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Abstract

Regularity of the deformation of the Fermi surface under short-range interactions is established for all
contributions to the RPA self–energy (it is proven in an accompanying paper that the RPA graphs are the
least regular contributions to the self–energy). Roughly speaking, the graphs contributing to the RPA self–
energy are those constructed by contracting two external legs of a four–legged graph that consists of a string
of bubbles. This regularity is a necessary ingredient in the proof that renormalization does not change the
model. It turns out that the self–energy is more regular when derivatives are taken tangentially to the Fermi
surface than when they are taken normal to the Fermi surface. The proofs require a very detailed analysis
of the singularities that occur at those momenta p where the Fermi surface S is tangent to S + p. Models
in which S is not symmetric under the reflection p→ −p are included.
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1. Introduction

This paper is a continuation of [FST], which we refer to as I in what follows. Together with an accompanying
paper, hereafter referred to as III, it contains the proof that the counterterm function of I is regular enough
for the solution of the equations giving the renormalization of the Fermi surface (discussed in detail below)
to exist. We shall recall briefly the motivation and the setting of the problem, as well as some results of I,
to make this paper as self–contained as possible. For a detailed motivation, definitions of the scale flow and
renormalization we refer the reader to I and to [S]. All of this paper can be understood if one knows only the
most elementary properties of scaled propagators, as stated in Lemma 2.3 of I. In particular, no familiarity
with the formalism of the Gallavotti–Nicolò [GN] tree expansion is required.

1.1 The Problem

We consider a many–fermion system in a crystal background or on a lattice in d ≥ 2 spatial dimensions,
defined by a band structure and an interaction with a small coupling constant λ. The action for the model
is

A =
∫

dd+1p

(2π)d+1
ψ̄(p)(ip −E(p))ψ(p) + λV (ψ, ψ̄) (1.1)

The basic assumptions we make are that the free band structureE and the Fourier transform of the potential
are both at least C2 ((H1) and (H2)), that the curvature of the Fermi surface S is everywhere positive ((H3)),
and, for d = 2, that the filling factor is so small that certain umklapp processes do not happen in second
order ((H5)). For instance, in the two–dimensional Hubbard model, this restriction means that the filling
factor n has to obey n < 0.369, where n = 1 is half–filling. For d ≥ 3, we need no filling restriction. We
do not assume that E(−p) = E(p) for all p. If this symmetry does not hold, we call E asymmetric. If E
is asymmetric, we also assume that the curvature at a point p ∈ S and at its antipode a(p) do not differ
by too much ((H4)), but that they coincide at only finitely many points ((H4’)). We believe that all these
assumptions are necessary and sufficient, that is, if one of them does not hold, not only the proofs, but
also at least one conclusion of our theorems break down. The filling restriction (H5) is needed only in two
dimensions, and only for special parts of our proofs.

The assumptions (H1)–(H5) are spelled out in detail in Chapter 2. They are stronger than those of I,
so all results of I apply. The dynamics is given by the limit of the grand canonical ensemble as the volume
tends to infinity and the temperature to zero. The interaction produces a self–energy of the electrons which
one wants to calculate for small λ by perturbation theory. The interaction may have drastic nonperturbative
effects such as superconductivity, but in these weakly coupled systems, the correct way to begin the analysis,
and to decide if this happens, is to study perturbation theory [FT1,FST].

It is well–known that the naive (unrenormalized) perturbation theory is infrared divergent because of
the slow decay of the fermion two–point function in position space. The inherent slow decay is responsible
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for most of the physical (e.g. conductance) properties of these systems. In momentum space, this behaviour
manifests itself as the singularity of the propagator on the Fermi surface, which, at zero temperature, is the
boundary of the set of occupied states. As discussed in I, the infrared divergence of perturbation theory is
not a problem of the model but of the way the expansion is done. Because of the self–energy effects, the
Fermi surface moves when the interaction is turned on, and this motion of the singularity of the propagator
causes the infrared divergences of a naive expansion. In I, we showed that, by making the band structure
a function of λ, one can keep the Fermi surface fixed as the interaction is turned on, and thereby gave an
infrared finite renormalized perturbation expansion. More precisely, for a given band structure e and its
associated covariance (ip−e(p))−1, one can identify those parts K(e, λV,p) of the self–energy Σ(p,p) that
move the surface. Then the model with the modified band structure e(p) +K(e, λV,p) and interaction λV
has a well–defined and locally Borel summable perturbation series. However, since

K(e, λV,p) =
∞∑
r=1

Kr(e, V,p)λr (1.2)

is a functional of e and a function of the coupling λ and the spatial part p of the momentum, simply replacing
e(p) by e(p) +K(e, λV,p) changes the model in a rather complicated way. To construct the original model
with the given fixed free band relation E and a given interaction one must solve E = e + K for e. The
free Fermi surface is the zero set of E, while the interacting Fermi surface is the zero set of e. The central
problem is thus: fix a suitable E, and determine e from

E = e+K(e, λV ). (1.3)

That is, invert the map from the renormalized to the bare band structure. Once this is done, the counterterm
function K acquires a new role. It describes the deformation of the Fermi surface under the interaction.
Thus proving regularity properties of K as a function of p, as we do here, is proving regularity of the moving
Fermi surface.

In I, we proved uniqueness of the solution to (1.3) for a very large class of Fermi surfaces and interactions.
This paper and its sequels are devoted to proving existence of the solution for the class of E ∈ C2 which
give rise to a strictly convex Fermi surface. We now discuss the main reasons why this is a rather nontrivial
problem and give an outline how we solve it.

1.2 Main Results

It was explained in detail in [FST] why many terms in the unrenormalized perturbation expansion are
divergent. In a nutshell, the coefficients in the series for e.g. the self–energy contain integrals over arbitrary
powers of the free propagator (ip − e(p))−1, which is not in L2. For the same reason, it is far from trivial
to prove any regularity of the self–energy and the counterterm function K even after renormalization: every
derivative increases the power of the denominator by one, and thus potentially introduces new divergences.
Naive power counting suffices only to show Hölder continuity of degree α < 1 of the self–energy, which is
not even sufficient to renormalize the theory. Moreover, it is evident that one will be able to solve (1.3) for
generic E ∈ C2 only if one can prove that K is also a C2 function of momentum. In I, we proved volume
improvement estimates implying sharper power counting bounds that allow us to show that the theory can
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be renormalized and that the self–energy and the counterterm function are finite and C1+α for some α > 0,
determined by the Fermi surface geometry. We introduced the notion of overlapping loops (see Definition
2.19 of I) and showed that whenever a graph has overlapping loops, the integral for the phase space volume
contains a subintegral bounded by

W(ε) = sup
q∈B

max
vi∈{±1}

∫
Sd−1×Sd−1

dθ dθ 1l (|e(vp(0, θ) + vp(0, θ) + q)| ≤ ε) (1.4)

(see I, (A.6)). Here B is the Brillouin zone, 1l (X) = 1 if X is true, and zero otherwise. p(ρ, θ) denotes a
parametrization of a neighbourhood of the Fermi surface S with ρ = 0 corresponding to the Fermi surface
itself. (This parametrization will be given in detail in Section 2.2. θ runs over Sd−1 because, under (H2)–
(H3), the Fermi surface is diffeomorphic to Sd−1). We showed in I that under a very general non–nesting
condition, there is 0 < ε < 1 such that

W(η) ≤ const ηε, (1.5)

and that this implies volume–improved power counting bounds for all two–legged graphs and for all four–
legged graphs except for the ladder graphs. Any α < ε can be used in the above statement that the
self–energy is C1+α. Under the strict convexity condition imposed here, the bounds in I imply that

W(ε) ≤ const ε
d−1
d (1.6)

(see Proposition 1.1 and Lemma A.2 in I). In this paper, we prove

Theorem 1.1 Assume (H2)2,0, (H3), and (H4). Then there is a constant QV ≥ 1 such that for all ε > 0

W(ε) ≤ QV ε

{
| log ε| if d = 2
1 if d ≥ 3.

(1.7)

The constant QV depends only on |e| = sup
p∈B

∑
|α|≤2

|Dαe(p)|, and the numbers r, g, and w (defined in

Chapter 2).

As mentioned, the precise assumptions (H1) – (H5) are stated at the beginning of Chapter 2. Assumption
(H5) is not needed in the proof of Theorem 1.1, which is given in Appendix B. In the application, ε = M j

(with M > 1 and j < 0) is a small energy scale. The self–energy Σ and the countertermK are given as scale
sums, e.g.

Σ(p) =
∑
j<0

Σ(j)(p). (1.8)

The standard power counting bound for this function is
∣∣Σ(j)

∣∣ ≤ M j , and every derivative multiplies this
bound by a factor M−j . In I we showed that actually

∣∣Σ(j)
∣∣ ≤ M j(1+ε), because of the extra volume

improvement factor M εj coming from (1.5). This allows one to take almost 1 + ε derivatives and still have
a convergent series in (1.8).

Theorem 1.1 implies that the volume improvement factor M εj of I can be replaced by |j|M j wherever
it appears. Thus, the bound for the Σ(j) (and the similar bound for K(j)) improves from the standard
behaviour M j to |j|M2j just by this volume estimate and Theorem 2.46 (i) in I. Counting the effect of
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derivatives in the way described, we see that the scale sum over I < j < 0 of the second derivative of K or
Σ diverges at most as |I|2, not as M |I|, as I →−∞, as unimproved power counting would suggest. In other
words, Theorem 1.1 ensures that the divergence of the second derivative can be, at worst, marginal and one
may hope for convergence with a little more care in doing the bounds.

The volume bound stated above is best possible, however, and so one has to go beyond volume estimates
even to solve the problem in second order. It turns out that this requires a much more detailed analysis.
Because the Fermi surface is a d − 1–dimensional submanifold of d–dimensional space, there are angular
variables parametrizing it, and which also occur as integration variables. The idea is now to use these
angular integration variables to prevent derivatives from degrading the scale behaviour, by moving the
dependence on the external momentum from propagators 1

ip−e(p) into a Jacobian. However, this Jacobian
has singularities whose location depends on the external momentum. For the second order contribution, we
do a careful analysis of these singularities and show that under our hypotheses, in particular because the
Fermi surface has strictly positive curvature, the second order counterterm has exactly the same degree of
differentiability as e.

Theorem 1.2

(i) Let d = 2. There exists h > 0 such that if 0 ≤ h′ ≤ h, k ≥ 2, and (H1)k,h′,(H2)k,h′,(H3)–(H5) hold,
then K(e, V,p), given in (1.2), is Ck,h

′
in p. Moreover, the second order self–energy Σ is C1,γ

in p for any γ ∈ (0, 1).
(ii) Let d ≥ 3. There exists h > 0 such that if 0 ≤ h′ ≤ h, and (H1)2,h′,(H2)2,h′,(H3), and (H4) hold,

then K and Σ are C2,h′ in p.
Here Ck,h is the set of functions all of whose kth order derivatives are Hölder continuous of index h. h′ = 0
is allowed.

Note that Theorem 1.2 states for d = 2 that if e and v̂ are C2, then the counterterm K is also C2, whereas
the self–energy Σ is only shown to be C1,γ for any γ < 1, (that is, more loosely speaking, Σ ∈ C2−ε for
any ε > 0), even if e ∈ Ck and v̂ ∈ Ck for some k ≥ 2. We can prove convergence of the second derivative
of the second–order self–energy Σ in two dimensions only if the derivative is taken tangential to S. For
derivatives taken in the direction ρ transversal to S, or with respect to p, we show that in d = 2, the second
derivative is at most logarithmically divergent. The calculations in [F] indicate that this logarithm is indeed
there in two dimensions, i.e. that

Σ(p,p) ∼ p2 log |p|. (1.9)

Stated differently, at positive temperature T > 0 (which provides a natural infrared cutoff), the behaviour of
Σ is T 2 logT . The extra logarithm played a role in the discussion about the existence of two–dimensional
Fermi liquids [F]. Our results imply that this logarithmic singularity is (if it exists) not an obstruction to
the perturbative solution of (1.3), because we are doing renormalization using the more regular function K

instead of Σ itself. At present we do not know a way of making the skeleton expansion, where one subtracts
Σ, not only K, rigorous in d = 2. We explain these problems further in the next section.

The statement that Σ ∈ C1,γ for any γ < 1 also holds for the full perturbative self–energy, by Theorem
1.1. We did not state it in Theorem 1.2 because the proof, although an easy combination of Theorem 2.46
of I and the methods developed in Section 3.4, requires familiarity with the tree expansion. We shall give it
in III.
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As stated in Theorem 1.2, in three dimensions, the self–energy is C2 in p, so there is no logarithm in
the second derivative with respect to ρ. Thus for d ≥ 3, the skeleton expansion can be made rigorous by our
results. One can also combine the methods of Chapter 3 of I and the ones developed here to show that in
the p–dependence of Σ, the logarithm of (1.9) is absent in three dimensions, i.e., that Σ is C2 also in p.

Although elementary, our detailed analysis of the second order counterterm is rather subtle, and a
generalization to all two–legged 1PI graphs (those contributing to Σ and K) gives a system of equations
for the singularities that looks rather hopeless. Fortunately, a generalization to all two–legged 1PI graphs
is not required. In III, we give a new graph classification which isolates the only graphs that require the
detailed analysis done here, and that can exhibit behaviour as in (1.9) for d = 2. These graphs constitute,
in a sense to be specified later, the (generalized) random–phase approximation contributions ΣRPA, KRPA

to the self–energy and the counterterm. See Chapter 4. For these graphs, a detailed analysis of singularities
is possible and we show

Theorem 1.3 Let ΣRPA be the RPA self–energy and KRPA the RPA counterterm.

(i) If d = 2 and e(−p) = e(p) for all p, there exists h > 0 such that if 0 ≤ h′ ≤ h, k ≥ 2 and if
(H1)k,h′, (H2)k,h′, (H3), and (H5) hold, then KRPA is a Ck,h

′
function of p. h′ = 0 is allowed.

(ii) If d = 2, there exists h > 0 such that if 0 < h′ ≤ h and if (H1)2,h′,(H2)2,h′,(H3)–(H5) and (H4’)

hold, then KRPA is C2,h′ in p. In this case, the condition e(−p) = e(p) for all p would force a
violation of (H4’). h′ = 0 is not allowed.

(iii) If d ≥ 3, there exists h > 0 such that if 0 ≤ h′ ≤ h and (H1)2,h′, (H2)2,h′, and (H3) (and, for
asymmetric e, (H4)) hold, then KRPA and ΣRPA are C2,h′ in p. h′ = 0 is allowed.

Note that, as in Theorem 1.2, the self–energy is shown to be C2 in d ≥ 3. In two dimensions, one expects
(both from the bounds we derive and calculations in the literature) that RPA graphs also produce a behaviour
as in (1.9). Note also that for asymmetric e, we only prove K ∈ C2, not Ck with k ≥ 3. The detailed analysis
done in Chapter 4 suggests that the third derivative of KRPA may actually not converge if e is asymmetric.

The extension of Theorems 1.2 and 1.3 to the exact self–energy and the exact K is proven in III.

Thus, in any fixed order r of perturbation theory, we can start to look for solutions of (1.3) by iteration. The
uniqueness theorem proven in I then guarantees that if the iterative sequence has an accumulation point,
it converges. But our bounds are good enough to prove convergence directly, so that one has a solution of
(1.3).

1.3 Consequences

To put these results into context, we now discuss how one gets from the solution of (1.3) to a rigorous
version of what is usually called ‘self–consistent renormalization’. Given a free model with band structure
E (including the chemical potential µ), we want to do a formal power series expansion expansion in λ for
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the interacting model given by the generating functional for connected amputated Green functions

eG(ψ,ψ̄) =
1
ZE

∫
dµCE

(χ, χ̄)e−λV (ψ+χ,ψ̄+χ̄) (1.10)

with dµCE
the Grassmann Gaussian measure with propagator 1/(ip−E(p)). The constant ZE normalizes

G(0, 0) = 0. This may be defined as the limit β → ∞ of the grand canonical ensemble with partition
function tr e−β(H−µN). Denote the solution to equation (1.3) by e = F (E,λ). Let κ(E,λ) = K(F (E,λ), λ).
Then E = e + κ = e + K(e, λ). We now move K from the Gaussian measure into the interaction by the
standard Gaussian shift formula, so that K now acts as a counterterm. Since E = e +K, this leaves e in
the propagator, and

eG(ψ,ψ̄) =
1
Ze

∫
dµCe

(χ, χ̄)e−(χ̄,Kχ) e−λV (ψ+χ,ψ̄+χ̄)

=
1
Ze
e−(ψ̄,Kψ)

∫
dµCe

(χ, χ̄) e−(ψ̄+χ̄,K(ψ+χ))e−λV (ψ+χ,ψ̄+χ̄)e(ψ̄,Kχ)+(χ̄,Kψ).

(1.11)

The change in normalization factor from ZE to Ze is irrelevant for any correlation function, and the extra
source terms in the integrand just modify the external legs in a trivial way. Effectively, external vertices
are not renormalized. Because e is given by the solution to (1.3), the model has not been changed in any
way. What has changed is our way of looking at it. Splitting E = e+ κ means going from the bare to the
interacting Fermi surface. After that, the other interaction effects can be calculated at fixed surface. In fact,
everything is already arranged such that the expansion of (1.11) in λ is precisely the renormalized expansion
of I. All theorems of I apply. In particular, there are no infrared divergences.

In other words, the interaction effects are calculated in two steps: first, we determine the interacting
Fermi surface, then the self–energy and the n–point functions.

It is often stated that the renormalization problem can be dealt with by doing a skeleton expansion
in which on all lines, the free propagator is replaced by the interacting propagator (sometimes, this is also
called ‘self–consistent renormalization’). That is, one calculates the values of skeleton diagrams, using for
the rth order in λ the interacting propagator (ip − e(p) − Σr−1(p))−1, where Σr−1 is the self–energy up
to order r − 1 in λ, instead of the free propagator (ip − e(p))−1. However, a regularity problem similar to
(1.3) also arises in this procedure: to show that the values of skeleton diagrams with propagators containing
e+ Σ are well–defined, one has to assume that Σ has the same regularity properties as e. However, Σ is not
a function one is free to choose. One has to show regularity of the self–energy. This regularity problem is
harder than the one necessary to invert (1.3), because Σ is even less regular than K, and in fact, it may not
have a solution in d = 2 dimensions. Let us be more specific about why regularity of Σ (or K) is needed.
To show that the most elementary power counting estimates hold, one needs that the volume of a shell of
thickness ε around the Fermi surface is bounded by a constant times ε. This can be shown for the surface
S(e) = {p : e(p) = 0} if e ∈ C1, and if the gradient of e does not vanish on S(e) (see (H2)). To have the
same statement for the surface e(p) + Σ(0,p) = 0, one also has to show that Σ(0,p) is C1 in p. But to
show that Σ is C1, one needs upper and lower bounds on the curvature of S(e) – which requires e ∈ C2 –
already in second order (if the Fermi surface has flat sides, or if the system is one–dimensional, Σ is typically
not C1). Since the second order Σ appears on ‘interacting propagators’ of higher order graphs, one needs
Σ ∈ C2. It was mentioned above that most likely, Σ 6∈ C2, because of the logarithm in (1.9), so proceeding
this way may be impossible. Instead we take a counterterm function K which agrees with Σ only on the
Fermi surface. Tangential derivatives of K agree with tangential derivatives of Σ, but normal derivatives do
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not agree. A priori, proving K ∈ C2 could require e ∈ C3, and, hence in the next order K ∈ C3, and so on.
However, this sequence stops already at k = 2: we show that e ∈ C2 implies K ∈ C2. This is equivalent to
saying that the iteration for the solution of (1.3) stays in a fixed set of C2 band structures.

In renormalization group studies, a wave function renormalization is often introduced. For instance, in
one–dimensional systems, it is crucial for taking into account the anomalous dimension correctly [BGPS,BM].
In dimension d ≥ 2, our results show that a wave function renormalization is not necessary for renormalizing
formal perturbation theory, although it may be convenient. One can easily retrieve the perturbative wave
function renormalization, and show that it is finite to all orders, in the usual way from the self–energy:
we proved in I that Σ ∈ C1. Moreover, our assumption that v̂(−p,p) = v̂(p,p) (see (H1)) implies that
Σ(−p,p) = Σ(p,p), so that Σ(0,p) ∈ IR for all p. Since Σ is C1 in p, this implies (∂Σ)(0,p) ∈ iIR
and ∇Σ(0,p) ∈ IR for all p. Recalling that by Theorem 1.2 (iii) of I, Σ(0,P(p)) = 0 (here P denotes the
projection onto the Fermi surface), we get by Taylor expansion

Σ(p) = p(∂Σ)(0,P(p)) + (p−P(p)) · ∇Σ(0,P(p)) + Σ̃(p) (1.12)

where Σ̃ vanishes faster than linear as p approaches 0 and p the Fermi surface S. By the result thatΣ ∈ C1,γ

for all γ < 1, we know that Σ̃ vanishes almost quadratically in that limit. Combining the linear term in p

with the ip of the free propagator, we get the usual formula

Z(p) = 1 + i(∂Σ)(0,P(p)) ∈ IR (1.13)

for the prefactor of ip (whether one calls Z or 1/Z the wave function renormalization is, of course, a matter
of convention). The ∇Σ term gives the usual correction to the Fermi velocity. As mentioned above, the shift
from the free to the interacting Fermi surface is given by K(p).

What does this perturbative analysis imply for the full, nonperturbative model? This depends on e. If
e(−p) = e(p), the perturbation series is not convergent, and thus defines only formal power series, because
of the factorial growth of the contribution of the ladder diagrams. It is well-known that the particle–particle
ladder graphs really produce such factorials if e(−p) = e(p). It is proven very generally in I that for
many-fermion models, only the ladders can produce those factorials. Thus there are no other graphs whose
contribution could cancel them, and they prevent convergence of the renormalized perturbation series. (Do
not confuse this with the infrared divergences discussed above. In the renormalized expansion Σ =

∑
λrΣr,

all Σr are finite C1 functions, but the convergence radius of the power series in λ is zero). An improvement
of power counting (called loop improvement), and the corresponding statement that the ladders give the
only singular contribution to the four-point function was also stated in [BG] for the case where the Fermi
surface is a sphere. It is proven in [FMRT] by implementing the Pauli principle that at least for spatial
dimension d = 2 there are no other obstacles to the convergence of the renormalized perturbation series. It
is proven in [FT2] that for an attractive interaction, the perturbative RG flow, which is dominated by the
ladder diagrams, leads to a symmetry–breaking fixed point given by Cooper pairing.

All this changes very much for the class of e which violates the symmetry e(−p) = e(p) (the precise class
is specified in (H4) and (H4’)), to which a big part of our analysis is devoted. This asymmetry suppresses
the Cooper instability, i.e. it removes the factorial growth of the ladders. By the result proven in I that
the contribution from all other graphs to the four–point function is nonsingular, one may suspect that
perturbation theory converges. It is proven nonperturbatively in [FKLT] in d = 2 that the renormalized
perturbation expansion converges in these models. Thus models with e(−p) 6= e(p) can be proven to be

8



Fermi liquids. The results of I and of the present paper provide the perturbative part of this proof: in
I we have shown that the renormalized Green functions are all finite, and that only ladder subdiagrams
produce factorial growth in the value of individual diagrams. In the present paper and III, we prove that
renormalization does not change the model.

While differentiability of the self–energy may look like a rather technical problem at first sight, we
should like to remark that a self–energy that is not C1 is a common feature of various proposals for non–
Fermi–liquid behaviour in two dimensions (see [S] for further discussion), so that the differentiability issue
does have a physical significance.

We end this introduction with some more detailed remarks. As anybody who actually reads the proofs
will see, being in a C2 (or C2,h) class of functions poses some rather severe technical restrictions, which
show up in various technical details. For instance, the proof of Theorem 1.1 requires a version of the Morse
lemma for C2 functions. Since this lemma is not completely standard, we prove it in Appendix A. Moreover,
the critical point analysis involves the antipode a(p) of p ∈ S, which is the point on S where ∇e(a(p)) is
antiparallel to ∇e(p). For a Ck surface, a is in general only a Ck−1 function. It requires careful arguments
to show that this does not cause a deterioration of the differentiability properties of K.

To do renormalization without changing the model, we may use the renormalized expansion only after
inverting (1.3). This restricts us to a class of C2,h functions even if the starting E had a higher degree of
differentiability, because it is the differentiability of e that enters the bounds. One consequence of this is
that the higher–tangency–argument used in [FKLT] to show the absence of the Cooper instability (i.e., the
boundedness of the particle–particle ladders) does not apply. We define a notion of minimal change of the
curvature (similar to the definitions in A3 of I) for our class of C2,h functions in Assumption (H4’) and show
in Appendix C that the particle–particle ladders are bounded under this weaker condition. We also need
this for the regularity proofs. It is at this point that we actually need the extra Hölder continuity stated in
the above Theorems. In particular, it is the reason why h′ = 0 is not allowed in Theorem 1.3 (ii). In a C2

class of functions, a natural definition of a minimal change in curvature would be impossible.
Finally, we note that although the filling restriction (H5) that we imposed for d = 2 may seem peculiar,

numerical results indicate that in its absence, the behaviour of the self–energy is indeed different. These
effects may also be of physical interest.

We give the definition of our class of models in Chapter 2 and prove Theorem 1.2 in Chapter 3, and
Theorem 1.3 in Chapter 4. Appendix A contains the C2 Morse Lemma, and Appendix B contains the proof
of Theorem 1.1. Appendix C contains the proof of the one–loop volume bound needed to prove Theorem
1.3 in case e is asymmetric. In Appendix D, we prove regularity properties of the scale zero effective action,
which relates the theory without a cutoff in p to the one with a cutoff.
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2. Definitions and Assumptions

We denote the ε–neighbourhood of a set A

Uε(A) = {y : ∃x ∈ A with |y − x| < ε} (2.1)

and, as in I, we denote the norm
|f |k = sup

p∈IR×B

∑
|α|≤k

|Dαf(p)| (2.2)

where α = (α, . . . , αd) ∈ ZZd+1, αi ≥ 0 for all i, is a multiindex, |α| =
d∑
i=0

αi, and ∂α =
(

∂
∂p

)α

. . .
(

∂
∂pd

)αd

.

Let 0 < h ≤ 1. We denote the space of Ck functions on a set Ω whose kth derivative is h–Hölder
continuous by Ck,h(Ω), and use the norm

|f |k,h = sup
p∈IR×B

∑
|α|≤k

|Dαf(p)|+ max
α:|α|=k

sup
x,y∈Ω
x 6=y

|Dαf(x)−Dαf(y)|
|x− y|h

. (2.3)

For h = 0, we define Ck,0(Ω) = Ck(Ω).

2.1 Band structure and interaction

Our analysis takes place in momentum space, given by IR×B, where B is the torus IRd/Γ#, with Γ# the dual
lattice to the position space lattice Γ, e.g. for Γ = ZZd, B = IRd/2πZZd. Let F ⊂ IRd be a fundamental domain
for the action of the translation group Γ#, and



F ⊂ IRd its interior, e.g. for Γ# = 2πZZd, and B = IRd/2πZZd,
F = [−π, π)d and



F = (−π, π)d. We could also take B to be a bounded subset of IRd.
The one–electron problem provides a band structure e(p) which enters the propagator associated to lines

. We include the chemical potential µ in e. For example, for the free electron gas, e(p) =
p2

2m
− µ.

The interaction is given by the vertex

p1

p2

p3

p4

←→ 〈p2 p4 | V | p1 p3〉 δ#(p1 + p3 − p2 − p4)

where δ# is a δ function on IR for p and a δ function on B (i.e. one on IRd modulo Γ#) for the spatial
part p. The vertex function has the symmetry

〈p2 p4 | V | p3 p1〉 = 〈p4 p2 | V | p1 p3〉. (2.4)
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For simplicity, we assume that
〈p2 p4 | V | p1 p3〉 = v̂(p − p). (2.5)

We make the following assumptions on the interaction v̂, the band structure e(p) and the Fermi surface
S = {p ∈ B : e(p) = 0}. For some k ≥ 2,

(H1)k,h v̂ ∈ Ck,h(IR× B,C) with all derivatives of order at most k uniformly bounded on IR× B, and
v̂ satisfies

v̂(−p,p) = v̂(p,p). (2.6)

There is a bounded real–valued Ck,h function ṽ(p) such that

lim
p→∞

v̂(p,p) = ṽ(p) (2.7)

and there are α > 0, K > 0, and π > 0 such that

∀|p| ≥ π∀p ∈ B : |v̂(p,p) − ṽ(p)| ≤ K |p|−α (2.8)

(2.6) implies that the counterterms K, defined below, are real–valued, K(p) ∈ IR for all p ∈ B. (2.6) and
(2.7) also imply that lim

p→−∞
v̂(p,p) = ṽ(p).

