa fineo i) B : , ARAW

G f is then non—overlapping by (7). If for all forks f1,..., fn, G f is
V1 Vp

overlapping, then 74 = ¥ where vy,...,v; are the leaves with 7(v;) = f, or 74 = f if
b = 0, and the process stops. Otherwise, repeat the procedure for every f' € {f;,,..., fi.}

n
that is a fork, add branches ; if the corresponding graph is non—overlapping, add all
i

branches to leaves and stop if there are no forks with non-overlapping graphs G (}:: ) .
Repeating this, the process ends after a finite number of steps. It is obvious by construction
that the so obtained tree is maximal in S and therefore unique.
(#43) Put ¢ into N if G(¢) is non—overlapping, and in that case construct 74 using (ii). Let
My(G?) = {f €t: f>¢,G(f) is non-overlapping, 1PI and two-legged }. We construct
N by induction on the number of forks N of My(G”). If N = 0, i.e. M(G’) = 0, then
N =0 or N = {¢}, depending on whether é(gb) is overlapping or not. Let N > 1 and
assume that the family has been constructed for all N’ < N — 1. Let {fi,..., f.} be the
set of all minimal forks of M;(G7) (in the partial ordering of t). For all k, construct 7y,
by (7i). Because of the tree structure, we can consider each k separately. Let g = fj for
some k. A(7,) is a disjoint union of trees rooted at forks f € o(7,) (or A(7y) = 0, in
which case we are done with g). Each of these trees has N' < N — 1 forks in M3, so the
inductive hypothesis applies. Add to N the forks that have been selected by the inductive
hypothesis from each of the trees. This really gives a family of disjoint trees in the sense
that no element of N is directly above a fork in a tree 74 of N, as is implied by the Remark
following this Lemma.

Suppose now that f € ¢t \ N/ but E(G]{) = 2 and G(f) is 1PI and non-overlapping.
By the construction of A the set {f"” € N : f" < f} is nonempty. Let f’ be the maximal
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element of this set. Also by construction f € 74. To complete the proof it suffices to show
that if 74 ¢ 74 then the tree 74 is not maximal in the sense of (ii). To see this, first
observe that é((Tf:) f) is non-overlapping by Remark 2.20(i). So the maximality of 7y
implies (74 ) C 7f, which in turn implies é(’]’f U7y ) is gotten by replacing the two-legged
non-overlapping subgraph é((Tf:) f) of é('rf:) by the two-legged non—overlapping graph
G(7f). Remark 2.20(ii) and the following Remark ensure that G(7; U 74 ) is non-over-
lapping. So the assumption that 74 # 77 U 74 contradicts the maximality of 74. Thus
Ty C Tyr. [

Remark 2.32 Let G’ be a labelled graph of our model, t(G”) its tree, and let 7 be
a subtree of ¢t such that é(T) is non—overlapping. Let f be a fork directly above 7, i.e.
f € (1), such that E(G¢) = 2. Then

e

G| | | overlapping <= G(f) overlapping. (2.78)
T

Proof: Apply Lemma 2.29(i).
|

Remark 2.33 Note that Remark 2.32 holds only for two—legged subdiagrams. For
example, the graph at scale j in Figure 16 is not overlapping while that at scale A is
overlapping. None—the-less, to go from the graph at scale j to that at scale 2 one replaces
the six-legged vertex by the tree diagram shown in Figure 18, which has no loops and
hence is not overlapping. So, it is possible to replace one vertex in a non-overlapping
graph by a non—overlapping subgraph and produce an overlapping graph. This plays a

role for estimates of derivatives.

Figure 18: The siz-legged scale h subgraph of Figure 16
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2.6 Improved Power Counting

We now extract the volume improvement factor in the value of any graph that overlaps
at some scale, and use it to show an improved power counting bound that holds for every
such graph. We also give a natural routing prescription for the external momentum suited
to bounding derivatives. In this section, let G € Gr(n,m;m,,...,my), J : £ — j, be a
labelling of G and ValG’(C,U,,...,U,,) be given by (2.54). A loop basis for the graph
is a basis for H!(G,Z). Since for an overlapping graph, the two overlapping loops (in
the sense of Definition 2.17) define linearly independent cycles, we may use both of them
as basis elements. Recall that there is a natural basis for H!(G,Z) associated to any
spanning tree T' for G. It contains one loop for each element of L(G) \ L(T"). The loop
associated to £ € L(G) \ L(T') consists of £ and the path in T joining the ends of £. Also
recall that T' is consistent with J if TN G(t;) is a spanning tree for G(t;) for all forks
[ € ty.

By definition, a graph G is overlapping if there exist two independent loops in G
which share a line. A priori, the specific loops determined by a spanning tree for G are

not required to overlap. But of course they do. This is proven in the following Lemma.

Lemma 2.34
(7) If G has a spanning tree T without any associated overlapping loops, then no
spanning tree of G has any associated overlapping loops.
(i)  If G is overlapping and T is an arbitrary spanning tree of G, then there are two

overlapping loops associated to lines £, and £, € L(G) \ L(T).

Proof: (i) Let T be a spanning tree for G such that all of the loops Ly,---, L, associated
to T' do not overlap each other. Define Ty, = G \ Ul L;. (7) is a consequence of

(a) if £ € Ty then G — £ is not connected

(b)  for each 1 < i < n every spanning tree for G must contain all of L; save exactly

one line.

(a) and (b) imply that any spanning tree for G must consist of G minus exactly one line
from each of Ly,---,L,.
Proof of (a): First note that Ty, C T because, by definition every line of G that is not in
T generates one of Ly,---,L,. If G — £ is connected, there is a path in G — £ that joins
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the two vertices at the ends of £. There is always such a path that is also contained in 7',
because T' contains all of G save one line from each of L,,---,L,. If the path uses the
missing line from L; we can always replace the missing line by the rest of L;. Hence £
union the path is a loop in 7', which is impossible.

Proof of (b): Delete two lines £1,£; from 6(L;) (8(L) is the subgraph corresponding to L;
see Definition 2.17 (7i7)). Then 6(L;) — {1 — £, consists of two connected pieces Aj, A,.
In the event that /; and /5 are nearest neighbours on L;, A; and/or A, is a trivial graph
consisting of a single vertex. Suppose that there is a path P in G — {; — {3 connecting a
vertex v; of A; to a vertex vy of A;. We can assume without loss of generality that this
path contains no lines of L;. As in the proof of (a), we can also arrange for the path to
be contained in 7'. One of /; and /3 must be in 7', so we can construct a loop in 7" using
P and part of L;. This is impossible, so P cannot exist. So no spanning tree for G can be
contained in G — {1 — £5.

(71) It suffices to construct one spanning tree 7' for G that has two overlapping loops
associated, because by (), any other spanning tree for G will then have the same property.
Let L; and Ly be independent overlapping loops in G. Let £, be a line in L, that is not in
L,. £, exists because if §(L;) C 6(L3), then either 8(L;) = #(Ls) or Ly is self-intersecting.
Put 6(L;) — 4; in T. Note that, regardless of how we complete T' the loop associated to
£, will always be L,. Let {5 be a line that is in L, but not in L,. Denote by v; and v,
the vertices at the ends of £;. Add to T the unique connected subgraph of §(L,) that does
not contain /4, that has v; as one terminating vertex, that has a vertex w; of #(L;) as
its other terminating vertex and that contains only one vertex of #(L;). Similarly, add to
T the unique connected subgraph of #(Ly) that does not contain /5, that has v, as one
terminating vertex, that has a vertex wy of (L;) as its other terminating vertex and that
contains only one vertex of §(L;). Note that the two pieces of L, that have just been
added to T contain no lines of L; and that w; # ws, because Ly must overlap L; and
cannot be selfintersecting. Regardless of how we complete 7', the loop M, associated to
£y will contain /5, continue along L, from v; to wj, continue along L; from w; to wy and
finally continue along L, from wy to v2. Thus the loops associated to £; and /3 overlap.

Complete 7" any way you like. |

Lemma 2.35 Let G be overlapping. Let J be an assignment of scales to G.
(i)  Let 74 be the mazimal subtree of t(G7) rooted at ¢ for which G(7,) is non—over-
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lapping. Let 7* = min{js : f € o(74)}. Then for any tree T' consistent with J
there is a line £* € T with jg < j* which is contained in two independent loops
associated to lines £, and £, € L(G)\ L(T). In the case that G(¢) is overlapping

J* = Jj¢. In the assignment of momenta to lines of G given by T,

Pex = Eps, £pe, +Q (2.79)

where Q) s a linear combination of loop and external momenta independent of p,
and py, .
(i)  Assume that the propagators assigned to the lines of G satisfy

|Cie(po, e(P))] < 2eM ™21 (Jipo — e(p)| € [M772, M7)), (2.80)

with factors zg > 0. Let K, be as in Lemma 2.3 (ii), € be as in Proposition 1.1,
A be as in Lemma 2.3 (ii), and let

Uo?

K1 - volﬁ-

(2.81)
Then

vac!| <k, J] “Koze) [ [tol, M aPede T] aPrlis=inin)
LEL(G) veV(G) >¢
(2.82)

Proof: (i) Let T be any tree consistent with J. For example, T' may be built by first
building spanning trees for the topmost forks of ¢(G”), then extending these to spanning
trees for the next level of forks of t(G”) and so on. Let b obey j = min{j; : f € o(74)}-
Then T(74 U {b}) = T N G(74 U {b}) is a spanning tree for G(74 U {b}), because if you
collapse a connected subgraph of a tree, you get another tree. By the maximality of 7y,
é('rd, U {b}) is overlapping. By Lemma 2.34(i¢), any spanning tree for any overlapping
graph has associated at least two overlapping loops. So there is an £* € G(7,U{b}) that is
in two independent loops L; and L, associated to T'(74 U {b}). These loops expand to two
independent loops L; and L, associated to T', both of which contain £*. (2.79) follows for

£* because any line that is part of the loop L; has the momentum p,, flowing through it,
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i.e. the linear combination of momenta making up p,« contains summands £p,, and *+p,_,
the £ depending on the relative orientation of the lines.

(7i) After fixing of the momenta on the lines of T', the expression (2.54) for Val(G) becomes

Val(G?)(May-- s Mo, Bom) = > / I @ I Crn)

spins o lIEL(G)\L(T) 1eL(G) (2 83)

n

I @9, e Dymi—1)) o, el

=1 ¢
where 1 = (qx, k), and 2m; = E,,, and the momenta on lines and in the vertex functions
U, match up according to the fixing of the momenta described in (7), and for each ¢t € L(T),
Pt is a linear combination of the loop momenta (p;);e L(e@)\L(T) and the external momenta

q1y---y92m—1-
We bound the spin sum at both ends of every line | € L(G) by a factor 2 times the

maximum over spins and take the sup norm of all U, , to get

ValG(C, Uy, , ... Uy, )|, < 4K T tho, |, (2.84)
k=1

where

sup / T @ [T G ((m)eeler) (2.85)

Taoeeo2m—1 S e 1 (G)\ L(T) IEL(G)

By hypothesis, upon integration over the (p;)o,

x<y | [[ a7+ I M (2.86)
leL(G) leL(G)\L(T)

where
sup / 11 d P 1(le(ps)| < M%) )H 1(le(p:)] < M#)  (2.87)
odzm -1 leL(G)\L(T) IET

Ordinary power counting, Lemma 2.4 (7), would be obtained by omitting the last product
over [ € T. Improved power counting is obtained by keeping only one factor, that from
Il =1* € T, of this product, to use the volume improvement estimate, Proposition 1.1.

Applying (i), integrating over the loop momenta p;, and p;, first and recalling (1.34),

Y < Iz(Mj’l,Mj’z,Mj’*)/ II @ 1(e(@)| < M%) (2.88)
LEL(G)\L(T)

1g{ls,l2}
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By Proposition 1.1 and Lemma 2.3 (i),

Y < CoaM M M= ] Ay

Uo
LEL(G)\L(T)

;f{ll‘lz} (289)
< KlMéjl* H ity V)
Uo
IEL(G)\L(T)

We insert this bound for Y, use |L(G) \ L(T)| < |L(G)| and A/u, > 1, and reorder the

product over scales by the usual telescope formula j; = js + Y. (jf — j,,(f)). [ |
i
Remark 2.36 Apart from a constant, the improved power counting bound is the

ordinary power counting bound times an improvement factor M7 ¢ where j* is the scale
at which the graph overlaps. By Lemma 2.3 (7), the propagators C; given by (2.17) satisfy
the hypothesis of (i) with z, = 1. Derivatives with respect to p or e satisfy a bound with
zg = const M7t by Lemma 2.3 (i44).

We now want to prove that for any labelled graph G’ with (scale ) tree ¢(G”), there is a
spanning tree such that the external momentum does not enter any of the lines in é(’l’f),
for all f € N. We first explain why there is anything to prove. Any two-legged 1PI non—
overlapping graph has only one external vertex v,. The external momentum can trivially
avoid all internal lines of such a graph. However, even if G(f) is non—overlapping, G(t)
may be overlapping. In fact, the image of a poorly chosen spanning tree for G under the
projection onto G may not even be a tree. Consider, for example, the graph drawn in
Figure 16. If the leftmost line carrying scale j is in the spanning tree of G at scale zero
(top of the figure), what remains of T' in the projection of G on scale j (bottom of the
figure) is certainly not a tree graph. The way to avoid this problem is to start at the
bottom, i.e. at root scale, to construct a spanning tree for G’(gb) and then go upwards on
scales, constructing spanning trees for all the subgraphs that appear as effective vertices,

and combine them to a spanning tree for G using the following simple fact.

Remark 2.37 Let G be a graph, G' a connected subgraph of G and G the quotient
graph of G obtained by replacing G’ by a vertex. Let T" be a spanning tree for &' and T
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a spanning tree for G. Note in particular that 7" necessarily consists only of internal lines

of G'. Let T = T'UT. Then T is a spanning tree of G.

Lemma 2.38 Let G7 be a labelled two-legged 1PI graph and let (7¢)fen be the family
of subtrees of Lemma 2.31 (iii). Then there is a spanning tree of G such that for all f € N,
the external momentum enters in no line of é(’rf), and such that for all f € N, there is

an improvement factor M7 with J7 < min{js : b leaf of 7¢}.

Proof: We first construct a suitable spanning tree for é’(Tf), for any f € N. This is easy.
On each loop of é(’rf) delete a line, I’, of lowest scale. Since G’(’rf) is a GST graph, this
does not disconnect it. It leaves a tree T, which is already the desired spanning tree for
é('rf). In particular it is consistent with 7¢. This means the following. Let f' be a fork of
77 and t4 the subtree of 74 consisting of f' and all forks of 7; above f’. Then Ty N G(t )
is also a spanning tree for G(tz). To see consistency, it suffices to check that T N G(t )
connects all pairs of vertices v,v' of G(t), because clearly Ty N G(ts) can contain no
loops. As é’(t /) is connected it contains some path from v to v’. The only problem is that
this path may use the one line £’ of some loop L that is omitted from T;. But because
¢ € G(tp) and jp < jgo for all £ € L we necessarily have L C G(ts). But then we may
use L\ £' C Ty instead of ¢’ in the path.