The decay condition (2.8) assures us that the scale zero effective action, defined below, gives rise to Ck,h

vertex functions, and that therefore the ultraviolet (large p) part of the problem can be separated from
the infrared (small p) part by the semigroup structure of the flow of effective actions. If the interaction is
instantaneous, i.e., if v̂ is independent of p, (2.8) holds trivially.

(H2)k,h e ∈ Ck,h(B, IR) and ∇e(p) 6= 0 for all p ∈ S.

Assumption (H2) implies that S is a Ck submanifold of B. Since k ≥ 2, its curvature κ is therefore well–
defined. Since B is compact, e is continuous, and S = e−1({0}) is a preimage of zero, S is compact.

(H3) κ is strictly positive everywhere.

In d > 2 this is meant in the matrix sense. (H3) implies that S bounds a strictly convex set. In two

dimensions, S is a simple closed curve. Let n =
∇e
|∇e| be the unit normal to S. Strict convexity implies that

the equation
n(a(p)) = −n(p) (2.9)

has, for any p ∈ S, a unique solution a(p) ∈ S. Necessarily, a(p) 6= p. We call a(p) the antipode of p.
Since n is Ck−1, a ∈ Ck−1(S,S).

We shall not assume in general that e(−p) = e(p). We call a band structure e symmetric if

(Sy) For all p ∈ B, e(−p) = e(p).

and asymmetric otherwise. If (Sy) holds, a(p) = −p. In the asymmetric case, we assume

11



(H4) For all curves t 7→ p(t) in S,

∣∣∣∣∣1−
∣∣∣∣∂p(t)
∂t

∣∣∣∣
−1 ∣∣∣∣∂a(p(t))

∂t

∣∣∣∣
∣∣∣∣∣ ≤ 1

8
(2.10)

If e is symmetric, (H4) holds trivially by (Sy) (the left hand side of (2.10) is zero). We shall give a restatement
of (H4) in terms of the curvature below. Essentially, the curvature at the points p and a(p) must not differ
by too much.

For asymmetric e and d = 2, we need another assumption, (H4’), which we state after we have introduced
coordinates, because it is more easy to state, and understand, after some preparations. This assumption
forces the curvature at almost all points p on the Fermi surface to differ from the curvature at the antipode
a(p).

The last assumption is

(H5) {up + vq : p,q ∈ S, u, v = ±1} ⊂ 

F .

Assumptions (H1) and (H2) are identical to the assumptions A1 and A2 of I, save for the condition (2.8)
on v̂ which we use for the ultraviolet part of the problem (which was discarded in I), and the extra (optional)
Hölder continuity. They are satisfied for interactions that decay fast enough, and under natural conditions
on the one–particle problem. For a detailed discussion of their meaning, see Section 1.5 in I. Assumption
(H3) implies A3 of I (the class of Fermi surfaces considered there was much bigger than that of positive
curvature). Thus all theorems of I apply to this situation.

Assumption (H4) is a technical assumption that ensures that the locations of the singularities of certain
Jacobians depend continuously on the external momenta. The specific number 1

8 in (2.10) is certainly not
optimal.

Assumption (H4’) is needed in the d = 2 asymmetric case (where typically a(p) 6= −p). That the
curvatures differ at almost every p ∈ S and its antipode is needed in a volume bound for the particle–
particle bubble (see Appendix C); this is the bound that also implies that the Cooper channel is turned off
in the asymmetric case.

Assumption (H5) restricts the density n to be small enough, to avoid certain umklapp processes. E.g. in
the Hubbard model, where e(p) = −2(cosp+cos p)−µ, this is fulfilled for densities n < 0.369 (here n = 1
is half-filling). We shall need Assumption (H5) only to prove statements about the second–order graph and
the RPA graphs. In particular, the optimal volume improvement bound (and the bounds for values of large
graphs in III do not require (H5)). Thus a detailed investigation of the role of (H5) can be done essentially
in second order. The explicit role of (H5) in our proofs will be discussed in Section 3.3.
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2.2 Some elementary consequences

(H2) and (H3) imply that there are ε > 0 and g > 0 such that

∀p ∈ Uε
(S) : |∇e(p)| ≥ g. (2.11)

The filling restriction (H5) has the following consequence.

Lemma 2.1 Let S fulfil (H3) and (H5). Then
(i) If p,q, r ∈ S and 2q = p + r, then p = q = r

(ii) For a given p ∈ S, the equation

p − p = a(p)− p, p,p ∈ S (2.12)

has only the solution p = a(p), p = p.

Proof: By (H5), both sides of the equations in (i) and (ii) are vectors in


F , which is an open convex subset
of IRd. Therefore, to determine their solutions, we may consider S as a subset of IRd instead of B. (i) If
2q = p + r then the three points q, r = 2q − p = q + (q− p) and p = q − (q− p) are collinear. But
p,q, r ∈ S, so by strict convexity collinearity can hold only if p = q = r. (ii) It is obvious that p = a(p),
p = p is a solution of (2.12). We only have to show that there is no other solution. Let r = p−a(p)

|p−a(p)| . We
show uniqueness by proving that the chord from p to its antipode a(p) is strictly longer than any other
chord of S in direction r. This is sufficient because for p and p to be a solution of (2.12), the chord given
by p − p must point in direction r, i.e. p − p = |p − a(p)| r.

Consider the family of lines Lp = {p − tr : t ∈ IR}, parametrized by p ∈ S. As p is varied, the
line Lp slides over S, and thus defines a chord in direction r. All chords in direction r are produced by
an Lp for some p. Consider the tangent planes to S at p and a(p). They are parallel. Hence any line
segment parallel to r whose endpoints lie strictly between the two tangent planes has length strictly less
than |p − a(p)|. Because S is strictly convex, it remains on one side of each of the tangent planes, and
it intersects the tangent planes only at p and a(p). Thus every other chord in direction r is shorter than
that from p to a(p).

Radial and angular coordinates

For r > 0, let T = (−2r, 2r) × S. Then there is an r > 0 and a Ck–diffeomorphism φ : T → φ(T ) =
U(S) ⊂ B, (ρ, σ) 7→ p = φ(ρ, σ) such that e(φ(ρ, σ)) = ρ, and such that

|∇e(φ(ρ, σ))| ≥ g > 0 (2.13)

for all |ρ| < r and all σ. φ is constructed explicitly in Lemma 2.1 in I, using the integral curves of a C∞

vector field u that is transversal to S in the sense that

u(p) · ∇e(p) ≥ u ≥
g
2
. (2.14)
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We shall assume that φ is given by this specific construction and use its properties, and therefore ask you
to recall it from I. For ease of notation, we shall also write p(ρ, σ) for φ(ρ, σ), and p(σ) for p(0, σ). Since p

is Ck in ρ and σ, the Jacobian
J(ρ, σ) = |detp′(ρ, σ)| (2.15)

of the corresponding change of variables p→ (ρ, σ) is Ck−1.
We also denote Sρ = {p ∈ B : e(p) = ρ}. For ρ small enough, Sρ is also strictly convex, and we denote

the antipodal map on Sρ by aρ. It is defined for p ∈ Sρ by

n(aρ(p)) = −n(p) and aρ(p) ∈ Sρ (2.16)

We assume that r is chosen such that strict convexity of Sρ holds for all |ρ| ≤ r.

r will be chosen smaller in what follows, it depends, however, only on |e|2 and the geometry of the Fermi
surface, i.e., on g and the constant w defined in this section (which is related to the minimal curvature of
S). The antipodal map aρ induces a map aρ(σ) by

p(0, aρ(σ)) = aρ(p(0, σ)) (2.17)

For ρ = 0, we denote a(σ) = a(σ).
There is a Ck–diffeomorphism that maps S to the unit sphere Sd−1, σ 7→ θ. We use this variable θ in

the following and keep the same notation for the map (ρ, θ)→ p(ρ, θ), the Jacobian J and the antipode a.
The diffeomorphism from S to Sd−1 depends on e, but it is a Ck–diffeomorphism because S is a Ck surface,
and the Jacobian and its derivatives are bounded uniformly for all e satisfying (H2)k,0 and (H3).

Two Dimensions

For d = 2, the variable θ ∈ S1 is simply an angular variable. The map φ is (ρ, θ) 7→ p(ρ, θ). It is Ck in both
variables. The vector ∂θp is nonzero at all points in T because φ is a diffeomorphism. By definition of the
coordinates ρ and θ (see Lemma 2.1 in I), the variable θ is constant on the integral curves of u, which are
fixed independently of ρ. Therefore, if we now regard θ as a variable in IR, the period of the map θ 7→ p(ρ, θ)
is the same for all ρ with |ρ| < r.

Define the matrix e′′(p) by

(e′′(p))ij =
∂2e

∂pi∂pj
(p), (2.18)

let (a, b) =
∑

i aibi and let
w(p) = (∂θp, e′′(p)∂θp). (2.19)

At fixed ρ, p(ρ, θ) is a parametrization of the curve Sρ. Denote the unit tangent by

t(p) =
∂θp
|∂θp|

(2.20)

and define the arclength as s(ρ, θ) =
θ∫
0

dϑ|∂θp(ρ, ϑ)|. Then

∂2
θp(ρ, θ) =

∂2s

∂θ2
t(p(ρ, θ))± κ(ρ, θ)

(
∂s

∂θ

)2

n(p(ρ, θ)). (2.21)
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The sign is −1 if e(p) < 0 inside S and +1 otherwise.

Lemma 2.2 By (H2), for all |ρ| < r and all θ,

κ(ρ, θ)|∇e(p(ρ, θ))|= − w(p(ρ, θ))
|∂θp(ρ, θ)|2 . (2.22)

By (H3), there is κ > 0 such that κ(0, θ) ≥ 2κ > 0 for all θ. Thus r > 0 can be chosen so small that for
all |ρ| < r and all θ, κ(ρ, θ) ≥ κ, and there is wmin > 0 such that for all |ρ| < r and all θ

|w(p(ρ, θ))| ≥ wmin|∂θp(ρ, θ)|2. (2.23)

Moreover, |∂2
θp(ρ, θ)| ≥ wmin

|e| |∂θp(ρ, θ)|2.

Proof: e(p(ρ, θ)) = ρ for all θ, so

∇e(p(ρ, θ)) · ∂θp(ρ, θ) = 0

and w(p(ρ, θ)) +∇e(p(ρ, θ)) · ∂2
θp(ρ, θ) = 0.

(2.24)

We insert (2.21) and use t · n = 0 and ∂s
∂θ = |∂θp|, to get

w(p(ρ, θ))± κ(ρ, θ)|∂θp|2 |∇e(p(ρ, θ))| = 0. (2.25)

Thus |w(p(ρ, θ))| ≥ wmin|∂θp(ρ, θ)|2 holds with

wmin = κg, (2.26)

and, by (2.24),

|e| |∂2
θp(ρ, θ)| ≥ |∇e(p(ρ, θ)| |∂2

θp(ρ, θ) · n(p(ρ, θ))| ≥ wmin|∂θp(ρ, θ)|2. (2.27)

We transform to a new angular variable, which is a multiple of the arclength of the curve p(0, θ), so that in
the new variables, ∂θp is of constant length for ρ = 0, and normalized such that the period is 2π. We give the
argument in detail to show that no differentiability is lost by this change of variables. Let |∂θp(ρ, θ)| = v(ρ, θ).
Since v(ρ, θ) > 0 for all |ρ| ≤ r and all θ, we can define a new variable θ̃ as follows. Let θ be fixed and
P > 0. Define

θ̃(θ) = P

θ∫
θ

dϑ v(0, ϑ) (2.28)

v(0, θ) is Ck−1, so the map θ 7→ θ̃ is Ck. It is a diffeomorphism because v(0, θ) > 0, and θ̃(θ) = 0. Denoting
its inverse by θ(θ̃) and p̃(ρ, θ̃) = p(ρ, θ(θ̃)), we have

∂

∂θ̃
p̃(ρ, θ̃) =

∂θ

∂θ̃
∂θp(ρ, θ(θ̃)) =

1
Pv(0, θ)

∂θp(ρ, θ) (2.29)
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so ∣∣∣∂θ̃p̃(0, θ̃)
∣∣∣ = 1

P
for all θ̃. (2.30)

Unless stated otherwise, we take the variable θ̃ and choose P such that the period is 2π, i.e. θ̃ ∈ IR/2πZZ.
We also drop the tilde, so that in summary

θ ∈ IR/2πZZ, |∂θp(0, θ)| = 1
P
. (2.31)

Calling
w =

wmin
P 2

=
κg
P 2

, (2.32)

the statement of Lemma 2.2 is: for all |ρ| < r and all θ,

|w(p)| ≥ w (2.33)

In terms of the new coordinate θ, the antipodal map a on the Fermi surface satisfies

∂θp(0, a(θ)) = −∂θp(0, θ). (2.34)

a is Ck−1 in θ. If (Sy) holds, a is C∞ because a(θ) = θ + π for all θ. If e is asymmetric, (H4) implies that
for all θ,

7
8
≤ ∂a

∂θ
≤ 9

8
. (2.35)

In the symmetric case this is trivially true because a(θ) = θ + π. By (2.34),

∂2
θp(0, a(θ))

∂a(θ)
∂θ

= −∂2
θp(0, θ). (2.36)

By choice of the coordinate θ, ∂2
θp(0, θ) ∝ n(p(0, θ)), so

∂a

∂θ
=
|∂2
θp(0, θ)|

|∂2
θp(0, a(θ))| =

κ(0, θ)
κ(0, a(θ))

. (2.37)

Thus (H4) is simply a condition on the ratio of the curvatures at p and its antipode.

The assumption (H4’)

For d = 2, and e not obeying (Sy), we impose

(H4’) The function ∂a
∂θ obeys ∂a

∂θ = 1 only at finitely many points θ(1), . . . , θ(N). There is δ > 0 such
that for all k, l ∈ {1, . . . ,N}: if k 6= l, U2δ

(θ(k))∩U2δ
(θ(l)) = ∅, ∂a∂θ is monotonic on U2δ

(θ(k)),
and there is a constant Ka > 0 such that for all k ∈ {1, . . . ,N} and all θ, θ′ ∈ Uδ

(θ(k)),

∣∣∂a
∂θ (θ)−

∂a
∂θ (θ

′)
∣∣ ≥ Ka|θ − θ′|. (2.38)

It should be clear that for any asymmetric surface, points θ(1), . . . , θ(N), where ∂a
∂θ = 1, must exist: ∂a

∂θ is a
2π–periodic continuous function that satisfies

∂a

∂θ
(a(0)) =

κ(0)
κ(a(0))

=
(

κ(0)
κ(a(0))

)−1

=
(
∂a

∂θ
(0)
)−1

(2.39)
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by (2.37). By the intermediate value theorem, it must either be constant (then e is symmetric), or it must

take the value 1 at least twice. If we suppose for a moment that
∂a

∂θ
is differentiable, a similar argument

shows that
∂2a

∂θ2
must also have zeros. (H4’) states (without referring to such additional derivatives), that

at those θ where the curvature ratio is one, this ratio varies at least linearly. The curvature ratio turns up,
and hence (H4’) will be used, only in the proof of Theorem 1.3 (ii), more specifically in the one–loop volume
estimate that shows boundedness of the particle–particle ladder if (Sy) does not hold (if (H4’) holds instead).

Higher Dimensions

Let ∂2e denote the d ≥ 3 analogue of the matrix defined in (2.18). By (H4), there is, for each θ ∈ Sd−1, a
basis v1, · · · ,vd−1 for the orthogonal complement to ∇e(p(θ)) such that the matrices

Cθ =
[(

vi, ∂2e
(
p(0, θ)

)
vj
)]

1≤i,j≤d−1

Aθ =
[(

vi, ∂2e
(
p(0, a(θ))

)
vj
)]

1≤i,j≤d−1

(2.40)

obey ∣∣∣ |∇e(p(θ))|
|∇e(p(a(θ)))|AθC

−1
θ − v1l

∣∣∣ ≤ 1/5 (2.41)

for some v ∈ {±1} (in the symmetric case, Cθ = Aθ and |∇e(p(θ))| = |∇e(p(a(θ)))|). The matrix Cθ is
invertible because S has positive curvature everywhere.

2.3 Covariance

The propagator for the independent (λ = 0) electrons is

(G)αα′ (p) = δαα′C(p, e(p)) (2.42)

with

C(ω,E) =
eiω0+

iω −E (2.43)

This notation means the usual boundary value for distributions, e.g.

∫
dd+1p

eip0+

ip − e(p)
= lim

τ↓0

∫
dd+1p

eipτ

ip − e(p)
. (2.44)

The reason for this limiting prescription is that by Fourier transformation, at temperature T = 1
β , the Fermi

distribution function, which determines the thermodynamics of independent electrons, is given by

1
1 + eβE

= lim
τ↓0

1
β

∑
n∈ZZ

eiωnτ

iωn −E
(2.45)

where ωn = (2n+ 1)πT . In the limit T → 0, the frequency sum becomes an integral.
The behaviour of perturbation theory is determined by the properties of C and the interaction potential

v̂. It is obvious that
∫∞
1
|C(p)|dp is infinite so that one must not take the absolute values inside loop integrals
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containing only one propagator. As will be shown, this is harmless, however, and the mathematically difficult,
and physically relevant, singularity is in the infrared, at p = 0 and e(p) = 0. This singularity implies that

∫
p2+E2≤1

|C(p, E)|n =∞ (2.46)

for all n ≥ 2, which causes the divergences of unrenormalized perturbation theory [FT1,FT2,FST]. The
singularity of C at p2

 + E2 = 0 is the important one because it determines the long–distance behaviour of
the fermion two–point function.

The scale zero effective action

To separate the harmless, short–distance part of the propagator from the long–distance part, we first
integrate over all fields whose momenta are not in a neighbourhood of the Fermi surface. This includes in
particular the fields with large |p|. This integration produces an effective interaction, which we call the
scale zero effective action, for the remaining fields, which are then subject to a fixed ultraviolet cutoff.

To integrate over the fields with momenta away from the Fermi surface, we split the propagator C
into a scale zero part C where p2

 + E2 ≥ const > 0 and an infrared part C<0 where p2
 + E2 can get

arbitrarily close to zero, as follows. Let M ≥ max{43, 1
r
} (then |e(p)| < M−1 implies |ρ| < r), and let

a ∈ C∞(IR+
 , [0, 1]) be such that a(x) = 0 for 0 ≤ x ≤ M−4, a(x) = 1 for x ≥ M−2, and a′(x) > 0 for all

x ∈ (M−4,M−2). Define
C(p, E) = a(p2

 + E2)C(p, E)

C<0(p, E) =
(
1− a(p2

 +E2)
)
C(p, E)

(2.47)

Since C = C + C<0, the effective action

eG(χ,χ̄) =
∫
dµC(ψ, ψ̄)eλV

(0)(ψ+χ,ψ̄+χ̄) (2.48)

can be written as
eG(χ,χ̄) =

∫
dµC<0(ψ, ψ̄)eV

(0)
eff (λ,ψ+χ,ψ̄+χ̄) (2.49)

where
eV

(0)
eff (λ,χ,χ̄) =

∫
dµC

(ψ, ψ̄)eλV
(0)(ψ+χ,ψ̄+χ̄). (2.50)

V(0)
eff (λ,ψ, ψ̄) is a formal power series in λ:

V(0)
eff (λ,ψ, ψ̄) =

∞∑
r=1

λr
m̄(r)∑
m=0

∫
dp . . . dp2m δ

(
m∑
i=1

(pi − pm+i)

)
V (0)
m,r(p, . . . , p2m)

m∏
i=1

ψ̄(pi)ψ(pm+i) (2.51)

The propagator that appears in Veff is C, which has no infrared singularity.

Lemma 2.3 Assume (H1)k,h and (H2)k,h, with k ≥ 2 and h ≥ 0. The V (0)
m,r are all bounded and Ck,h in

the external momenta, i.e. ∣∣∣(V (0))m,r
∣∣∣
k,h
≤ K(m)rr! (2.52)
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Proof: See Appendix D.

Remark 2.4 In fact, the scale zero effective action is analytic in λ (so the r! is not really there on the
right side of (2.52)). Since C has no singularity, one can show that Uv is analytic in λ in a disk independent
of the volume and the temperature, by adapting the determinant bound given in [FMRT] suitably. Recall
that momentum space is IR × B with B = IRd/Γ# compact. So the spatial components of momenta are
subject to a fixed ultraviolet cutoff. Consequently, there is no ‘stability of matter’ problem.

The term (V (0))1,r is a bilinear term in the fermions. Since it is Ck and O(λ), and since λ is small, it does
not change the properties of e. We simply absorb it into e without changing notation.

Thus the only difference between the original model and the one with interaction V (0)
eff is that the latter

contains vertices with 2m ≥ 6 external legs, whose vertex functions are at least of order λ2, and which are
Ck,h in the external momenta with bounds that are scale independent. This is a minor complication which
is easily taken into account (it will mainly concern us in III).

The scale decomposition in the infrared

We now turn to the essential part of the problem. We decompose the infrared part C<0 of the propagator
into slices as in I: Let f(x) = a(x) − a(x/M2), then 1 − a(x) =

∑
j<0

f(M−2jx), and (omitting the eip0+

since the limits can be taken inside the integrals because large p do not occur in the infrared part of the
propagator)

C<0(p, E) =
1− a(p2

 + E2)
ip −E

=
∑
j<0

Cj(p, E)

Cj(p, E) =
f(M−2j(p2

 +E2))
ip −E

.

(2.53)

The point of this decomposition is that the propagator on scale j, Cj , has simple properties: it is easy to
prove (see I, Lemmas 2.1 and 2.3) that

max
|α|=s

|DαCj(p, e(p))| ≤ WsM
−(s+1)j 1l

(
|ip − e(p)| ≤M j

)
(2.54)

where Dα is a derivative with respect to p (α is a multiindex with |α| = s, 0 ≤ s ≤ k) of order s. The
indicator functions take the value 1l (X) = 1 if X is true and 1l (X) = 0 otherwise. In words: on ‘slice’
number j, the propagator is for all (p,p) of absolute value at most M2−j , (s = 0 in (2.54); W = M2), and
every derivative produces another large factor M−j. The constant Ws depends on |e|s and on g. Moreover,
the support of Cj is contained in the product of an interval of length 2M j in p and a thin shell of thickness
const M j around the Fermi surface S. By our choice of M , M−1 < r, so for all j < 0 this shell is contained
in the region where the variables ρ and θ can be used.

In infinite volume, we introduce an infrared cutoff by restricting the sum in (2.53) to j ≥ I, where
I ∈ ZZ, I < 0 (see I for details). In infinite volume the limit I → −∞ is the definition of the model. We
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shall show in another paper that the so defined infinite volume and zero temperature Green functions are
perturbatively identical to those obtained by taking a finite volume, positive temperature model and letting
the volume tend to infinity and afterwards the temperature go to zero.

The heart of the analysis of this paper concerns regularity properties of the self–energy in the spatial
part p of the momentum. It will be obvious from studying the proofs that this analysis works uniformly for
positive temperature as well as for temperature zero.

As explained,
∫
dp dE|C<0(p, E)| <∞, but

∫
dp dE|C<0(p, E)|2 =∞ because of the singularity at

p = E = 0 (see I, Section 1.4). To get finite perturbative Green functions, we renormalize. To this end, we
use the projection P introduced in Section 2.2 of I, i.e.

P(p(ρ, σ)) = p(0, σ), (2.55)

and for continuous functions F (p),

(`F )(p,p(ρ, σ)) =
{
F
(
0,p(0, σ)

)
χ(ρ) |ρ| < 2r

0 otherwise
(2.56)

where χ ∈ C∞(IR, IR), χ(x) = 1 for |x| < r and χ(x) = 0 for |x| > 2r, and χ decreases in |x|. The
counterterm and the self–energy are then defined recursively in r, the order in λ, as follows. In first order,
let Σunsub (p) be the sum of the values of the first order 1PI two–legged graphs, evaluated according to the
Feynman rules of the model. ThenK(p) = (`Σunsub )(p) = Σunsub (0,P(p)), and Σ(p) = Σunsub (p)−K(p).
Assuming that Σr and Kr have been defined, Σunsubr+1 is the sum of values of all 1PI two–legged graphs
with all two–legged insertions 1PI T (p) being of the form Σs, s < r, i.e. subtracted on the Fermi surface
(T (p)− T (0,P(p)) appears). Then Kr+1 = `Σr+1 and Σr+1 = Σunsubr+1 −Kr+1. Note that KI

r actually only
depends on P(p) ∈ S; this will be very important in the following. In the scale decomposition, with an
infrared cutoff I, KI

r appears as a sum over trees and compatible labelled graphs (for details, not needed
here, see I, (2.76)). This scale decomposition is a way of dealing with the functions that allows us to do
estimates that are even hard to get in the few cases where one can use exact calculations. It is proven in I,
Theorem 1.2, that the sequence of functions KI

r and their derivatives with respect to p converge uniformly
as I → −∞ and that

Kr = lim
I→−∞

KI
r (2.57)

is C1 in p. In the next chapter, we show that K is C2 if e and V̂ are C2.

3. Regularity in Second Order

In this chapter, we give a detailed explanation of the problem and its solution for the example of the second–
order countertermK(2) (the problem begins to be nontrivial in second order). After motivating the problem,
we prove Theorem 1.2. We also explain the basics of the scale decomposition when we deal with the second
order graph.
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tadpole rainbow

Figure 1

3.1 Preparations

The graphs that contribute to first order are shown in Figure 1.
They have the values

Y(q) =
∫

IR×B
d̄p P (p, q)C(p, e(p)) (3.1)

with
P (p, q) =

{
〈q p | V | p q〉 rainbow
〈q p | V | q p〉 tadpole.

(3.2)

(we use matrix notation for the spin sums; the tadpole involves a spin trace which we omitted in the notation
because it is inessential for the regularity problem. Also, d̄p = dd+1p

(2π)d+1 ). Since the only factor that depends
on q is the interaction function, and since C is integrable, it is trivial to take the limit I → −∞ of Y, and it
is Ck,h in the external momentum by (H1)k,h. Graphically speaking, the external momentum either enters
no line of the graph at all (for the tadpole term), or it can be routed through the interaction line (for the
rainbow term).

The second order gets contributions from the graphs shown in Figure 2. (recall that only 1PI two–legged
diagrams contribute to the self–energy and the counterterm).

Figure 2

scale zero eff

r

tadpole
r

rainbow polarization vertex

The shaded disk in the second order rainbow and the tadpole indicates an insertion of a first order
diagram. In our renormalized expansion, every two–legged insertion is subtracted at the Fermi surface, for
instance, the value of the second order rainbow is

Y(q) =
∫
d̄p 〈q p | V | p q〉C(p, e(p))2 (Y(p,p)− Y(0,P(p))) (3.3)

where P is the projection onto the Fermi surface defined in Lemma 2.1 of I. As in first order, the contribution
of the tadpole and rainbow graphs is Ckh by (H1)k,h. The contribution from the scale zero six–legged vertex
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is Ck,h because the external momentum does not enter the fermion line and because the vertex function is
Ck,h by Lemma 2.3.

We note in passing that although
∫
|C(p)|2dp = ∞, the value of the second order rainbow and the

second order tadpole would still be finite without renormalization because of the special structure of these
graphs, by Lemma 2.42 of I. So divergences first appear in third order. However, the argument of Lemma
2.42 in I has an additional derivative act on v̂, and thus one can only show that the unrenormalized value
of the rainbow is Ck−1 if v̂ is Ck.

Moreover, being conditionally convergent, the unrenormalized value depends on how the limit is taken.
In particular, this graph is one of the anomalous ones of Kohn and Luttinger that prevent convergence of
the unrenormalized positive temperature Green functions to their zero temperature counterparts. For the
renormalized Green functions, there is no such problem. Their values at positive temperature converge to
those at zero temperature. This will be shown in another paper. Here we mention this only as a further
motivation why the renormalized expansion is the correct one.

The ‘polarization’ and ‘vertex’ diagram (so called because a polarization bubble, resp. a vertex correction
appear as pieces of the graph) have the value (denoting pk = (zk,pk) ∈ IR× B)

Y (p) =
∫ ( 3∏

k=1

d̄pk C(zk, e(pk))

)
δ#(p + p − p − p)P (p, p, p, p) (3.4)

with
P (p, p, p, p) =

{
〈p p | V | p p〉2 ‘polarization’ graph
〈p p | V | p p〉 〈p p | V | p p〉 ‘vertex’ graph

(3.5)

By assumption (H1)k,h, the function P is Ck,h in the external momentum p and in all pi. But, whichever
way one uses the delta function to express one of the pi in terms of p and the others, that momentum will
depend on p, so one of the propagators depends on p. A derivative with respect to p squares the denominator
and thus makes the singularity stronger, and there is no cancellation in the frequency integration as in the
rainbow graph. Naive power counting suggests that already the first derivative is divergent. However, these
graphs are overlapping, and therefore the bounds in I imply an improvement that makes the first derivative
finite.

We repeat this proof for the example at hand to motivate the more difficult bounds that follow. First,
we briefly recall the tree structure associated to the scale decomposition. If you are familiar with that, you
can skip the remainder of this section. Calling

J = {(j, j, j) : I ≤ jk < 0} (3.6)

and inserting the scale decomposition (2.53), we get Y (p) =
∑

(j,j,j)∈J
Yj,j,j (p) with

Yj,j,j(p) =
∫ ( 3∏

k=1

d̄pk Cjk(zk, e(pk))

)
δ#(p + p − p − p)P (p, p, p, p). (3.7)

At finite I, the integrand is bounded and Ck, so the integral for Y is Ck in p. All singularities arise in
the limit I → −∞. We now rearrange the scale sums such that j ≤ j ≤ j. J is the disjoint union
J = D

·
∪U

·
∪T where

D = {(j, j, j) : j ∈ {I, . . . ,−1}}

T = {(j, j, j) ∈ J : j = j 6= j or j 6= j = j or j = j 6= j}

U = {(j, j, j) ∈ J : if k 6= l, then jk 6= jl},

(3.8)
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so Y is a sum Y = YD + YU + YT where

YM(p) =
∑

(j,j,j)∈M
Yj,j,j (p). (3.9)

For every triple (j, j, j) ∈ U , there is a unique permutation π ∈ S3 such that jπ(1) < jπ(2) < jπ(3),
therefore

U = {(jπ(1), jπ(2), jπ(3)) : π ∈ S3, (j, j, j) ∈ Ω} (3.10)

with
Ω = {(j, j, j) ∈ ZZ3 : I ≤ j < j < j < 0}. (3.11)

Thus, calling j = (j, j, j),

YU (p) =
∑
j∈Ω

∑
π∈S3

∫ 3∏
k=1

d̄pk Cjπ(k)(zk, e(pk))δ
#(p + p − p − p)P (p, p, p, p)

=
∑
j∈Ω

∫ 3∏
k=1

d̄pk Cjk(zk, e(pk))
∑
π∈S3

δ#(pπ(1) + pπ(2) − pπ(3) − p)P (pπ(1), pπ(2) , pπ(3), p)

(3.12)

We use the δ# to ‘fix’ p, i.e. to remove the p–integration, and get

YU (p) =
∑
π∈S

Y πΩ (p) =
∑
π∈S

∑
j∈Ω

Y πj (p) (3.13)

with
Y πj (p) =

∫
d̄pd̄p Cj(z, e(p)) Cj(z, e(p)) Cj(ζπ(3), eπ(3)) Pπ(p, p, p) (3.14)

where
ζa = La(z, z, z), ea = e(La(p,p,p)), (3.15)

La is given by

La(p, p, p) =

{
p+ p − p if a = 1
p− p + p if a = 2
−p + p + p if a = 3

, (3.16)

and Pπ(p, p, p) = P (pπ(1), pπ(2), pπ(3), p) with p given by Lπ(3)(p, p, p). For the spatial part p, recall
that the integral is over the torus B and that therefore the δ function is the one on the torus B. We shall
bound the Y πΩ separately for all π. The essential point is the dependence of Cj on p, since Pπ is Ck,h by
(H1)k,h. We therefore redraw the graph by collapsing the interaction lines to vertices; it then looks like one
of the graphs in Figure 3. The left graph corresponds to the case a = 3 in (3.16), the right one to a = 2.

j

j

j

j

j

j

Figure 3: The sunset diagram
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Similarly, YT is a sum of terms of the form∑
I≤j<j<0

∫
d̄pd̄pCj(z, e(p))P (p, p, q, p)

(
Cj(z, e(p)) Cj(ζ, e(q))+

+Cj(z, e(p)) Cj(ζ, e(q))
) (3.17)

with ζ and q again given one of the linear combinations in (3.16), and

YD(p) =
∑
I≤j<0

∫
d̄pd̄p

(
Cj(z, e(p))Cj(z, e(p))

Cj(z + z − z, e(p + p − p))P (p, p, p + p − p, p).
(3.18)

Note that we have arranged that the external momentum p is routed through the highest scale line Cj .
The arrangement of the scale sums into sums over these sets is none other than the decomposition into
Gallavotti–Nicolò trees [GN]. The trees t associated to T,D and Ω are drawn in Figure 4; the sum over all j
and permutations π ∈ S in (3.13) corresponds to the sum over all labellings of G that are consistent with
t. Also, fixing the momentum of the line with the highest scale j in terms of the others (i.e. putting that
line into the spanning tree of the graph) is the natural choice for a spanning tree that is consistent with the
scale structure (see Section 2.6 in I). This will be important in the estimates.

Figure 4

j1

j2

j3

Ω

j1

j3

T

j

D

3.2 Convergence Properties of Derivatives

After these preparations, we can start to discuss convergence questions. Only Cj depends on the external
momentum p. Thus

∣∣∣Y πj ∣∣∣
s
≤ sup

p

∫
dp dp |Cj((p), e(p))Cj((p), e(p))|

∣∣∣∣∣∣
∑
|α|≤s

(
∂
∂p

)α (
Cj(ζπ(3), eπ(3))Pπ(p, p, p)

)∣∣∣∣∣∣
(3.19)

By the Leibniz rule and (2.54),∣∣∣Y πj ∣∣∣
s
≤ W

2M−j−j
s∑
r=0

r∑
t=0

mrt|P |r−tWtM
−j(1+t) sup

p

∫
dp dp 1lj(p) 1lj(p) 1lj (p), (3.20)

with mrt a combinatorial factor, and 1lj(p) = 1l
(
|ip − e(p)| ≤M j

)
. We use the coordinates (ρ, θ) and the

notations pi = p(ρi, θi), p = p(ρ, θ), pi = (zi,pi), p = (z,p), to get∣∣∣Y πj ∣∣∣
s
≤ K M j+j−j(1+s) sup

p
F (p) (3.21)
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with

F (p) =
∫

ρ
2+z

2≤M2j

dρ dz

∫
ρ

2+z
2≤M2j

dρ dz

∫
dθ dθ 1

(
|e(Lb(p(ρ, θ),p(ρ, θ),p))| ≤M j

)
(3.22)

and

K = K(s, |e|s, |v̂|s, |u|s+1) = W
2|J |2

∑
r≤s

r∑
t=0

mrt|Pπ|r−tWt. (3.23)

We have kept only the support function of the spatial part of the momentum in the integral for F . As in I,
(A.2)–(A.6), we use max{j, j} ≤ j and Taylor expansion to bound

1
(
|e(Lb(p(ρ, θ),p(ρ, θ),p))| ≤M j

)
≤ 1
(
|e
(
Lb(p(0, θ),p(0, θ),p)

)
| ≤ (1 + 2 |e|1u

)M j
)

(3.24)

on the support of the integrand, and obtain F (p) ≤ W
((

1 + 2 |e|1u

)
M j

)
, where W is the function defined

in (1.4). Thus ∣∣∣Y πj ∣∣∣
s
≤ π2K M j+j−j(1+s) W

((
1 + 2

|e|1
u

)
M j

)
. (3.25)

The crude boundW ≤
(∫
dσ
)2 gives the ordinary power counting bound

∣∣∣Y πj ∣∣∣
s
≤ const M j+j−j(1+s). (3.26)

We now do the scale sum. In case Ω, the sum is over I ≤ j < j < j < 0.

∑
j>j

M−j(1+s) ≤M−j(1+s)
∑
k≥0

M−k(1+s) = M−j(1+s) 1
M1+s − 1

(3.27)

and similarly, ∑
j>j

M−j(1+s)M j ≤
{ |j| s = 0

const M−js s > 0.
(3.28)

Since ∑
j<0

M j |j| <∞, (3.29)

the scale sum over the value of the undifferentiated graph (s = 0) is majorized by a convergent sum.
However, if s ≥ 1,

−1∑
j=I

M j(1−s) ≥
{
|I| s = 1
M |I|(s−1) s ≥ 2

(3.30)

diverges as I → −∞. The scale sums for T and D behave similarly (the scale sum in D is particularly
simple, because there is only a sum over one scale j; the right side of (3.26) simply reads M (1−s)j).

Using the optimal volume improvement bound, Theorem 1.1, we obtain the improved power counting
bound ∣∣∣Y πj ∣∣∣

s
≤ const M j+j−js|j|, (3.31)

e.g. for j ∈ D, the bound is now |j|M (2−s)j . It implies that convergence holds for s < 2. This proves that
the first derivative of Σ exists and is a continous function. For s = 2, the sum for the bound diverges as |I|2 .
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Above, we have not given the argument why being majorized by a convergent sequence implies that
the function defined by the scale sum converges as I → −∞. This is a consequence of the dominated
convergence theorem, by the argument that we used in Theorem 2.46 (iv) in I: the sequence (yI)I<0 in
L = `1(ZZ−,C(IR× B,C)), given by yI = (yIj )j<0, where

yIj =




∑
j,j

j>j>j

Y πj (p) j ≥ I

0 otherwise,
(3.32)

converges pointwise in the space of sequences of continuous functions. Every element yI is pointwise bounded
by (|j|M j)j<0 ∈ L. Thus the sequence converges to an element (yj)j<0 of L, and

( ∑
j≥I

yIj

)
I<0

converges to∑
j<0

yj as I → −∞.

We have now demonstrated, for the example of the second order graph, some of the statements that
hold for all two–legged 1PI graphs by the results of I and the optimal volume bound, Theorem 1.1. While
too weak to make the second derivative convergent, the volume improvement given by Theorem 1.1 implies
that the scale sum is only ‘marginally divergent’ with |I|, i.e. it grows only as a polynomial of I, not as an
exponential M |I|. Thus one may hope that with a little more care in doing the bound, the second derivative
may be shown to converge. However, for the self–energy, we cannot show this. But the counterterm function
K depends on fewer variables than Σ, and therefore the regularity conditions on K are weaker than those
on Σ. More precisely, in the coordinates (ρ, θ) defined by the integral curves of u, derivatives with respect to
ρ act transversally to S, while derivatives with respect to θ act tangentially to S. From the general intuition
that problems arise when the singularity is moved one may expect that the tangential derivative is better
behaved than the transversal one. The counterterms are defined as

Kr =
(
`Σunsubr

)
(p) = Σunsubr (0,p(0, θ)) (3.33)

so they depend only on the tangential variable θ, but not on ρ. In other words, K is constant along the
integral curves of u. It is therefore easier to check the differentiability of K than that of Σ because p and
ρ are fixed to zero in K and we only have to control tangential derivatives. In the spherically symmetric
case the dependence on θ drops out as well by rotational invariance, and the function is a constant. In the
nonspherical case in d = 2, the proof of regularity of Y in θ is surprisingly tricky. We have

Lemma 3.1 Let d = 2. For every s ≤ k, there is a constant ∆s, depending on |e|s, g, and w, such
that for all j with max{j, j} ≤ j < 0,

sup
θ∈S

∣∣∣∣∣
∂kY πj

∂θk
(0,p(0, σ))

∣∣∣∣∣ ≤ ∆s|P |s M j+j



M−j |j| if s ≤ k − 1

M−3
2 j |j| if s = k

(3.34)

This Lemma immediately implies Theorem 1.2 for d = 2 because the scale sum overM j+j−3
2 j |j| converges

by the above analysis. The next section contains the proof of Lemma 3.1.
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3.3 The Singularities of the Jacobian

In this section, we will use (H5). We choose θ as in Section 2.1, i.e. θ ∈ IR/2πZZ for all ρ, and |∂θp(0, θ)| =
const if d = 2, and θ ∈ Sd−1 for d ≥ 3. The θ–dependent part of the integral is

ωj,b(ρ, ρ, P, p) =

2π∫
0

dθ

2π∫
0

dθ J(ρ, θ)J(ρ, θ)P (p, p, p)Cj(ζb, eb) (3.35)

where pk = p(ρk, θk) and the external momentum is p = (z,p(ρ, θ)). eb and ζb given by (3.15). In this
expression, the derivative with respect to θ can act on the propagator and degrade the scale behaviour of the
integral, which leads to the bounds derived above. However, one may try to use a further change of variables
from θ, θ to new, θ–dependent, variables to make Cj independent of θ. The integration variables ρ and ρ
are not useful for that purpose because making ρ or ρ θ–dependent only transfers the dependence on θ from
one of the propagators into another one in the integral (3.14) for Y . Then the problem that the derivative can
degrade the scale behaviour arises in another part of the integrand, so nothing has been gained. A change of
variables in θ, θ puts the θ–dependence only into the factors J and P , as well as the new Jacobian. Such a
change of variables is possible in most, but not all, of the integration region, because the resulting Jacobian
has singularities that depend on θ. The main problem in showing regularity is to control these singularities,
that is, to show that the derivative does not make them nonintegrable. This requires a detailed analysis of
the dependence of the singularities on θ. We shall split the integral into contributions from a regular region,
where the Jacobian and its derivatives are bounded, and a singular region, which contains the singularities.
The regular region will be easy to treat by a change of variables. We shall show that the singular region
can be chosen fixed, i.e. independent of θ, if θ varies in a small neighbourhood of a given, fixed, θ(0). The
singularities of the Jacobian as a function of θ, θ lie in neighbourhoods of the critical points of

ηb(θ, θ, θ) = ±e(Lb(p(0, θ),p(0, θ),p(0, θ))). (3.36)

The map ηb is Ck in all variables. After the analysis of the critical points of ηb, the dependence of
e(Lb(p(ρ, θ),p(ρ, θ),p(0, θ))) on the ρi will be controlled by a Taylor expansion. At the critical points,

∂ηb
∂θi

(θ, θ, θ) = ∇e(Lb(p(0, θ),p(0, θ),p(0, θ)) · ∂θp(0, θi) = 0 for i = 1, 2. (3.37)

Lemma 3.2 Let d ≥ 2. Assume (H2)2,0, (H3) and (H5). Then all solutions (θ, θ) of the critical point
equation (3.37) for which Lb(p,p,p(0, θ)) ∈ S holds are given by (θ∗, θ

∗
) = cb,l(θ), with

cb,(θ) = (θ, θ)

cb,(θ) =
{

(a(θ), θ) b = 1, 3
(θ, a(θ)) b = 2

cb,(θ) =
{

(a(θ), a(θ)) b = 1, 2
(θ, a(θ)) b = 3

(3.38)

Here a denotes the antipodal map on the Fermi surface S, see (2.34).
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Proof: Denote pi = p(0, θi) and Q = Lb(p,p,p) = p(0, θ′). Then

∇e(Q) · ∂θp(0, θ) = 0 =⇒ p ∈ {Q,a(Q)}

∇e(Q) · ∂θp(0, θ) = 0 =⇒ p ∈ {Q,a(Q)}
(3.39)

so in particular, θ = θ or θ = a(θ). Let b = 1. Then p = Q−p + p. Thus, given θ, we have the table

θ θ′ p
θ θ p
θ a(θ) a(p)
a(θ) θ a(p)
a(θ) a(θ) 2a(p)− p

Given θ, the last column fixes θ, and the first one then fixes θ. The first three rows produce the critical
points c,, c, and c,. The last row drops out because, calling q = a(p) and r = p, Lemma 2.1 implies
that q = r, which is a contradiction. The case b = 2 is gotten from b = 1 by exchanging θ and θ. b = 3
has p = −Q + p + p. The solution for c(θ) comes from the case Q = a(p) (and θ = a(θ)).

The significance of the filling condition

The significance of this Lemma and of (H5) in its proof is: given p(0, θ), at the critical points, θ and θ take
the values θ or a(θ). The derivative ∂η

∂θi
= 0, but by Lemma 3.2, ∂η∂θ = 0 as well at these points. Therefore,

the equation to make η independent of θ by a change in θ and θ,

∂
∂θη(θ(θ), θ(θ), θ) = 0, (3.40)

remains consistent at these points, so a solution may still exist (and will be shown to exist below). This is
not the case for the radial derivative, which is nonzero at the critical points.

Note that the collinearity argument could not have been applied without (H5) because if 2a(p) − p
is on a copy of S obtained by translation by some γ ∈ Γ#, the three vectors could differ (see Figure 5) for
particular values of p. In general, at these points, (3.40) has no nonsingular solution for ∂θk

∂θ . This means
that the derivative with respect to θ really acts on the denominator and degrades the scale behaviour. The
existence of the second derivative would then require another cancellation. A sketch of this situation for the
case where (Sy) holds, so that 2a(p)− p = −3p is given in Figure 5. To visualize the situation, we have
drawn a periodic picture on IR2 instead of a torus. The copies of S obtained by translation by vectors in Γ#

are to be identified with S. ∂η
∂θ 6= 0 because ∂θp is not parallel to ∂θp(0, θ′) = −∂θp(0, θ).

In the Hubbard model, (H5) gives the filling restriction stated in the Introduction. As mentioned, such
a filling restriction is not as unnatural as it may look because numerical results indicate a value of the filling
below half–filling, where the Fermi surface stays fixed. This filling corresponds to µ = 1/2, which is the first
value of µ where 2S touches a translate of S.

Lemma 3.3 (i) There is δ = δ(w) > 0 such that for all l, b ∈ {1, 2, 3} and for all θ(0) ∈ IR/2πZZ, there
is a Ck−1–diffeomorphism

Γbl : U3δ(0, 0)× Uδ(θ(0))→ Γbl
(
U3δ(0, 0)× Uδ(θ(0))

)
⊂ IR2 × Uδ(θ(0))

(t, t, θ) 7→ (x, y, θ) = Γbl(t, t, θ),
(3.41)
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p
p

Figure 5

and a map mbl : Γbl(U3δ(0, 0))× Uδ(θ(0))→ IR, with the following properties:

ηb(cbl(θ) + (t, t), θ) = mbl(x, y, θ) xy, (3.42)

mbl is Ck−2, and the maps (x, y, θ) 7→ x mbl(x, y, θ) and (x, y, θ) 7→ y mbl(x, y, θ) are Ck−1 in all variables.
Moreover, for all (x, y, θ) ∈ Γbl

(
U3δ(0, 0))× Uδ(θ(0))

)
,

|mbl(x, y, θ)| ≥
w
2

(3.43)

and
detΓ′bl =

∣∣∣∣ ∂x∂t ∂x
∂t

∂y
∂t

∂y
∂t

∣∣∣∣ = 1. (3.44)

(ii) For ε > 0 and (t, t) ∈ U3δ(0, 0),

|ηb(cbl(θ) + (t, t), θ)| < ε (3.45)

implies

|xy| < 2ε
w

(3.46)

and there are constants Qs, depending only on w, r and g, and |e|s, such that

∣∣∣∣[ ∂s∂θs ηb]x,y
∣∣∣∣ ≤ Qs|e|s+2 ε for all s ≤ k − 2∣∣∣∣[ ∂k−1

∂θk−1
ηb]x,y

∣∣∣∣ ≤ Qk|e|k ε
1
2

(3.47)

In (3.47), [ ∂∂θ ]x,y is the partial derivative with respect to θ with x, y held fixed, i.e.

[
∂s

∂θs
ηb]x,y =

∂s

∂θs
ηb
(
(cbl(θ), 0) + Γbl−1(x, y, θ)

)
(3.48)

29



Proof: (i) Symmetric Case: We assume (Sy) to hold. Then the antipodal map is a(θ) = θ+ π, hence C∞,
and by (Sy) and a transformation p → −p or p → −p, we can always choose the signs such as to make
eb = e(p + p − p). The critical points are then given by b = 3 in (3.38). We define

fl(u, u, θ) =



e(p(θ + u) + p(θ + u)− p(θ)) l = 1
e(p(a(θ) + u + u) + p(θ + u)− p(θ)) l = 2
e(p(θ + u) + p(a(θ) + u + u)− p(θ)) l = 3

(3.49)

so
fl(0, u, θ) = 0 for all u, θ

fl(u, 0, θ) = 0 for all u, θ
(3.50)

In the cases l = 2 and l = 3, we use that by (Sy)

p(a(θ) + u) = p(a(θ + u)) = −p(θ + u). (3.51)

Since a ∈ C∞, fl is Ck in all variables. By Taylor expansion,

fl(u, u, θ) = uu ml(u, u, θ) (3.52)

with the Ck−2 function

ml(u, u, θ) =

1∫
0

dα

1∫
0

dβ ∂∂f(αu, βu, θ). (3.53)

At (u, u) = (0, 0),

ml(0, 0, θ) =
{
w
(
p(θ)

)
l=1

−w
(
p(a(θ))

)
l=2,3

(3.54)

so |ml(0, 0, θ)| ≥ w for all θ. Since k ≥ 2, ml is continuous, so there is δ > 0 such that for all θ and for all
(u, u) ∈ U3δ(0, 0), |ml(u, u, θ)| ≥ w

2 . Also,

u ml(u, u, θ) =

1∫
0

dβ ∂fl(u, βu, θ) (3.55)

is Ck−1, and similarly uml is Ck−1. Let mbl = ml, x = u and y = u. For l = 1, Γbl is the identity. For
l = 2, Γbl(t, t, θ) = (t− t, t, θ), and for l = 3, Γbl(t, t, θ) = (t, t− t, θ). In all cases, (3.44) is obvious.

Nonsymmetric case: The change here is that the antipodal map a ∈ Ck−1, and that the map Γ will now
be nontrivial if the antipode is involved. We consider the cbl separately. The case l = 1 is identical to the
symmetric case, and all other cases are similar either to c22, where

f(t, t, θ) = e(−p(θ + t) + p(a(θ) + t) + p(θ)), (3.56)

or to c1,3, where
f̃(t, t, θ) = e(p(a(θ) + t)− p(a(θ) + t) + p(θ)). (3.57)

We deal with f first. Fix θ(0) ∈ IR/2πZZ. Obviously, f(0, t, θ) = 0 for all t and θ, but f(t, 0, θ) = 0 will
in general hold only for t = 0 because of the asymmetry. We construct a Ck−1 function t = Y (t, θ) such
that

f(t, Y (t, θ), θ) = 0 (3.58)
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as follows. By Taylor expansion,
f(t, t, θ) = t g(t, t, θ) (3.59)

with

g(t, t, θ) =

1∫
0

dα ∂f(αt, t, θ), (3.60)

in particular,
g(0, 0, θ) = ∂f(0, 0, θ) = −∇e(p(a(θ)) · ∂θp(θ) = 0. (3.61)

Thus, by a further Taylor expansion in t and in t,

g(t, t, θ) = g(t, 0, θ) + h(t, t, θ) t = t `(t, θ) + h(t, t, θ) t (3.62)

with the Ck−2 functions

h(t, t, θ) =

1∫
0

dβ ∂g(t, βt, θ) =

1∫
0

dα

1∫
0

dβ ∂∂f(αt, βt, θ) (3.63)

and

`(t, θ) =

1∫
0

dα(1− α)∂2
f(αt, 0, θ). (3.64)

At (t, t) = (0, 0),

h(0, 0, θ) = ∂∂f(0, 0, θ) = − (∂θp(a(θ)), e′′(p(a(θ))∂θp(θ)) = w(p(a(θ)) 6= 0. (3.65)

The function Y is constructed as the solution to the equation

g(t, Y, θ) = t `(t) + Y h(t, Y, θ) = 0. (3.66)

A point where the equation holds is (t, Y ) = (0, 0), and by (3.62), and because h is Ck−2, hence at least
continuous since k ≥ 2,

∂g(0, 0, θ) = lim
t→0

g(0, t, θ)− g(0, 0, θ)
t

= lim
t→0

h(0, t, θ) = h(0, 0, θ) 6= 0. (3.67)

So the solution to (3.66) exists by the implicit function theorem, and Y inherits its differentiability properties
from g. The crucial point is now that g is Ck−1 in all variables because

g(t, t, θ) =

1∫
0

dα ∇e(p(a(θ) + αt)− p(a(θ) + t) + p(θ)) · ∂θp(a(θ) + αt), (3.68)

and because a, ∇e, and ∂θp are all Ck−1. Thus a ∈ Ck−1 does not cause any loss in differentiability of
Y . |h| is uniformly continuous in θ, so the size of the neighbourhood of (0, 0) where Y is defined can be
chosen uniformly in θ by compactness of IR/2πZZ. Thus there is δ > 0 and a function Y ∈ Ck−1((−δ, δ)×
Uδ

(θ(0)), IR) such that for all θ ∈ Uδ
(θ(0)): Y (0, θ) = 0, and g(t, Y (t, θ), θ) = 0 for all |t| < δ. This

implies
f(t, t, θ) = t (t − Y (t, θ)) h̃(t, t, θ). (3.69)
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Choose δ such that 3δ ≤ δ and such that for all (t, t) ∈ U3δ(0, 0), |h̃(t, t, θ)| ≥ w

2 . Define Γ by

x = t, y = t − Y (t, θ) (3.70)

and ml(x, y, θ) = h̃(x, Y (x, θ) + y, θ), then∣∣∣∣ ∂x∂t ∂x
∂t

∂y
∂t

∂y
∂t

∣∣∣∣ =
∣∣∣∣ 1 0
− ∂Y
∂t

1

∣∣∣∣ = 1 (3.71)

so Γ(·, ·, θ) is a Ck−1–diffeomorphism at fixed θ, and (3.44) holds. It follows from (3.59) and the properties
of Y that

y ml(x, y, θ) = (t − Y (t, θ)) h(t, t, θ) = g(x, Y (x, θ) + y, θ) (3.72)

is Ck−1. Moreover, f(t, Y (t, θ, θ)) = 0 implies by Taylor expansion

f(t, t, θ) = (t − Y (t, θ))

1∫
0

dα (∂f)(t, αt + (1− α)Y (t, θ), θ). (3.73)

Comparing that to (3.69), we see that

x ml(x, y, θ) =

1∫
0

dα (∂f)(x, Y (x, θ) + αy, θ) (3.74)

is also Ck−1. This proves all statements of the Lemma for the case f . The case f̃ is similar: defining

f̄(t̄, t, θ) = f̃(t + t̄, t, θ), (3.75)

we have again that f̄(0, t, θ) = 0 for all t and all θ, and we have thus reduced the case to the previous one
by the change of variables (t, t)→ (t − t, t). The Jacobian of this change of variables is one, so (3.44)
still holds.

(ii) (3.46) is obvious from (3.45) and (3.43). The first bound in (3.47) follows because mbl is Ck−2 and∣∣ ∂s

∂θsmbl

∣∣ ≤ const |e|s+2. The constant depends on w, g, and r. For the second bound, we use that x mbl

and y mbl are Ck−1. This implies∣∣∣∣∂k−1ηb
∂θk−1

∣∣∣∣ =
∣∣∣∣x ∂k−1

∂θk−1
y mbl(x, y, θ)

∣∣∣∣ ≤ const |e|k |x| (3.76)

and, exchanging x and y, ∣∣∣∣∂k−1ηb
∂θk−1

∣∣∣∣ ≤ const |e|k |y|. (3.77)

Combining these two equations, we get∣∣∣∣∂k−1ηb
∂θk−1

∣∣∣∣ ≤ const |e|k min{|x|, |y|} ≤ const |e|k
√
|xy| (3.78)

which implies (3.47).

To take the ρ–dependence into account, we use the following Lemma.
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Lemma 3.4 For any ε > 0 there is δ > 0 such that for all θ(0) and for all ρ and ρ with |ρi| < δ and all
θ with

∣∣θ − θ(0)
∣∣ < δ, all the solutions to the critical point equations

∇e (Lb(p(ρ, θ),p(ρ, θ),p(0, θ))) · ∂θp(ρi, θi) = 0

for i = 1, 2 are in ε–neighbourhoods of the critical points cb,l(θ(0)).

Proof: See Lemma B.3 and Remark B.4.

We now prove a more general statement that implies Lemma 3.1, and which we shall use later to bound
more general graphs and also derivatives with respect to e. The generalization is about the θ–behaviour of
the propagators associated to lines. The free propagator Cj is independent of the angular variable, that was
the whole point of the above strategy of removing the dependence on the external angle from Cj . However,
one can prove the same bounds for more general propagators if they depend on θ in a way that taking
θ–derivatives does not deteriorate their scale behaviour. The strings of two–legged subdiagrams that occur
in general graphs and their derivatives with respect to e have this property, i.e. they satisfy the hypotheses
of the following theorem.