Since the loops determined by T do not overlap and é(’l’f) is 1PI, all lines on the
same loop carry precisely the loop momentum pp. The external momentum enters only
in the vertex function of the one external vertex, but not in any internal line of G(7y).
Now we combine them, going upwards from the lowest forks f € A/. Choose a leaf b of

T¢ such that j* = j; is minimal. By the maximality of 7y, ’f =G (f > is overlapping.
f

Grow a spanning tree for G(b). Combine it with the spanning tree Ty of G(75) by Remark
2.37 to get a spanning tree for G'f. Lemma 2.35 applies, so there is a volume improvement
factor on scale j7* or below. To get a spanning tree for G, we do the above procedure for
all é(Tf), f € N, then choose an appropriate spanning tree for the remaining subgraphs
of G and put them together using Remark 2.37 to obtain a spanning tree 1" for G. This is
possible because, by Lemma 2.31(iii) and Remark 2.32, all the 'f’s are disjoint. |

Remark 2.39 Note that the external momentum does enter internal lines of non—

overlapping 1PI two-legged graphs if vertices with odd incidence number are there; see,
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e.g. the graph of Remark 2.30.

Theorem 2.40 (Improved power counting) Let G’ be a labelled graph contributing to
the sum (2.72) for G} let t be the tree associated to G’ and ¢ its root. Let N be as in

2m,r?

Lemma 2.81 (iii) and for f € N, let

3*(f) = min{js : b leaf of 74} (2.90)
Then N
’Val(GJ)’() < (4K0)|L(G)| (KlMej)1(¢€ ) H (KIMej*(f))
fEN
M7D¢ MPsGr—ins))
Il s
f>¢
H |0'U|0 H |F'v|0-
v two—legged v four—legged

Proof: Choose the spanning tree of Lemma 2.38, fix the momenta, collect the improve-
ment factors given in Lemma 2.38, going upwards from root scale, don’t forget the one at
root scale if the graph is overlapping on root scale, that is, ¢ € N'. This works because the
higher é(Tf) appear as vertex functions in the lower ones, so that one can indeed apply
Lemma 2.35 separately for all é(’l‘f), f € N, and because Remark 2.32 assures that no

improvement factors are counted twice. [ |

If é(gb) is non—overlapping on root scale, then there is no improvement factor M. For
general non—overlapping graphs, e.g. four—legged ones, there is no further improvement
without more specific assumptions on the band structure e. However, for two-legged 1PI
graphs, one can use a refined bound, that exploits sign cancelations, to show that their
root scale behaviour does contain another factor of M even if they are non-overlapping
on root scale. This bound, which we now prove, is more subtle than the previous ones and
we will have to use it with care when proving the statements about the derivative with
respect to e in Chapter 3. We first give the explicit formula for Val(G) for non—overlapping
two—legged graphs.

76



Remark 2.41 Let G be a non—overlapping, 1PI, two-legged graph. By Lemma 2.22,
G is a GST graph. By definition, these graphs have an obvious recursive structure: let v,
be the external vertex of G, with incidence number 2m,. Let v; ,...,v; be the vertices
of G that have incidence number > 4 and that are on one of the self-contraction loops of
v,. By definition of a GST graph, each vertex v;, is again an external vertex of a GST
(or ST) graph G;,. Choose a spanning tree for G as in Lemma 2.38. Then the value of G

takes the form

m,—1
(ValG?(C\Us, .., Us,)) 55 (a) = 3y /H (dd+1pi(Si(pi))amﬁlﬂai)
Q;yeeyQam, —2 =1 (2°92)

(2/{'01 )al...aml_l,@aml ceQ2m, —20' (p17 cv+9Pm,—1945P15 -+, Pm, —1)

where S;(p) € M,(C) are strings of subdiagrams,

( ﬁ Cji (P)PeTi( )) Cj., () (2.93)

with w; the number of lines of the string S;, Pi, € {1,4,1 — £}, and Tk(p) the kernel either
of a two-legged vertex or of the (G)ST graph G;, if it is associated to one of v;_,...,v;
Because of (2.16), there are j(*) such that for all k € {1,...,w;}, jx € {7®,;® +1}.

Lemma 2.42  Letj<0,n>1,ke{0,....,n—1}, me {l,...,n}. LetT,...Tp_1 €
C*(R x B) and g € C(IR x B). Let

I = / dp, / 0% C;(po, (D)™ C;1 (o (D)™™
k
9(po, P) H (1-oT, H 0T, (

w=k+1

(2.94)

Then there are constants U, < U,, U, depending on M, u,, |u|,, d and §, such that

k n—1
1| < UMM |g|, ] 1Twl, J] (ITwl,d277) (2.95)
w=1 w=k+1

and, if g € C}(R x B),

n—1
L] <M MY ][] (|Twl,M™ <|9| 1.d H Twl, + 19l ,,ZlTvl 11 Il )

w=k+1 w#v
(2.96)
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where
9lsi = Y sup{|0%g(p)| : Ipo| < M7, |e(p)| < M7} (2.97)

ailal<s

Proof: We change variables to (p,w), as given in Lemma 2.1, and denote y(p,, p,w) =
9(Po, P(p,w)) and 0y (po, p,w) = Tw(po, P(p,w)). Then
LTy (p) = 04(0,0,w),

(2.98)
(1 — )Tw(p) = Ouw(Po,psw) — 04,(0,0,w)

and

n—1
Ij - /dpo/dp Cj(poap)m C’j+1(po,p)”_m/dw(ny)(po,p,w) H Pwaw(poapaw)'
R R w=1

S
(2.99)

Here J(po, p,w) = J(p,w) is the Jacobian of the change of variables, see Lemma 2.1. In
polar coordinates (7, ¢) such that p = rsin ¢ and p, = r cos ¢, dp, dp = r dr dy,

F(M2ir?)
C; =" 2.100
(P p) P (2.100)
Since m > 1,
F(M2p2ym (M2 22 =™ < f(MT20%) < 1(r € [MP72, M7). (2.101)
Noting that £T, is independent of ¢ and r by (2.98), and writing the difference
8. (7 cos p,7sin p,w) — 8,(0,0,w) = rA,(r, p,w) (2.102)
with
1
Ay(r, p,w) = /dt (cos ¢ Oy + sing 0,)0,,(tr cos ¢, trsin ¢, w) (2.103)
0
we obtain .
1| < HM> M / do [ (6wl M) (2.104)
S w=k+1
where
2m
H; =sup sup /d(p e_i"‘pqﬁ(r, Y, w) (2.105)
w€S rel0,M7]
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with
k

(7, p,w) = (Jv)(rcos p,rsin p,w) H Ay(r, p,w). (2.106)

w=1
Bounding the ¢-integral by 2m|¢|, results in the ordinary power counting bound (2.95).
But we can do better than that by being more careful about the integral over . After

a Taylor expansion of ¢ around » = 0,

1
0
3r,00) = 90, p0) + v [ dt 52 (tr,,0) (2107)
0

H; splits into two terms. The first term contains
k
#(0,¢p,w) = J(0,w)v(0,0,w) H (cos ¢ 0,0.,(0,0,w) + sinp 8,60,,(0,0,w)) (2.108)

w=1

which is a polynomial of degree k < n — 1 in €*# and ™%, so

27
/d(p e (0, p,w) = 0. (2.109)
0
In the second term, we bound
¢ y k k
\5 o] <ty 32 1o | Ll | +10, I (2.110)

The factor r from the Taylor expansion gives the additional M. Collecting the constants
|J|,, and others, coming from the relation between v and g, we obtain the Lemma with

constants U, that depend on 6,, |u|,, u, and d. [ |

Remark 2.43 In the application to the value of a non-overlapping graph, the g
in Lemma 2.42 will be the vertex function U, , which may depend on other momenta.
Replacing |g|, and |g|, by the corresponding norms of the restriction of g(p) to p obeying
IPol, le(P)] < M?+! retains information about the support of the propagator C;. As the
example of Remark 2.33 shows, this information is necessary for volume improvement.

In fact, Lemma 2.35 applies to that expression, in which the string S, is replaced by a
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propagator that satisfies the Hypothesis of Lemma 2.35 (i) with z; = M7. We shall also

need the expression for I; itself; it is

I]' = i_nMj(n_k_l) /dr frk_"+2f(M_zj,r.z)mf(M—Zj—2,r2)n—m

(2.111)

27 1

n—1
/d /d(pe_m / —(tr,p,w H M~76,(0,0,w)
S

0 w:k—l—l

with ¢ given by (2.106).

2.7 Convergence of the Renormalized Green Functions

The power counting bounds show that divergences in the scale sums of graphs contributing
to the Green functions come from unrenormalized two—legged insertions, as discussed at
length in the Introduction. In this section we show that the renormalized Green functions
converge in the limit / — —oo in every order in perturbation theory, i.e. that the scale
sum for the value of any graph converges. The bound for this value depends on the
order of perturbation theory r, and for some graphs it contains a factor r!. We show that
under the stated assumptions, in particular because of the non—nesting condition A3, these
factorials in bounds for single graphs can arise only from the lack of decay of those forks f
with F (G]{) = 4 for which the graph é( f) is non—overlapping. For the overlapping graphs
such factorials do not arise even if G’]Jc is four-legged because the improved power counting
always produces enough decay to make the scale sum convergent instead of marginal. We
state this precisely in this section and prove Theorems 1.2 and 1.3.

We shall show finiteness of the renormalized Green functions by deriving power count-
ing bounds for the two— and four—legged effective vertices that arise in the scale flow. The
two—legged vertices correspond to the r— and c—forks. Although dealing with these effec-
tive two— and four-legged vertices is a standard procedure of handling trees and labelled
graphs, what is not standard here is the behaviour of the c—forks. Normally?:3, they are
constants, and therefore any derivative acting on them gives zero (such derivatives always
arise from the Taylor expansions used to perform renormalization cancellations). In the

nonspherical case, however, the c—forks are still momentum-dependent because the shape
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of S is not fixed by a symmetry. Since the scales of c—forks are summed downwards, the
ordinary power counting bounds are insufficient to show convergence of a differentiated

c-fork, and the improved power counting bounds are necessary.

For M >1,n€ IN, h € Z and ¢ > 0 define the function

An(hoe) =Y (|h] +p+1)" M2, (2.112)

p=1
Obviously, A is monotonically increasing in |h| and (|2| + 1)™ A, (R, €) < Apptn(h,€). This
function bounds the effect of n of the marginal four—forks mentioned above on the scale
sum of the fork below this. The following properties allow one to collect the accumulated

effect of such factors when summing scales down a fixed tree.

Lemma 2.44 Lete > 0 and My(¢) = 22/¢. Then for all M > M,, a > ¢, allm,n € Z,
and allj € Z,5 <0,

Am(jv 5))‘n(j7€) S )‘m+n(j75)

Z(m + 1)mMal)‘n(la 6/2) < (1 - M_E/Z)_l)‘m+n(j7€/2)Maj
1<j (2.113)
< 2 mgn(d e/2) M

(i)

0

> (b + 1) M (hye/2) < 2Amyn(ire/2) (2.114)
h=j+1
(iv)
0 -
> (bl + )™M DN (h,e/2) < Amga(d,€/2) (2.115)
h=j+1
(v) At fized n,
An (k g) < ank™ + by, (2.116)
with
271,
ap, =
ME -1 (2.117)
bn = Z(2p + l)nM—Ep .
p>1
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Proof: (i): By definition,

Am(J,€)Anld ) = (l7l +p+1)™(|7| + g + 1)"M_5(P+‘1) <

(Ij| + max{p, g} + 1)+ p—e(r+a)

<9 Z(|-7| +u+1 m+nZM e(ptv) (2.118)

Since M* > 4, (i) holds.
(77) setting I = j — k, k > 0, we can rewrite the sum as

o0

MY (3] +k+ 1My M|+ k +p+1)"
e =0 . (2.119)
<MY M|+ g+ D) MR+ k1)
g=0 k=0
In the sum over k, we estimate each term by |j| + k+ 1 < |j| + ¢ + 1. Extending the sum
over k to oo, we obtain the result.

(7i7) Since for each h in the sum || < |j], (|h] + 1)™An(h,e/2) < (7| + 1)™An(4,€/2) <
)‘n+m(j7€/2)7

0
Y (Bl + )™M A (h,e/2) < Anym(Gr6/2) Y M/
h=3+1 r<0 (2120)
< 2Dimjie/2)
(iv) As in the proof of (7i7)
0 . |
Z (|h| + l)mM_a(h_])An(ha€/2) < An+m(j35/2) Z M_a(h_J)
h=it h>j+1
M : (2.121)
<_ T
=1_M-a Antm(d,€/2)
1 ] _
= (22/5)‘S n+m(]’5/2) < Antm(d,€/2)
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g > n _
/\n(k,§> = (k+p+1)"M~

p=1

k—1
= (k+p+1)"M™P+> (k+p+1)"M~?

1 ok (2.122)
<@2E)" Y M P+ (2p+1)"M P

p=1 p>1
< apnk™+ b,
with a,, and b,, as given in the statement of the Lemma. [ |

Remark 2.45 Given any labelled graph G with tree t contributing to the renormalized
Green functions, we will now construct the quotient graph G’ mentioned in Remark 2.16(ii)
and the corresponding tree t'. We recall that G’ is to have the following properties: G’
has only two— and four-legged vertices, with vertex functions that are either interaction
vertices or values of 1PI two— or four-legged subgraphs. The only nontrivial two-legged
subdiagrams of G’ that correspond to forks of ¢’ are strings of two-legged vertices. Any
nontrivial four—legged subdiagram of G’ that corresponds to a fork of ¢’ consists of a single
four-legged vertex with strings of two—legged vertices appended. The significance of this
in the inductive proof of finiteness of the infrared limit is that the scale sum over the scales
of forks f € t' can be easily bounded once the vertex functions of G' are controlled — and
the latter will be covered by an appropriate inductive hypothesis because they are of lower
order.

Let ¢ be the root of ¢, and let f,,..., f, be all forks of ¢ that satisfy: for all k£ €
{1,...,r}, the number of external legs of Gy, is two or four, and f; is minimal in the
sense that there is no fork g such that ¢ < g < fr and G4 has two or four external legs.
Let ¢ be the tree rooted at ¢ and obtained from t by trimming ¢t at f,,...,f, (i.e. by
collapsing t¢,, as defined in Definition 2.27, to a leaf) so that f,,..., f, are leaves of t, with
vertex functions Val(Gfk). The result is a graph G and a tree 7, such that no fork of ¢
corresponds to a nontrivial two— or four-legged subdiagram. ¢ is not yet the tree with the
stated properties because the G, need not be 1PI. When this is the case, we extend the
tree further above f to construct t'.

Let f be one of the forks f,,..., f.. If G¢is 1PI, f is a leaf of t'. If G is 1P reducible,

then in the transition from £ to t', f is replaced by one fork with some leaves above it. We
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now specify the procedure for getting ¢’ in the different possible cases.

If fis a cfork with E(Gf) = 2, Gy must be 1PI, since £Val(G) = 0 for any 1P
reducible graph by the support properties of the propagator C;.