Theorem 3.5 Let d = 2, and (H2)k,0 and (H3)–(H5)hold. Let A ∈ Ck−1((IR×N )3,C) and for ν ∈ {1, 2, 3}
let S(ν)

1,j1
, S(ν)

2,j2
, S(ν)

3,j3
be in Ck−1(IR×N ,C) and satisfy for l ∈ {1, 2, 3}

∣∣∣DαS
(ν)
l,jl

(p)
∣∣∣ ≤ Γl,ν,|α|M−jl(ν+|α|) 1l

(
|ip − e(p)| ≤M jl

)
∀ 0 ≤ |α| ≤ k − 1 (3.79)

and for all s ≤ k − 1 ∣∣∣ ∂s

∂θsS
(ν)
l,jl

(p,p(ρ, θ))
∣∣∣ ≤ Γl,ν,sM−νjl 1l

(
|ip − ρ| ≤M jl

)
(3.80)

(where the constants Γl,ν,s are increasing in s). Let j = (j, j, j) with j ≤ j ≤ j, ν = (ν, ν, ν), and

X
b,ν
j (p) =

∫
dp dp S

(ν)
1,j1

(p)S
(ν)
2,j2

(p)S
(ν)
3,j3

(Lb(p, p, p))A(p, p, p) (3.81)

where Lb is defined in (3.16). Then, for all s ≤ k − 1, there is Qs > 0 such that for all ν, ν, ν ∈ {1, 2, 3}
and all b ∈ {1, 2, 3}

sup
θ

sup
|p−iρ|≤Mj

∣∣∣ ∂s

∂θsX
b,ν
j (p,p(ρ, θ))

∣∣∣ ≤ Qs|A|s M j(2−ν)+j(2−ν)

{
|j| M (1−ν)j if s ≤ k − 2
|j| M ( 1

2−ν)j if s = k − 1.
(3.82)

The constant Qs depends only on s, the constants Γl,ν,s, r, w, and |e|s.

Proof: We introduce the coordinates (ρ, θ) such that e(p(ρ, θ)) = ρ, write pi = (ωi,p(ρi, θi)), and denote
p
(b)
 = Lb(p, p, p). Then

X
b,ν
j (p) =

∫
dωdρ

∫
dωdρZ

b,ν
j (p, ω, ρ, ω, ρ) (3.83)
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with

Z
b,ν
j =

∫
dθJ(ρ, θ)

∫
dθJ(ρ, θ) S

(ν)
1,j1

(p) S
(ν)
2,j2

(p) S
(ν)
3,j3

(p(b)
 ) A(p, p, p) (3.84)

The momentum p
(b)
 = Lb(p, p, p) defines ω(b)

 , ρ, and θ by by p(b)
 =

(
ω

(b)
 ,p(ρ, θ)

)
where

ρ = e (Lb(p,p,p)) (3.85)

and where θ is also a function of p, p and p. In particular, both ρ and θ depend on θ. In view of (3.80),
it is desirable to change variables in this integral, to make ρ independent of θ because then the j–behaviour
of the integral is not deteriorated by derivatives with respect to θ.

Fix b ∈ {1, 2, 3}. Fix δ > 0 so small that it satisfies the hypothesis of Lemma 3.3, and such that the
3δ–neighbourhoods of the critical points are mutually disjoint. Fix r > 0 so small that for all |ρi| < r, all
θ with |θ − θ(0)| < r, and all l ∈ {1, 2, 3},

∣∣∣cbl(θ)− cbl(θ(0))
∣∣∣ < δ

2
(3.86)

(this is possible by Lemma 3.4). Fix θ(0) ∈ IR/2πZZ. Denote Θ = (θ, θ). Let

R = (IR/2πZZ)2 \
3⋃
l=1

{Θ :
∣∣∣Θ − cbl(θ(0))

∣∣∣ < δ}, (3.87)

then every Θ ∈ R has distance at least δ
2 from the critical points. R is compact, so there is ξ = ξ(δ) > 0

such that for all |ρi| < r, all θ with |θ − θ(0)| < r, and all Θ ∈ R

|∇e(Lb(p(ρ, θ),p(ρ, θ),p(0, θ)))| ≥ 2ξ. (3.88)

∇e is uniformly continuous on that set, so r can be chosen so small that there is N = N(δ) ∈ IN and a

partition of unity 1 =
N∑
l=1

χl with

χl(Θ) =
{

1
∣∣Θ − cbl(θ(0))

∣∣ < δ

0
∣∣Θ − cbl(θ(0))

∣∣ > 2δ
for l ∈ {1, 2, 3}, (3.89)

and such that for all l ≥ 4, Θ ∈ supp χl implies either

inf
|ρ|<δ,|ρ|<δ

inf
|θ′−θ(0)|≤r

∣∣∣∣ ∂∂θ e
(
Lb(p(ρ, θ),p(ρ, θ),p(0, θ′)

)∣∣∣∣ ≥ ξ (3.90)

or

inf
|ρ|<δ,|ρ|<δ

inf
|θ′−θ(0)|≤r

∣∣∣∣ ∂∂θ e
(
Lb(p(ρ, θ),p(ρ, θ),p(0, θ′)

)∣∣∣∣ ≥ ξ. (3.91)

Note that the just constructed functions χl depend only on θ(0) and δ; they are independent of θ. Note also
that δ, ξ, and the χl are independent of the scales j, j, j. Let θ be such that |θ − θ(0)| < r. We insert
the partition of unity in the integral for Z and get

Z
b,ν
j =

N∑
l=1

Z
b,ν
j,l (3.92)
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where the integrand for Zb,νj,l is that of Zb,νj times χl(Θ). We do not write all the arguments (p, ω, ρ, ω, ρ)

of Zb,νj for brevity. Note that Zb,νj vanishes if |iω− ρ| > M j or if |iω − ρ| > M j because of the support

properties of the propagators S(νk)
k,jk

, so that in deriving bounds below we may always assume that |ωk| and
|ρk| are at most M jk .

For l ≥ 4, an ordinary change of variables from θ or θ to e is possible. If, for instance, for the given l
(3.91) holds, then we can write θ as a function of e and the other variables,i.e.,

θ = θ(θ, e, θ, ρ, ρ). (3.93)

By the implicit function theorem, this function exists, and θ is a Ck function of (θ, e, θ, ρ, ρ). The
Jacobian

J̃(θ, e, θ, ρ, ρ) =

[((∂eb
∂θ

)(
Lb(p(ρ, θ),p(ρ, θ),p(0, θ))

))−1
]
θ=θ(θ,e,θ,ρ,ρ)

(3.94)

of this change of variables is Ck−1 in all its arguments. By (3.91), it satisfies, for all l ≤ k − 1,∣∣∣∣∣∂
lJ̃

∂θl

∣∣∣∣∣ ≤ 2l l! ξ−l−1 (1 + |φ|l)
l (3.95)

where φ(θ) = ∂eb

∂θ
(θ). By construction, |φ|l is also bounded by a function of |e|l+1 and ξ. Changing variables

to e in the integral for Z, we get

Z
b,ν
j,l =

∫
dθJ(ρ, θ)

∫
de J(ρ, θ(θ, e)) J̃(θ, e) χl(θ, θ(θ, e))A(p, p, p)

S
(ν)
1,j1

(p) S
(ν)
2,j2

(ω,p(ρ, θ(θ, e))) S
(ν)
3,j3

(
ω(b)
 ,p(e, θ(b)

 (θ, e))
)
.

(3.96)

Although θ(θ, e) and θ
(b)
 also depend on θ, ρ, and ρ, we suppressed this in the notation since this

dependence is harmless in the following estimates by (3.91) and (3.95). By the assumptions on S(νi)
i,ji

and A,
and since J ∈ Ck−1 because e ∈ Ck, the integrand is Ck−1 in θ. We take s ≤ k − 1 derivatives with respect
to θ, to get

∣∣∣ ∂s

∂θsZ
b,ν
j,l

∣∣∣ ≤ γM−jν−jν−νj 1l
(
|iω − ρ| ≤M j

)
1l
(
|iω − ρ| ≤M j

) ∫
de 1l

(
|iω(b)

 − e| ≤M j
)

(3.97)
with

γ = 2π|J |Γ1,ν,0

∑
s1+s2+s3+s4=s

s!
s1!s2!s3!s4!

Γ2,ν,s2Γ3,ν,s3 sup
∣∣∣ ∂s

∂θs
(JJ̃χl)

∣∣∣ sup
∣∣ ∂s4

∂θs4A
∣∣

≤ 2π|J |4s|A|sΓ1,ν,sΓ2,ν,sΓ3,ν,s sup
∣∣∣ ∂s

∂θs
(JJ̃χl)

∣∣∣ sup
∣∣ ∂s

∂θsA
∣∣.

(3.98)

Thus, for l ≥ 4,∣∣∣ ∂s

∂θsZ
b,ν
j,l

∣∣∣ ≤ 2γ M−jν−jν−νj 1l
(
|iω − ρ| ≤M j

)
1l
(
|iω − ρ| ≤M j

)
(3.99)

and therefore ∣∣∣∣∣
∫
dωdρdωdρ

N∑
l=4

∂s

∂θsZ
b,ν
j,l

∣∣∣∣∣ ≤ 2π2Nγ M (2−ν)j+(2−ν)j+(1−ν)j . (3.100)
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So the contribution from the region away from the singularities actually fulfills a better bound than (3.82)
(recall that N = N(δ) is fixed independently of the scales).

We now turn to the singular region: let l ∈ {1, 2, 3}. Here the dependence of S(ν)
3,j3

on θ cannot be
removed, but we shall use the specific form of the singularity proven in Lemma 3.3 to give bounds. We first
do a Taylor expansion in ρ and ρ to reduce the problem to all vectors being on the Fermi surface (if ρ 6= 0,
we expand in ρ−ρ and ρ−ρ instead of ρ and ρ. This does not make any difference because ρ is assumed
to be less than M j in the statement of the Lemma, because all constants are uniform in ρ for |ρ| < δ, and
because we take a derivative with respect to θ, and not with respect to ρ. We may therefore specialize to
ρ = 0 without loss of generality). This gives

e (Lb(p(ρ, θ),p(ρ, θ),p(0, θ))) = ηb(θ, θ, θ) + ρ v + ρ v (3.101)

with

vi(θ, ρ, ρ, θ, θ) =

1∫
0

dα ∇e (Lb(p(αρ, θ),p(αρ, θ),p(0, θ))) · ∂ρp(αρi, θi)). (3.102)

v and v are Ck−1 in θ. We change variables from Θ to t = Θ − cbl(θ). The Jacobian of this change of
variables is one. By construction of χl, and because |θ − θ(0)| < r, supp χl ⊂ U3δ(cbl(θ)). Thus, we may
use Lemma 3.3 to change variables from t to x, y. By (3.44), the Jacobian of this change of variables is again
one. Calling (θ∗, θ

∗
) = cbl(θ) and Γ−1

bl (x, y, θ) = (t(θ, x, y), t(θ, x, y), θ), the integral for Z is

Z
b,ν
j,l (ω,p(ρ, θ), ω, . . . , ρ) =

∫
dx dy J(ρ, θ∗ + t(θ, x, y))J(ρ, θ∗ + t(θ, x, y))χl(cbl(θ) + t(θ, x, y))

A(p, p, p) S
(ν)
1,j1

(p) S
(ν)
2,j2

(p) S
(ν)
3,j3

(
ω

(b)
3 ,p(Ebl, θ

(b)
3 (x, y))

)
(3.103)

with p and p now being rewritten in terms of (x, y) in the obvious way, i.e. p = p(ρ, θ∗ + t(θ, x, y)) etc.,
and with

Ebl = mbl(x, y, θ) xy + ṽρ + ṽρ (3.104)

and
ṽi = vi(θ, ρ, ρ, cbl(θ) + t(θ, x, y)). (3.105)

By Lemma 3.3, the integrand is Ck−1 in θ. We apply s ≤ k − 1 derivatives. S(ν)
1,j1

and S
(ν)
2,j2

depend on θ

only through their angular variables θ and θ, so (3.80) applies there. Thus∣∣∣ ∂s

∂θsZ
b,ν
j,l

∣∣∣ ≤M−νj−νj

∫
dx dy

∑
s+...+s4=s

s!
s! . . . s4!

Γ1,0,s
Γ2,0,s

∣∣ ∂s

∂θs
(JJχlA)

∣∣
sup

∣∣ ∂s4

∂θs4A
∣∣ ∣∣∣ ∂s

∂θs S
(ν)
3,j3

(
ω(b)
r ,p(Ebl, θ

(b)
3 (x, y, θ))

)∣∣∣.
(3.106)

As mentioned, θ(b)
3 is Ck−1 in θ by Lemma 3.4. Whenever the θ derivative acts on S

(ν)
3,j3

through the
dependence of θ(b)

3 on θ, it acts only tangentially, so (3.80) ensures that the scale behaviour of such terms
remains M−jν . The dangerous terms are those where S(ν)

3,j3
gets differentiated because of the dependence of

ρ on θ, i.e. when ∂ES
(ν)
3,j3

= ∂
∂Ebl

S
(ν)
3,j3

or higher such derivatives occur, because the only bound we have for
that case is (3.79). However, there are small factors in the numerator because of the following. By Lemma
3.3 (ii), and since for i = 1, 2, |ρi| < M ji ≤M j ,∣∣∣∣∂sEbl∂θs

∣∣∣∣ ≤ const M j for all s ≤ k − 2 (3.107)
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and ∣∣∣∣∂k−1Ebl
∂θk−1

∣∣∣∣ ≤ const M
j
2 . (3.108)

The ∂E derivatives acting on the propagator S(ν)
3,j3

give terms of the form

(
∂nES

(ν)
3,j3

) n∏
i=1

(
∂`i

θ Ebl

)

with
∑n

i=1 `i ≤ s ≤ k− 1. At most one `i can be k − 1, and this case can occur only if s = k − 1 and n = 1.
If no `i is k − 1, (3.107) applies, and

∣∣∣ ∂s

∂θs S
(ν)
3,j3

∣∣∣ is bounded by

const M−j3(n+ν)M j3n = const M−νj3 (3.109)

with the first factor coming from the
(
∂nES

(ν)
3,j3

)
and the second from n ∂`i

θ Ebl’s. If one of the `i is k − 1,

then n = 1 and (3.108) applies, and
∣∣∣ ∂s

∂θs S
(ν)
3,j3

∣∣∣ is bounded by

const M−j3(1+ν)M
j
2 = const M−( 1

2 +ν)j3 (3.110)

with the first factor coming from the
(
∂ES

(ν)
3,j3

)
and the second one from the one ∂`i

θ Ebl with `i = k − 1.
The volume of the (x, y)–integration is bounded by

∫
Γbl(U3δ(0,0))

dx dy 1l
(
|mbl(θ, x, y)xy| ≤M j

)
≤

∫
√
x2+y2<rD

dx dy 1l
(
|xy| ≤ 2

w
M j

)

≤ const | log rD| |j|M j

(3.111)

where rD is the radius of a disk containing Γbl(U3δ(0, 0)). This multiplies (3.109) and (3.110) by a factor
|j| M j .

Proof of Lemma 3.1 for d = 2: We take one derivative right away and get

∂

∂θ
Y πj (0,p(0, θ)) =

∫
dp

∫
dpCj((p), e(p)) Cj((p), e(p))(

∂θPπ(p, p, p)Cj(ζb, eb) + Pπ(p, p, p)∂eCj(ζb, eb)
∂eb
∂θ

) (3.112)

where b = π(3), and ζb and eb are defined in (3.15). The integrand is still Ck−1 in θ. Theorem 3.5 applies
to both terms. In the first term, take

A(p, p, p) = ∂θPπ(p, p, p) (3.113)

and ν = ν = ν = 1, and
S

(ν)
3,j3

(p) = Cj(p, e(p)). (3.114)

Obviously, then,
∂

∂θ
S

(ν)
3,j3

(p,p(ρ, θ)) = 0 (3.115)
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so (3.80) holds, and (3.79) holds with Γ3,1,s = Ws, Ws given in (2.54). So Theorem 3.5 applies and proves
the bound for that term. In the second term, choose

A(p, p, p) = P (p, p, p)∂θeb (3.116)

and ν = ν = 1, ν = 2, and
S

(ν)
3,j3

(p) = ∂eCj(p, e)|e=e(p). (3.117)

Again, the hypotheses of Theorem 3.5 are satisfied, and the bound holds.

Remark 3.6 The above proof shows that δ depends only on w, and r is chosen depending only on δ
and g. Thus these constants are fixed once w is given, and hence uniform on the set of e’s that satisfy our
hypotheses. Note also that |e|k does occur in the bound: the A of (3.116) already contains a derivative of e,
and |A|k−1 appears when Theorem 3.5 is applied with s = k − 1.

Remark 3.7 One may wonder where the consistency condition ( ∂η∂θ = 0 whenever ∂η
∂θ

= ∂η
∂θ

= 0) enters
in the above proof, and why the proof does not work for derivatives with respect to ρ. The problem is that
one cannot prove the analogue of Lemma 3.3 (ii) for the ρ–derivative. Consider, e.g., the function

H = e (p(ρ, θ) + p(ρ, θ)− p(ρ, θ)) . (3.118)

Proceeding in exactly the same way as above would mean first writing

H = e (p(0, θ) + p(0, θ)− p(ρ, θ)) + ρṽ + ρṽ. (3.119)

The ρ and ρ–terms from the Taylor expansion still provide enough small factors for (3.107) and (3.108),
but the analogue of the function mblxy appearing in (3.104) does not: the critical points θ∗(ρ, θ), θ

∗
(ρ, θ) of

the function e (p(0, θ) + p(0, θ)− p(ρ, θ)) now depend on ρ (their existence is proven in Lemma B.3), and
most importantly, the function need not vanish at those critical points, so that (3.42) gets replaced by

e (p(0, θ) + p(0, θ)− p(ρ, θ)) = f(ρ, θ) + (θ − θ∗)(θ − θ∗)m̃(ρ, θ, θ, θ) (3.120)

with
f(ρ, θ) = e (p(0, θ∗(ρ, θ)) + p(0, θ∗(ρ, θ))− p(ρ, θ)) (3.121)

(f is analogous to the function f(q) appearing in (B.48)). The crucial point is that the ρ–derivative of f
is not small. In fact, it is near to maximal (and hence O(1)) since θ– and ρ–lines are transversal to each
other in p–space, so whenever ∂θp is orthogonal to ∇e, ∂ρp will point almost in the same direction as ∇e.

The above problem cannot simply be circumvented by expanding ρ and ρ around ρ, because in

H = e (p(ρ, θ) + p(ρ, θ)− p(ρ, θ)) + (ρ − ρ)ṽ + (ρ − ρ)ṽ, (3.122)

the ρ–derivative can now also act on the prefactor of ṽ, and |v| is again not zero, but near to maximal at
the θ–critical points.

38



3.4 Hölder Continuity

In this section, we prove Hölder continuity of the second order counterterm under the assumption that v̂ and
e have the same properties. The main reason why we can show this additional regularity is that, by the above
theorems, there is still a decay of almost M j/2 left in the scale sums, so the usual counting of derivatives
by factors M−j suggests that one can still afford almost half a derivative, i.e., Hölder continuity with any
exponent β < 1

2 . The proof will be a not very difficult add–on to the proof of Theorem 3.5. Basically, we use
that the highest derivative can only appear linearly, take the differences required in the Hölder inequality,
and use the differencing formula

n∏
i=1

φ(ξi)−
n∏
i=1

φ(ξ′i) =
n∑
k=1

(∏
i<k

φ(ξi)

)
(φ(ξk)− φ(ξ′k))

(∏
i>k

φ(ξ′i)

)
(3.123)

to reexpress this as a sum over differences of each factor in the integrand. The differences are either estimated
by Taylor expansion or by the according Hölder property of e and v̂.

Theorem 3.8 Assume the hypotheses of Theorem 3.5. Let 0 < β < 1
2 and assume that e ∈ Ck,β,

A ∈ Ck−1,β, and S(νl)
l,jl
∈ Ck−1,β. That is, there are constants He(β) > 0, HA(β) > 0 and HS(β) > 0 such

that for all multiindices α: if |α| = k, for all p,p′ ∈ B

|Dαe(p)−Dαe(p′)| ≤ He|p− p′|β (3.124)

and if |α| = k − 1,

|DαA(p, p, p)−DαA(p′, p
′
, p

′)| ≤ HA|(p, p, p)− (p′, p
′
, p

′)|β , (3.125)

and for |p− p′| ≤M j,∣∣∣DαS
(νl)
l,jl

(p)−DαS
(νl)
l,jl

(p′)
∣∣∣ ≤ HS |p− p′|β M−jl(νl+k−1+β) 1l

(
|ip − e(p)| ≤ GM jl

)
(3.126)

Finally, we assume that for |ρ− ρ′| ≤M jl and |θ − θ′| ≤M jl,∣∣∣( ∂∂θ)k−1
S

(νl)
l,jl

(p,p(ρ, θ))−
(
∂
∂θ

)k−1
S

(νl)
l,jl

(p,p(ρ′, θ′))
∣∣∣

≤ HS |p(ρ, θ)− p(ρ′, θ′)|β M−jl(νl+β) 1l
(
|ip − ρ| ≤ 4M jl

) (3.127)

Then the function X
b,ν
j , defined in (3.81), satisfies: for all ρ, ρ′ with max{|ρ|, |ρ′|} ≤M j , all θ and θ′, and

all |p| ≤M j , ∣∣∣( ∂∂θ )k−1
X
b,ν
j (p,p(ρ, θ))−

(
∂
∂θ

)k−1
X
b,ν
j (p,p(ρ′, θ′))

∣∣∣
≤ Q̃|p(ρ, θ)− p(ρ′, θ′)|βM j(2−ν−β)+j(2−ν)+j( 1

2−ν)|j|.
(3.128)

If ν = 1 and ν + ν ≤ 3, the scale sum

∑
j∈M

(
∂
∂θ

)k−1
X
b,ν
j (3.129)

converges absolutely to a uniformly Hölder continuous function XM forM any of Ω, T,D (defined in (3.8)).
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Proof: Let
Γ(p, p′) =

(
∂
∂θ

)k−1
X
b,ν
j (p,p(ρ, θ))−

(
∂
∂θ

)k−1
X
b,ν
j (p,p(ρ′, θ′)). (3.130)

If |p− p′| ≥M j , then by (3.82)∣∣∣∣ Γ(p, p′)
|p− p′|β

∣∣∣∣ ≤M−βjQs|A|s M j(2−ν)+j(2−ν) |j| M ( 1
2−ν)j (3.131)

which is the stated bound. Thus, it suffices to consider the case |p− p′| ≤M j in the proof.
The regular and singular region are chosen as in the proof of Theorem 3.5. We prove the Hölder bound

for the contribution from the regular region. The contribution from the singular region is bounded in exactly
the same way. Let x = (ρ, ρ, ω, ω). We take k − 1 derivatives with respect to θ of (3.96), to get

∂k−1

∂θk−1Z
b,ν
j,l (p, x) =

∫
dθJ(ρ, θ)S

(ν)
1,j1

(p)
∫
de

∑
s1+s2+s3+s4=k−1

(k − 1)!
s1!s2!s3!s4!

(
∂
∂θ

)s (JJ̃χl)

((
∂
∂θ

)s4
A
) ((

∂
∂θ

)s
S

(ν)
2,j2

(p)
) (

∂
∂θ

)s
S

(ν)
3,j3

(
ω(b)
 ,p(e, θ(b)

 (θ, e))
) (3.132)

where in the integrand p = (ω,p(ρ, θ)), p = (ω,p(ρ, θ(θ, e)), and p = (ω,p(ρ, θ)). We take the
difference

∆ = ∂k−1

∂θk−1Z
b,ν
j,l (p, x)− ∂k−1

∂θk−1Z
b,ν
j,l (p

′, x) (3.133)

and split Z = Z +Z and accordingly, ∆ = ∆ + ∆, by regrouping the terms in the sum over (s, . . . , s4).
Those 4–tuples that have sr < k − 1 for all r ∈ {1, 2, 3, 4} contribute to ∆; the others, where one of the sr
equals k − 1 and the others are zero, contribute to ∆.

In ∆, no derivative of order k − 1 acts. Therefore we may use Taylor expansion to bound ∆. It gives
a factor p − p′, but, of course, the derivative can now act on all p–dependent factors of the integrand. It
produces at worst a factor bounded by const M−j (since some of the factors have bounded derivatives,
and since in the others, we can use j ≤ j ≤ j). This combines with |p− p′| ≤M j to

M−j |p− p′| = M−j |p− p′|1−β |p− p′|β ≤M−βj |p− p′|β (3.134)

which proves (3.128) for the integral of ∆ over ω, ρ, ω and ρ.
In ∆, we use (3.123) to rearrange the integrand for ∆. The function φk appearing in the difference

on the right side of (3.123) is ∂k−1

∂θk−1 of J , J̃ , A, or one of the S(νr)
r,jr

(or a function on which ∂k−1

∂θk−1 did not act;
this case is treated as in the last paragraph). Suppose it is J̃ (the other cases are easier). By (3.94), ∂k−1

∂θk−1 J̃

is a sum of terms of the form
1

(∂e/∂θ)1+l

m∏
µ=1

∂
rµ

θ ∂θ
e (3.135)

with l ≥ 1, m ≥ 1, and where r + . . .+ rm = k− 1. If all rµ are strictly less than k− 1, a Taylor expansion,
combined with (3.134), does the job. Let one of the rµ equal k − 1 (then m = 1 and l = 2). Applying
(3.123) and the uniform Hölder property (3.124) of e gives the factor |p− p′|β and proves the statement.
The strategy is the same for all other terms – the only change is that (3.125) and (3.126) (and in the singular
region, (3.127)) are used. Convergence of the scale sum follows by doing the scale sums over j, j, and j,
as in Section 3.2.

Proof of Hölder continuity of ∂kK: It suffices to bound the function Y πj in a way such that the scale

sum still converges. Choose the functions A and S
(νk)
k,jk

as done after (3.112). They satisfy (3.126), (3.125)
and (3.127). The scale sum converges because the condition ν = 1, and ν + ν ≤ 3 is satisfied.
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Proof of Hölder continuity of ∂
∂pΣ: This proof is a trivial variation of the previous one. Recall that by

the volume bound, Theorem 1.1, we got (3.31). Applying (3.123) to the integral for ∂
∂pΣ and proceeding as

above, Hölder continuity of any degree γ < 1 follows by the same argument as above because setting s = 1
in (3.31) leaves a decay factor |j|M j in the sum which can control almost one derivative.

3.5 Higher Dimensions

As in two dimensions, the part of the integrand for Y πj that depends on the external momentum is ωj,b,
as given by (3.35), only that now the integrals over θ and θ run over Sd−1 instead of [0, 2π]. As for
d = 2, we attempt a change of variables to make Cj independent of p. Again, this is possible in part of the
integration region. Near the singularities of the Jacobian, we employ a strategy different from that of the
two–dimensional case, and we actually show that not only the tangential, but also the radial derivatives of
second order exist. We do not prove a statement about higher derivatives for d ≥ 3.

We give an outline of this strategy before going into the details. The scale behaviour of Y πj can be
bounded by ∣∣∣Y πj ∣∣∣

s
≤ const M j+j max

b

∣∣ωj,b∣∣s (3.136)

The scale sum obtained by this bound will converge if we can show that∣∣ωj,b∣∣ ≤ const M−j(2−ε) (3.137)

for some ε > 0. The main idea is that by strict convexity, the singularities of the Jacobian on S are isolated
points cbl(θ), and that for d ≥ 3, they thus have codimension d − 1 ≥ 2 on S. We make the regular and
singular regions scale–dependent. Let θ(0) ∈ Sd−1 be fixed and 0 < α < 1. Instead of the scale–independent
neighbourhood given by the δ of Lemma 3.3, we take the singular region as an Mαj–neighbourhoodU(α, j)
of cbl(θ(0)). To take derivatives, we then vary ρ and θ only in Mαj–neighbourhoods of 0 and θ(0) (which
suffices to calculate derivatives). The advantage of making δ depend on j is that the smallness of U(α, j)
provides additional small factors:∣∣∣∣∣∣∣

∫
U(α,j)

dθ

∫
U(α,j)

dθ

(
∂

∂p

)2

Cj

∣∣∣∣∣∣∣ ≤ const M−3j

∫
U(α,j)

dθ

∫
U(α,j)

dθ

≤ const M (−3+2(d−1)α)j

(3.138)

because each of θ and θ is confined to a (d−1)–dimensional ball U(α, j) around the critical value. (3.137)
will thus hold if we choose α > 1

2(d−1) . However, we cannot choose α as large as we want because the price
we pay for making the neighbourhood U depend on α is that the bound for the Jacobian and its derivatives
also become scale–dependent. Since S is strictly convex, the angle between the normal vectors increases at
least linearly with the distance on S, and we can show that in the regular region, for s ≤ 1,∣∣∣J̃∣∣∣

s
≤ const M−αj(1+2s) (3.139)

(as before, we cannot take |J̃ | because J̃ is only C1). Taking one derivative before and one after the change
of variables, as done previously, we get the bound∣∣∣∣

∫
dθ

∫
dẽ

∂

∂ẽ
Cj(ζ, ẽ)

∂

∂p
J̃

∣∣∣∣ ≤ const M−2jM−3αj

∫
dθ

∫
dẽ 1l

(
|ẽ| ≤M j

)
≤ const M−2jM (1−3α)j .

(3.140)
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In the detailed argument, there are more contributions, but they obey the same bound. For this contribution,
(3.137) holds if α < 1

3 . It is now obvious that this leaves no region for α in d = 2. But for any d ≥ 3, one
has a window α ∈ ( 1

4 ,
1
3) for α to obtain (3.137).

Thus, at this point, one sees that the two–dimensional case is more singular than the higher–dimensional
one, although, superficially, the Fermi surface has the same codimension in all dimensions d ≥ 1. The
neighbourhood of singularities of the Jacobian does depend on the dimension.

We now fill in the details of this argument. We again have to make sure that the critical points, which
depend on the external momentum q, do not leave the fixed neighbourhood of q(0) as long as

∣∣q− q(0)
∣∣ <

Mαj , so that we can split the integration region in a way that does not depend on q.

Lemma 3.9 Let vθ, vφ ∈ {±1} and q ∈ B be fixed, and define σκ = {(ρθ, ρφ) : |ρθ| ≤ κ and |ρφ| ≤ κ} and

E(q, ρθ, ρφ, θ, φ) = e (q + vθp(ρθ, θ) + vφp(ρφ, φ)) . (3.141)

(i) There exists a κ > 0 such that for each fixed (ρθ, ρφ) ∈ σκ and all (θ, φ) ∈ Sd−1 × Sd−1 with
|E(q, ρθ, ρφ, θ, φ)| ≤ 2κ, the equation

∂θi
E = ∂φi

E = 0 ∀i ∈ {1, . . . , d − 1} (3.142)

has at most four solutions (θ, φ) =
(
θbcr(q), φbcr(q)

)
. κ can be chosen so small that if there is a

solution at ρθ = ρφ = 0 and at a given q, then there is a solution for all (ρθ, ρφ,q′) ∈ σκ × Uκ(q).
The solutions are C1 in q, ρθ and ρφ. There is L > 0 such that for all (ρθ, ρφ,q′) ∈ σκ × Uκ(q),

∣∣(φbcr(ρθ, ρφ,q′), θbcr(ρθ, ρφ,q′))− (φbcr(ρθ, ρφ,q), θbcr(ρθ, ρφ,q)
)∣∣ ≤ L|q′ − q|. (3.143)

(ii) There are K ≥ 1 and K ≥ 1 such that for all ε ≤ κ
2 , all (ρθ, ρφ,p) ∈ σε

× Uε
(q) and all (θ, φ)

with |E(p, ρθ, ρφ, θ, φ)| ≤ ε, either

d−1∑
i=1

(|∂θi
E(p, ρθ, ρφ, θ, φ)|+ |∂φi

E(p, ρθ, ρφ, θ, φ)|) ≥ ε
K

(3.144)

or there is b ∈ {1, . . . , 4} such that

∣∣θ − θbcr(q)
∣∣ ≤ Kε and

∣∣φ − φbcr(q)
∣∣ ≤ Kε. (3.145)

Proof: See Appendix B.

Theorem 3.10 For all d ≥ 3 and all vθ, vφ ∈ {±1}, there is a constant Q3 such that for all P ∈
C2(IR× B,C) with |P | <∞,

ωj = ωj (ζ,p, zφ, zθ, ρφ, ρθ, vφ, vθ, P )

=
∫

Sd−1

dθ J(ρθ, θ)
∫

Sd−1

dφ J(ρφ, φ) P (pθ, pφ, (ζ,p)) Cj(ζ,E(p, ρθ , ρφ, θ, φ)) (3.146)
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satisfies ∣∣ωj ∣∣ ≤ Q3M
−j(2−γ) (3.147)

with some γ ≥ 1
8 . Here the derivatives with respect to p can be taken in any direction (i.e., ∂

∂ρ is included),
and the notation is

pφ = (zφ,p(ρφ, φ)), pθ = (zθ,p(ρθ, θ)) (3.148)

Proof: Let α ∈ (0, 1), and fix q ∈ B. Without loss of generality, we may assume q ∈ Pκ. Let ε = Mαj and
let p be such that |p− q| ≤ ε. Since ε ≥M j , the support properties of Cj imply |E(p, ρθ, ρφ, θ, φ)| ≤ ε.
As usual, we take one derivative with respect to p right away, and get

ω′j,µ = ∂
∂pµ

ωj =
∫

Sd−1

dθ J(ρθ, θ)
∫

Sd−1

dφ J(ρφ, φ) ∂
∂pµ

(
P (pθ, pφ, (ζ,p)) Cj(ζ,E(p, ρθ, ρφ, θ, φ))

)
(3.149)

Since for a finite number of j’s the bound holds trivially if the constant is chosen large enough, we can
assume that ε < κ

2 , where κ is as in Lemma 3.9. Since max{j, j} ≤ j, the hypothesis of Lemma 3.9 (ii)
is fulfilled. Let K and K be as in Lemma 3.9 (ii). For δ > 0 let

S̃(δ) =
4⋃
b=1

{(θ, φ) :
∣∣θ − θbcr(q)

∣∣ ≤ Kδ,
∣∣φ− φbcr(q)

∣∣ ≤ Kδ} (3.150)

Fix δ such that the four sets in this union are disjoint. Let j be so small that ε < δ/2. Split the integration
region

Sd−1 × Sd−1 = S̃(δ)
·
∪ R̃(δ). (3.151)

In R̃(δ) a change of variables as for d = 2 is possible because we are at a fixed, scale–independent distance
δ/2 from the critical points. For this reason, the Jacobian is also bounded by a constant that depends only
on δ, and the statement of the theorem follows as in the two–dimensional case.

The singular region is the union (3.150) of four disjoint sets, and corrrespondingly, ω′j,µ =
∑

b ω
′
j,b,µ

.
We may consider every b separately. We subdivide the δ–neighbourhood of the critical point further, as
follows. Let χ, χ ∈ C∞(IR+

 , [0, 1]) be a partition of unity on IR+
 , with supp χ = [0, 4] and supp χ =

[1,∞). Insert

1 = χ

(
(θ − θbcr(q))2 + (φ− φbcr(q))2

(2Kε)2

)
+ χ

(
(θ − θbcr(q))2 + (φ− φbcr(q))2

(2Kε)2

)
(3.152)

in the integral. This gives two contributions, which we denote by ω′j,b,µ,1 and ω′j,b,µ,2.
Because of the factorχ, the integrand for ω′j,b,µ,1 is zero unless

∣∣θ − θbcr(q)
∣∣ ≤ 4Kε and

∣∣φ− φbcr(q)
∣∣ ≤

4Kε. Thus

∂
∂pν

ω′j,b,µ,1 =
∫
dθ

∫
dφJ(ρθ, θ)J(ρφ, φ)χ

(
(2Kε)−2

(
(θ − θbcr(q))2 + (φ− φbcr(q))2

))
∂2

∂pµ∂pν

(
P (pθ, pφ, (ζ,p)) Cj(ζ,E(p, ρθ, ρφ, θ, φ))

) (3.153)

By the properties of P and (2.54), we have∣∣∣∣ ∂∂pν ω′j,b,µ,1
∣∣∣∣ ≤ const M−3j

∫
|θ−θb

cr(q)|≤4Kε

dθ

∫
|φ−φb

cr(q)|≤4Kε

dφ

≤ const M−2j M−j+2(d−1)αj

(3.154)
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where the constant contains |e|, |P |, and |J |
2.

Because of the factor χ, the integrand for ω′j,b,µ,2 vanishes unless
∣∣θ − θbcr(q)

∣∣ ≥ 2Kε or
∣∣φ− φbcr(q)

∣∣ ≥
2Kε, which, by Lemma 3.9 (ii), implies that (3.144) holds. Without loss of generality, we may assume
that |∂θ

E| ≥ ε

2dK
throughout that region (otherwise subdivide into pieces where such a condition holds

for |∂θi
E| or |∂φi

E| for some i). Change variables from θ to ẽ = E, with E given by (3.141), so that

θ = θ(p, ẽ, θ, . . . , θd−1, φ, ρθ , ρφ). (3.155)

We shall suppress the other arguments in θ = θ(p, ẽ) to keep the notation manageable, and write θ(p, ẽ) =
(θ(p, ẽ), θ, . . . , θd−1). The Jacobian

J̃ =
1

∂θ
E(p, ρθ, ρφ, θ(p, ẽ), φ)

(3.156)

is C1 and it satisfies ∣∣∣J̃∣∣∣

≤ 2dK

ε
≤ const M−αj (3.157)

Moreover, differentiating
ẽ = E(p, ρθ, ρφ, θ(p, ẽ), φ), (3.158)

with respect to pν , we see that
∂θ
∂pν

= −
∂E
∂pν

∂E
∂θ

(3.159)

and therefore ∣∣∣∣∂θ∂pν

∣∣∣∣ ≤ |e| 2dK

ε
≤ const M−αj (3.160)

and ∣∣∣∣∣ ∂J̃∂pν
∣∣∣∣∣ ≤ const

(
2dK

ε

)3

≤ const M−3αj (3.161)

(this proves (3.139)). After the change of variables, we have

ω′j,b,µ,2 =
∫
IR

dẽ ∂ẽCj(ζ, ẽ)
∫
dφ J(ρφ, φ)

∫
dθ . . . dθd−1J(ρθ, θ(p, ẽ)) ∂E

∂pµ
J̃(ζ, ẽ)

P (p(ρθ, θ(p, ẽ)), p(ρφ, φ), (ζ,p)) χ

(
(θ(p, ẽ)− θbcr(q))2 + (φ− φbcr(q))2

(2Kε)2

) (3.162)

plus a term where the derivative ∂
∂pµ

acted on P , not on Cj , and which therefore obeys a bound that is by
a factor M j better than the one we are about to prove. The second derivative ∂

∂pν
can now act on J̃ , χ,

J(ρθ, θ(p, ẽ), ∂E
∂pµ

, and P , but not on Cj . By (3.157), (3.160), and (3.161), its effect is in all cases bounded
by const ε−3. The support properties of Cj restrict ẽ to an interval of length M j . Thus

∣∣∣ω′j,b,µ,2∣∣∣ ≤ const
∫
IR

dẽ 1l
(
|ẽ| ≤M j

)
M−2j M−3αj

≤ const M−2j M (1−3α)j .

(3.163)

To fulfill (3.147), we have to have 2α(d− 1)− 1 > 0 and 1− 3α > 0, i.e.,

1
2(d− 1)

< α <
1
3

(3.164)
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Taking α = 7
24 , we get 1− 3α = 1

8 and 2(d− 1)α− 1 ≥ 1
6 .

Remark 3.11 Proving Hölder continuity under the hypotheses that the second derivatives of e and v̂

are also Hölder continuous is a straightforward adaption of the proof given for d = 2 in Section 3.4. Recall
that in second order, P is given by (3.5), so it fulfills the hypothesis of Theorem 3.10, and hence Theorem
1.2 (ii) follows. Using the methods of Chapter 3 of I, one can show the same for p–derivatives, i.e., that Σ
is C2 in p for all d ≥ 3. This requires additional integration by parts and a resummation of the partition
of unity over the scales, so we will not include this proof here.

4. The Wicked Ladders

In this section, we generalize the results proven above to the class of graphs shown in Figure 6. These graphs
are constructed by joining two legs of a four–legged ladder diagram by a Wick line to get a two–legged
diagram (although, of course, the scales associated to these lines will in general not make them Wick lines).
For this reason, and for other reasons that should become clearer in the following discussion, we call them
the ‘wicked ladders’. Alternatively, one may call these graphs the RPA graphs since their sum contains the
RPA resummation for the self–energy.

Definition 4.1 The generalized RPA self–energy ΣRPA and the countertermKRPA are the formal power
series in λ given by the sum of all first and second order graphs and all graphs of the form shown in Figure
6, with an arbitrary number of bubbles, and where the vertices have the vertex function v̂ of (2.5).

Thus this class of graphs includes both the contributions from those that are usually called RPA graphs and
contributions from the ladders to the self–energy. The motivation for looking at these graphs is that they
give the most singular contributions to the self–energy (this is proven in III). We shall prove in this section
that if e and v̂ are Ck, then the same holds for tangential derivatives of the value of the wicked ladders.
More precisely, for the particle–hole wicked ladder, shown in Figure 6 (a), we show this for any k ≥ 2. For
the particle–particle wicked ladder, shown in Figure 6 (b), we show this for all k ≥ 2 if the Fermi surface
obeys (Sy). If the Fermi surface is nonsymmetric, we prove the statement for the particle–particle wicked
ladder only for k = 2.

The method used is similar to that of the second order case: we split the integration region into a regular
and a singular region, apply a simple change of variables in the regular region and analyze the critical points
in the singular region in detail. This generalization turns out to be less straightforward than one might
expect. For this class of graphs there is already an essential complication in the critical point analysis. Thus,
the analysis of critical points is fragile in that it changes a lot if the graphs get more complicated. The
method used in III to deal with all other graphs is much more robust.

Without loss of generality, we may put v̂ = 1, since it is Ck by (H1), so that terms arising when
derivatives act on v̂ are bounded uniformly in the scales by (H1). Also, we put the same scale j on all the
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Figure 6: The wicked ladder

propagators. The value of the graph shown in Figure 6 is then

V al(G)(p) =
∫ (n+1∏

r=1

d̄prCj(ωr, e(pr))

)
n+1∏
s=2

Cj(ω̃s, e(ts)) (4.1)

with

ω̃s =
{
ω − ω + ωs Fig. 6 (a)
ω + ω − ωs Fig. 6 (b)

ts =
{

p − p + ps Fig. 6 (a)
p + p− ps Fig. 6 (b).

(4.2)

Again, the derivative with respect to the external momentum may act on propagators associated to lines
of the graph (with the choice of spanning tree of Figure 6, this may affect many lines; this spanning tree is,
however, convenient in the following because of its symmetry). There are n+ 1 angular variables that can
be used to make changes of variables, as in the second order case. But, again, there are critical points where
such a change of variables is not possible.
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To see where these critical points are, we again look first at the case where all pi are on S. Let
g(p) = ∇e(p), τ(p) = ∂θp, and for k ∈ {2, . . . , n+ 1} let

g1k =
{
g(p − p + pk) Fig. 6 (a)
g(p + p− pk) Fig. 6 (b).

(4.3)

Moreover, let τk = τ(pk) and τ = τ(p). Suppose we make a change of variables Θ = (θ, . . . , θn+1)t

→ Θ̃(Θ, θ) = (θ̃, . . . , θ̃n+1)t (the superscript t is to mean the transpose so that these are column vectors).
The condition that the propagator for the kth line in the tree is independent of the external momentum
p = p(0, θ) is

∂

∂θ
e
(
p(0, θ̃(Θ, θ))∓ p(0, θ)± p(0, θ̃k(Θ, θ))

)
= g1k · τ

∂θ̃
∂θ
± g1k · τk

∂θ̃k
∂θ
∓ g1k · τ = 0. (4.4)

The system of equations ensuring that all propagators in the tree are independent of θ is

Γ(n)(Θ̃(Θ, θ), θ) · ∂Θ̃
∂θ

= γ(Θ̃(Θ, θ), θ) (4.5)

with

Γ(n)(Θ, θ) =




g · τ ±g · τ 0 0 . . . 0
g · τ 0 ±g · τ 0 . . . 0
g14 · τ 0 0 ±g14 · τ4 . . . 0

...
...

...
. . .

...
g n+1 · τ 0 0 . . . 0 ±gn+1 · τn+1


 (4.6)

and
γ(Θ, θ) = ±(g12 · τ, . . . , g1,n+1 · τ)t. (4.7)

By definition, the critical points are those points where the matrix Γ(n) (which has n rows and n+1 columns)
has rank(Γ(n)) ≤ n− 1. Away from these points, (4.5) is easily solved by first setting one of ∂θ̃

∂θ , . . . ,
∂θ̃n+1
∂θ

equal to zero. This effectively deletes one column from Γ(n). The resulting matrix is then invertible, and the
corresponding system of differential equations is soluble with initial condition θ̃i = θi (this case is discussed
in detail below).

Since one could also have chosen a different spanning tree, we briefly motivate our choice. At a first
glance, it may seem a much better strategy to put the line that carries momentum p into the spanning
tree, because then only this line depends on the external momentum. This would then give, e.g. for (a),
p = p+p−q, where q is now another loop momentum. Assuming that we are in the regular region, i.e.
away from the critical points of e(p+p−q), one can then do the same change of variables as in the second
order case to make the propagator on line 1 independent of p. However, this time the dependence on the
external θ goes not only into a Jacobian, but, through the changed variables, also into one of the propagators
associated to the other lines of the spanning tree, so that the derivative w.r.t. θ may still degrade the scaling
behaviour in a dangerous way. Then, one can do another change of variables to get rid of the dependence on
θ of the next line in the spanning tree, etc. Although such a procedure is possible, it gets rather complicated
already in the three–loop case (n = 2). It is much easier to look at the entire system of equations at once.
The simple form of the matrix Γ(n) is due to our symmetric choice of the spanning tree.

We now classify the critical points for the system of equations (4.5).
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Remark 4.2 For Γ(n) to have rank strictly less than n, it is necessary that either

(1) one of columns 2 through n+ 1 vanishes, say g1k · τk = 0, and the corresponding entry in column one,
g1k · τ1, also vanishes, or

(2) at least two of columns 2 through n+ 1 vanish.

We deal with case of the particle–hole wicked ladder (Figure 6 (a)) first.

Lemma 4.3 For the particle–hole wicked ladder, if rank Γ(n) ≤ n − 1 and all momenta are on S then
one of the following holds.

(i) p = p; then rank Γ(n) ≤ 1 and all columns of Γ(n) except for the first vanish.
(ii) p = a(p), and there is ∅ 6= C ⊂ {2, . . . , n+ 1} such that for all k ∈ C, pk = p, and for all l 6∈ C,

pl 6= p; then rank Γ(n) = n− |C|, and
all columns with index k ∈ C vanish: Γ(n)

mk = 0 for all m ∈ {2, . . . , n+ 1},
all rows with index k − 1, k ∈ C, vanish: Γ(n)

k−1,m = 0 for all m ∈ {1, . . . , n},
all columns with index k ∈ {2, . . . , n+ 1} \ C are nonzero.

Whenever row k of Γ(n) vanishes, the corresponding component γk of the vector γ on the right hand side of
(4.6) also vanishes. In case (i), the right hand side γ coincides with the first column of Γ(n).

Proof: We go through th cases mentioned in Remark 4.2. Case (1): The two equations g1k · τk = 0 and
g1k · τ = 0 are precisely the system of equations discussed in the second order case, only now pk appears
instead of p. Therefore p = pk = p or p = a(p), pk = p or p = p, pk = a(p) holds, and in particular,
p − p + pk ∈ {p,a(p)} so that g1k · τ vanishes. If p = p, then g1` · τ` = g(p`) · τ(p`) = 0 holds for all
` ≥ 2, and this case is stated as item (i) in the Lemma. If p = a(p), then pk = p and p − p + pk = a(p).
Therefore, for any additional ` ∈ {2, . . . , n + 1}, the vanishing of column number `, g1` · τ` = 0, means
g(a(p)−p+p`) · τ(p`) = 0 which implies a(p)−p+p` = p` or a(p)−p+p` = a(p`). The first equation is
impossible since a(p) 6= p. The second yields, by Lemma 2.1, p` = p. Let C = {` ∈ {2, . . . , n+1} : p` = p}.
For any k ∈ C, g1k · τ = g(a(p)) · τ(a(p)) = 0, therefore row k − 1 vanishes for all k ∈ C. If k 6∈ C,
g1k · τk 6= 0, so statement (ii) of the Lemma holds.

Case (2): there is C ⊂ {2, . . . , n + 1}, |C| ≥ 2, such that for all k ∈ C, g1k · τk = 0. This forces
p − p + pk ∈ {pk,a(pk)}. Hence either p = p or, by Lemma 2.1, p = a(p) and pk = p for all k ∈ C.
The remaining statements about the columns and rows of Γ(n) follow as in case (1).

In case (i), only the first column of Γ(n) is nonzero. The right hand side is identical to the first column
of Γ(n). In case (ii), vanishing of row number k means pk = p, so g1k · τ = 0 at those points is obvious.

The last statement of the Lemma means that the system of equations remains consistent at the critical
points because the right hand side remains in the span of the columns of Γ(n).

The condition that all momenta are on the Fermi surface can again be relaxed to a condition that all
momenta be in a scale–independent neighbourhood of S, i.e. |ρ| = |e(p)| ≤ r, by the following Lemma.
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Lemma 4.4 For any ε > 0, there are r > 0 and s > 0, depending on |e| and u, such that if |e(p)| < r

in all propagators and if
∣∣θ − θ(0)

∣∣ < s, then all critical points of Γ(n) are in an ε–neighbourhood of the
critical points of ρ = 0, θ = θ(0) given in Lemma 4.3.

Proof: Again, we order the proof according to the cases (1) and (2) of Remark 4.2. As mentioned, the
critical point condition in case (1) is just a relabelling of that of the second–order case. Therefore, the
critical points for θ and θk are C1 in θ and the statement of the Lemma follows immediately from Lemma
3.4. If p = p, that’s it since the other momenta are not fixed in (i) of Lemma 4.3. Let p be near to a(p),
and θ near to θ(0). For ` ∈ {2, . . . , n+ 1} \ {k}, we perform a Taylor expansion of g1` · τ` in ρ, ρ`, θ − θ(0),
and θ − a(θ(0)), to obtain∣∣∣∇e(p(ρ, θ)− p(0, θ) + p(ρ`, θ`)

)
· ∂θp(ρ`, θ`)−∇e

(
p(0, a(θ(0)))− p(0, θ(0)) + p(0, θ`)

)
· ∂θp(0, θ`)

∣∣∣
≤ const

(
|ρ`|+ |ρ|+ |θ − θ(0)|+ |θ − a(θ(0))|

)
(4.8)

where the constant is a bound for the Taylor remainder. It depends on |e| and u because the Taylor
remainder contains the second derivative of e and objects like ∂ρp and ∂θp. It follows that for r and θ−θ(0)

small enough, |g1` · τ`| ≥ g > 0 unless θ` is in an ε–neighbourhood of θ(0).
For case (2), we do a similar Taylor expansion argument, but now applied to

∇e (p(ρ, θ)− p(0, θ) + p(ρk, θk)) · ∂θp(ρk, θk)) = 0 (4.9)

to get
∇e(p(0, θ)− p(0, θ) + p(0, θk)) · ∂θp(0, θk) + ρφ + ρkφk = 0 (4.10)

with φi continuous functions coming from Taylor expansion. By the Lemma 4.3, the first term in the sum
only vanishes when θ = θ, or if θ = a(θ) and θk = θ. Away from these points, it is nonzero and therefore
for small enough |ρ| and |ρk|, all critical points are in a neighbourhood of θ(0).

Lemma 4.5 Let k ≥ 2, d = 2, and assume (H1)k,0, (H2)k,0, and (H3)–(H5). Then the contribution of
the particle–hole wicked ladder to the counterterm function K is Ck.

Proof: The strategy to control the derivative is now similar to that of the second–order case: in the region
away from the critical points, we do a change of variables that makes all propagators independent of the
external momentum. Near the critical points, we show that every increase in the power of the denominator
is accompanied by a small factor in the numerator. Again as before, we take one derivative with respect to
the external momentum right away, so that k − 1 derivatives remain to be taken after the manipulations.

Fix θ(0), and let θ be in a sufficiently small neighbourhood of θ(0). By Lemma 4.3, any critical point of
Γ(n) at θ is near to one of Γ(n) at θ(0). Thus we may define the regular region dependent only on θ(0). For
δ > 0 and a > 0, the regular region is defined as

Rδ(θ(0), a) = {Θ = (θ, . . . , θn+1) : ∀Θ′ with |Θ′ − Θ| ≤ δ, and ∀|θ − θ(0)| ≤ a, rank Γ(n)(ρ,Θ, θ) = n}
(4.11)
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Here we wrote Γ(n)(ρ,Θ, θ) to indicate that now the momenta on the lines of the graph do not have to
be exactly on the Fermi surface, but they only have to be near it. By Lemma 4.4, the complement of the
regular region is a neighbourhood of the critical points of Γ(n) = Γ(n)(0,Θ, θ) given in Lemma 4.3. For
k ∈ {1, . . . , n+ 1}, let Γ(n)

k be the n×n submatrix of Γ(n) obtained by deleting column number k. We cover
Rδ with patches chosen such that in every patch, there is a k ∈ {1, . . . , n + 1} such that rank Γ(n)

k = n.
Since Rδ is compact, the covering can be chosen to contain only finitely many such patches. Let P be one
of these patches and rank Γ(n)

k (Θ, θ) = n for all Θ ∈ P . Then Γ(n)
k is invertible, since it is a square matrix

of maximal rank and the inverse is Ck−1 in all variables. Delete θ̃k from the list of variables, and write
Θ̃(k) = (θ̃, . . . , θ̃k−1, θ̃k+1, . . . , θ̃n+1)t. The change of variables is then given by by the solution to the initial
value problem

∂Θ̃(k)

∂θ
= Γ(n)

k (Θ̃(k), θ)−1 · γ(Θ̃(k), θ)

Θ̃(k)(Θ(k), θ(0)) = Θ(k).

(4.12)

The solution is a Ck function of all variables because the right side of the differential equation is Ck−1. Thus
the Jacobian is Ck−1 in all variables. After this change of variables, all the dependence on the external angle
θ is in the Jacobian and in the support function of the patch. The patch itself is independent of θ since by
construction it depends only on θ(0). Thus, taking all the remaining derivatives is harmless. Moreover, the
support restriction on the propagators reduces the integration regions for the θ̃k in a way that cancels the
large factor from the first derivative we took.

It remains to bound the contribution from the neighbourhood of the set where the rank of Γ(n) is
nonmaximal. We split the proof in the two cases, according to the characterization of critical points given
in Lemma 4.3.

(i) When p = p, only the first column in Γ(n) is nonzero. So, when p ≈ p, instead of a change of variables,
we shall use that the derivative on a propagator on scale j < 0 produces a small factor M j that cancels
the extra big factor M−j from the denominator. We can be brief about this because the argument is very
similar to that of the second order case. By Taylor expansion in the ρ variables, we can reduce the problem
to ρ = ρk = 0. Let p be near to p, and p, . . . pn+1 be arbitrary. Since p ≈ p, we change variables from
θ to t = θ − θ. Since e(p(θk)) = 0, the usual Taylor expansion yields

e(p(0, θ)− p(0, θ) + p(θk)) = tφ(θ, t, θk)

φ(θ, t, θk) =

1∫
0

dα g(p(θ + αt)− p(θ) + p(θk)) · τ(p(θ + αt))
(4.13)

If pk is not in a small neighbourhood of p(θ(0)) or of p(a(θ(0))), then φ(θ, 0, θk) 6= 0, and therefore for all
|t| < δ′ (δ′ independent of the scales), |φ(θ, t, θk)| ≥ φ > 0, so |e(p − p + pk)| ≤M j implies

|t| ≤ const M j (4.14)

Thus, as in the second order case, every derivative acting on Cj produces not only a large factor M−j , but
also a small factor |t| that cancels it, e.g.

∣∣∣∣ ∂∂θCj(p, e(p(θ + t)− p(θ) + p(θk)))
∣∣∣∣ ≤ |t|

∣∣∣∣∂φ∂θ
∣∣∣∣ |∂Cj | ≤ const M jM−2j (4.15)
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does not change the scaling behaviour of the propagator. The factor M j that got lost when the very first
derivative was taken is regained, up to a factor |j|, by the volume improvement in the integration over t
coming from the restriction (4.14).

For any k ≥ 2 for which θk is near to θ(0) (and hence near to θ), change variables from θk to y = θk− θ.
Then the θ–dependence in the propagator is in the function

η(θ, x, y) = e
(
p(θ + x) + p(θ + y)− p(θ)

)
. (4.16)

The analysis of the singularity is now identical to that to the second–order case, and in particular, Lemma
3.3 applies. Thus for every increase in the power of the denominator, there is a corresponding small factor
in the numerator. The details of the bound are as in the second–order case.