If f is an r—fork with E(Gf) = 2 and Gy is 1P reducible, let C be the set of lines
l € L(Gy) such that Gy disconnects if [ is cut. If all lines in C are cut, what remains of
Gy falls into s connected components §;. By the definition of C, all the 6; are two-legged
graphs. Moreover, they are all 1PI. Thus G is a string of two-legged 1PI subdiagrams
0.,...,0, joined by the lines in C, and

Val(G)(r) = S(r) = (H .(7)C; <p>) 7.(r) (2.123)

where T, = Py, Val(0;). Note that the external lines of G]{ must have scales jr(5) or
below, while each line of C must have scale j; or above. By momentum conservation, the
scale assignments and (2.16), all I € C must carry scales j; = j§ = Jn(f) +1. Since £C; = 0,
£ applied to the value of such a string is zero, so effectively 1 — £ is replaced by 1. Let 6 be
one of 0,,...,60,. Then 6 can be § = G, where g is an 7— or c—fork directly above f, i.e.
m(g9) = f and Py =1 — L or £, or 6 is a two-legged graph of root scale jf, in which case
Py = 1. Let us call this latter case a same scale insertion. We continue the construction of
t' by reinstalling the fork f and adding, for every k € {1,...,s}, a leaf b; above f which
has vertex function T%. Now, G¢ just consists of the lines of C and the vertices b,,---,b,.

If G is four-legged and 1PI, f is a leaf of t'.

Finally, if G¢ is four-legged and 1PR, remove the strings attached to Gy according
to Remark 2.23, and add a leaf, above the fork f, for the 1PI “core” of G, as well as for
each 1PI two-legged subdiagram 6; of the strings. The strings have the same properties
as the ones discussed in the 1P-reducible r—fork case.

Doing this for all of f,,..., f,, we obtain the tree t. By construction, G' = é’(t’) has
the desired properties.

Finally, we note that if G is 1PI, G’ is as well, since it is a quotient graph of G.

The relation between the scale sums for G and G’ is

Y va@ehH= Y va@”) (2.124)

JET(t,5) J.€T(t,5)

In this formula, J is as usual, but the vertices w of G’ carry a scale index j,,, as discussed

in Remark 2.16. If j,, = 0, w is also a vertex of GG, and the associated vertex function is v.
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Otherwise, j,, is the root scale of a subgraph of G whose value is a vertex function in G’

(given by (2.75)) and j,, is summed over. For fixed j(,), the summed vertex function is

Fo=Pud Y. Val(G(t,)) (2.125)

Jw JET (tuw,jw)
where P, € {1 — £,£} for two-legged vertices associated to forks, P, = 1 for two-legged
vertices corresponding to same scale insertions and for four—legged vertices. The range of
summation for j, is: a sum I < j,, < jr(w) for a cfork, a sum jr(u) +1 < ju < 0 for
an r—fork or a four-legged vertex, and no sum at all, but j, = jr—y(w) for a same scale
insertion. The last point is important because these diagrams do not have 1 — £ in front,

but the “correct” factor M7+ is there because their scale is fixed. For a fork f € t, let
ng=|{fet:f'>7%, G’(f') non-overlapping, E(Gy) = 4,Gy 1PI} (2.126)

ny indeed depends only on G and ¢, but not on the scale assignment J € J(t,j).

Theorem 2.46 Let G be a graph with E(G) = 2m external legs and t be a tree rooted
at a fork ¢ compatible to G, so that (t,G) contributes to the renormalized effective action
at scale j, Gj,,,, (see Remark 2.16). For I < j < 0 and J € J(t,j), let Val(G’)
denote the value of the labelled graph G’ with root scale Jo = j. Let € be the volume
improvement exponent of Proposition 1.1. Let |- |, as in (1.44) and (1.45); recall that
for 2m—pownt functions with m > 1, the supremum s taken over all 2m — 1 independent
external momenta entering into G. The numbers of vertices and of internal lines of G are
denoted by |V (G)| and |L(G)| respectively.
(i)  Let G be 1PI. There is a constant Q, such that for s € {0,1,2}

Y [Val(GY)], < QM o)V (DN, (5, £) M7 (2.127)
JET(t,7)

(L+e—3s) if E(G) =2m =2
Y (G)=<2—-m-—s if E(G) > 4 and G(¢) is non—overlapping (2.128)
2—m—s+e if E(G) >4 and G(¢) is overlapping

(i) Let X =1+ W, + W, where Wy is as in Lemma 2.3 (iii), let K, and K, be as

in Lemma 2.35, U, as in Lemma 2.42, and

2V 2M?
Uo

K, = max {2(2 +dP|), ,M2(1+5),M4U2} (2.129)
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Then
18K, K,K,X?
Qo= =771

(2.130)

well do.
(7it) For s < 1 and E(G) = 2m > 4, the estimate (i) also holds for one-particle
reducible graphs.

(iv) AsI— —oco, Y Val(G”) convergesin |-|, to a function that obeys the bound
JeT (t.7)

—1
(i), and, for G two-legged and 1PI, . Y. Val(G’) convergesin |- |,.
i=I1JET(t,5)

Proof: We take (¢) — (iv) as induction hypotheses and do induction over the depth of the
pair (t,G), which is defined as

P=max{k:3f, > f>...> fi > ¢ with B(G},) € {2,4} for 1 <i<k}.  (2.131)

In other words, given any leaf of the tree ¢, there are at most P two—legged or four-legged
forks on the unique path between the root ¢ of the tree and this leaf. Let A be as in
Lemma 2.31 and recall that ¢ € N < é’(gf)) non-overlapping. Also, call Q(G) = QLL(G”.

If P =0, G has no two— or four-legged subgraphs associated to forks of £, so ngy = 0.
Since no Gy is two-legged, N = 0 or N = {¢}, depending on whether G(¢) is overlapping
or not. Also, once (i) — (iii) are proven, (iv) is trivial since Val(G”’) does not depend on
I at all for P = 0. We note right away that the only places where I will enter for P > 0
are in the values of two-legged subdiagrams through the lower limit of the scale sum for

c—forks.

Case 1: P = 0,s = 0 with E(G) > 4 or E(G) = 2 and G(¢) overlapping. By Theorem
2.40,

Y Val(@)], < (4K,) KO K, MTIGEN) et (@) 1GEN)

JET (t.5)
MPes Z HMDf(jf—jvr(f)) H |9]o

JET (t,5) > Va(G)

(2.132)

see (2.24) for the definition of the Df). Since there are no two— or four-legged forks
f 28
(except possibly ¢), Dy < —1 holds for all f > ¢. In the sum over J € J(t,5), jf runs

86



from jr(s) to -1, since there are no c—forks f > ¢ (the corresponding subgraph would be
two—legged). Thus every scale sum is bounded by

o 1
D (] —In ) _k -
Z MP1Gr=in) <N Mk < T (2.133)
15 >T=(£) k>0
Doing the scale sums downwards from the leaves of ¢ in the standard way, we get a factor

(1— M~1)~1 for every fork of ¢, except for ¢. Since every fork f corresponds to a subgraph
of G, the number of forks is bounded by |L(G)|. Thus

(@)
4K, K, — A
Y |va(@’)|, < <71 — _1) MPsi ppei HEEN) |5 V(G)] (2.134)

JeT (t,5)

Recalling that D, = 2 — m if G has 2m external legs, and that ¢ ¢ N <— é(qb) overlap-

ping, we obtain the statement for s = 0.

Case 2: P = 0,5 € {1,2} with E(G) > 4 or E(G) = 2 and G(¢) overlapping. Now we
apply s < 2 derivatives with respect to the external momenta. The derivative can act
on vertices (interaction lines) or on fermion lines in the spanning tree of the graph. A
bound for the number of targets for each derivative is thus 2|V (G)| — 1. Because G is
connected, |V(G)| < |L(G)| + 1. If the derivatives act on interaction lines, their effect can
be bounded by |9|,. By Lemma 2.3 (7ii), the effect of s derivatives acting on fermion lines
can be bounded by an additional factor W,M ~*/» where j, is the lowest scale at which
the derivative acts. Moreover, the value of the differentiated graph can be bounded using
Theorem 2.40 since all support properties remain the same as before.

If G(¢) is overlapping, we use M7+ < M~ to bound,

Y. [Val@)], < Ki(4K,) M ONIL(G)] + 1 X][a] V@)
JET (t,7)

M(D¢+€—s)j Z H MDf(jf_jw(f)) (2.135)
JET (t,5) F>o
< QGBI D MPer I (re)

as before. If G(¢) is non—overlapping and E(G) > 4, a similar bound holds without the e.

So far irreducibility has played no role, so (7i7) holds for P = 0 even with s = 2.

Case 3: P = 0, E(G) = 2 and G(¢) non—overlapping, s € {1,2}. Now G(74) is a non—
overlapping two—legged graph. It is 1PI because it is a quotient graph of the 1PI graph
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G. Let s > 1. By Remark 2.41, the derivative does not act on lines of C~¥(T¢) but only
on lines with scale > j*(¢), where j*(¢) is the lowest scale above 74, as in Theorem 2.40,
so its effect can be bounded by a factor X*M %7 (). If 7, = ¢, then j*(¢) = 0, and
the derivative can act only on the interaction lines or lines of scale zero. Otherwise, by

Theorem 2.40, we have a factor M/ (¢), Since s > 1 > € and 0 > j*(¢) > j,
M—(5=9)i"(9) < ple—s)i (2.136)

and we again obtain the bound (2.135). Note that if the derivative acts only on interaction

lines, the bound is true since 1 < M{(¢=9)7,

Case 4: P =0, E(G) = 2 and G(¢) non—overlapping, s = 0. We use the representation
(2.92) for Val(G7) and Lemma 2.42. Pick a string S, that contains a line of scale j. This
is possible because é’(qﬁ) is non—overlapping. Recall that j is the root scale, hence the

lowest possible scale for any line of the graph. Let

m,—1

9P, Davam, o = Y /H (ddﬂpz’(Si(Pi))aml_Hm,.)

(@i)ig{1,m.} =2 (2.137)
(Z/{1)1)OLJ...t)t,,,l_l,ﬂam1 eOam, —28' (pl, cvesPm,—1945P1y--- apml—l)
then
‘/}. - (V(Il(GJ))ﬁﬁl (Q) = Z /dd+1p(sl(p))aa,g(p,q)alaﬁﬁl (2138)

a,a’
The string S, can contain only insertions at scale j, i.e. vertices with generalized self-

contractions of scale j because P = 0. So

51(p) = Cj(po, e(P))™ Cit1(Po,e(p))" ™™ 1:[ Tw(p) (2.139)

with m > 1, and where the T, are values of 1PI two-legged subdiagrams with root scale
precisely j, and which are non-overlapping on scale j (those are not excluded by P = 0

because we did not use normal ordering). In the notation of Lemma 2.42,

oo 27
V; = /r dr/dgo (ire?)™™ f(M~2p2)™ f(M 29 —2p2)n=m
0 0 (2.140)
[ o (@(rcos . rsine,) - 9(0,0,0)

S
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with

n—1

¢(Dos pyw) = J(p,w)9(Po, P(p,w), @) [ ] Tuw(PosP(psw)) (2.141)

w=1
(as in Lemma 2.42, [ dyp e™*™?¢(0,0,w) = 0 because ¢(0,0,w) does not depend on ¢). By

Taylor expansion,

oo 27
V; = /r2 dr/d(p (irei‘P)_" f(M_zjrz)mf(M_zj_zrz)”_m
0 0

(2.142)

1
/dw /dt (cos @ Oy + sin 0, )p(trcosp,trsinp,w)
S 0

As in the proof of Lemma 2.42, the extra factor of r» gained by Taylor expansion alone
would improve the scale behaviour by a factor M7. However, there are now derivatives
acting on either J, or g, or one of the T%,’s. We consider all these cases separately.

If the derivative acts on J, we use Lemma 2.1 (iv) to bound |J| . Moreover, we can

use the IH (proven as Case 1) for the four-legged graph F whose value is g to bound
l9l, < Pl ! (2.143)

Thus this contribution to V; is

n—1 co
<171, lgl, T ITel, / dr 12 F(M-20r2) / »
w= S
' 0 (2.144)
n—1
] n ~1|V(F i
< M1, Q(E) o]y T (1Tl oM7)
w=1
The root scale behaviour of the two-legged graphs is (applying the IH to their external ver-
tex and the power counting bounds for the propagators) Qw|'8|LV(T'”)|M 7, so the statement
follows for this term.
If the derivative acts on one of the T7,’s, it can act only on an interaction line, or on
a scale where the two—legged graph overlaps. Thus, bounding its value by the IH (proven

as Case 2 or 3),
ITl, < M9Q,[0]\Y 7! (2.145)

so the contribution from this term is bounded by

n—1
< w0+ 2| QB T (Qulaly ™) (2.146)
w=1
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If the derivative acts on g, it affects only U, . There, it can hit any line of scale j* or
higher, where j* is the scale at which G overlaps, or an interaction line. We now wish to
use the argument of Theorem 2.40 to extract the volume gain. The crucial step in this
argument, as applied to the current situation, is bounding the two overlapping momentum

loop integrals

= sup/ p1/dr/dw FM™2e2)1([e(p,)| < MT)

q,0,t

(2.147)
1(le(vaPa + vap(trsin g, w) + q))| < M7").

Here p, is the spatial momentum of a loop of U, , the two factors 1(...) come from the
cutoffs on two lines of that loop, the integrals over » and w come from the momentum
integral (2.142) for the string S, and the factor f(M~2772?) comes from the cutoff of one
of the lines of S,. This two loop integral is not quite of the form of Proposition 1.1, with
the most serious difference being the appearance of p(¢r sin ¢,w) in place of p(r,w).
However, writing p, = p(p,,w, ), doing the same Taylor expansion as at the beginning

of Appendix A, and using that in the support of the integrand, » < M7 < M7" | we get

1(le(vaps + v2p(trsing,w) + q))| < Mj*) <

Ll (2.148)
<1(le(v2p(0,ws ) + vaP(0,ws) + q)| < (14 2/2=)M177)
so that
M M
Y < sup / dpl/dr/dwlu P1sWs) /
q,9,t N
— M7 o 5 S (2.149)

1(Je(v2p(0,w;) + v2p(0, w ) qQ)| < (1+2kk)pi7)
< 20|, M M W (142l M)

with W the function defined in Appendix A. So by Lemma A.l, the integral is bounded
by CpotMI M7 Me€" . Substituting this into the proof of Theorem 2.40 , we find that the

term in which the derivative acts on g is bounded by

IL(F)]
<MY MT WK, (2K ) 15|V pp2n pp(3=m)i H T,
w=t (2.150)

90



Collecting the constants into the U mentioned in Lemma 2.42, this proves the statement
for Case 4.

Now assume P > 1 and (%) — (iv) to be proven for all P’ < P. Construct the graph G’
and its tree t' as in Remark 2.45. Recall that, by construction, G’ has only two— and four—
legged vertices. Furthermore any two-legged subgraph corresponding to a fork must be a
string of two—legged vertices and any four—legged subgraph corresponding to a fork must
consist of a single four-legged vertex with some strings of two—legged vertices appended.
Recall the definition of the vertex functions F,, and the scale sums involved therein from
Remark 2.45. By construction of G’, all graphs é(tw), whose values V,, appear in the
definition of F,,, are 1PI and two— or four-legged, and they are of depth at most P — 1,
so the inductive hypothesis applies to them. Our procedure is to estimate the norms of
|Fyl|, for s € {0,1} (and, when F,, is four-legged, for s = 2) first, using the inductive
hypothesis, and then to apply this to complete the induction step using the case P = 0,
since by construction, G’ has depth zero. We abbreviate Q,, = Q(é(tw))|’0||zv(é(t’”))| and

call n,, = ny if w comes from the fork f € ¢.