For any k ≥ 2 for which θk is near to a(θ(0)), hence near to a(θ), change variables from θk to y = θk−a(θ).
Then the θ–dependence in the propagator is in the function

η(θ, x, y) = e
(
p(θ + x) + p(a(θ) + y)− p(θ)

)
. (4.17)

The analysis of the singularity is now identical to the second–order case, in particular, Lemma 3.3 applies.
All the details are as in the second–order case.

There remains the case (ii): p = a(p), and pk = p for k ∈ C ⊂ {2, . . . , n + 1}. We change variables
from θ to θ̃ = θ− a(θ). Then ∂θ̃

∂θ
= 1, and the first column of Γ(n) is moved to the right hand side of the

equation. For k ∈ C, we change variables from θk to θ̃k = θk−θ and move the corresponding columns of Γ(n)

to the right hand side of the equation. We delete row number k for every k ∈ C. The square matrix left over
of Γ(n) after this procedure has maximal rank by construction and Lemma 4.3, so the change of variables
is there as in the regular region. We solve the resulting system of differential equations for θ̃k, k 6∈ C. For
k ∈ C,

e(p − p + pk) = e(p(a(θ) + x)− p(θ) + p(θ + y)) (4.18)

so Lemma 3.3 applies.

We now turn to the particle-particle wicked ladder (see Figure 6 (b)). The analogue of Lemma 4.3 is in
the symmetric case

Lemma 4.6 Assume (Sy). For the particle-particle wicked ladder, if rank Γ(n) ≤ n− 1 and all momenta
are on S then one of the following holds.

(i) p = −p; then rank Γ(n) ≤ 1 and all columns of Γ(n) except for the first vanish.
(ii) p = p, and there is ∅ 6= C ⊂ {2, . . . , n + 1} such that for all k ∈ C, pk = p, and for all l 6∈ C,

pl 6= p; then rank Γ(n) = n− |C|, and

all columns with index k ∈ C vanish: Γ(n)
mk = 0 for all m ∈ {2, . . . , n+ 1},

all rows with index k − 1, k ∈ C, vanish: Γ(n)
k−1,m = 0 for all m ∈ {1, . . . , n},

all columns with index k ∈ {2, . . . , n+ 1} \ C are nonzero.

Whenever row k of Γ(n) vanishes, the corresponding component γk of the vector γ on the right hand side of
(4.6) also vanishes. In case (i), the right hand side γ coincides with the first column of Γ(n).
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Proof: To start, we do not assume (Sy). Case (1) is as in second order, so p = pk = p or p = a(p),
pk = p, or p = pk = a(p). In case (2), the condition that g1k · τk = 0 for k ∈ C, |C| ≥ 2, forces
p + p− pk ∈ {pk,a(pk)} for all k ∈ C. This is possible only if either p = p, pk = p for all k ∈ C, or if

p + p = pk + a(pk) for all k ∈ C. (4.19)

Note that in the asymmetric case it does not follow from (4.19) that pk or p have to be p or a(p): although
there is the solution p = pk, p = a(pk), there can be other solutions, due to the asymmetry of S. At these
additional solutions, the system of equations (4.6) is inconsistent.

We now assume (Sy). Then a(pk) = −pk, and (4.19) implies p = −p. Looking back at all cases, we
see that they are covered by statements (i) and (ii) of the Lemma. The statements about the rank and the
vanishing of columns and rows of Γ(n), and about the consistency at the critical points follow by inspection
of the matrix.

Lemma 4.7 Let k ≥ 2, d = 2, and assume (H1)k,0, (H2)k,0, (H3)–(H5), and (Sy). Then the contribution
of the particle–particle wicked ladder to the counterterm function K is Ck.

The proof of this Lemma, as well as that of the analogue of Lemma 4.4, is an obvious variation of that of
Lemma 4.5, and we leave it to the reader. We instead turn to the nonsymmetric case in which the potential
inconsistencies of (4.6) at solutions of (4.19) caused problems. The main point there is the same that leads
to the Fermi liquid behaviour of such models: The particle–particle bubble, which in the symmetric case
prevents the convergence of perturbation theory because of its singularity at zero transfer momentum, has
no singularities. Under our assumptions, this can be deduced from the following Lemma.

Lemma 4.8 Let d = 2, h > 0, and (H2)2,h–(H4’) hold and assume that (Sy) does not hold. Then there
is a constant QB > 0 such that for all ε ≥ ε > 0 and for all q ∈ B

sup
|ρ|≤ε

∫
dθ 1l (|e(−p(ρ, θ)) + q)| ≤ ε) ≤ QB ε

1
3 (4.20)

and therefore ∫
B

ddp 1l (|e(−p + q)| ≤ ε) 1l (|e(p)| ≤ ε) ≤ 2|J |QB εε
1
3 (4.21)

where J is the Jacobian defined in (2.15).

Proof: See Appendix C.

It is important in the proof that the curvature of S at p and a(p) differs except at a finite number of points;
see Appendix C. Given Lemma 4.8, the boundedness of the particle–particle bubble is obvious because
instead of the ordinary power counting behaviour M0j of a non–overlapping four–legged diagram, Lemma
4.8 implies a bound by M j/3 which gives a convergent scale sum. Similarly, the proof that the particle–
particle wicked ladder is C2 is now an easy consequence of volume estimates; it does not require any analysis
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of critical points. In particular, assumption (H5) is not needed because it was needed neither in the proof of
Theorem 1.1 nor in that of Lemma 4.8.

Theorem 4.9 Let d ≥ 2, h > 0, and (H1)2,h, (H2)2,h, and (H3)–(H4’) hold, and assume that (Sy) does
not hold. Let G be the particle–particle wicked ladder shown in Figure 4 (b), and denote V al(G)(p(ρ, θ)),
defined in (4.2), by Rj(ρ, θ). Then the scale sum

∑
j<0

Rj(ρ, θ) is C2 both in ρ and θ.

Proof: The idea of the proof is simple: by Lemma 4.8 there is a volume gain in any of the bubbles uniformly
in the transfer momentum. There are enough loops to extract both that gain in one bubble and the volume
gain from two overlapping loops. This gives an improvement factor M4j/3, hence enough decay to take two
derivatives, no matter whether they are taken in ρ or in θ direction.

To do the details, it is most convenient to choose the spanning tree for G as shown in Figure 7 because
then the derivative acts only on the propagator of line `, and we avoid some uninteresting combinatorics (in
Figure 7, the additional bubbles are all put into a subgraph drawn as the shaded disk). Taking two derivatives,
using (2.54), and doing the p–integrals in the usual way, we get (denoting 1lj(e(p)) = 1l

(
|e(p)| ≤M j

)
)

|D2Rj(ρ, θ)| = WW
2n M−2nj M−3j(2M j)n+1

∫ ∏
l6∈L(T )

ddpl
∏

l∈L(G)

1lj(e(pl)) (4.22)

where the M−2nj comes from the sup norm of the propagators in the bubbles, the M−3j comes from the
second derivative of the propagator on line `, and the factor (2M j)n+1 comes from the p–integrations.
We call the n + 1 loop variables p, . . . ,pn+1, and introduce (ρl, θl) as integration variables such that
pk = p(ρk, θk), and do the ρ–integrations. Every ρk produces a factor const M j when integrated. Thus

|Rj | ≤ νM−j sup
ρ,...,ρn+1
|ρk|≤Mj

∫ n+1∏
i=1

dθi
∏

`∈L(T )

1lj(e(q`)) (4.23)

where the momenta q` for ` ∈ L(T ) are given as linear combinations of the loop momenta p(ρ, θ), . . .,
p(ρn+1, θn+1), and the external momentum p(ρ, θ), and where ν contains all the constants. We may choose
the labelling of the loop momenta as indicated in Figure 7. Since n ≥ 2, i.e. there are at least two bubbles,
so the product over ` ∈ L(T ) contains at least the two factors 1lj(e(q`

)) and 1lj(e(q`
)), where ` and `

are as in Figure 7. q`
= p + p − p and q`

= p + p − p, so

|Rj | ≤ const M−j sup
|ρ|≤Mj ,|ρ|≤Mj

∫
dθdθ 1lj(e(p + p − p)) sup

|ρ|≤Mj

∫
dθ 1lj(e(−p + p + p)).

(4.24)
By Lemma 4.8, the integral over θ is bounded uniformly in p and p, and by a Taylor expansion in ρ and
ρ, as used to derive (3.24), we get

|Rj | ≤ const M−j QBM j/3 W
(
(1 + 2 |e|1u

)M j
)
≤ const |j|M j/3 (4.25)

so that ∑
j<0

|Rj(ρ, θ)| ≤ const
∑
j<0

|j|M j/3 ≤ const
1

1−M−1/6
. (4.26)
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Figure 7

p p

p p

p q`

q`

Remark 4.10 The reason why the problematic critical points of (4.19) did not appear in second order is
simply that in second order, the case (2) mentioned before Lemma 4.3 cannot occur because there are only
two loop momenta. The conditions of case (1) exclude (4.19).

Remark 4.11 For d ≥ 3, the proof is similar to that of Theorem 3.10 because, again, one has restrictions
to a neighbourhood of the critical points. Lemma 3.9 applies directly to do the argument.
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Appendix A. The C2 Morse Lemmas

In this Appendix, we prove the C2 Morse Lemmas that we need to prove Theorem 1.1. The proof of the
Morse Lemma for smooth functions is in many textbooks, but our functions are only C2, which makes the
proof less straightforward. One proof of the C2 Morse lemma can be found in [MW]. For convenience of the
reader, we include another proof here.

A.1 Hyperbolic case

Let ν(φ1, φ2) be a C2 function in a neighbourhood of (0, 0) obeying

ν(0, 0) = 0

∂1ν(0, 0) = 0 ∂1ν(0, 0) = 0

∂2
1ν(0, 0) = −1 ∂2

2ν(0, 0) = 1 ∂1∂2ν(0, 0) = 0

(A.1)

Lemma A.1 There exists a neighbourhood N of 0 and two C1 functions ψ±(φ1) such that

ν
(
φ1, ψ±(φ1)

)
= 0 for all φ1 ∈ N (A.2)

and
ψ±(0) = 0

ψ′±(0) = ±1
(A.3)

Theorem A.2 There exist C1 functions x(φ1, φ2) and y(φ1, φ2) in a neighbourhood of (0, 0) such that

ν(φ1, φ2) = x(φ1, φ2) y(φ1, φ2) (A.4)

and
x(0, 0) = 0 y(0, 0) = 0

∂1x(0, 0) = 1 ∂2x(0, 0) = −1

∂1y(0, 0) = −1/2 ∂2y(0, 0) = 1/2

(A.5)

The proofs of both Lemma A.1 and Theorem A.2 use the representations

ν(φ1, φ2) = − 1
2α(φ1, φ2)φ2

1 + β(φ1, φ2)φ1φ2 + 1
2γ(φ1, φ2)φ2

2 (A.6)
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and
∂1ν(φ1, φ2) = −α̃(φ1, φ2)φ1 + β̃(φ1, φ2)φ2

∂2ν(φ1, φ2) = β̃(φ1, φ2)φ1 + γ̃(φ1, φ2)φ2

(A.7)

where all the coefficients on the right hand side are continuous and where

α(0, 0) = α̃(0, 0) = 1

γ(0, 0) = γ̃(0, 0) = 1

β(0, 0) = β̃(0, 0) = 0

(A.8)

We shall use the notation o(1) to denote a generic and unimportant continuous function that vanishes at
(0, 0). Hence, for example, we shall write α(φ1, φ2) = 1 + o(1). To prove (A.6) one uses

ν(φ1, φ2) =
∫ 1

0

dt (1− t) d2dt2 ν(tφ1, tφ2)

=
∫ 1

0

dt (1− t)
[
∂2
1ν(tφ1, tφ2)φ2

1 + 2∂1∂2ν(tφ1, tφ2)φ1φ2 + ∂2
2ν(tφ1, tφ2)φ2

2

] (A.9)

Hence

α(φ1, φ2) = −2
∫ 1

0

dt (1− t)∂2
1ν(tφ1, tφ2)

β(φ1, φ2) = 2
∫ 1

0

dt (1− t)∂1∂2ν(tφ1, tφ2)

γ(φ1, φ2) = 2
∫ 1

0

dt (1− t)∂2
2ν(tφ1, tφ2)

(A.10)

Similarly, to prove (A.7) one uses

∂1ν(φ1, φ2) =
∫ 1

0

dt ddt∂1ν(tφ1, tφ2)

=
∫ 1

0

dt
[
∂2
1ν(tφ1, tφ2)φ1 + ∂1∂2ν(tφ1, tφ2)φ2

]
∂2ν(φ1, φ2) =

∫ 1

0

dt ddt∂2ν(tφ1, tφ2)

=
∫ 1

0

dt
[
∂1∂2ν(tφ1, tφ2)φ1 + ∂2

2ν(tφ1, tφ2)φ2

]
(A.11)

to yield

α̃(φ1, φ2) = −
∫ 1

0

dt ∂2
1ν(tφ1, tφ2)

β̃(φ1, φ2) =
∫ 1

0

dt ∂1∂2ν(tφ1, tφ2)

γ̃(φ1, φ2) =
∫ 1

0

dt ∂2
2ν(tφ1, tφ2)

(A.12)

Proof of Lemma A.1: First fix any sufficiently small φ1. If α, β, γ were constants ν(φ1, φ2) = 0 would have
two solutions, namely

φ2 =
−βφ1 ±

√
β2φ2

1 + αγφ2
1

γ
(A.13)
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So define

Ψ±(φ1, φ2) =

√
α(φ1, φ2)γ(φ1, φ2) + β2(φ1, φ2) ∓ β(φ1, φ2)

γ(φ1, φ2)
= 1 + o(1) (A.14)

We have
ν(φ1, φ2) = 1

2γ(φ1, φ2) [φ2 −Ψ+(φ1, φ2)φ1] [φ2 + Ψ−(φ1, φ2)φ1] (A.15)

Note that the factor 1
2γ(φ1, φ2) never vanishes, the next factor obeys

φ2 − Ψ+(φ1, φ2)φ1 < 0 if φ2 < φ1

{
min Ψ+ if φ1 > 0
maxΨ+ if φ1 < 0

φ2 − Ψ+(φ1, φ2)φ1 > 0 if φ2 > φ1

{
maxΨ+ if φ1 > 0
min Ψ+ if φ1 < 0

(A.16)

and the last factor obeys

φ2 + Ψ−(φ1, φ2)φ1 > 0 if φ2 > −φ1

{
min Ψ− if φ1 > 0
maxΨ− if φ1 < 0

φ2 + Ψ−(φ1, φ2)φ1 < 0 if φ2 < −φ1

{
maxΨ− if φ1 > 0
min Ψ− if φ1 < 0

(A.17)

If necessary, restrict the neighbourhood so that min Ψ± and maxΨ± all lie in [1/2, 3/2]. Then, still for fixed
φ1, ν(φ1, φ2) necessarily changes sign at least once between φ1 min Ψ+ and φ1 maxΨ+ and at least once
between −φ1 min Ψ− and −φ1 maxΨ− . But in a neighbourhood of the origin ∂2

2ν > 0, so that ν, viewed
as a function of φ2, is strictly convex and can have at most two zeroes. So it has exactly two zeroes, one in
each of the aforementioned intervals. Call the zeroes ψ±(φ1).

The zeroes obey
ψ+(φ1) = Ψ+

(
φ1, ψ+(φ1)

)
φ1

ψ−(φ1) = −Ψ−
(
φ1, ψ−(φ1)

)
φ1,

(A.18)

so
ν(φ1, φ2) = 1

2
γ(φ1, φ2) (φ2 − ψ+(φ1)) (φ2 + ψ−(φ1)). (A.19)

Since, to be in the aforementioned intervals, |ψ±(φ1)| ≤ |φ1|maxΨ± and since Ψ± = 1 + o(1), we have that
ψ± is differentiable at φ1 = 0 and obeys

ψ±(0) = 0

ψ′±(0) = ±1
(A.20)

As ν
(
φ1, ψ±(φ1)

)
= 0 we have for all φ1 6= 0

ψ′±(φ1) = −
∂1ν
(
φ1, ψ±(φ1)

)
∂2ν
(
φ1, ψ±(φ1)

) (A.21)

Note that for the denominator ∂2ν
(
φ1, ψ±(φ1)

)
to vanish ψ±(φ) must be a double zero of ν(φ1, · ) and we

know that this cannot happen for φ1 6= 0. Hence ψ± is C1 away from φ1 = 0. It only remains to verify the
continuity of ψ′± at φ1 = 0. From (A.7)

ψ′±(φ1) = −
∂1ν
(
φ1, ψ±(φ1)

)
∂2ν
(
φ1, ψ±(φ1)

)
= −
−α̃
(
φ1, ψ±(φ1)

)
φ1 + β̃

(
φ1, ψ±(φ1)

)
ψ±(φ1)

β̃
(
φ1, ψ±(φ1)

)
φ1 + γ̃

(
φ1, ψ±(φ1)

)
ψ±(φ1)

= −
−[1 + o(1)]φ1 ± o(1)Ψ±

(
φ1, ψ±(φ1)

)
φ1

o(1)φ1 ± [1 + o(1)]Ψ±
(
φ1, ψ±(φ1)

)
φ1

= ±1 + o(1)

(A.22)
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Proof of Theorem A.2: Define

x(φ1, φ2) = φ2 − ψ+(φ1)

y(φ1, φ2) =

1∫
0

dα ∂ν(φ, (1− α)ψ+(φ) + αφ).
(A.23)

Then ν(φ1, φ2) = x(φ1, φ2) y(φ1, φ2) holds by Taylor expansion. That x is C1, that x(0, 0) = 0 , that
∂1x(0, 0) = −1 and that ∂2x(0, 0) = 1 are all obvious, and so are the statements for y.

A.2 Elliptic case

Let ν(φ1, φ2) be a C2 function in a neighbourhood of (0, 0) obeying

ν(0, 0) = 0

∂1ν(0, 0) = 0 ∂1ν(0, 0) = 0

∂2
1ν(0, 0) = 1 ∂2

2ν(0, 0) = 1 ∂1∂2ν(0, 0) = 0

(A.24)

Theorem A.3 Define θ = tan−1 φ2
φ2

to be the usual polar angle and R = ν(φ1, φ2). Then R(0, 0) = 0, R
is increasing on each fixed ray θ = const and the Jacobian

∂(R, θ)
∂(φ1, φ2)

= 1 + o(1) (A.25)

Define
x(φ1, φ2) =

√
2R(φ1, φ2) cos θ(φ1, φ2)

y(φ1, φ2) =
√

2R(φ1, φ2) sin θ(φ1, φ2)
(A.26)

Then
ν(φ1, φ2) = 1

2

(
x(φ1, φ2)2 + y(φ1, φ2)2

)
(A.27)

and the Jacobian
∂(x, y)
∂(φ1, φ2)

= 1 + o(1) (A.28)

Remark A.4 R plays the role of 1
2r

2 in the usual polar coordinates.
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Proof: We now have the representations (with new notation)

ν(φ1, φ2) = 1
2α(φ1, φ2)φ2

1 + β(φ1, φ2)φ1φ2 + 1
2γ(φ1, φ2)φ2

2

∂1ν(φ1, φ2) = α̂(φ1, φ2)φ1 + β̂(φ1, φ2)φ2

∂2ν(φ1, φ2) = β̂(φ1, φ2)φ1 + γ̂(φ1, φ2)φ2

(A.29)

where

α(φ1, φ2) = 2
∫ 1

0

dt (1− t)∂2
1ν(tφ1, tφ2) = 1 + o(1)

β(φ1, φ2) = 2
∫ 1

0

dt (1− t)∂1∂2ν(tφ1, tφ2) = o(1)

γ(φ1, φ2) = 2
∫ 1

0

dt (1− t)∂2
2ν(tφ1, tφ2) = 1 + o(1)

α̂(φ1, φ2) =
∫ 1

0

dt ∂2
1ν(tφ1, tφ2) = 1 + o(1)

β̂(φ1, φ2) =
∫ 1

0

dt ∂1∂2ν(tφ1, tφ2) = o(1)

γ̂(φ1, φ2) =
∫ 1

0

dt ∂2
2ν(tφ1, tφ2) = 1 + o(1)

(A.30)

That R(0, 0) = 0 and R is increasing on each fixed ray follows easily from

ν(φ1, φ2) = 1
2

(
φ2

1 + φ2
2

)
+ o(1)φ2

1 + o(1)φ1φ2 + o(1)φ2
2

φ1∂1ν(φ1, φ2) + φ2∂2ν(φ1, φ2) = φ2
1 + φ2

2 + o(1)φ2
1 + o(1)φ1φ2 + o(1)φ2

2

(A.31)

The Jacobian ( ∂R
∂φ1

∂R
∂φ2

∂θ
∂φ1

∂θ
∂φ2

)
=
(
α̂(φ1, φ2)φ1 + β̂(φ1, φ2)φ2 β̂(φ1, φ2)φ1 + γ̂(φ1, φ2)φ2−φ2

φ2
1+φ2

2

φ1
φ2

1+φ
2
2

)

=
α̂(φ1, φ2)φ2

1 + 2β̂(φ1, φ2)φ1φ2 + γ̂(φ1, φ2)φ2
2

φ2
1 + φ2

2

= 1 +
[α̂(φ1, φ2)− 1]φ2

1 + 2β̂(φ1, φ2)φ1φ2 + [γ̂(φ1, φ2)− 1]φ2
2

φ2
1 + φ2

2

= 1 + o(1)

(A.32)

For the transition from R, θ to x, y

( ∂x
∂R

∂y
∂R

∂x
∂θ

∂y
∂θ

)
=
( 1√

2R
cos θ 1√

2R
sin θ

−
√

2R sin θ
√

2R cos θ

)
= 1 (A.33)

Appendix B. Sharp Volume Bounds

In this Appendix we prove Theorem 1.1 under the assumptions (H2)2,0 and (H3) (obviously, (H2)k,h implies
(H2)2,0 for all k ≥ 2 and h ≥ 0). The assumption (H5) will not be used in this proof. It will become clear
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in the proof that this estimate is best possible. Before going into the details we outline the strategy. Away
from the critical points (in θ, θ) of the map η = e(vp(0, θ) + vp(0, θ) +q), the estimate is easily shown
by a change of variables from one of the θi to e. Near the critical points, a detailed analysis of the singularity
is required for getting the optimal improvement factor. We first determine for which q critical points are
possible at all. Then we show that at any critical point the second derivative is a nonsingular matrix, thus
the function η is either of type x2 + y2 or of type xy (the factor log ε comes from the second case). We then
use the Morse Lemma proven in Appendix A to calculate the volume improvement effect.

Note that q ∈ B is not restricted to be near to S, so that we can make use of strict convexity only in the
sense that on a fixed level set of e near to S, there are only two solutions of the equation ∂θp = v for any
0 6= v ∈ IRd, and that the curvature radius is finite at every point of S. A convenient property of boundaries
S of strictly convex sets in IRd, namely that no three different points of S can lie on the same straight line,
does not hold on the torus B. The reason we could use it in Chapter 3 was that all momenta involved were
on or near to S, and that we assumed (H5). The supremum in the definition of W is over all q ∈ B, not
only those near to S, therefore (H5) would be of no use here. Most of the following Lemmas deal with the
complications due to B being a torus.

B.1 Two Dimensions

Let d = 2, use the coordinates ρ and θ defined in Section 2.2, and let

n(ρ, θ) =
∇e(p(ρ, θ))
|∇e(p(ρ, θ))|. (B.1)

For brevity, we write n(θ) = n(0, θ). The set

E = {(θ, θ) ∈ S × S : n(θ)× n(θ) = 0} (B.2)

is the zero set of the map

H : S × S → IR, (θ, θ) 7→ (n(θ)× n(θ)) · e (B.3)

(where the vector product is inherited from IR3 and e denotes the unit vector in 3–direction). H ∈ C1(S ×
S, IR), and

∇H =
(
∂H

∂θ
,
∂H

∂θ

)
= (e · (∂θn(θ)× n(θ)), e · (n(θ)× ∂θn(θ))) (B.4)

is nonzero for all θ = (θ, θ) ∈ E (because n is a unit vector, ∂θn ⊥ n, and because the Fermi surface
has nonzero curvature, ∂θn 6= 0). Thus E is a C1–submanifold of S × S, of codimension 1. Moreover, E is
compact, thus covered by finitely many balls in S × S. Thus there is δ > 0 such that Uδ(E) is contained in
this finite covering. Since Rδ = S × S \ Uδ(E) is also compact, |H(θ)| ≥ ϕ(δ) > 0 holds for all θ 6∈ Uδ(E),
with ϕ some positive function (ϕ(x) > 0 for x > 0). We shall choose δ > 0 later (independent of ε; this is
the ε of Theorem 1.1). Split

W(ε) = Eδ(ε) +Rδ(ε) (B.5)
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according to the decomposition S×S = Uδ(E)
·
∪Rδ. It was shown in Appendix A of I that the contribution

Rδ from the regular region is bounded by

Rδ(ε) ≤ const
ε

ϕ(δ)
(B.6)

The 1/ϕ(δ) comes from a Jacobian. To bound Eδ, the contribution from the region where this Jacobian can
become singular, we collect some more consequences of the geometry of the Fermi surface.

Lemma B.1 Let p = p(ρ, θ) ∈ U(S). Then all solutions Q of

∇e(Q) · ∂θp = 0 (B.7)

that satisfy Q ∈ U(S) are given as Q = p(ρ, ϑ(k)(ρ, θ, ρ)) where for k ∈ {1, 2}, ϑ(k) are C1 in (ρ, θ, ρ)
and at ρ = ρ,

ϑ(1)(ρ, θ, ρ) = θ

ϑ(2)(ρ, θ, ρ) = aρ(θ).
(B.8)

At fixed ρ and θ, the curve ρ 7→ ϑ(k)(ρ, θ, ρ) is transversal to Sρ
.

Proof: Since Q ∈ U(S), we can write Q = p(ρ, θ). Fix ρ and θ. Since Sρ
= {p(ρ, θ) : θ ∈ [0, 2π]}

is strictly convex and a C1–manifold, there are, for each fixed ρ, exactly two values of θ for which
∇e(p(ρ, θ)) · ∂θp(ρ, θ) = 0. For ρ = ρ they are given by p(ρ, θ) and p(ρ, aρ(θ)). Fix (ρ, θ). The
map φ : (ρ, θ) 7→ ∇e(p(ρ, θ)) · ∂θp(ρ, θ) satisfies φ(ρ, θ) = 0 and φ(ρ, aρ(θ)) = 0. The derivative

∂φ

∂θ
(ρ, θ, ρ, θ) = (∂θp(ρ, θ), e′′(p(ρ, θ))∂θp(ρ, θ)) (B.9)

is continuous. At θ = θ and ρ = ρ, it is equal to w(p(ρ, θ)) (defined in (Sy)), hence nonzero. Thus in a
neighbourhood of ρ = ρ there is a function ϑ(1) depending on (ρ, θ, ρ) such that φ(ρ, ϑ(1)(ρ, θ, ρ)) = 0.
Similarly, one constructs the solution ϑ(2). φ is C1 in ρ, ρ, θ, so the ϑ(k) are also C1.

Transversality holds because θ moves p(ρ, θ) tangentially to Sρ
and ∂φ

∂θ
6= 0.

Note that by compactness of B and S, the size of the neighbourhoods can be chosen uniform in (ρ, θ).
We may therefore assume that U(S) is such that the solution curves of the Lemma B.1 exist for all p ∈ U(S).

Lemma B.1 allows us to determine the set Pκ of those q ∈ B for which critical points of the map

η : θ = (θ, θ) 7→ η(θ,q) = e(vp(0, θ) + vp(0, θ) + q) (B.10)

are possible. For 0 < κ < r let

Pκ =
2⋃
k=1

{p(ρ, ϑ(k)(0, θ, ρ))− vp(0, θ)− vp(0, θ) : (θ, θ) ∈ E, |ρ| ≤ κ}. (B.11)
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S

Figure 8

The set {p(ρ, ϑ(1)(0, θ, ρ)) + p(0, θ) + p(0, θ) : |ρ| ≤ κ}, which is one of the four sets in the union making up
Pκ, is sketched in Figure 8. The square indicates the boundary of the fundamental region for the torus B,
so the shaded region should be thought of as folded back into this fundamental region by periodicity.

Lemma B.2 If q 6∈ Pκ, then |η(θ,q)| ≤ κ implies ∂η
∂θ
6= 0 or ∂η

∂θ
6= 0.