Let F,, belong to a cfork. Then

Jw(w
Ly Ve, (2.151)
Jw=1I $
For s =0, by [4T|, < |T|,, the inductive hypothesis (IH), and Lemma 2.44 (73),
jr(w) )
Fuly € Qu D dn, (Gus 5) M7

< 2Q'w nw(]ﬂ'(w)? )M]’r(w)(l-l_e)

If s =1, weuse 4T'|, < (14d|P|,)|T|,, where d is the spatial dimension, P is the projection
onto S, and |P|, = max |P;| , then

]r(w

Ful, < (1+dIP[) Y [Val,
Jw=1I

() . (2.153)
< Qu(L+d|P,) Y Ay (fu, §) M7

Jw=1I

< 2Qu (L +d|P[,) M) Ay (fa(w); 5)
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by Lemma 2.44 (i) since Y, = e.
If F,, belongs to an r—fork,

Fol,=|(1-0) Y Vi (2.154)

]w>.71\'(w) s

For s = 0, by (2.37), and because the momentum p flowing through G, must be in supp
Cjw(w), ie. |ipo —e(p)| < M) +2

|Ful, < ) M’"(‘"+2—|V|

(o]
]w >]1r(w)

Va2M?

0

V2M?

(o}

< Qu M " A, (fu, §) M (2.155)

jw >.77r('w)

< 2Qu M7 Ay (Gn(w)» 5)

by Lemma 2.44 (ii7).

For s = 1, we ignore the renormalization gain, and bound
(1= OV, < (2+d[P])|Val, (2.156)
Inserting the IH, the scale sum is as in the s = 0 case, and
|Ful, < (24 d|P],)2QuAn, (r(w)> 5)- (2.157)
If F,, belongs to a same scale insertion, j, = jr(w), and so
Fuly < Qu Any (jr(uw)s §)MIm0 Yo (Glt)) (2.158)

for all s < 2 follows directly from the IH.
If F,, belongs to a four—legged fork of ¢, the IH implies

Ful, € Qu Y. An, (u, §) MY (CED), (2.159)

jw >.71r(‘w)
Bound M7=Ys < M~ixw) MYeJv If G(w) is overlapping, Y, = €, so by Lemma 2.44 (4ii),
|Ful, < 2QuAn, (fr(w), §)M 7). (2.160)
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If é(w) is non—overlapping, Y, = 0, and the scale sum grows logarithmically, i.e. as | Jr(w) ‘,

and
|Fuol, < QuAn, +1(Fr(w), §)M 597, (2.161)

In summary we have for s < 1 the bounds
Ful, € QuEa M 0=IN, (ru), $) (2.162)
for the vertex functions of two—legged vertices w of G', and for all s < 2 the bounds
|Ful, < 2QuM ™" X; (jr(w)> §) (2.163)
for all four-legged vertices w of G', with

3 { Ny if G(w) is overlapping (2.164)

T\ ne 1 if G(w) is non—overlapping

We return to G’ and complete the inductive step. Choose a spanning tree 7" as in

Lemma, 2.35 (¢) for G, and fix the momenta, to obtain Val(G'”) in the form (2.83), with
the U,, given by the F,, in the present case.

Case 5: P > 0, E(G) > 2 and é(qﬁ) overlapping, s € {0,1}. Let g be an external
momentum of G, and denote 9z = 8/9qp. Then

85°Val(G') = => Y / 1T pr [ 98 Ci((p1)ore(pr))a,
o spins a lEL(G’)\L(T') lEL(G’

H 8ﬁawF11)( (W)vp(ZW)ap:(’, )) A, H 8[3 b w p( ))Aw
weVy(G') weV;(G')

(2.165)

where the A denote the spin assignments for vertex functions and propagators, as defined
in the graph rules. Here o : L(G') UV(G') — {0,1} keeps track of which factor gets
differentiated, so exactly one of its components is nonzero, Y ,0; + >, 0, = 1. To
count the number of terms in the sum over o, observe that 93C;, = 0 if I ¢ T'. Since
|L(T")] = V(G') — 1, the sum over ¢ is bounded by 2|V (G')| times the maximum of the
summand. é(g{)) is a quotient graph of G', so G’ is overlapping. Applying Lemma 2.35
(i1), using (2.162), (2.163), and bounding M ~*/~) < M%7,

max aﬁVal(G’J)’§K1(4K0)|L(G')|2|V(G')|X I .
weV(G')
7(e+Dy(G')—s) D¢ (G") (75 —Tn(s)) T (w)
M 11 M I M) 4 6
fet! weV,(G")
F>0
IT @Y. Gagw)s 9))-

'wEV4(G")

93



By (2.24), since G' has two— and four-legged vertices, V(G'f) = Vo(G'¢) + Va(G'¢), s
1
D/(E) = L(E) ~2AV(@) - 1) = H(4 - B(&) -~ Val(@)). (2167
By Lemma 2.44 (i) and the definition of n,

T e lrw) §) < Any (s $)- (2.168)
weVy(G')

Using the telescope formula (j4 = j)

J
i) =de+ Y (G —ixp) =ds+ Y (s —Jn(p) Uw € G'y) (2.169)
d><1{grl(w) ;6;42
we get
. . . . J
N e =3l Va(@) + DG —dns) Y, HweG'y) (2.170)
weV,(G) .;G;(; weV,(G')
SO
[ M — Mis|Va(6))] 11 MUs=in0)|V2(G'7)]| (2.171)
weV, (G') fet!
>

and we see that all D¢(G’') get renormalized to
1
D{P(G') = Dy(@) + Va(G's) = 5(4 = B(G'y)). (2.172)
Inserting these estimates into (2.166), summing over J € J(t,j) and remembering (2.124),

Y Val(@?)], <AV(G)X + DK, (4K,) EOIE,VET T Q.
JET () weV(G)
ppile—s+D5P (@) WO EDSE | | M2 (@) s —inn)
JeJ(t',5) Jf‘gi;

(2.173)
We are now back to the case of zero depth, since by construction, if f is a two-legged
or four-legged fork for G', then jf = Jx(f) T 1 by conservation of momentum. So there
is no corresponding scale sum and the last scale sum is now identical to that of the case
with zero depth. It produces a factor (1 — M~!)~! for all forks of t' with E(Gy) > 4,
except for ¢. The product of the various constants is now again bounded by Q(G) since

the number of lines of the subgraphs G,, and that of G’ add up to |L(G)|. Finally, we
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note that D;R)(G') = 1(4 — E(G")) = 2 — m. This proves (i) and (ii) for s < 1 and also
(7i7) since we have used the assumption that G is 1PI only to bound |V (G)| < |L(G)|. For
general connected graphs, |V(G)| < |L(G)|+1, which only changes the constant. For s = 2
we will need the 1PI assumption since we cannot afford to have two derivatives acting on

c-forks.

Case 6: P > 0, E(G) > 2 and é(gb) overlapping, s=2. For s = 2, we have to apply another
momentum derivative to (2.165). It can act again on at most 2V (G') targets. However, we
have to avoid having two derivatives act on an F,, coming from a c—fork because the scale
sum down to I would diverge as I — —oo in that case. Whenever the second derivative
acts on the same two-legged vertex as the first (no matter whether this vertex comes from
a c— or an r—fork), we remove it by integration by parts as follows. Since G is 1PI, so is
G', so the momentum through any two-legged vertex is a linear combination of momenta,

at least one of which is a loop momentum p. So we can rewrite the derivative

0 0
—T(ptqg)=x:—T(ptgq 2.174
5Tl 0) =45 Tl (2174
Integrating by parts with respect to p distributes the derivative on at most |V| — 1 other
lines and at most V vertices. Using (2.162) and (2.163), the estimate follows as in the case
s < 1, but with the constant (2|V|X) replaced by (2|V|X)? because there are more terms

in the sum, and because the derivatives can now act on two C's.

Case 7: P >0, E(G) > 4 and G(¢) non—overlapping. Just delete all the M ’s from cases
5 and 6.

Case 8: P > 0, E(G) = 2 and G’(qﬁ) non—overlapping, s=0. We proceed as in the case
P = 0. The value of G again takes the form of (2.137) — (2.139), but with the T, replaced
by 1PI insertions with values F,, (see (2.125)) on the strings S; of G(t,), where F,, may
now belong to a c—fork, an r—fork, or an SSI. If F,, belongs to a c—fork, the additional
M<I can be read off (2.152). Since the scale of an SSI is fixed, the additional M follows
directly from the IH. Thus if any c—fork or SSI is on the string, the statement follows
immediately.

There remains the case where all insertions on the string are r—forks, i.e. P, =1 — £
in (2.125). Then the value of G is given by (2.111), with £ = n — 1 (only r—forks), and
with ¢ and A,, given by (2.106) and (2.103). The derivative 6% acting on ¢ in (2.111) can

act on J, or on v, or on the A,,, similarly to Case 4 above.
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If the derivative acts on J, |J|, <
6 above),

44, and by Theorem 2.46 (i) (proven as Case 5 and

o < lgly < QE) Y P20, (5, 2) (2.175)

with F the four-legged graph whose value is g. The insertions to which the A,, belong are
of depth < P — 1, so by the IH and (2.103) |A,|, is bounded. Thus this contribution is
bounded by Q(G)|v|V (DI, (5, £)m?.

The case of the derivative acting on y(r, p,w) = g(r cos ¢, p(rsin ¢,w)) is completely
similar to that given in Case 4.

If the derivative acts on one of the A,,, we apply the IH for s = 2 to the two—legged
graph of depth < P — 1 that produces A,,. The gain of M follows immediately from the
IH. This completes the induction step for Case 8.

Case 9: P >0, E(G) =2 and G(¢) non-overlapping, s € {1,2}. If s = 1, we choose the
spanning tree constructed in Lemma 2.38, then the derivative with respect to the external
momentum can act only on the vertex function U, . Since the volume improvement is
at the same scale, the statement follows even without an application of Lemma 2.42. If
s = 2, at most one derivative can act below j*(¢), and that happens only if it has to be
rerouted to avoid having two derivatives act on a single c—fork. Bounding it by M7, and

then proceeding as in the case s = 1, we arrive at a similar bound.

Finally, (iv). The effective vertices in G’ have vertex functions that depend on I, and
that converge as I — —oo by the IH. Since the scales of r-forks and four-legged diagrams
are summed over a region that does not depend on I, and since a same scale insertion
has no scale sum at all, (iv) will be proven if we can show that the scale sum for a c-
fork, which runs from I to j(y), also converges as I — —oo. Let C be the Banach space

(C*([-1,1] x B,€),]"|,)- The sequence g’ = (g9{)n<o given by

gl — {OZJEJ(tw,n) Val(Gy) ifn€{l, .. jn(w)} (2.176)

otherwise

is an element of the space £!(Z_,C) by (i). By the IH applied to G,,, there is (g5 )n<o
such that g — g, in ||, as I — —o0, in other words, g! — ¢ pointwise as a sequence. Let

f € £(Z_,C) be the sequence f, = M"Q(Gy)An, (n,€/2), then

”9[”41(2,,(:) < fllez_y (2.177)

96



for all I < 0. By dominated convergence, g € £}(Z_,C) and

HgI - gHzl(Zﬂc) = Z |g£ - gn’1 —0 (2.178)
n<0

as I — —o0, so > F, converges in |-, which shows that 7] = > Val(G’)
nE{I,...,j,r(w)} JEJ(tv])
converges in | - |, as I — —oo. Moreover, if G itself is two-legged and 1PI,

]| < @5 = MIQ(G)An, (j,€/2). (2.179)

Now repeat the dominated convergence argument for the 'yf to see that ) ”/]I also con-
321

verges as I — —oo. u

Theorem 2.46 contains the most important information, that of the renormalization
flow of the two—and four-legged, i.e. relevant and marginal, effective vertices. For overlap-
ping four—legged graphs, the bounds show that the scale behaviour is not marginal, but
irrelevant in the usual language of the renormalization group. The convergence as I — —o0

I

allows us to view the flow of effective actions to the uncutoff limit G; 2 » = IEI—noo Giom,r

Theorem 2.47 Let | - |' be as in (1.46), ng as in Remark 2.45, and let (t,G) be fized.

Let
||, #E(G)=2 and G is 1PI
if E(G) =2 and G is 1P-reducible,

-]
= o ~ 2.1

I or E(G) =4 and G(¢) is overlapping (2.180)
|-|"  otherwise

—1

Then Vi(t,G) = 3. > Val(G’) converges in ||-|| and satisfies

i=IJeJ(t.j)

HIEI_nOOVI(t,G)H < ng! const KA, (2.181)

Proof: For E(G) = 2, or E(G) = 4 and G(¢) overlapping, the statement follows from

Theorem 2.46 by summation over j, noting that for a > 0,

D M, (j,€/2) < 2Xn(0,€/2) < const "n! (2.182)
7<0
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It remains to show the bound in ||". Construct G and { as in Remark 2.45. The two—
legged vertices of G are either strings of vertices of G’ or c—forks. By Theorem 2.46, the
scale behaviour is T, < const Lw An, (jﬂ(w), 6/2)Mj"(w) for two—legged vertices and F,, <
const v Xg (Jr(w)s €/2) With 7y = 1y if G(w) is overlapping and 7, = 7, +1 if it is non—
overlapping. Inserting the second part of Lemma 2.4 and Lemma 2.44 (%), it follows now

as in Refs. 2,3 that the scale sums Y. Val(G’) converge as I — oo, and that they are
JeJT (t:7)
uniformly (in I) bounded by a summable function in j. The convergence as I — —oo now

follows by imitating the proof of Theorem 2.46 (iv), using L*(([-1,1] x B)"~* x {1, }™, C)
instead of C. |

Remark 2.48 The convergence statements of Theorem 1.2 follow directly from this,
recalling that the graphs contributing to ¥ and K are 1PI and two-legged, and that the
sum over trees ¢ at fixed G is always finite. Under the hypotheses of Theorem 1.3, ngy =0
for all ¢ that are compatible with G, so, taking into account the 1/n! to bound the
sum over trees by const ", Theorem 1.3 also follows. The local Borel summability bound
requires an adapted induction scheme that combines the summation over trees with the
bounds of Theorem 2.46, using Felder’s Lemma. We will not repeat the proof here; it is

similar to the one given in Ref. 2.

Remark 2.49 Theorem 2.47 states that the value of every four-legged graph that is
overlapping on root scale converges in the sup norm to a continuous function. The only
four-legged graphs that may produce a singularity in the four—point function are thus the
non-overlapping four-legged graphs. By Lemma 2.26, these are the ladder diagrams. The
‘dangerous divergences’ mentioned in many places in the literature are those of the four—
point function. Their ‘danger’ is that they can produce factorial growth of the value of
individual diagrams when they appear as subdiagrams and thus may prevent convergence
of the renormalized expansion in A (even though every order is now finite). Theorem 2.47
shows that for our class of models with a non—nested Fermi surface, these ‘dangerous diver-
gences’ can only be produced by dressed ladder diagrams, so that it suffices to investigate

them to see whether r factorials in the value of individual diagrams of order r appear.
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3. The Derivative with Respect to the Band Structure

Let Dy, be the directional derivative with respect to e, as defined in (1.51). It is obvious
from the formula for the value of graphs and the way e appears in the propagators and in the
projection that for a fixed infrared cutoff I > —oo, all Green functions have bounded Dy,
and moreover, their multiple derivatives with respect to e exist as multilinear operators.
However, the norms of these operators diverge as I — —oo. In this chapter we show that
DyKX(e) converges as I — —oo, and that K, = IEIPOO K! is differentiable in e in the
sense of Fréchet. To get bounds that are suitable for removal of the cutoff I, we have to
rearrange some contributions that appear divergent at first.

To motivate why there is a problem taking this derivative, we first explain how it

affects power counting. Abbreviating f(M 27 (p2 + e(p)?)) = f;(p), the derivative

(3.1)

Dhcj@o,e(p)):( fit) | 2M ’e“’)f"'(p))mp)

(ipo — e(p))? ipo — e(P)

obeys
[DhCi(pore(p))] < const M~1(lip, — e(p)| € M7=, M7))h, (3.2)

which is a factor M ~7 worse than the usual scaling behaviour of C; (Lemma 2.3 (iii)). By
power counting, a two-legged graph on scale j behaves as M7, so Dj removes the decay
and seems to make the scale sum marginally divergent. Similarly, D; also acts on the
projection £ and can upset renormalization cancellations.

In brief, taking a derivative of 1/(ip, — e(p)) effectively produces a square of the
denominator, which, as discussed in the introduction, is not locally integrable. The problem
that the infrared singularity gets stronger when derivatives are applied also appears, for
example, in Euclidean field theory with propagators singular at zero momentum, when
differentiating with respect to a mass in the infrared.

However, the singularity of the propagator is on a surface in our case and this makes
a big difference under the non—nestedness assumption A3. The improved power counting
estimate implies that for contributions from graphs that are overlapping on root scale, the

scale sum is actually still convergent because of the volume improvement factor M, so
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that for these graphs, Y D,V al(G”’) converges. For contributions from non—overlapping
J

graphs, one has to apply an integration by parts similar to Lemma 2.42 to show that the
scale sum still converges. So the derivative of K is convergent without any further insertions
or counterterms, because of the geometry of the singularity. The two above observations
will be used to treat general labelled graphs using Lemma 2.31. Note that in contrast
to derivatives with respect to the external momentum, where momentum routing implied
that lines in the non—-overlapping parts of the graph are never hit by such a derivative,
derivatives with respect to e will affect all lines, and it requires a separate argument to
remove Dy, from lines in the non—overlapping parts of the tree. When taking norms, there

will be several subtleties which we discuss in detail below.

3.1 Integration by Parts

We start with the simple observation that if F € C*(IR, C), then Foe : B — C satisfies

Dy F(e(p)) = F'(e(p)) h(p) (3.3)

and
VF (e(p)) = F'(e(p)) Ve(p) (3.4)

Thus, choosing é as in Lemma 2.1(iii), for p € Us(.5),

Du(Foe) = (,Die . ) (3.5)

where D, = - V, as in Lemma 2.7. Since supp C; C Us(S) for all j < —1,

DAC, (ror€lp)) = o5 (DuC) o e(). (5.5)

and this rewriting introduces no singularities since |u - Ve(p)| > u,. Obviously, then, for

X € CY([-1,1] x B, C),

/ddp X(p)DrC; (po,e(p)) = —/ddp C; (po,e(p))V(;—;X) (p) (3.7)

Du(C;X) = — [ c;xv. [ C;6n X (3.8)
Jypweesm == [oxv-(5) + |
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and thus




where

h
ohX = DpX — )

D.X. (3.9)

W€
By the definition of 6, 6pF = 0 for all F(p) = b(po,e(p)) and all h. In particular
6nCj(p) = 0. Note, however, that for F(p) = C; (po + go,e(p + q)), O, F will not be zero if
q # 0. We shall only use integration by parts for non—overlapping graphs, so by Remark
2.41 such shifts by additional momenta ¢ will not occur. Moreover, X will be given by

(2.93), so, to get the integration by parts-formula, we only have to give the derivative of £.

Lemma 3.1 Let u be fixed independently of e, so that Dpu = 0. Then

___h(P(g)) _ (e

Dy(4T) = £8,T

On Ug(S), 6h£ = Z(Sh and thus (Sh(l — Z) = (1 — K)(Sh

Proof: Fix q € Us,(S). Changing e to e + ah moves the Fermi surface. The new surface
is $ = {p : (e + ah)(p) = 0}. h is bounded, so for a small enough, S C Us(S). By
assumption, changing e does not change the curve y used to define P(q) since v is an
integral curve determined by u and q. What changes is the intersection point of v with S.

Since this point moves on 7, and -~ is an integral curve of u,
DyP(q) = S u(P(q)) (3.11)
with a function 5 = (e, h,u,q). Inserting this into the equation
0 = Da(e(P(q)) = h(P(a)) + Ve(P(q)) - DuP(q), (3.12)

we obtain 8 = —Z(Dhe) and thus the statement for P.

Since ({T')(q) = T(OaP(q))a

DitT(q) = (DaT)(0,P(q)) + VT (0,P(q)) - DrP(q) = (3.13)
= (DT + (VT - DyP)(q) |

which, by the formula for Dy P, implies (3.10). On Us(S), D¢ = 0 by Lemma 2.7. Thus
(80T)() = (DLT)(q) = (£64T)(a). (3.14)
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The statement for 1 — ¢ is obvious. [ |

Remark 3.2 Allowing u to vary with e would have given an additional term parallel
to the surface. Since that term vanishes linearly on S, it can be included without any
problems, but the resulting expressions are more complicated. For our purposes, keeping
u fixed is enough. Indeed, for the bound without V acting on h it is necessary since the

additional term contains Vh.

To use this for strings of two-legged insertions, we write the string of (2.93) as S;(p) =
Cj.1 (p) - Yi(p) with .
Yi = [[(PirTik)Cii s (3.15)
k=1
and note that for j; ;; < —1, the momentum p € Uy, (S), so that Lemma 3.1 applies. Since
6rCj, . = 0 for all £,

onY; = Z Hl(Pi,kTiI,k,l)Cji,k+1 (3.16)
1=1 k=1
where )
il,k,l = {%Zk}k ii f;ll (3.17)
We denote
Si(p) = Cj.. (p) - 8nYi(p). (3.18)

Lemma 3.3 Let G be a non—overlapping, 1PI, two—legged graph as in Lemma 2.38

and v, its external vertex. Then

Dy (Val G7(Cily,, .- s Un,)) 4. (a) = (Val G7(C, Dalhy, - .., Us,)) g (0)+

BB’
n,—1 n,—1
+ ) Z/ 1T (dd+lpi(5i(Pi))anl+m>
I=1 (ay); izt (3.19)

(80,00 = (100 V - (s ) (1) = ) Vi)

(u”1 )041---anl—1ﬁan1+1---a2n1_1ﬁ’ (plvpzv ce+9Pn,—1,4,P1yP=25---,P2n, —1)
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Proof: For every string S; attached to v,, use (3.15) and integration by parts

/dpe X (pe) DrSe(pe) = /dpe X (pe) 6nSe(pe) +/dpe X(m)%tt(m)-v&(m)
= /dpz X (pe)Se(pe) — /dpz X(Pe)Sz(Pz)V'% - /dpe Se(pe)%'VX(pe)

to remove all derivatives from propagators. The momentum derivatives acting on U/,, and

the additional summands all arise from integration by parts. [ |

Remark 3.4 Less formally, one can say that after applying integration by parts,
no derivative acts on a propagator of GG, and that all derivatives act as é; on functions
associated to higher forks in the tree, i.e. one of the T} ; in the strings gets differentiated
in the terms in (3.19). If T;; = T is again a non-overlapping graph, it is a string of
GST graphs; since 6,C; = 0, the derivative only affects 1PI subgraphs, which are then
GST graphs, and we can again apply Remark 2.41 and Lemma 3.3. For the momentum
derivative contained in §, we will apply Theorem 2.46 directly. For the D; contained in 4y,
we apply (3.19) again, to avoid having the derivative act on lines. This procedure can be
iterated according to the recursive structure of the GST graph G, and all of U, ,...,U,,
get differentiated in this procedure. This can be used to make all derivatives act on higher,
overlapping parts of the tree, where the factors M7 they produce are controlled by the
improved power counting factors M. So, the upshot of (3.8) is that things can be arranged
such that the derivative Dj, also does not act on lines in the non—overlapping part of t(GJ )
(as was the case for derivatives with respect to external momenta). However, because of
the way integration by parts was done here, the price paid for this is that |Vh| , not only
|h|,, appears in the bound. The integration by parts is similar to the Taylor expansion in
Lemma 2.42, which also produces Vh terms when used on a string on which a factor of A

from a Dy Cj sits.

3.2 Bounds for the Directional Derivative

We now show convergence of the directional derivative and a bound that contains only

|h|,- Some parts of the proof will be subtle, and therefore we illustrate the two procedures
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for the lowest-order contribution,

—1 —1
F@) =Y. B0 = Y [ (- p)C,(rarc(p) (3.20)
=1 g=1I
We want to bound
—1
DiF(q) = /dd+1p 3(q— 1) Y DaCj(pore(p)) (3.21)
=1
To get the bound in |h|, , we use (3.6) to write
X h(p)
DwFj(q) = [ @™ pi(q- - V)C; (o 3.22
Fi(0)= [ @ ila = p) 5 (- V)G (o e(p) (322)
and integrate by parts, to get
. h
DuFy (@) = - [ 441 Cyloon @)V (800 - )y D ut®))  (323)
and bound by (2.21), (2.22) and Lemma 2.1 (i7)
. i ls Ly lel
IDaF,l, < KoMi - Jil, - [hl, Jul,— (14192, (3.24)
uo uo

Thus, the scale sum converges absolutely if one allows a derivative to act on h, which gives
|DpF|, < const |h|, (3.25)

The bound in |A|, is obtained by an integration by parts in p,, using

DinCj(p) = h(p) (2 3(2990 C;i(po,e(p)) — oM 2 f! (M—zj (pg T e(p)z))> (3.26)

Then Dy F; = A; + B;, where

Aj(q) = /dd+1p 9(q — p)id,C; (po, e(p)) h(p)

(3.27)
= =i [ a1 0 (puse(w)) (<0,0)(a ~ DH(P)
(note that h does not get differentiated since it does not depend on p,) so
|4;(q)| < KoM?[0],|R], (3.28)
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-1
and the scale sum ) A; converges absolutely. However,
i=1

Bj(q) = —2M~% [ a**'p o(q— p)f' (M™% (pl + e(p)?)) (3.29)

is O(1), so Z]_:lf |Bj(gq)| > const |I|, and we have to perform the sum over j before taking
|-| to get a sharper bound. We write

> Bi(a) = -2 [ #*pi(a - (o) [§ > f(M‘zjw)] (3.30)
=1 =1 2=p2+e(p)?
By (2.13)

i F(M2z) = a(M™*2) — a(z) (3.31)

and a'(z) # 0 only if = € [M_4,M_2] by (2.12). So
—1 2 2
X d —21 1 Po + €(P)
3. Bila) < 20, & +1p(a'(p3, o)) + M2t (el ))

< 2fil il |, [ @ (1(|z'po ~ e(p)| < 1) + M1 (jip, — e(p)] < Mf))
S 4I{O|/Ij|o|a’,|o|h’|o

< const |A|,

(3.32)
Thus, the divergence of ) |B;j| as I — —oo is due to terms that depend on the scale
decomposition. Once the partition of unity is resummed, all that remains is a boundary
term at j = I which is uniformly bounded as I — —oo. In general, the contributions to
K where this procedure has to be applied, are those from graphs that are non—overlap-
ping on rootscale. There things are more complicated because the resummation of the
partition of unity has to be done carefully, and because there are a lot more terms from
the integration by parts. Note that the integration by parts formula (3.8) combines nicely
with the £-operations; also, the bound in |k|, avoids boundary terms and therefore allows

us to show convergence, not only boundedness, of K’ as I — —o0.

Theorem 3.5 Let G be a 1PI two-legged graph and t an associated tree so that (t, Q)
contributes to (2.76). Then there is Q, > 0 such that

Y | Dval(G)], < Q. DN, (4, §) MR, (3.33)
JET(t.3)
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and for all h € C*(B,R)

Vi(h,t,G) = Z Z DpVal(G?)  converges in ||, as I — —oo (3.34)
i2I JeT(t.5)

Moreover, there is a constant const (depending on G, v and u but independent of I < 0)

such that for all h € C*(B,R)

ZZH 3" DutVal(GY)| < const [h|, (3.35).

itice et ™ 1eaini) .

Remark 3.6 Note that in (3.35), as in the above example, the norm is taken after
summing over the root scale j. This, as well as the additional sum ), . over trees
associated to GG, is necessary to resum the partition of unity properly. In all terms where
the resummation of the partition of unity is not necessary, the sum over trees will be
replaced by a maximum over trees times a constant, since the number of trees compatible
with a fixed graph is always finite. The constant appearing in (3.35) depends on 9, e, u
and the graph G in the same way as in Theorem 2.46. In particular, it is uniform on the
set A given in (1.53). To reduce notation a little, we are not going to trace the factors of
A through this proof, because it will be obvious in the proof that the factorials are again
only produced by the non—overlapping four-legged subgraphs. We denote a polynomial in
|7], whose coefficients may increase in inequalities and combine with other constants, by

pol(7). In that notation, Theorem 2.46 reads

Y Val(G7)| < pol(j)M¥ (3.36)
JeT (t,3)

S

for any t ~ G. We also assume € < 1. Note also that (3.35) is not simply an application

of Lemma 2.42 because the latter will cause VA terms in some cases.

Proof: By (3.10) and (3.9),

Dyt = Z(Dh - Dh Du>, (3.37)
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so the left side of (3.35) consists of two terms. Since [£f| < |f|,, the contribution to the

second term from any fixed ¢, is

3y Z(D}ieu - VVal(GJ))

JeJ (t.7)

o Y Jeg(t)
which, by Theorem 2.46 (), is
|h| |ul

Uo

OQIL(G)I)\ (4, )Mey

h
| oo Z QIL(G)I)\ ( )MEJ < const |k,
Yo 1<-1

the second term is consistent with (3.33) and (3.35).

It remains to bound

Z 3y H Y (D,Val(GY)

j=It~G fet f JET (t,7)

(o]

Again, we do induction over the depth P of (¢,G), defined in (2.131).