Proof: Let
Q = vp(0, θ) + vp(0, θ) + q (B.12)

The condition
∂η

∂θi
= ∇e(Q) · ∂θp(0, θi) = 0 for i = 1 and i = 2 (B.13)

implies θ ∈ E: if |e(Q)| ≤ κ, ∇e(Q) 6= 0, so ∂θp(0, θ) and ∂θp(0, θ) are both orthogonal to the same
nonzero vector. Since d = 2, they must be collinear, thus θ ∈ {θ, a(θ)} by strict convexity.

If there is a critical point, i.e. a solution to (B.13) with |e(Q)| ≤ κ, Q is determined as in Lemma B.1,
so q ∈ Pκ by (B.12).

Fix κ > 0. Without loss, we may assume that ε ≤ κ
2 since the estimate in Theorem 1.1 is trivially true

for ε bounded away from zero by choice of the constant.
Since Pε ⊂ Pκ/2⊂6=Pκ and by continuity of ∂η

∂θi
and compactness, there is δ > 0 such that for all θ in

the support of the integral (1.4) for W ,

inf
q∈B\Pκ

inf
θ∈E

max
{∣∣∣∣ ∂η∂θ

∣∣∣∣,
∣∣∣∣ ∂η∂θ

∣∣∣∣
}
≥ δ. (B.14)
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Thus the δ > 0 introduced previously can be chosen so small (independently of ε) that for all q 6∈ Pκ and
all θ ∈ Uδ(E) ∣∣∣∣ ∂η∂θi

∣∣∣∣ ≥ δ for i = 1 or i = 2. (B.15)

Thus there are R, R such that Uδ(E) = R
·
∪R and | ∂η∂θi

| ≥ δ on Ri. Obviously, R and R are similar,
so we deal with R. By a change of variables from θ to η,

sup
q∈B\Pκ

∫
R

dθ dθ 1l (|η(θ, θ,q)| ≤ ε) ≤ 2π
1
δ

∫
dη 1l (|η| ≤ ε) ≤

≤ 4π
ε

δ
,

(B.16)

the factor of 2π coming from the θ integration. Thus, to prove Theorem 1.1 it suffices to bound

Wκ(ε) = max
vi∈{±1}

sup
q∈Pκ(v,v)

∫
Uδ(E)

dθ dθ 1l (|η(θ,q)| ≤ ε) . (B.17)

Lemma B.3 For fixed q ∈ Pκ, the solutions θ = θ(cr) of (B.13) are isolated. The critical points θcr are
C1 functions of q.

Proof: Case p = p: the right side of the equation

q = p(ρ, ϑ(k)(0, θ, ρ))− vp(0, θ)− vp(0, θ) (B.18)

is a C1 function of (ρ, θ). We now show that this function is invertible.The derivatives are

∂q
∂ρ

= ∂ρp(ρ, ϑ(k)(0, θ, ρ)) + ∂θp(ρ, ϑ(k)(0, θ, ρ))
∂ϑ(k)

∂ρ

∂q
∂θ

= ∂θp(ρ, ϑ(k)(0, θ, ρ))
∂ϑ(k)

∂θ
− v∂θp(0, θ)− v∂θp(0, θ).

(B.19)

We know that ρ is in a small neighbourhood of zero by Lemma B.1, so by continuity in ρ, it suffices to prove
that the derivative is nonsingular at ρ = 0.

Case ϑ(1): At ρ = 0, ϑ(1) = θ, so

∂q
∂ρ

= ∂ρp(θ) + ∂θp(θ)
∂ϑ(1)

∂ρ

∂q
∂θ

= ∂θp(θ)
(
∂ϑ(1)

∂θ
− v − v

)
.

(B.20)

From (B.8), we see that
∂ϑ(1)

∂θ
(ρ, θ, ρ) = 1 (B.21)
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so ∂ϑ(1)

∂θ (ρ, θ, ρ)− v − v is −1, 1 or 3. ∂ϑ(1)

∂θ is continuous, so there is r such that for |ρ − ρ| < r,

∣∣∣∣∂ϑ(1)

∂θ
(ρ, θ, ρ)− v − v

∣∣∣∣ ≥ 1
2 (B.22)

It is now obvious that rank ( ∂q∂ρ ,
∂q
∂θ ) = 2: the first column is nonzero because ∂ρp(0, θ) is nonzero, and

∂ρp(0, θ) and ∂θp(0, θ) are linearly independent. The second column is a nonzero multiple of ∂θp(0, θ).
Thus the column vectors are linearly independent.

Case ϑ(2): Recall that ϑ(2) is the solution with ϑ(2)(ρ, θ, ρ) = aρ(θ). Hence

∂ϑ(2)

∂θ
(ρ, θ, ρ) =

∂aρ(θ)
∂θ

. (B.23)

Thus, by (B.19), at ρ = 0

∂q
∂ρ

= ∂ρp(a(θ)) + ∂θp(θ)
∂ϑ(2)

∂ρ
(0, θ, ρ = 0)

∂q
∂θ

= ∂θp(a(θ))
∂ϑ(2)

∂θ
(0, θ, 0)− v∂θp(θ)− v∂θp(θ)

= ∂θp(θ)
(
−∂a
∂θ

(θ)− v − v
)
.

(B.24)

By (2.35), ∂q∂θ 6= 0. So, similarly to the first case, the two rows are linearly independent.

Case θ = a(θ): The argument is similar to the above, only that now in the case ϑ(1),

∂q
∂θ

(0, θ) = ∂θp(0, θ)
(
∂ϑ(1)

∂θ
(0, θ, 0)− v + v

∂a

∂θ
(θ)
)

(B.25)

and in the case ϑ(2),
∂q
∂θ

(0, θ) = ∂θp(0, θ)
(
−∂ϑ

(2)

∂θ
(0, θ, 0)− v + v

∂a

∂θ
(θ)
)
. (B.26)

Remark B.4 By compactness of Pκ, the critical points are uniformly continuous functions of q. Thus,
given s > 0, there is r > 0 such that for all q ∈ Pκ and all q′ ∈ Ur(q), |θcr(q′)− θcr(q)| < s/2. Moreover,

there is a finite set of points q(1), . . . ,q(n) such that Pκ ⊂
n⋃
i=1

Ur(q(i)).

Proof of Theorem 1.1 for d = 2: It suffices to prove (B.17) for any given i. s will be chosen at the end.
n depends on s. Let i ∈ {1, . . . , n}, q ∈ Ur(q(i)), and let

Ki = E \
4⋃
l=1

Us(θcr(q(i))). (B.27)
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If θ 6∈ Ki, ∂η
∂θ

(θ,q) 6= 0 or ∂η
∂θ

(θ,q) 6= 0 because by choice of r, all critical points to q ∈ Ur(q(i)) are in
Us/2(θ

cr(q(i))). Thus, by a similar argument as in the case q 6∈ Pκ,

sup
q∈Ur(q(i))

∫
Ki

dθ dθ 1l (|η(θ, θ,q)| ≤ ε) ≤ const
ε

δ
(B.28)

where δ does not depend on ε.
Finally, let t = t(q) be one of the critical points to q and θ ∈ Us(t). We now have to bound

W (i)
κ (ε) = max

v,v=±1
sup

q∈Ur(q(i))∩Pκ

∫
Us(t(q))

dθdθ 1l (|η(θ,q)| ≤ ε) . (B.29)

By Taylor expansion,
η(θ,q) = η(t,q) + (θ − t,D(t, θ − t,q)(θ − t)) (B.30)

with

D(t, φ,q) =

1∫
0

dα (1− α)
(
∂

2η(t+ αφ,q) ∂∂η(t + αφ,q)
∂∂η(t+ αφ,q) ∂

2η(t + αφ,q)

)
. (B.31)

Let
D = D(q) = D(t(q), 0, 0,q). (B.32)

Lemma B.5 For all q ∈ Ur(q(i)), |detD(q)| ≥ 1
4w

2
.

Proof: By (B.12) and (B.10),

∂2
η(θ,q) = (∂θp, e′′(Q)∂θp) + v∇e(Q) · ∂2

θp

∂2
η(θ,q) = (∂θp, e′′(Q)∂θp) + v∇e(Q) · ∂2

θp

∂∂η(θ,q) = vv(∂θp, e′′(Q)∂θp) = ∂∂η(θ,q).

(B.33)

η is C2, soD is continuous in all its arguments. We set θ to its critical value t. Then Q = p(ρ, ϑ(k)(0, θ, ρ)).
By continuity of D, it suffices to show that |detD| ≥ 3

8w
2
 for ρ = 0. Thus we can put ρ = 0. Then

ϑ(1) = θ and ϑ(2) = a(θ). Let q ∈ Ur(q(i)) ∩ Pκ, and let t be the critical point for q. Recall that
w(p) = (∂θp, e′′(p)∂θp), and that q = Q− vp − vp.

Case ϑ(1): Q = p(0, θ) = p. If θ = θ, i.e. p = p = p,

D =
(
w(p)(1− v) vvw(p)
vvw(p) w(p)(1− v)

)
(B.34)

If v = v = −1, detD = 3w(p)2 > 0, and q = 3p. Otherwise, detD = −w(p)2 < 0.
If θ = a(θ), we use (2.36) and (2.24), to get

∇e(p(0, θ)) · (∂2
θp)(0, a(θ)) = − 1

∂a

∂θ
(θ)
∇e(p(0, θ)) · (∂2

θp)(0, θ) =
1

∂a

∂θ
(θ)

w(p(0, θ)). (B.35)

65



Thus we can rewrite D as

D = w(p)




(1− v) −vv

−vv

(
1 + v

1
∂a
∂θ (θ)

)

 (B.36)

If v = 1, detD = −w(p)2. If v = −1,

detD = w(p)2
(

2

(
1 +

v
∂a
∂θ

)
− 1

)
(B.37)

so if v = 1, detD ≥ 25
9 w(p)2. If v = −1,(

1 +
v
∂a
∂θ

)
=

(
1− 1

∂a
∂θ

)
≤ 1

9
(B.38)

by (2.35), so detD ≤ − 3
4w(p)2.

Case ϑ(2): Q = p(0, a(θ)) = a(p). If p = p,

D =
(

(∂θp, e′′(a(p))∂θp) + v∇e(a(p)) · ∂2
θp vv(∂θp, e′′(a(p))∂θp)

(∂θp, e′′(a(p))∂θp) (∂θp, e′′(a(p))∂θp) + v∇e(a(p)) · ∂2
θp

)
(B.39)

We use (2.34) and
∇e(p(a(θ))) · (∂2

θp)(θ) = − ∂a
∂θ ∇e(p(a(θ))) · (∂2

θp)(a(θ)) =

= ∂a
∂θw(p(a(θ)))

(B.40)

to rewrite this as
D = w(a(p))

(
1 + v

∂a
∂θ (θ) vv

vv 1 + v
∂a
∂θ (θ)

)
. (B.41)

For all v = ±1 and v = ±1, |detD| ≥ 3
8
w2
 by (2.35).

If p = a(p),

D = w(a(p))
(

(1 + v
∂a
∂θ (θ)) −vv

−vv 1− v

)
(B.42)

For all v = ±1 and v = ±1, |detD| ≥ 3
4
w2
 by (2.35).

Fix q ∈ Ur(q(i)). Let O(q) be the rotation such that O(q)D(q)O(q)−1 = D̃ = diag {d, d}. Rotate
θ − t → φ̃ = O(q)(θ − t). This change of variables is C∞ and the Jacobian is one. Denoting D̃(t, φ̃,q) =
O(q)D(t,O(q)−1φ̃,q)O(q)−1, we are going to bound∫

Us(0,0)

dφ̃dφ̃ 1l
(∣∣∣η(t(q),q) + (φ̃, D̃(t, φ̃,q)φ̃)

∣∣∣ ≤ ε
)

(B.43)

uniformly in q. We rescale
(φ̃, φ̃)→ (φ, φ) = (|d|

1
2 φ̃, (|d|

1
2 φ̃). (B.44)

This transformation is again C∞, and its Jacobian is

|detD|−
1
2 ≤ 2

|w|
. (B.45)
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Thus, in the new coordinates,

η(θ,q)− η(t(q),q) = ν(φ, φ) (B.46)

with a function ν ∈ C2, since η ∈ C2 and the coordinate change from θ to φ is C∞. Moreover,

ν(0, 0) = 0, ∂iν(0, 0) = 0, ∂∂ν(0, 0) = 0,

∂2
ν(0, 0) = ±1, ∂2

ν(0, 0) = ±1,
(B.47)

and θ ∈ Us(t) implies φ ∈ Uσ(0, 0) for some σ(s) > 0. Thus we have proven the statement if we can bound

∫
Uσ(0,0)

dφdφ 1l (|f + ν(φ, φ)| ≤ ε) (B.48)

uniformly in f (here f = η(t(q),q)). Because of the absolute value in (B.48), we may assume ∂2
ν = 1,

∂2
ν = ±1. If ∂2

ν = 1, by Theorem A.3 there is a change of variables (φ, φ) → (R,α) with Jacobian
bounded by 2 if s is chosen small enough, such that ν(φ, φ) = R. Thus (B.48) is bounded by

2
∫
dR dα 1l (|f + R| ≤ ε) ≤ 8π ε. (B.49)

If ∂2
ν = −1, by Theorem A.2, there is a change of variables (φ, φ)→ (x, y), such that ν(φ, φ) = xy, and

therefore (B.48) is bounded by

∫
Uσ̃(0,0)

dx dy 1l (|f + xy| ≤ ε) ≤ const | log σ̃| ε | log ε| (B.50)

where σ̃ is such that the image of Uσ(0, 0) under the last change of variables is contained in Uσ̃(0, 0). This
completes the proof of Theorem 1.1 in two dimensions.

B.2 Higher Dimensions

In this Section, we prove Theorem 1.1 for d ≥ 3. The method of proof is a generalization of that for d = 2.
The main change is that instead of numbers, matrices of dimension d− 1 appear.

Lemma B.6 (Nondegeneracy of Critical Points) Fix any q ∈ IRd and vθ, vφ ∈ {±1}. Suppose that
(θ, φ) ∈ Sd−1×Sd−1 is a critical point of F (θ, φ) = e

(
q+vθp(0, θ)+vφp(0, φ)

)
and that e(q+vθp(0, θ)+

vφp(0, φ)) = 0. Then ∂2F (θ, φ) has a nonzero determinant for θ = θ, φ = φ.

Proof: Abuse notation by replacing p(0, θ) with p(θ). Define α by p(α) = q + vθp(θ) + vφp(φ). That
(θ, φ) is a critical point of F means

∇e
(
p(α)

)
· ∂ip(θ) = ∇e

(
p(α)

)
· ∂jp(φ) = 0 (B.51)
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for all i, j ∈ {1, . . . , d − 1}. Hence the normal vectors to the Fermi surface at p(θ) and p(φ) must be
parallel to the normal vector to the Fermi surface at p(α). In other words, there are nonzero numbers cθ, cφ
such that

∇e
(
p(α)

)
= cθ∇e

(
p(θ)

)
∇e
(
p(α)

)
= cφ∇e

(
p(φ)

) (B.52)

For all α, i, j
e
(
p(α)

)
= 0

∇e
(
p(α)

)
· ∂ip(α) = 0(

∂jp(α), ∂2e
(
p(α)

)
∂ip(α)

)
+∇e

(
p(α)

)
· ∂j∂ip(α) = 0

(B.53)

Hence

∂θi
∂θj

F (θ, φ) =
(
∂jp(θ), ∂2e

(
p(α)

)
∂ip(θ)

)
+ vθ∇e

(
p(α)

)
· ∂j∂ip(θ)

=
(
∂jp(θ), ∂2e

(
p(α)

)
∂ip(θ)

)
+ vθcθ∇e

(
p(θ)

)
· ∂j∂ip(θ)

=
(
∂jp(θ), ∂2e

(
p(α)

)
∂ip(θ)

)
− vθcθ

(
∂jp(θ), ∂2e

(
p(θ)

)
∂ip(θ)

)
∂φi

∂φj
F (φ, φ) =

(
∂jp(φ), ∂2e

(
p(α)

)
∂ip(φ)

)
+ vφ∇e

(
p(α)

)
· ∂j∂ip(φ)

=
(
∂jp(φ), ∂2e

(
p(α)

)
∂ip(φ)

)
+ vφcφ∇e

(
p(φ)

)
· ∂j∂ip(φ)

=
(
∂jp(φ), ∂2e

(
p(α)

)
∂ip(φ)

)
− vφcφ

(
∂jp(φ), ∂2e

(
p(φ)

)
∂ip(φ)

)
∂θi
∂φj

F (θ, φ) = vθvφ
(
∂jp(φ), ∂2e

(
p(α)

)
∂ip(θ)

)

(B.54)

Define the (d− 1)× (d− 1) matrices

Mα =
[(
∂jp(θ), ∂2e

(
p(α)

)
∂ip(θ)

)]
1≤i,j≤d−1

Mθ =
[(
∂jp(θ), ∂2e

(
p(θ)

)
∂ip(θ)

)]
1≤i,j≤d−1

Mφ =
[(
∂jp(θ), ∂2e

(
p(φ)

)
∂ip(θ)

)]
1≤i,j≤d−1

(B.55)

Because ∂1p(θ), ∂2p(θ) and ∂1p(φ), ∂2p(φ) span the same space, there is a nonsingular (d− 1)× (d− 1)
matrix U such that

[∂1p(φ) ∂2p(φ) · · · ∂d−1p(φ)] = [∂1p(θ) ∂2p(θ) · · · ∂d−1p(θ)]U (B.56)

Hence the 2(d− 1)× 2(d− 1) matrix ∂2F (θ, φ) blocks

∂2F (θ, φ) =
(
Mα − vθcθMθ vθvφMαU
vθvφU

tMα U tMαU − vφcφU tMφU

)
(B.57)

Multiplying this on the right by
(

1l 0
0 U−1

)
and on the left by

(
1l 0
0 (U t)−1

)
, we see that this has nonzero

determinant if and only if (
Mα − vθcθMθ vθvφMα

vθvφMα Mα − vφcφMφ

)
(B.58)

has a nonzero determinant or equivalently, if and only if

(Mα − vθcθMθ)x+ vθvφMαy = 0

vθvφMαx+ (Mα − vφcφMφ)y = 0
(B.59)

has a unique solution. Solving for y in the first equation, substituting in the second gives

vθvφMαx− (Mα − vφcφMφ)vθvφM−1
α (Mα − vθcθMθ)x = 0 (B.60)
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The matrix Mα is invertible because S is strictly convex. Multiplying through by vθvφM−1
α gives

[
1l− (1l− vφcφM−1

α Mφ)(1l− vθcθM−1
α Mθ)

]
x = 0 (B.61)

Thus ∂2F (θ, φ) has nonzero determinant if and only if[
1l− (1l− vφcφM−1

α Mφ)(1l− vθcθM−1
α Mθ)

]
= vφcφM

−1
α Mφ + vθcθM

−1
α Mθ − vθvφcθcφM−1

α MθM
−1
α Mφ

(B.62)

is invertible. By strict convexity and (B.52), α ∈ {θ, a(θ)} and φ ∈ {θ, a(θ)}. If e is symmetric, this
implies that Mα = Mθ = Mφ and cθ = cφ = 1, so the right hand side of (B.62) is (vφ + vθ − vφvθ)1l which is
invertible since the sum of three signs can never vanish. If e is asymmetric, we use (H4) to say that, possibly
after a change of basis (which we can do by multiplying on the right by a V and on the left by its V −1),
each of the three matrices on the right hand side are of the form ±1l plus a matrix whose norm is at most
1
5 ,

1
5 , (1 + 1

5 )2 − 1, respectively, for the three matrices. As

1
5 + 1

5 + (1 + 1
5)2 − 1 = 4

5 + 1
25 < 1 (B.63)

the right hand side is invertible.

Proposition B.7 There is a constant const such that for all d ≥ 3 and all j1, j2, j3 < 0

Vol{(k1,k2) ∈ IR2d : |e(k1)| ≤M j1 , |e(k2)| ≤M j2 , |e(±k1 ± k2 + q)| ≤M j3}

≤ const M j1M j2M j3 .
(B.64)

Proof: We may assume without loss of generality that j3 = max{j1, j2, j3}. Otherwise make a change of
variables with p1 = ±k1 ± k2 + q, p2 = k2. By compactness of a closed neighbourhood of S, it suffices to
show that for any k(0)

1 , k(0)
2 , q(0) obeying

e(k(0)
1 ) = e(k(0)

2 ) = e(±k(0)
1 ± k(0)

2 + q(0)) = 0 (B.65)

there is a constant const and there are neighbourhoods V1, V2, U of k(0)
1 , k(0)

2 , q(0) respectively, such
that for all q ∈ U and all j < 0

Vol{(k1,k2) ∈ V1 × V2 : |e(k1)| ≤M j1 , |e(k2)| ≤M j2 , |e(±k1 ± k2 + q)| ≤M j3}

≤ const M j1M j2M j3
(B.66)

Since M jk < r for k ∈ {1, 2, 3}, we can switch to the ρ, θ coordinates. In these coordinates, the neighbour-
hoods V1, V2 can be replaced by some X1 × Y1 and X2 × Y2. Define

E(q, θ, φ) = e
(
± p(0, θ)± p(0, φ) + q

)
(B.67)

Since, for all q in a neighbourhood of q(0) and all (θ, φ) ∈ Sd−1 × Sd−1,

|E
(
q, θ, φ)| = |e

(
± p(0, θ)± p(0, φ) + q

)
− e
(
± p(ρ1, θ)± p(ρ2, φ) + q

)
+ e
(
± p(ρ1, θ)± p(ρ2, φ) + q)

)
|

≤ const |ρ1|+ const |ρ2|+ |e
(
± p(ρ1, θ)± p(ρ2, φ) + q

)
|,

(B.68)
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we have, for all q in a neighbourhood of q(0),

Vol{(k1,k2) ∈ V1 × V2 : |e(k1)| ≤M j1 , |e(k2)| ≤M j2 , |e(k1 ± k2 + q)| ≤M j3}

≤ const Vol{(θ, φ, ρ1, ρ2) ∈ X1 ×X2 × Y1 × Y2 : |ρ1| ≤M j1 , |ρ2| ≤M j2 ,

|e
(
p(ρ1, θ)± p(ρ2, φ) + q

)
| ≤M j3}

≤ const Vol{(θ, φ, ρ1, ρ2) ∈ X1 ×X2 × Y1 × Y2 : |ρ1| ≤M j1 , |ρ2| ≤M j2 ,

|E(q, θ, φ)| ≤ const M j3}

≤ const M j1+j2Vol{(θ, φ) ∈ X1 ×X2 : |E(q, θ, φ)| ≤ const M j3}

(B.69)

Hence it suffices to prove that, for all q in a neighbourhood of q(0),

Vol{(θ, φ) ∈ X1 ×X2 : |E(q, θ, φ)| ≤ const M j} ≤ const M j (B.70)

In the event that (θ, φ) is not a critical point of E(q(0), θ, φ), this is trivial.
So from now on suppose that (θ, φ) is a critical point of E(q(0), θ, φ). By the previous Lemma ∂2E is

invertible at (θ, φ). So, by the implicit function theorem, for each q in a neighbourhood of q(0)

∇E(q, θ, φ) = 0 (B.71)

(here ∇ means the derivative with respect to θ and φ) has a unique solution
(
θ(q), φ(q)

)
in a neighbour-

hood of (θ, φ) and this solution depends on q in a Ck−1 way. Consequently, ∂2E is also invertible at(
θ(q), φ(q)

)
. Let d1 and d2 be the number of positive and negative eigenvalues of ∂2E(θ, φ) respectively.

Then d1 ≥ 0, d2 ≥ 0, d1 + d2 = 2(d − 1) ≥ 4 since d ≥ 3. By a translation followed by a linear change of
variables we may replace E(q, θ, φ) by F (u, v) = E(q, θ(u, v), φ(u, v)) with u running over a neighbourhood
of 0 ∈ IRd1 , v running over a neighbourhood of 0 ∈ IRd2 and

∂ui
F (0, 0) = 0

∂vi
F (0, 0) = 0

∂ui
∂uj

F (0, 0) = 2δi,j

∂vi
∂vj

F (0, 0) = −2δi,j

∂ui
∂vj

F (0, 0) = 0

(B.72)

Note that F (0, 0) need not be zero.
The easy case is that with one of d1, d2 zero. Suppose that d2 = 0. Then, as in Section A.2 we can

make a “polar coordinate” like change of variables u = u(r, α), with r being the square root of F − F and
α being the usual polar angles. Then f(r, α) = F (u(r, α)) = F + r2 and we are led to bound∫

dα

∫
dr rd1+d2−1χ

(
|F + r2| ≤ ε

)
(B.73)

If F ≥ −2ε, then r ≤ const
√
ε and, as d1 + d2 − 1 ≥ 1, the integral is bounded by const ε. If F < −2ε,

then r must obey r2 = |F|+ ε for some ε ∈ [−ε, ε]. As

r = ±
√
|F|+ ε

= ±
√
|F|

√
1 + ε/|F|

= ±
√
|F|+ O

(
ε/
√
|F|

) (B.74)
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r runs over an interval of length O
(
ε/
√
|F|

)
≤ const

√
ε centred on

√
|F| ≥ const

√
ε. Hence the integral

is bounded by
|F|(d1+d2−1)/2 ε√

|F|
(B.75)

which, in turn is bounded by const ε, uniformly in F again because d1 + d2 − 1 ≥ 1.
The hard case is that with both d1 and d2 nonzero. Then we first go to polar coordinates in u and v

separately.

r =

√√√√ d1∑
i=1

u2
i

α = d1 − 1 angles for u

ρ =

√√√√ d2∑
i=1

v2
i

β = d2 − 1 angles for v

(B.76)

The measure
dd−1θ dd−1φ = const dd1u dd2v = J(α, β)rd1−1ρd2−1dr dρ (B.77)

with J(α, β) bounded above. For each fixed α, β the function f(r, ρ) = F
(
u(r, α), v(ρ, β)

)
is Ck in (r, ρ) in

a neigbourhood of (0, 0) ∈ [0,∞)2. Furthermore the first and second derivatives of f at the origin are

fr(0, 0) = 0

fρ(0, 0) = 0

frr(0, 0) = 2

fρρ(0, 0) = −2

frρ(0, 0) = 0

(B.78)

Hence there is, for k ≥ 2, a C1 change of variables x = x(r, ρ), y = y(r, ρ) such that

f
(
r(x, y), ρ(x, y)

)
= F (0, 0) + x2 − y2 (B.79)

and
∂(r, ρ)
∂(x, y)

(0, 0) =
(

1 0
0 1

)
(B.80)

The latter condition ensures that
|r| ≤ a1|x|+ b1|y|

|ρ| ≤ b2|x|+ a2|y|
(B.81)

By choosing the neighbourhood sufficiently small, the constants a1, a2 and b1, b2 can be made arbitrarily
close to one and zero respectively. Hence rd1−1ρd2−1 is bounded by a finite sum of terms of the form |x|e1 |y|e2
with e1, e2 ≥ 0, e1 + e2 = d1 + d2 − 2 = 2d− 4 and we are led to bound

∫ 1

−1

dx |x|e1
∫ 1

−1

dy |y|e2 χ
(
|F + x2 − y2| ≤ ε

)
(B.82)

with e1, e2 ≥ 0, e1 + e2 = d1 + d2 − 2 = 2d− 4.
We may assume, without loss of generality that F ≥ 0. Otherwise just exchange the roles of x and

y. In the domain where F + x2 ≤ 2ε both |x| and |y| are bounded above by O(
√
ε). This domain domain
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contributes at most O(ε) to the total integral. In the domain where F+x2 ≥ 2ε, y must obey y2 = F+x2+ε
for some ε ∈ [−ε, ε]. So

y = ±
√
F + x2 + ε

= ±
√
F + x2

(
1 + ε

F+x2

)1/2

= ±
√
F + x2

(
1 +O

(
ε

F+x2

))
= ±

√
F + x2 +O

(
ε√

F+x2

)
(B.83)

That is, y runs over at most two intervals of length at most O
(

ε√
F+x2

)
≤ O(

√
ε) whose centers have

modulus
√
F + x2 ≥

√
2ε. The contribution of this domain is at most

const
∫
dx |x|e1(

√
F + x2)e2 ε√

F+x2
(B.84)

Since e1 + e2 ≥ 2, this is bounded by O(ε), uniformly in F.