< |h|0|u|o Z ‘VGZ(GJ)L,

(3.38)

(3.39)

(3.40)

The induction

hypothesis (IH) is: if G is two-legged and 1PI and if (¢, G) is of depth P, then (3.33) and

(3.34) hold. Moreover
(a)  For all two-legged 1PI graphs G and all i € {I,...,—1},

Z Z H Z DpVal( GJ < const |h|,

~G f
dept}f(t G)<P fet J€T(t,4) o

(3.41)

Moreover, for any 1PI graph G with E = 2 or 4 external legs and for s € {0,1},

> DyVal(GY)| < |hl, pol(j)M¥+7,

JeJ(t.7)

S

S

(b)  if G(¢) is overlapping, Y/ =1—Z 4 e —s
(c)  if G(¢) is non—overlapping,

Y] =

L]

0 ifE=2and s=0

{—1—3 ifE=14
e—1 ifFE=2and s=1
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The tree sum in (a) will be necessary to resum the scale decomposition in the way illustrated
in the above example. An informal restatement of (b) and (c) is that the effect of Dj on
the scale behaviour is similar to that of a momentum derivative. Note that the A does not
get differentiated even in the case s = 1; this hinges on the 1P - irreducibility of G.

If P = 0, G has no nontrivial two- or fourlegged forks (so G', constructed in Remark
2.45, is equal to G), there are no f-operations, and therefore the only factors that depend
on e are the propagators. By (3.1),

[DaCi(p)| < M7THA(L 42| f'lloo) M™7*2 |1 1(lipo — e(p)| € [M7~2, M7])

, (3.44)
< const M~21;(p)|n|,.

We shall use the just introduced notation 1;(p) in what follows. Also, const will denote
constants that may increase in inequalities and depend on ¢, v and the graph G, but not

on j or the infrared cutoff I.

Case 1: P =0 and é’(gb) overlapping. We use Theorem 2.40 to get

|DrVal(G7)| < const |h| MICE—m+e) max MIe T MPsGs=inn) (3.45)
fet
f>9

Since P = 0, max M7t < M~ for all J € J(t,3), so

Y |DaVal(G7)|, < const [b| MOTmEN N T MPrlrmin) (3.46)
JET (t,5) JET (t,5) >

and the scale sum over all J € J(¢,7) can be performed as in the P = 0 case of the proof of
Theorem 2.46. This proves (b) for s = 0. If G is two—legged, the factor M/ makes the scale
sum over j convergent, and (3.33) (with |h|, instead of |h|,) and (a) follow. Convergence
as I — —oo (that is (3.34)) is now obvious because every summand is independent of I for
P = 0 and the series is absolutely convergent (recall also that the number of terms in the
sum over t ~ @ is finite and independent of I). Similarly, an additional derivative with
respect to the external momentum gives another factor M~7¢ < M 7. Since G is 1PI, the
spanning tree can always be chosen not to contain the line where A is, so that ~ does not
get differentiated (alternatively, one can use integration by parts to remove the derivative

from h). Thus
> |DaVal(G7)], < const MI(T™|b| (3.47)

JET(t.5)

which proves (b) for s = 1.
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Case 2: P =0, E(G) =4 and é(gb) non—overlapping. The same bounds as above hold,
with e replaced by zero.

Case 3: P =0, E(G) =2 and é(gb) non—overlapping. If E = 2, é((,b) is an ST or GST

Val(G(¢)) takes the form given in Remark 2.41, with an effective vertex v, with 2m legs.
We now consider the case in which all strings consist only of a single propagator (w; = 0).
Insertions in these strings are treated as in P > 0.

If 2m = 4, v, is four-legged. Since P = 0, v, is a vertex of scale zero. This can happen

only in first order. Then
Val(G)(a) = Val(G(@)(@) = [ 4*p {5(a=p) or 50)C(porelp)) (349

(3.33) follows from (3.24) and the bound (a) follows as in (3.32). (3.34) is again obvious
from (3.33). The bound (c) is obvious for s = 0. For s = 1, the derivative with respect to

q acts only on 9, so (c¢) holds as well (actually, with a better exponent).

¢aj f1aj1 f*a M ° i i

Figure 19: The case G($) non-overlapping, P = 0

If 2m > 6, G and t take the form shown in Figure 19, with n > 1 and f* € t the fork
f*

such that G | | is overlapping (f* exists since otherwise G would be non—overlapping,
T

hence a GST diagram, hence a ST diagram since P = 0, but then 2m = 4 since at scale

zero there are only four-legged vertices), so

Yo va@) =) Y .. )

JEJ(t,]) J1>3 J2>0a J*=Jjn>Jn—1

m (3.49)
/ H a1 pCi, ((Pk)o, e(pk))W(q,pl, ey P )-

109



Here

w= Y Val(é(t]u)), (3.50)

JET (tsx,5*)

G(ts+) is a graph with 2m* 4 2 external legs, where m* > max{m — 1,n — 1}, and for
each k € {1,...,m*}, either i;, = j or there is » € {1,...,n — 1} such that i} = j,.
By assumption, m > 3, so there are at least two lines with iz = j. We may choose the
labelling such that they are the lines for k = 1 and k = 2. Apply Dj, to (3.49). If it acts
on W, it can act only on a propagator of scale j; > j*, since P = 0, and the net effect

is, up to constants, a factor M~ < M~7 | and a factor h(p:;). As mentioned in Remark
f*

2.33, G(f*) need neither be overlapping nor 1PI, but G | | | is overlapping and so the
T¢

volume integral produces a factor M" by Theorem 2.40. Choosing the spanning tree as

in Lemma 2.35, so that all p; are loop lines, Theorem 2.40 implies

‘/ H dd+1ka1,k (pk)DhW(q,p1, . apm*) S const Mil+m+im*M(e_1)j*

MPs=s" Z H MPsls—ins))

JET (ts=,3*) F>F*

(3.51)

Since P = 0, Dy < 0 for all f > f* , and so the scale sum over J € J(ts~,j*) converges
by the argument of the P = 0 case in the proof of Theorem 2.46. Since é’(f*) has 2m* + 2
external legs, Dy« =2 —(m*+1) =1—m*. Callingm, ={ke {1,...,m*} i =j,.} > 1,
we have
n m* n—1
m =Y my,+m—1 and > ix= Y myj.+(m—1)j (3.52)
r=1 k=1 r=1

Inserting this and using again M(¢—17" < M(¢=1)J we have

™ / Hdd+1pk Cix (1) DiW (D1 - -, Pra

J *2 20127
. (m_l)]+n2_: My Jr (2 m)] —Z meg*
< const |h|0M(6_1)J Z M =1 Z M ! (3.53)
Gno1>e>ga > 7*>in—1 )
n—1
< const |h| M’* Z Mm=2(G=i) H Z M (i=37)
J*23 r=1 $<j*

< const |h| M’*
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This proves (c) for s = 0, (3.33), and upon summation over j, (a) and (3.34), for the
contribution to (3.40) where D}, acts on W. For this contribution, the only remaining case
is (c) for s = 1. With the spanning tree we chose, the derivative acts only on the functions
associated to those lines in Dy W in which the external momentum enters. When acting
on a propagator, it produces a factor const M7 < const M ~7. The only dangerous case
is when h ‘sits’ on the path through G ¢« through which the external momentum is routed,
and the additional derivative acts on h. In that case we use integration by parts as in the
proof of Theorem 2.46 to remove the derivative from A. This is possible because G is 1PI
(note again that G+ need not be 1PI, and if it is not, the derivative will produce a factor
M~7, not just M~7 *). Taking absolute values, we obtain the same bound as before, only
multiplied by const M 7. This proves (c) for s = 1 for the term with D, acting on W.
If Dy, acts on one of the C;, , k € {1,...,m*}, we can assume without loss of generality
that £ = 1 since 7, = i, = j and 7 > j for all k, and the scale behaviour degrades worst

when the derivative occurs on the lowest scale. We have to bound

‘/dd—l—lpl DhC pl Z/Hdd+1pT ’I,T pT) (—o:> W(q’p17"'7pm*) (3'54)

(3») 0

(where ) is short for > )for s =0and s = 1. To see (3.33), we apply the
integration by parts formula (3.7) to the integral over p,. When the derivative acts on W,

we get the bound (3.53). The term containing VA has the same scale behaviour as if there
had been no derivative at all. (3.34) follows by the dominated convergence argument of the
proof of Theorem 2.46 (iv). To see (a) and (c), we use Lemma 2.42 in the p,-integration

to bound this by

(k) W

/dd+1p1|DhC IZ/Hd’d+1pr|01,,(pr)|/dd+1pz i(p2)

(7%)

Estimating

D4Cy(pore(p))] < const M~ |R],1;(p), (3.56)

the C;, for k > 3 by Lemma 2.3 (7i7), and rearranging the product, (3.54) is bounded by

(3.57)

1,7

< const |h|, Z/(H atlp, M _“1,,(101»)) ‘( Q)SW

(7x)
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The derivative on W acts on a line in G ¢~ and produces a factor const M —i", By Theorem
2.40 (and since none of the lines k = 1,...,m™* is in the spanning tree), the result when
s=01is
< comst [hfy Y MUttt p(em DT BBy N [T MPrUrminm) . (3.58)
(7x) JET (tgx,5*) f>F*
The sum over J is estimated as above, and also the rearrangement of the terms is similar

to the previous case, so the bound is yet another
< const |h| M (3.59)

which proves (a), and (c) for s = 0. For s = 1, we need not apply Lemma 2.42: the
derivative w.r.t. the external momentum can act only on propagators associated to lines
of W, and effectively produces a factor M 7" (it cannot act on h, since h is in a string
in the present case). The Dj acting on the string causes a factor M7 as compared to
the ordinary scaling behaviour, which we take outside. The bound now follows by the
argument between (3.49) and (3.53).

Some of the bookkeeping of this P = 0 case could have been avoided by normal
ordering, but the normal ordering prescription depends on e, and thus D; would have
produced similar terms there. Also, normal ordering does not remove the GST graphs, so
P > 0 has to be dealt with anyway.

Up to now, the sum over trees was not really used, since the only term where a
resummation of the partition of unity was necessary was the lowest order term. Let P > 0,
and assume that the IH holds for depth P’ < P — 1. Now there are also two-legged
subdiagrams on which Dj can act. It can also act on the projections £ or 1 — £ in front of
them since projection on S depends on e. For every t ~ G, we construct the graph G’ as
in Remark 2.45. We rearrange the sum over trees t as follows. Every ¢t ~ G that gives rise
to the same G’ can be split into the tree t' rooted at ¢ and the subtrees t,, of t associated
to every vertex w of G'. Thus, at fixed G’, the sum over all t ~ G splits into one over all
t' ~ G' and given t' ~ G’', there is a sum over trees t,, rooted at w for every vertex w of
G'. Blocking the sum in that way, we have for every G' and t' the vertex functions

1
3, = t;;w f];[w n—f!Fw (3.60)
with F,, given by (2.125). For two-legged vertices w, ®,, has the same structure as the
left side of (3.41), but the depth of (¢, G,,) is smaller than P for all t,, contributing to

the sum for ®,,. This is the basis of the induction scheme.
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Case 4: P >0, E(G) = 2,4 and G(¢) overlapping. Then (G')~ () is overlapping as well.

For the derivative of a propagator we again use
DC;(p)] < const L, (p)M =21 . (3.61)

If the derivative acts on an r—fork, we write ®,, = (1 — £)T" and use

u

Dp(1 — )T = (1 — £)DpT + £ (DLDUT) (3.62)

to isolate the term where the renormalization cancellation gets lost. In the second term,

we associate the factor

h
=/ D, T 3.63
¢t p o) (3.63)
to one of the lines going into G,,. By Theorem 2.46, applied to 7',
7]
¢l < Pleful |7, < const |#], (3.64)
Uo

By the IH (b) or (c),

15,0, (1= O)DAT| < const M7= |D,T|, < |h| M= " pol(j') M=
7' 20 (w)
< (bl POL(jr(an) M)
(3.65)
Adding (3.64) and (3.65),
|Dp®,|, < const |hl,, (3.66)

so, compared to the usual behaviour (2.155), we have lost a factor M’~(), which is the
same as saying that there is an extra factor M —7¢ for one of the two external legs of the
graph G, just as if the D; had acted on that leg.

Similarly, if the derivative acts on a c-fork, ®,, = (T,

h
DT = 4D, T — e(D

w€

DuT) (3.67)

where

T= > > H% Y Val(Gy), (3.68)

IS]IS]w(w) tw ~Goy fELY F JEJ(twvjl)
application of the IH (a) to the first term and Theorem 2.46 to the second term yields
|DptT|, < const |h| . Compared to (2.162), the derivative has again cost us a factor

M=), Again, we associate a factor z; = M ~7¢ to one of the external legs of G,,.
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For a SSI, there is the same factor. For a four-legged vertex, there is a factor
POl(jix(w)) M ~I=(=) by the IH (b) and (c).
To summarize, the effect of Dj; on the scale behaviour, as compared to the power

counting behaviour (2.162) and (2.163), is accounted for by an additional factor
2 = Mt (3.69)

on a line of G'. By construction of G, M7 < M7, so, by Theorem 2.40, (similar to
(2.166))

|Val(G'J)|O < const MJ'(D¢(G')+€—1) H MP(G)Er—ins) H M=) (3.70)

fet! eV (G’
>0 weVa (@)

The proof that the scale sum over J € J(t,j) converges is given following (2.166), so (b)
holds for s = 0. For E = 2, the sum over j converges because of the remaining M®/, which
proves (3.33) and (a) and (by the usual dominated convergence argument) also (3.34).
For s = 1, we apply an extra derivative with respect to the external momentum g
before taking |-| . All we have to show is that its effect can be bounded by a factor
const M7, For its action on a propagator this follows from Lemma 2.3 (ii), and for
its action on a vertex function @, that is not affected by Dj it follows from Theorem
2.46. For its action on Dy of a vertex function coming from an r—fork or a four-legged
subdiagram of G, it follows from the IH (b) and (c), since the scales of these vertices are
summed above j.(,). However, we have to avoid two derivatives on any c-fork, and also
prevent the derivative from acting on h. The only case when two derivatives can act on a
c-fork is when Dj, acts on the c-fork and % acts on the same c-fork. The latter derivative
can be removed by an integration by parts because G is 1PI (and then cannot act on h),

so the bound for s = 1 follows as in the proof of Theorem 2.46.

Case 5: P > 0, E(G) = 4 and G($) non—overlapping. The bound (c) is proven as above,
omitting the parts used to get € > 0.

Case 6: P > 0, E(G) = 2 and Cl’(qﬁ) non—overlapping. Since G’ is a quotient graph of
G that contains all lines £ € L(G) with j, = 7, ’G\7(¢) = é(qﬁ) is a GST graph, and so is
@7(@;), where Tés is the maximal non-overlapping subtree of ¢’ rooted at ¢ (Lemma 2.31
(é4)). The value of G'(7}) is an integral of the form given in Remark 2.41 (from which
we now take the notation). By construction of 7;, the vertex function U,, belongs to a

subgraph H of G', of scale j* such that G’ overlaps on scale j*. Dy, can act on U,, or on
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one of the strings S;. In the former case, the bound follows by (3.51) — (3.53), because
(3.69) applies due to the volume gain at the scale j* where the derivative acts, and because
strings of two-legged subdiagrams satisfy |S;(p)| < pol(j)M~71,(p) by (2.162).
Let Dy, act on one of the strings. We call j(?), defined in Remark 2.41, the scale of
the string S;. We do the case s = 1 first. We choose the spanning tree as in Lemma 2.38,
then the additional derivative with respect to the external momentum g acts only on U, _,
i.e. at a scale where there is an improvement factor M€, and it cannot act on k. The
effect of D, is again accounted for by a factor M~/ © < M7 on one of the lines. Taking
the M~7 in front, (c), for s = 1, follows by (3.51) — (3.53).
For the final case s = 0, we consider two situations, sketched in Figure 20, separately.
(A) There is a string of scale j (i.e. root scale) on which Dj does not act. (This is
the case if there are at least two strings of scale j or if Dj acts on a string S’ of
higher scale).

(B)  There is only one string on root scale, and Dj, acts on it.

Lemma 2.42
applied here
<. /

J

(4) (B)

Figure 20: The case G’(qﬁ) non—overlapping and Dy, acting at root scale
(A) By (3.69) (and since all insertions in a string are two-legged), there is effectively an
M7 and a factor h(p'), where p’ is the loop momentum of S’. We apply the Taylor
expansion procedure of Lemma 2.42 to the string of scale j on which D} did not act (see
Figure 20(A)). Although this produces derivatives on other factors in the expression for
Val(G), there are no Vh terms because p’ is an independent loop momentum. The Taylor
expansion generates two kinds of terms, one from acting on the r—forks, bounded by

const M%|T|_|U,,|, < pol(j) M M{<—Dijy, (3.71)

o}
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by Theorem 2.46(this includes the sum over the scale of T" as well as the loop integral) and

thus convergent, and one where U, gets differentiated,

lj(p)‘ (%le (P, - -)‘ (3.72)

The scale balance is identical to the P = 0 case, so (3.57) — (3.59) hold, with const
replaced by pol(j). This proves (c) and (a).
(B) In this case, the vertex v, is a four-legged vertex of G’ with a vertex function Y = U, _,

to which the IH applies. We thus have to bound ) X,(g), where
321

X,(0) = [ 50, )DAS(0). (3.73)

In some of the following cases, we need to resolve the four-legged graph to which the Y is
associated (unless it is a vertex of scale zero, which behaves as a vertex with improvement
factor M7 whenever a derivative acts on it). The vertex function ) is given by the scale

suin

Y(g,p) = Y Yi(a:p) (3.74)
i>5+1
with |Y;], < pol(i)M ~** (see Figure 20). Note that by Theorem 2.40 and by construction

of 7';5, there is a volume gain M®" in the entire integral for X j- S is a string of length n,

Jj+1 n—1
sp= > (H cjk<po,e<p))7>m<p)) Cin (porel®): (375

k=1
min{jy,...ip_13}=J

The T} are scale sums of 1PI two-legged insertions and thus dependent on j and Pj €
{1,¢,1—£}. The T} obey the bounds of Theorem 2.46 and, as graphs of depth P’ < P —1,
also the IH. The undifferentiated string obeys |S(p)| < 1;(p) pol(j)M ~7 by (2.162).

The form of the scale sum in (3.75) is due to the sum over all trees t' ~ G', which
contains a sum over all these assignments. This is the point where the tree sum is necessary,
as will be seen when the partition of unity is resummed.

If Dy, acts on an insertion from an r-fork, we get the two terms of (3.62). The first one
is bounded using (3.65), so in this term the Dy, changes the root scale behaviour from M7
to M¢. For the second term, call U = DLue’DuT. By (3.64), |U|, < const |h|,, including
the sum over the scale of T. This amounts to a loss of M~7. Apply Lemma 2.42 to the
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string S to extract another M7~7" and use the volume gain of M7 €, Note that the Taylor
expansion does not produce any derivatives of h since (in the notation of Lemma 2.42)
LU(p) = U(0,0,w) does not depend on  and ¢. The loss of the renormalization cancellation
would make the scale sum over j marginal, but the extra M¢ makes it convergent. This

proves (c) and (a) for this contribution.
The case of Dy, acting on a c-fork is similar since DpfT = ¢{(DpT)—{ (%DHT> . The

second term is bounded by |h|, pol(j)M by (2.153). The IH applies to the first term,
but we have to make up for the loss of the usual factor M(1=%)7 of (2.162). Therefore, after
applying Dj, we use Lemma 2.42 in the same way as for the ZU-term of the just treated
r—fork case. The Taylor expansion is such that the term /DT is treated like a constant.
Thus, after Taylor expanding and collecting the gain M, |[¢D,T |, appears in the bound.
The IH applies and implies (c) and (a) for this contribution. For SSI, write 1 =1 — £+ /
and treat the two terms as above.

Finally, D} can act on a propagator of scale j (or j + 1). Now we may assume that
there are no c—forks or same scale insertions or r—forks of scale below, for example, j7 + 7
on the string 9, since otherwise (c) and (a) follow immediately from the improved power
counting behaviour (2.152), which suffices by itself to control the M~/ from the action
of Dj. The strategy is now similar to that of the lowest—order example. To get (3.33),
we apply (3.7). There are three terms: the term containing V - (,Dh—:e) has the same scale
behaviour as if the derivative had not acted (but contains a Vh). The second term is when
u-V = D, acts on an r—fork (1 —£)T. Since D, = 0, the result is (1 - ¢)D,T +¢{D,T. By
Theorem 2.46, the first summand has a net M7 z]-,>j Mi'(Ate=2) — M€ and the second
is treated by Lemma 2.42, as above. The third term is when D, acts on Y. In that case,
we resolve the corresponding subgraph and proceed as in the case U, . So in all cases,
the scale behaviour deteriorates from M7 only to M, which proves (3.33), and, by the
same argument as in the proof of Theorem 2.46, also (3.34). For the proof of (a) and (c)
we must again consider two terms, because DC;(p) = h(p) (i8,C;(p) — 2M 2 f}(p)). In

n—m

the string S, actually a product C;(p)™Cj+1(p) appears, where m > 1 depends on the

scale assignments, and the relevant formula is

D, <zlj[1 Cj, (p)) = h(p)i, g Cj,(p) — 2h(p) [a% le f(M—Zﬂw))]

(ipo — e(p))" " z=pZ+e(p)?

(3.76)
In the contribution of the first term to (3.76), we integrate by parts in p,. There is no
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boundary term. h depends only on p, so J, can act only on the vertex function ) or on an

r—fork. In the former case, we combine the known behaviour |Y|; < pol(j)M 7", Theorem
2.40 to get the volume factor M€, and Theorem 2.46 for the T} and the standard bounds
for Cj;,

‘/dd“p S(p) —

to see that the scale sum converges (more precisely, we apply the procedure of (3.49) —
(3.53), which by now should be routine).

If 9, acts on an r—fork, we get two terms from 8,(1 — £)T = 8,1 = (1 —£)0,T + £, T
T;, recalling (2.97), and using Lemma

Y(q,p)h(p)| < pol(j)|h|, - MIDMI < |h|, pol(j)Mic  (3.77)

Recalling that T' is given by a scale sum 7' = ED]

2.7, we have

V2
1-—2)0,T < (1= £)8,T;], ; < ~EMI T .. .
|( )(9 |0] Z 6 | U Z' 7'|2 (3 78)

i>7 0 1>7
By Theorem 2.46 (7), this is

2 _ ,
< £M1M5/2Q(T)|U|LV(T)| Z )\nT(,l-, %)Mz(e—l) <
to i>j
1 (3.79)

V2 5)—7 <
1 Me— 1

_MjMe/Z ( )| ||V(T)|M](5 1)/\ (
uO

IN

< const M7¢

The second term is not as easy because there is no reason for £0,T to be small. Here we
have to use another integration by parts, and in some terms an additional resummation,

as follows. We have to bound

n n—1
X = [ ap b)Y (a0) (0,7 W) [ Cpree) [ -0T70)  (3:80)
=1 r=2

for n > 2 (otherwise, such a term does not occur). Superficially, the scale sum of this
looks divergent, but we can use that £0,T is independent of p, to do another integration

by parts. We rewrite X as

h y ’ 1 - ot I
x = [ap JPPED (15 o1 [Ta-or2m e
and use that for n > 2
1 1 0 1

(ipo — e(P))® 1 — 10po (ipo — e(p))™ (3.82)
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to get

=i dp 9 m)y( 7 T _ 7™
X= 5 G oo (h(p)y R 1 )
(3.83)

h and £8,T() do not depend on p,, so

_ h(p)(£8,TM)(p) r
X—n_l/dp (ips — e(p))™~1 Bp, ( (¢,p) Hf,, pl)H 1- 0T (p ) (3.84)

If the derivative were not there, the integral would obey the ordinary power counting

bound. We analyze the effect of J,. If the derivative acts on ), we proceed as above to
see that there remains a factor M7¢. We postpone the treatment of the term containing
9o I fi+1(p) to the next (and final) case. The derivative acting on [[(1 —£)T(") produces a
sum of terms similar to the one we started with, but with number of r—forks on the string
decreased by one. Thus we may proceed iteratively to remove all these terms, so that it

remains to estimate (having renumbered the T7s)

Y(@,p)h(®) T1(0TM)(B) ns
/ N —T:(lp))n—k II a-977@ H Fir(p1) (3.85)

r=k+1 Po =1

for K < n — 1. This will be done by resummation, and the procedure is similar for all &,
and similar to the procedure to deal with the second term in (3.76), which we discuss now.

We have to bound the integral

d+1 h A o
)=-2 2, /d+ (@7 zz) —(2))"—1 : Z; _(H(l_Z)Tk(p)) "

0>5>1 o

> MM (0 + e(p)) [ (M2 (0% + e(p)?))

(3.86)
by resumming the partition of unity on line number [. To this end, we first rearrange the

sum over the ji by using that for all k£ € {1,...,n}

-1

U{(jla---ajn) cje € {4,7 +1}04{L,...,—1},min{j1,...,jn} :j}

j=I
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Mi(j) = {(j1,--.,jn) 2jk =J,4r €{I,...,—1} and for all r,s € {1,...,n},|j, — js| < 1}
Z(j) = {(jl,...,jn) cjx = and j, € {j,j + 1) for r # k}
(3.88)
To see this, we note that the left side is Z = Z; U Z, with, for each fixed £,
-1
2= U {(Grr-vdn) b = o € {323 +1) for v £ 1}
i=I
-1 (3.89)
=ziHu | Z(G)
j=I+1
and
-2
Zy = U{(jl,...,jn) tik=J+ 1,4, €{j,j + 1} for r # k,min{j1,...,jn} :j}
j=1I
-1
= U {(jla-..yjn) D ik =1, Jr € {i — 1,1} for » £ k,min{j1,...,jn} =1 — 1}
=141
-1
= J w0)
j=I+1
(3.90)
Here

Vi(j) = { (1o +dn) b = o r € {5 = 1,3} for v # k and min{ju, ..., jn} =j —1}.

‘We have

-1

z=2z0u |J (20)u i) (3.91)
j=I+1

Finally,

Zi(j) UVi(§) = {1y n) s = j and either j, € {j,j + 1}vr # k

or jp € {j —1,73¥r # k with min{ji,...,jn} = j — 1}
(3.92)
The condition min{j;,...,j,} = j — 1 implies that the sequence (j,...,Jj) appears only
once (i.e. Zk(j) N Vi(j) = 0). The result is then obviously equivalent to |j,. — js| < 1 for

all r, s.
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We apply this to Y as follows. Note that all T and ) depend on j (unless Y is just
a vertex of scale zero). For all r € {1,...,n — 1}, T, actually depends on the scale j, of a

line going into T'.. Fix all j, for r # k, then the scales of all T are fixed. If } depends on

7, it is of the form

Y(g,p) =Y _Yi(g,p) (3.93)

>3

We interchange the sums over ¢ and j

i1 h(p) S (T
@=-2% z/d e e =MD DI § | (SR A0

0>:>1:>52>1

Y MM (g + e(p)) [ ] (M2 (9] + e(p)*)

r#l
(3.94)
‘We have
U{(jlv"'ajn) ]k € {]7.7 + l}ﬂ {Iv"'7_1}7min{j17"'ajn} :]} -
7j=I
1, (3.95)
=Vii+)Uz(DU | M)
j=I+1

as before. Choose k =1+ 1 or k =1—1, then

S L0 - 070 [0+ el )M (25 (3 4 e(0)")) =

(jlv' 7]n)€Mk(J)3 1 T#l

n—1 7+1 9 '
= ) (H(l—f)Ts(p)) >, [a—wf(M_Z“m)]

(§11--2n)EME(5) \s=1 n=j—1
j; not summed

z=p3+e(p)?

T[] £(M~2 (0% + e(p)?)) £ (M (5% + e(p)?))

rg{k,l}
(3.96)
By momentum conservation and the support properties of the f, (2.16), we can now
extend the sum over j; to the entire interval {I,...,i}. Using
Y F(MTPz) = a(MHz) — a(M 2 g) (3.97)
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(see (2.12) and following) and calling E? = p2 + ¢(p)?,
FME) 3 M () =
a=I (3.98)
— (MY E?) (M_Zfa’(M_”EZ) _ M—2(i+1)al(M—2(i+1)E2))
Since a'(z) # 0 only for z € (M~*,M~2) and f(z) # 0 only for z € (M ~%,1),
F(M~2*z)a’'(M~2*2) = 0 for all  unless k € {£,£ — 1}.

Since j € {I,...,i}, the only nonzero terms in the sum over j are j = I and j = 7. Thus
we get four boundary terms in the estimate for Y, two at both the lower and upper end of
the summation region; the two from By ;(¢) and Bj ;(I) are similar to the following two,
which we discuss in detail.

If j = I, we estimate

2 ) M‘”/dd“pyi(q,p) G _hia))))n_l >, f[(l—f)Ts(p)

0>i>1 Po (d15eerdn) EME(I) s=1

j; mot summed

IT (M‘z"” (pﬁ + e(p)2))‘ <

r&{k,l}

—1
< const |h|02/dd+1p|yz‘(%1’)|
=1

(3.99)
1
[ipo — e(p)["™

110 - OT)

1(lipa = o)l € (M7, 07))

We now use Taylor expansion for all the r-forks as in the proof of Theorem 2.46, to bound

this by

n—1 -1
< const |hl, (H MI|TS|1) My (DI Z/dd“pm(q,p)l
s=1 =1
1l etw)] € (72, 007]) (3.100)
n—1
< const |h| R H T,
s=1
where
-1
R=Msup" / A p|Vi(q, p)|1(|'ip0 —e(p)| € [MI_z,MI]> (3.101)
1 =1
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By maximality of 7'(;, we know that there is a volume improvement on scale ¢, so

-1
R < M™% const ZMEiMZI < const . (3.102)
=TI
It remains to be shown that the product over |T|, stays bounded, i.e. that there are no

factors I. This can be seen by estimating the last sum in (2.155) differently: by Lemma
2.44 (v),
|y |1

> An (Jus §) Mwe = Z A (=1, 8) M~

Jw >.77r(w)

(3.103)

independently of j (., so, inserting this into (2.155), we get |T,|, < const for all s. Thus
this term is bounded.

At the upper summation end j = ¢, we have to estimate

Z /dd+1p Yi(a,p) h(p)

n—1
0>i>T (z’po — e(p))
we S Tla-one I (0 (2 o))
(G1sees in) EMp (i) s=1 rE{k 1}
jynot summed
—1
< const |h|OZM—2i/dd+1p |yz(q,P)|1(|Zpo _ e(P)| c [Mi_z,Mi]) (3104)
=1
. n—1
M- DED T (1 - )T (p)
s=1
—1 .n—l . .
< const |1, 3 M T [ly [ d#*5l0i(a,p)1(lino — elp)] € (472, 32
=1 s=1

By (3.51) — (3.53) without the Dj, the last integral is bounded by const MZ+€)i so
this is

-1 n—1
< |h M T,
= | |0 ; g | |1 (3105)

< const ||,
[
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Remark 3.7 Actually, the following stronger convergence statement holds. Let (¢, G)
be fixed, E(G) =2, G 1PI. Let |h|; < 00 and for I' > I

I'-1
VE(h,t,G) =Y Y DyVal(G’) (3.106)
=1 JeJ(t,7)

Then, as I — —oo, V{ — VI with ‘VII‘ < |n|,WT and W' vanishes as I' — —oco. In

particular, for all £ > 0
|Vi(h,t,G) — Vi_g(h,t,G)|, < |h|,W; (3.107)

with WI—>0asI—> —00.

3.3 Convergence of the Derivative

In this section, we prove Theorems 1.6, 1.7, and 1.8. Given all the detailed information
about the two—legged and four-legged vertices that we have gathered in the last two chap-
ters, these proofs will be applications of elementary convergence theorems for absolutely
convergent series. For convenience of the reader, we summarize the results derived so far.

Recall the explicit expression (2.76)
Ke)=-> > 11 ] > Val(G7)(0,P(p)).
G j=It~Gfct 1° JET (t,7)

For all 7 > 1, K! converges as I — oo in | - |, to a function K, € C*(B,IR) (see Section
2.7). Let A be as in Definition (1.53), and £ as defined thereafter. Let e in 4. Since for
I > —o00, K! is differentiable in the sense of Fréchet®, the derivative (K,{)I € L can be

evaluated as the directional derivative
(K1) (h) = DuKL(e). (3.108)

Fix r > 1, let I = —n and denote K7™ = k,. Then by (3.33) (summed from —n —m to

—n), (kn)n>1 satisfies

1
lim sup sup W‘n;(h) — K (R)|, =0 (3.109)
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for all m > 1, thus it converges in operator norm | - ||, to an operator x, € L. By (3.108),

kL(h) = lim Dpk, (3.110)
so by (3.35)
ki (R)], < const |hl,. (3.111)

So far this was all at fixed e € A. The constants and bounds depend on u,, €, |e|,, |u|,
and the size § of the neighbourhood of S. By definition of A, (1.53), every e € A has a
neighbourhood U on which these constants are uniform, and thus all the above bounds
hold uniformly in e, and also the convergence is uniform. It remains to be shown that «’
is the derivative of x and that the map e — &/, is continuous on A. We first show by an

¢/3—argument that e — &, is continuous, as follows. Write
Ko, — Ko, = K, — Kn(e) + kn(es) — kyles) + rp(es) — ke, (3.112)

Let € > 0, then there is n > 1 such that ||x — &l(e;)|| <e/3 forall e; € U. Fix I = —n
with that property. At fixed I,

[(K7) (e2) = (K7)'(ea)]| < Crlles — el (3.113)

Cr grows with I, but we need only one fixed value of I. So for |le, —e,|| < £/(3Cy),

||k1,(e1) — ki, (e2)]| < €. It is now easy to see that ' is the derivative of K, = k since

Kn(€s) — kn(e:r) = Kl (e1)(es —ey) + /ds (k1 (1 —s)e, + sex) — kL (€1))(ex —€,) (3.114)
0

so, taking the limit n — oo, and calling h = e, — e,

K(ex + ) — w(es W)+ [ ds (kL p = L)), (3.115)

The second term is o(h) by continuity of &', so &' is indeed the derivative of k. This proves

Theorem 1.6.

R
Proof of Theorem 1.7: Let e, and e, be as stated in Theorem 1.7, K(R)( )= >, X K,(e),
s=1

and e, + KgR)(el) =e,+ K,(\R)(ez). Then
1

ex— ey + /ds %K&R)((l —s)e; + se,) =0, (3.116)
0
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that is,
(L+L)(e,—e,)=0

1
/ds
0

Since e, + s(e, —e;) € A for all s € [0,1],

with

Mm

MK (e, + s(e, —ey))(h)

@
[l
=

1K (ex + s(e= =€)l < Cs,

so ||L||, < 1 and 1+ L is injective. Thus e, — e, = 0.

(3.117)

(3.118)

(3.119)

Theorem 1.8 follows from the observation made earlier that any derivative with respect to

the external momentum of a Hartree-Fock type graph will only act on 4. Since 4 € CF,

so is DpH!, and the statement follows from a standard application of the contraction

mapping theorem.
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Appendix A. Volume Estimates

In this Appendix, we prove Proposition 1.1 and uniformity of C,,; and € on the set A,
defined in (1.53). By definition (1.34), the integral I> is symmetric in all three arguments,
so we may assume that €5 > max{e,,e,}. By choice of C,, we may also assume that
g3 is so small that |e(p)| < 2¢3 implies p € Us(S), with § given in Lemma 2.1, and that
g3 < Golel|,/2. If S has more than one connected component, we may also assume that ¢3
is so small that the neighbourhood |e(p)| < 2¢3 falls into the same number of connected
components as S. Let the coordinates (p,w) be as in Lemma 2.1 (iv) and denote p as a

function of these coordinates by p(p,w), then

€4
I,(g,,€2,€3) = sup max / d,ol/alw1 J(p1,w,)
qegvl,vze{—l,l} J
e,

€3

/ dpz /dwz J(Pz,wz)1(|€(’U1P(P1,w1) + ’UzP(Pz,wz) + q)| < 53)

—€a S
2
A,
<4 —) e.e,sup max sup dw,
Uo q€B V1,0 E{~L1} |p, | |p,[<es s

/dwz 1(le(vip(p1, w1 ) + v2P(p2,w2) + Q)| < €3).
S

By Lemma 2.1 and the mean value theorem
|e(v1p(p17w1) + 'Uzp(pzawz) + q) - e(v1p(03w1) + ’Uzp((),wz) + Q)| < 2|€|1i_i (A2)
for all p,, p, with |p;| < e3. Thus

le(vaP(p1;w1) + v2P(p2,ws) + Q)| < €3 (A.3)

implies

e(v2p(0,wy) + ,p(0,wa) + @) < (1+2151) e, (4.4)
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hence

A4,\° ]
L(e,,65,63) < 4 (u—o) g, W ((1 + 2%) 53) (A.5)
o
with
W(e) = sup /dw1 /dw2 e(v,p(0,w;) + v.p(0,w,) + q)| < ¢). (A.6)
qGB'Uu’U:E{ 1,1}

Thus the function W(e) contains the improvement over ordinary power counting. The

following Lemma implies the bound (1.33) for I, with
Coot = Z3 (1 + 2%) , (A7)

where Z3 is a constant that depends only on Z,, Z,, p, k, g, and |e|,.
Lemma A.1 W(e) < Zse©

Proof: Let f € (0,1) and 7 C S X S be the set where the intersection is transversal,

T = {(wiwa) € S x § 1 (/1= (nfws) - n(ws))® > P}, (A.8)

and & its complement, £ = S x S\ 7, and split W(e) = T'(¢) + E(¢) into the contributions
from these two sets. The idea is that if (w,,w,) € 7, then the tangent spaces T,,, S and
T,, S span IRd, T, S+T,, S= ]Rd, and therefore a combination of w, and w, will be
transversal to S, and that £ has small measure because of A3. [ will be chosen at the
end.

Fix any (@,,@,) € T, and for i € {1,2} let T; = Ty, S as a subspace of R? (in other
words, T; = {z € R? : n(@;) - x = 0}). By transversality, 7, N T, is a proper subspace
of both T;, and 7,. Choose an ONB a,,...,a4_; for T, such that a, is orthogonal to
T,NT,, and an ONB b,,...,bg_1 for T, such that b, is orthogonal to T, N T,, then
lay - by| = [n(@,) - n(@,)]. Let

b, — (b, 1
aq = ( 41)a: (A.9)
V1- -n(w2))?
For (o}, a2, --,a4-1) in a neighbourhood of the origin let wy(aj, a2, -,a4-1) € S

be the image of aja; + Z 2 asa; € T S under the exponential map. Similarly let
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wi1(B1-+,Ba—1) € S be the image of Zg:_ll Bib; € Ty,S. The Jacobian 6(a,afx“;1_’f'f2ﬁ)d_l)
is bounded by a constant in a neighbourhood of the origin. Make the further change of

variables substituting

/ a - by
V1 (n(wn) - n(w))
Br = Sl

for (a},B1). The Jacobian is

b
1 1
6((1;7a2,"'ad—17ﬁ17"'9ﬂd—1) _ det \/1 - wl wZ))
6(0‘1vaz,"'7ad,32,"',,34_1) - 0 V1V
2
V1 - (n(wr) - n(ws))
_ Y12 B-1

Define

p3 = e(v1p(0,w;) 4+ v2p(0,wz) + q)

viewed as a function of ay,---,a4,02,---,84_1. Note that for 1 <i<d—-1

0
ap3 = v1Ve(v1p(0,&1) + v2p(0,@2) + q) - a;
a;, 0
and
5 -b
8% = v1Ve(v1p(0,@1) + v2p(0,&2) + q) 1 “
d \/1 — (n wl ))
V12
+ v2Ve(v1p(0,1) + v2p(0,2) + q)

b1
\/1 — (n(wq) wz))2

,aq is an orthonormal basis, there is a j such that

= v;Ve(v1p(0,@1) + v2p(0,w2) + Q) - aq

Because a4, -

8p3 1
— —|V 0,w 0 >
e ||, = \/3| e(v1p(0,w1) +v2p(0,w2) + q)| > \/Ego
0
and |2F2 > 2 in a neighbourhood of the origin. Make a final change of variables
daj| = 2vd

replacing «; by ps. The Jacobian for the composite change of variables from (wq,ws) to
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(eq, a2, ,aq-1,P1,+,Ba-1) to (a1, -+, aq,B2, -+ ,B4-1) to ((ai)1$;$d y(Bi)2<i<d—1,p3)
i#£]
is bounded by const eé#~!. Covering S x S by a finite number of such coordinate patches

we have
const ¢

T(¢) < const e#7! / dps < const £°. (A.10)
— const «
The contribution from the set of exceptional momenta £ is bounded using A3: fix

w, € S, let D(w,) be as in (1.31), and let

Eo, = {w € 5:4/1— (n(ws) -n(wa)? < &) (4.11)

Then by A3 (i), £&,, C U,(D(w,)) with r = (¢'7#/Z,)*/# (this p is now that from A3,
not the ‘radial’ coordinate), so by A3 (i),

E(e) < / dw, / dw, < (Zo(2,)7217) exC=P), (A.12)
S Ur(€u,)
The optimal bound is when k(1 — 3)/p = B, that is, 8 = &/(k + p). |

Lemma A.2 Let A = A.(0,N,90,92,93) be as in (1.53). Then A is open, and
Pk, Zoy 2y, and thus Cyop can be chosen uniformly on A, i.e. (1.33) holds with the same €
and Cyor for all e € A.

Proof: It is obvious by definition of A that it is an open set. Let w € S = S(e). Since
In(w)| = 1, dn(w)h is orthogonal to n(w) € IR? for all A in the tangent space at w. D(w),
defined in (1.31), is the zero set of ¢, : S — Q3)(S), W' s n(W') A n(w). do,(v') =
dn(w') A n(w), the mentioned orthogonality and rank dn > o imply that D(w) is a C*~1-
submanifold of S of codimension > o. It is now clear that A3 holds, with x = o, p = 1, and
with Z, and Z, depending on the smallest eigenvalue (in absolute value), hence bounded
by a function of g3. Uniformity of Cyor on A.(0, N, go, g2, g3) follows from (A.7), that of

€ from Proposition 1.1. |
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Appendix B. The One—Fermion Problem

Let d > 2, T be a lattice of maximal rank in IR%, and
# = {becR*| (b,y) € 2nZ for all y € T'} (B.1)

its dual. Let g(x) be a smooth potential that is periodic with respect to I'. Then the

Schrodinger operator — ﬁA%—q(x) commutes with the unitary lattice translation operators

(T7¢)(x) =p(x+v) 7yeT (B.2)

so that the spectrum of —ﬁA + g(x) is the union over k € ]Rd/F# of the spectra of the

boundary value problems

(LA +q)p=A¢

| (B.3)
b(x+7) = <%7>g(z)  Vyel.

Label the eigenvalues of this problem, in increasing order, €,(k), ¥ € IN. Denote the

corresponding eigenfunctions ¢, ,(x) and normalize them by the condition that
/ dx |y, (x)|? = Vp := Vol(R%/T) . (B.4)
RZ/T

This normalization is chosen so that when ¢ = 0, {¢,, | v € IN} = {e!<k*> | k € k +[#}

and €,(k) = ;=k?. The boundary value problem

2m
p(x+7)=e<""7¢(z) VyeT

(gt ra)e=re -

is unitarily equivalent to

(55(—iV + &) +q) u = u (B.6)
u(x+y) = u(z) Vyel.

As (—iV +&)? is an analytic relatively bounded perturbation of —A, the eigenvalues €, (k)
and eigenfunctions ¢, ,(z) depend analytically on  at every « for which €, (k) is a simple

eigenvalue. The Fermi surface

S, = {k | v such that €,(k) = u} (B.7)
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for chemical potential x4 is smooth at every x for which

ev(k) = p =(a) €,(k) is a simple eigenvalue

(b) Ve, (k) # 0 (B8)

Since Ve, (k) = 0 is a system of d equations in d unknowns &, condition (b) is generically
violated only at isolated points in IR? /T#. In this paper, we exclude it by assumption A2.
We also restrict to one band since for bands separated by a gap, the band index plays no
interesting role.

The free two point Schwinger function
0(675,) - - <@07T[¢(£)'§5(£I)]q)0>

1 n —(eu(&)—p)7 (e, (") —p)T'
:_WZ%(@%@')@ (eu () =) ey (') =) <‘§07T[ak,a“L',gll‘I’0>

_ 1 ,— (e (8)—p)T (€0 (') —p) 7' , , _X(el’(k) < /'L) <7
- Tw Ld kzk: () (E)e ‘ ek o, { xe (k) >p) 1>

_ 7 N _—(es(K)— 7 X(Eu(k) < #’) T S TI
= 50,&@ Z¢k(§)¢k(f Je~ (e (R=mr=r) { —x(e(k) > p) T>7

_ dko 7 —iko(T—7") 1
B UUVLdZ/ K(€)e iko — e, (k)
(B.9)

where

ev(k) = €,(K) — (B.10)
and for 7 = 7’ the limit 7 — 7' ' 0 is implied. In the infinite volume limit

/o

0 dx n 1, —iko(T—7") 1
= o0 Z/ xR /T4 o (2m)d P (£ (€)e ko — e (r) (B.11)

Since we consider only one band, we drop v and set £ = k.
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