Proof of Lemma 3.9: Let κ > 0. We first note that Pκ can be defined as in (B.11), and that Lemmas B.1
and B.2 carry over to d ≥ 3 with trivial changes. The analogue of Lemma B.3 also holds because the matrix
∂2E is nonsingular by Lemma B.6, and this implies by the implicit function theorem the existence and C1

properties of the solutions stated in (i). That there are four solutions follows as in Lemma 3.2. All four
solutions given in the table after (3.39) are possible because (H5) has been relaxed. Since the function is
defined on the compact set Pκ×

(
[−κ, κ] × Sd−1

)2, it is uniformly C1, so there is a global Lipschitz constant
L such that (3.143) holds. To prove (ii), we may assume that q ∈ Pκ. Let K = L + 1 and (θ, φ) not obey
(3.145). Then for all |q′ − q| ≤ ε,∣∣θ − θbcr(q′)∣∣ ≥ ∣∣∣∣θ − θbcr(q)

∣∣− ∣∣θbcr(q′)− θbcr(q)
∣∣∣∣

≥ Kε − L|q′ − q| ≥ ε
(B.85)

and similarly
∣∣φ− φbcr(q′)∣∣ ≥ ε (we suppress ρθ and ρφ in the notation since everything is uniform in these

variables). Thus, by Taylor expansion,(
∇θE
∇φE

)
(q′, θ, φ) = ∂2E(q′, θbcr, φ

b
cr)

(
θ − θbcr
φ− φbcr

)

+

1∫
0

dt
(
∂2E

(
q′, θbcr + t(θ − θbcr), φbcr + t(φ− φbcr)

)
− ∂2E(q′, θbcr, φ

b
cr)
) ( θ − θbcr

φ− φbcr

) (B.86)

where θbcr = θbcr(q
′) and φbcr = φbcr(q

′). Since the eigenvalues of ∂2E are nonzero and the parameters run
over a compact region, there is K > 0 such that

∣∣∂2E(q′, θbcr, φ
b
cr) v

∣∣ ≥ 2
K
|v| (B.87)

for all v ∈ IR2(d−1). By continuity, the operator norm of the matrix in the remainder term in (B.86) can be
made smaller than 1

K
. This implies that if (3.145) does not hold, (3.144) must hold.
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Appendix C. One–loop volume bounds for asymmetric Fermi surfaces

In this appendix, we prove Lemma 4.8. We mention again that Lemma 4.8 has two important consequences
– it implies differentiability of the particle–particle wicked ladder contributions to the counterterm and the
self–energy (defined in (4.1) and (4.2), and drawn in Figure 6 (b)) in the asymmetric case (Theorem 4.9),
and it also implies that the particle–particle bubble

B(k,Q, q) = lim
I→−∞

∑
I≤j,h<0

Bjh(k,Q, q) (C.1)

where
Bjh(k,Q, q) =

∫
IR×B

dd+1p Cj(p) v̂(p− k) Ch(−p+Q) v̂(q + p−Q) (C.2)

is a bounded function of the three momenta (k,Q, q) if e is asymmetric. If e is symmetric, B diverges for
|Q| → 0 like log |Q| for all k, q; this leads to the Cooper instability if the interaction is attractive. Thus
Theorem 4.9 and Lemma 2.41 of I imply that no ladder subdiagrams can generate any factorials in the
values of individual graphs in the perturbation expansion, if e is asymmetric and if (H4’) holds.

We first do some easy reduction steps. By changing variables from p to ρ, θ, and bounding

∫
ddp 1l (|e(−p + q)| ≤ ε) 1l (|e(p)| ≤ ε) ≤

ε∫
−ε

dρ

∫
dθ J(ρ, θ) 1l (|e(−p(ρ, θ) + q)| ≤ ε)

≤ 2ε|J | sup
|ρ|≤ε

∫
dθ 1l (|e(−p(ρ, θ) + q)| ≤ ε)

(C.3)

we see that (4.21) follows from (4.20), with the constant stated in Lemma 4.8.
Since |ρ| ≤ ε ≤ ε, we can do the usual Taylor expansion

|e(−p(ρ, θ) + q)− e(−p(0, θ) + q)| =

∣∣∣∣∣∣ρ
1∫

0

dt ∇e(−p(tρ, θ) + q) · ∂ρp(tρ, θ)

∣∣∣∣∣∣
≤ ε|e||∂ρp| ≤ ε

|e|
u

.

(C.4)

Here we used that, since ρ = e(p(ρ, θ)) and ∂ρp(ρ, θ) = |∂ρp(ρ, θ)|u(p(ρ, θ)),

1 = ∇e(p(ρ, θ)) · ∂ρp(ρ, θ) = ∇e(p(ρ, θ)) · u(p(ρ, θ))|∂ρp(ρ, θ)| ≥ u|∂ρp(ρ, θ)|, (C.5)

so |∂ρp| ≤
1
u

. Therefore, for all |ρ| ≤ ε, |e(−p(ρ, θ) + q)| ≤ ε implies

|e(−p(0, θ) + q)| ≤ ε + |e|
u
ε ≤ ε

(
1 + |e|

u

)
. (C.6)

Thus, if we show that there are α ≥ 1
3

and Q̃B > 0 such that∫
dθ 1l (|e(−p(0, θ) + q| ≤ ε) ≤ Q̃B ε

α (C.7)

then (4.20) follows with QB = (1 + |e|
u

)αQ̃B.
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C.1 Geometry of the Problem

We now describe the geometrical picture behind the bounds. The integral in (4.21) is the d–dimensional
volume of the set Rε

∩ (−Rε
+ q) ⊂ B, where Rε = {p : |e(p)| ≤ ε} is a neighbourhood of the Fermi

surface S having thickness of order ε > 0. From now on, we drop the subscript 2 and denote ε = ε. Since
(C.7) holds trivially for all ε > ε, if ε > 0 is fixed and Q̃B is chosen dependent on ε, we may assume
that ε is small, and therefore we first draw a picture of the intersection of S with its translates, in Figure 9
(one of them is drawn dotted to make the distinction easier). This corresponds to the reduction of (4.21) to
(4.20). The intersection may be transversal, as in (a), or tangential, as in (b), (c), and (d). The translating
momentum q is q = 2p in case (b), and q = p + a(p) in case (c) and (d), where p is the point at which the
tangential intersection takes place.

Figure 9: Intersections of S and −S + q

(a) (b) (c) (d)

In Figure 10, we redraw a neighbourhood of the intersection point in coordinates where one of the
surfaces appears as a straight line. In the Figure, q is chosen such that exact tangency happens, this is, of
course, not the case in general. In fact, the coordinates used in Figure 10 are our standard coordinates ρ
and θ, and Figure 10 simply contains the graph of the function

g(θ) = e(q− p(0, θ)) (C.8)

for four values of q (we suppress the dependence of g on q in the notation because q is fixed). The shaded
region in Figure 10 is the region where |g| ≤ ε, in other words, it is the support of 1l (|g(θ)| ≤ ε) . It is
obvious from the Figure that this support condition poses a restriction on θ. We now discuss briefly why
this figure really captures the essential behaviour, and then turn to the details of the proof.

Figure 10: The intersection in natural coordinates

(a)

θ

g

(b)

θ

g

θ

g

(c)

θ

g

(d)
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We have

g′(θ) = −∇e(q− p(0, θ)) · ∂θp(0, θ)

g′′(θ) =
(
∂θp(0, θ), e′′(q− p(0, θ))∂θp(0, θ)

)
−∇e(q− p(0, θ)) · ∂2

θp(0, θ).
(C.9)

Using θ∗ to denote the value of θ where g(θ) = 0, the cases drawn in the Figures are
(a) q−p(0, θ∗) 6∈ {p(0, θ∗),p(0, a(θ∗))}, so g′(θ∗) 6= 0. It is obvious that the condition |g(θ)| ≤ ε, which

is the support condition of the integrand (indicated as the shaded region in Figure 10) restricts θ
to an interval of length const ε around θ∗, so (C.7) holds, with α = 1.

(b) q = 2p(0, θ∗). Then q− p(0, θ∗) = p(0, θ∗), g′(θ∗) = 0, and

g′′(θ∗) = 2w(p(0, θ∗)) (C.10)

by (2.19) and (2.24), so |g′′(θ∗)| ≥ 2w > 0 by (2.33). Thus the function is essentially quadratic
and |g(θ)| ≤ ε restricts θ to |θ − θ∗| ≤ const

√
ε, so (C.7) holds with α = 1

2 . The factor 2 in (C.10)
is intuitively clear from Figure 9 (b): the curvatures of the two intersecting sets have the same
magnitudes, but opposite signs.

The other case where g′ vanishes is q = p(0, θ∗)+p(0, a(θ∗)). Then g′(θ∗) = 0, and by (2.34), (2.36), (2.19),
and (2.24),

g′′(θ∗) = w(p(0, a(θ∗)))
(

1− ∂a

∂θ
(θ∗)

)
. (C.11)

By (2.37), ∂a∂θ is the curvature ratio at θ∗ and a(θ∗). This is the point where (H4’) comes in – this ratio can
equal one, and hence g′′(θ) can vanish, only if θ∗ is one of θ(1), . . . , θ(N). So there are the cases

(c) θ∗ 6∈ Uδ(θ(1)) ∪ . . . ∪ Uδ(θ(N)) for some δ > 0. Then
∣∣∂a
∂θ (θ

∗)− 1
∣∣ ≥ γ(δ) > 0, and the bound is as

in case (b), only with a δ–dependent constant 1/γ(δ) that grows as δ → 0.
(d) θ∗ ∈ Uδ(θ(1)) ∪ . . . ∪ Uδ(θ(N)). If θ∗ = θ(n) for some n ∈ {1, . . . ,N}, g′′(θ∗) = 0 because there is

a tangential intersection at points with the same curvature. In a neighbourhood of these points,
|g′′(θ)| gets arbitrarily small. This is the hard case of the proof. Here we shall use the growth
condition in (H4’) to show that g′′ grows at least linearly when one moves away from θ(n). This
will imply (C.7) with α = 1

3 .

C.2 Basic properties of the critical points

We first collect some information about those θ∗ where g′(θ∗) = 0 and bound the contributions to the LHS
of (C.7) where θ is away from these θ∗. By Lemma B.1, if κ > 0 is small enough, the equation

∇e(p(r, ϑ)) · ∂θp(0, θ) = 0 (C.12)

has, for fixed r with |r| < κ and fixed θ ∈ IR/2πZZ, exactly two solutions for ϑ, given by ϑ = ϑ(i)(0, θ, r),
with

ϑ(1)(0, θ, 0) = θ

ϑ(2)(0, θ, 0) = a(θ),
(C.13)

75



and both are C1 functions of (θ, r). Let

Qκ =
2⋃
i=1

{p(r, ϑ(i)(0, θ, r)) + p(0, θ) : |r| < κ, θ ∈ IR/2πZZ}. (C.14)

Remark C.1 There is κ > 0 and m = m(κ) > 0 such that for all q 6∈ Qκ and all θ ∈ IR/2πZZ satisfying
|e(q− p(0, θ))| ≤ κ/2, ∣∣∣∣ ∂∂θ e(q− p(0, θ))

∣∣∣∣ ≥ m(κ). (C.15)

Proof: The function F : (B \ Qκ)× IR/2πZZ→ IR, (q, θ) 7→
∣∣ ∂
∂θ e(q− p(0, θ))

∣∣, is continuous. The set

Xκ = {(q, θ) ∈ (B \ Qκ)× IR/2πZZ : |e(q− p(0, θ))| ≤ κ/2} (C.16)

is compact. By construction of Xκ, F has no zeros on this set, so m(κ) > 0 exists.

If q 6∈ Qκ, then for all ε ≤ κ
2 , by a change of variables

∫
dθ 1l (|e(q− p(0, θ))| ≤ ε) ≤ 1

m(κ)

∫
de 1l (|e| ≤ ε) =

2
m(κ)

ε (C.17)

Thus we may assume that q ∈ Qκ, for some κ > 0, which will be fixed, independent of ε, in the following.

Let b > 0, and split

IR/2πZZ =
N⋃
n=1

Ub(θ(n))
·
∪Rb (C.18)

(by (H4’), b > 0 can be chosen such that Ub(θ(n))∩Ub(θ(n′)) = ∅ if n 6= n′). We fix b > 0; then (H4’) implies
that there is z > 0 such that for all θ ∈ Rb,∣∣∣∣w(p(0, a(θ)))

(
1− ∂a

∂θ
(θ)
)∣∣∣∣ ≥ z (C.19)

Lemma C.2 Define the maps F and F by

Fi : (−κ, κ)× IR/2πZZ→ B

(r, θ) 7→ p(0, θ) + p
(
r, ϑ(i)(0, θ, r)

)
.

(C.20)

There is κ = κ(b) > 0 such that for all 0 < κ < κ,

detF ′(r, θ) 6= 0 ∀(r, θ) ∈ (−κ, κ)× IR/2πZZ

detF ′(r, θ) 6= 0 ∀(r, θ) ∈ (−κ, κ)×Rb
(C.21)
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and such that for all θ ∈ IR/2πZZ, F is invertible on (−κ, κ)×Uκ(θ), and for all θ ∈ Rb, F is invertible
on (−κ, κ)× (Uκ(θ) ∩Rb).

Proof: F and F are C1 functions. Their derivatives, evaluated at r = 0, are

∂Fi

∂r = ∂ρp(0, ϑ(i)(0, θ, 0)) + ∂θp(0, ϑ(i)(0, θ, 0))∂ϑ(i)(0, θ, 0)
∂Fi

∂θ = ∂θp(0, θ) + ∂θp(0, ϑ(i)(0, θ, 0))∂ϑ(i)(0, θ, 0).
(C.22)

By (B.8) and (2.34),
∂F
∂θ

= ∂θp(0, θ)
(
1 + ∂ϑ

(1)(0, θ, 0)
)

∂F
∂θ

= ∂θp(0, θ) + ∂θp(0, a(θ))∂ϑ(2)(0, θ, 0)

= ∂θp(0, θ)
(
1− ∂ϑ(2)(0, θ, 0)

) (C.23)

so by (B.21) and (B.23),
∂F
∂θ

= 2∂θp(0, θ)

∂F
∂θ

= ∂θp(0, θ)
(
1− ∂a

∂θ (θ)
)
.

(C.24)

Since ∂ρp and ∂θp are linearly independent, detF ′i (0, θ) 6= 0 if ∂Fi

∂θ 6= 0. Since |∂θp(0, θ)| = 1 for all
θ ∈ IR/2πZZ, ∂F1

∂θ 6= 0 holds. Since Rb is compact, ∂a
∂θ is continuous on Rb, and ∂a

∂θ (θ) 6= 1 for all θ ∈ Rb,
there is γ > 0 such that ∣∣∣∣∂a∂θ (θ)− 1

∣∣∣∣ ≥ γ(b) ∀θ ∈ Rb. (C.25)

By continuity of F ′i in r, there is κ̃(b) > 0 such that |detF ′i(r, θ)| 6= 0 for all r < κ̃(b). By the implicit
function theorem, and by compactness of IR/2πZZ and Rb, there is 0 < κ(b) ≤ κ̃(b) such that the stated
local invertibility holds for all |r| < κ(b).

Remark C.3 In the corresponding two–loop statement, Lemma B.3, there are three summands, all close
to ±1, which can therefore never add up to zero. This is the reason why there, no restriction to a set similar
to Rb was required, and why Lemma B.3 also holds in the symmetric case. Note that if (Sy) holds, then
Rb = ∅, and ∂F

∂θ ≡ 0 (this corresponds to q = 0).

Remark C.4 The local injectivity stated in Lemma C.2 does not rule out the existence of (r′, θ′) different
from θ∗, r∗, satisfying

q = p(0, θ∗) + p(r∗, ϑ(k)(0, θ∗, r∗))

= p(0, θ′) + p(r′, ϑ(k)(0, θ′, r′))
(C.26)

as long as θ′ and θ∗ satisfy |θ∗ − θ′| > κ, i.e., they are far away from each other. This can happen because
B is a torus. However, for every (r∗, θ∗) there are at most 2π/κ such (r′, θ′)’s. (Geometrically, it is obvious
that there can only be a few of them.) This complication is easily dealt with by covering the region Rb by
sets with diameter at most 2γ, where 2γ < κ:

Rb ⊂
k⋃
k=1

Uγ(tk). (C.27)
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Corollary C.5 Let κ < κ(b) and fix q ∈ Qκ. Then the solutions of

g′(θ) = 0, θ ∈ Rb (C.28)

are isolated, and given by C1 functions of q. There is at most one solution in each Uγ(tk).

Proof: Let κ < κ(b) and q ∈ Qκ, then

q = p(0, θ) + p(r, ϑ(k)(0, θ, r)). (C.29)

Assume that

g′(θ∗) = −∇e(q− p(0, θ∗)) · ∂θp(0, θ∗) = 0. (C.30)

Then by (C.12) and (C.13), there are r∗, |r∗| < κ, and k ∈ {1, 2} with

q = p(0, θ∗) + p(r∗, ϑ(k)(0, θ∗, r∗)). (C.31)

We cannot have

q = p(0, θ∗) + p(r∗, ϑ(1)(0, θ∗, r∗)) = p(0, θ∗∗) + p(r∗∗, ϑ(2)(0, θ∗∗, r∗∗))

with θ∗ and θ∗∗ both in the same Uγ(tk), since this would force ϑ(1)(0, θ∗, 0) = θ∗ and ϑ(2)(0, θ∗∗, 0) = a(θ∗∗)
to be too close together. By injectivity, if k = k and |θ∗ − θ| < κ then θ∗ = θ and r∗ = r must hold. So
the solutions in θ are isolated, and, by (C.21) and the inverse function theorem, C1 in q.

C.3 The easy cases

We have already dealt with the case q 6∈ Qκ. By compactness, it thus suffices to consider q′s in a small ball
Bκ ⊂ Qκ. By Corollary C.5, we may choose the tk’s of (C.27) such that if g′(θ) fails to have a zero in Uγ(tk),
then g′(θ) is bounded away from zero, uniformly for q ∈ Bκ. The contribution to

∫
dθ 1l (|e(q− p(0, θ))| ≤ ε)

from these Uγ(tk)’s is bounded as in (C.17). This leaves q ∈ Bκ, θ running over Uγ(tk) with k such that
g′(θ) vanishes at precisely one point of Uγ(tk) and q ∈ Bκ, θ running over Uκ(θ(n)), 1 ≤ n ≤ N . We now
deal with the former case.

Let η > 0. Since g is continuous, g−1(]− 2η, 2η[) is open, so

g−1(]− 2η, 2η[) =
⋃
k∈IN

(
ak(η), bk(η)

)
. (C.32)

The compact set g−1([−η, η]) is also contained in this union of open intervals, hence also in a finite subcov-
ering. Thus, choosing such a finite subcovering, relabelling (if necessary) the k’s, and defining

Nη =
kmax⋃
k=1

(
ak(η), bk(η)

)
, (C.33)
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we have
g−1(]− η, η[) ⊂ g−1([−η, η]) ⊂ Nη ⊂ g−1(]− 2η, 2η[). (C.34)

That is, the set of θ where |g(θ)| < η is covered by finitely many open intervals with |g(θ)| < 2η on each
interval (this is also obvious geometrically since g−1(]− η, η[) is the intersection of a translate of −S with a
shell around S).

Let η < r/2, then we can define the map ˜ : Nη → (−2η, 2η) × IR/2πZZ, θ 7→ (ρ̃, θ̃) by

q− p(0, θ) = p
(
ρ̃(θ), θ̃(θ)

)
, (C.35)

and ρ̃, θ̃ are C2,h in θ. Fix η, let κ < η, and let ε < κ. By definition of the coordinates ρ and θ,

ρ̃(θ) = e(p(ρ̃, θ̃)) = e(q− p(0, θ)) = g(θ) (C.36)

so ρ̃ = g
∣∣
Nη

, and thus ∫
IR/2πZZ

dθ 1l (|g(θ)| ≤ ε) =
∫
Nη

dθ 1l (|ρ̃(θ)| ≤ ε) . (C.37)

Let θ∗ obey ∂ρ̃
∂θ (θ

∗) = g′(θ∗) = 0. Then, by Lemma B.1,

θ̃(θ∗) = ϑ(k)(0, θ∗, ρ̃(θ∗)) (C.38)

Since ϑ(k) is C1, we may Taylor expand in ρ̃(θ∗) and get

θ̃(θ∗)− ϑ(k)(0, θ∗, 0) = ρ̃(θ∗)

1∫
0

ds ∂ϑ
(k)(0, θ∗, sρ̃(θ∗)), (C.39)

so that ∣∣∣θ̃(θ∗)− ϑ(k)(0, θ∗, 0)
∣∣∣ ≤ const |ρ̃(θ∗)| (C.40)

holds for k ∈ {1, 2}.
We have already split the integral into contributions from Uγ(tl). We now only have to show that if

θ∗ ∈ Uγ(tl), then for all θ ∈ Uγ(tl), g′′(θ) 6= 0, uniformly in q. Thus we may assume that |θ − θ∗| ≤ κ.
Let k = 1 in (C.38). Then ϑ(1)(0, θ∗, 0) = θ∗ and∣∣∣θ̃(θ)− θ∣∣∣ ≤ ∣∣∣θ̃(θ)− θ̃(θ∗)∣∣∣+ ∣∣∣θ̃(θ∗)− θ∗∣∣∣+ |θ∗ − θ|

≤ const (|ρ̃(θ∗)|+ |θ − θ∗|) .
(C.41)

By (2.19) and (2.24),
g′′(θ) = 2w(p(0, θ)) + Φ(θ) (C.42)

with
Φ(θ) =

(
∂θp(0, θ), [e′′(p(ρ̃, θ̃))− e′′(p(0, θ)]∂θp(0, θ)

)
− [∇e(p(ρ̃, θ̃))−∇e(p(0, θ))] · ∂2

θp(0, θ)
(C.43)

Since e ∈ C2,h, and by (C.40),

|Φ(θ)| ≤ const (|ρ̃(θ∗)|+ |ρ̃(θ)|+ |θ − θ∗|)h (C.44)

79



Thus, by (2.33), if κ > 0 is small enough, g′′(θ) > 0 holds for all θ ∈ Uκ(θ∗) with |g(θ)| = |ρ̃(θ)| ≤ κ,
and |g(θ∗)| = |ρ̃(θ∗)| ≤ 2κ. These conditions on ρ̃ are fulfilled for all ε < κ because in the support of the
integrand, |ρ̃(θ)| ≤ ε and because if |ρ̃(θ∗)| > 2κ, g′ would fail to vanish on Uγ(tl). Note that these conditions
also hold in Ub(θ(n)) because k = 1.

Let k = 2 in (C.38). Then ϑ(2)(0, θ∗, 0) = a(θ∗), and therefore, as in (C.41),

∣∣∣θ̃(θ)− a(θ)∣∣∣ ≤ const (|ρ̃(θ∗)|+ |θ − θ∗|+ |a(θ)− a(θ∗)|) . (C.45)

Moreover, by (C.9), (2.34), and (2.36)

g′′(θ) = w(p(0, a(θ)))
(

1− ∂a

∂θ
(θ)
)

+ Φ̃(θ) (C.46)

with

Φ̃(θ) =
(
∂θp(0, θ), [e′′(p(ρ̃, θ̃))− e′′(p(0, a(θ))]∂θp(0, θ)

)
− [∇e(p(ρ̃, θ̃))−∇e(p(0, a(θ)))] · ∂2

θp(0, θ).
(C.47)

We have ∣∣∣Φ̃(θ)
∣∣∣ ≤ const (|ρ̃(θ∗)|+ |ρ̃(θ)|+ |θ − θ∗|+ |a(θ)− a(θ∗)|)h (C.48)

Again, Hölder continuity and (C.19) imply that there is κ > 0 such that g′′(θ) is bounded away from zero,
uniformly in q ∈ Bκ and θ ∈ Uγ(tl) ∩Rb.

Taylor expansion of g′ gives

g′(θ) = (θ − θ∗)
1∫

0

dt g′′(θ∗ + t(θ − θ∗)) (C.49)

If |θ − θ∗| < κ, the coefficient of θ − θ∗ is bounded away from zero, and therefore |g′(θ)| ≤ ε1/2 implies
|θ − θ∗| ≤ ε1/2

z
. Thus

∫
Uκ(tl)

dθ 1l (|g(θ)| ≤ ε) ≤
∫
dθ 1l (|g(θ)| ≤ ε) 1l

(
|g′(θ)| ≤ ε1/2

)

+
∫
dθ 1l (|g(θ)| ≤ ε) 1l

(
|g′(θ)| ≥ ε1/2

)

≤ 2ε
1
2

z
+ ε−

1
2

∫
dx 1l (|x| ≤ ε)

≤ 2ε
1
2 (1 + 1

z
),

(C.50)

and we have proven (C.7), with α = 1
2 , for all contributions except those from a small neighbourhood of

θ(1), . . . , θ(N).
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C.4 The hard case

We now turn to the case where a tangential intersection happens near points where ∂a
∂θ = 1. Let q run over

Bκ. We have to bound the contribution from all Uκ(θ(n)) to the volume integral in (C.7). Let U = Uκ(θ(n))
and ε′ = ε

2
3 , then ε′ ≥ ε. Again, we decompose∫

U

dθ 1l (|g(θ| ≤ ε) = Z(ε, ε′) + V (ε, ε′) (C.51)

where
Z(ε, ε′) =

∫
U∩Nη

dθ 1l (|g(θ)| ≤ ε) 1l (|g′(θ)| ≤ ε′)

V (ε, ε′) =
∫

U∩Nη

dθ 1l (|g(θ)| ≤ ε) 1l (|g′(θ)| > ε′) .
(C.52)

Since η is fixed, we may assume that κ is chosen so small that U ∩Nη is a single open interval. We use that
|ρ̃| ≤ ε must hold in the support of the integrand to replace g′ by a function f , as follows. By (C.35) and
Taylor expansion in ρ̃,

g′(θ) = −∇e(q− p(0, θ)) · ∂θp(0, θ)

= −∇e(p(0, θ̃)) · ∂θp(0, θ)− ρ̃(θ)φ1(θ)

= f(θ)− g(θ) φ(θ)

(C.53)

with a function φ1 that is uniformly bounded on IR/2πZZ, and

f(θ) = −∇e(p(0, θ̃)) · ∂θp(0, θ). (C.54)

On the support of 1l (|g(θ)| ≤ ε) ,

|g′(θ)− f(θ)| ≤ |g(θ)||φ| ≤ ε|φ|, (C.55)

so |g′(θ)| ≤ ε′ implies |f(θ)| ≤ ε′ + ε|φ|, thus

1l (|g(θ)| ≤ ε) 1l (|g′(θ)| ≤ ε′) ≤ 1l (|g(θ)| ≤ ε) 1l (|f(θ)| ≤ ε′(1 + |φ|)) , (C.56)

and hence
Z(ε, ε′) ≤

∫
U∩Nη

dθ 1l (|g(θ| ≤ ε) 1l (|f(θ)| ≤ ε′(1 + |φ|)) . (C.57)

Conversely, if |g(θ)| ≤ ε and |g′(θ)| ≥ ε′, then for all

ε ≤
(

1
2|φ|

)3

(C.58)

we have
|f(θ)| ≥ |g′(θ)| − ε|φ| ≥

1
2
ε′. (C.59)

Since the constant on the right side of (C.58) is fixed, we may assume that ε is so small that (C.58) holds.
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By strict convexity, |f(θ)| ≤ const ε′ implies that either |θ̃ − θ| ≤ const ε′ or |θ̃ − a(θ)| ≤ const ε′. In
the event that θ̃ ≈ θ, q can have no representation in the form p(0, θ′) + p(r′, ϑ(2)(0, θ′, r′)) with θ′ in the
current interval Uκ(θ(n)), since ϑ(2)(0, θ′, r′) ≈ a(θ). This puts us into a “g′ has isolated zeros” setting and
is handled as in the last section.

When θ̃(θ) ≈ a(θ), we rewrite

f(θ) = ∇e(p(0, θ̃)) · ∂θp(0, a(θ))

= ∇e(p(0, θ̃)) ·
(
∂θp(0, a(θ))− ∂θp(0, θ̃)

) (C.60)

Taylor expansion of the second factor gives

f(θ) = (a(θ)− θ̃(θ)) Φ(θ) (C.61)

with

Φ(θ) =

1∫
0

ds ∂2
θp
(
0, θ̃ + s(a(θ)− θ̃(θ))

)
· ∇e(p(0, θ̃(θ))) (C.62)

At s = 0, the integrand is
∂2
θp(0, θ̃(θ)) · ∇e(p(0, θ̃(θ))) = −w(p(0, θ̃(θ))) (C.63)

which, by (2.33), is bounded below in magnitude by w. By continuity, κ can be chosen so small that

|Φ(θ)| ≥ w
2
> 0. (C.64)

Thus
Z(ε, ε′) ≤

∫
U

dθ 1l (|g(θ)| ≤ ε) 1l
(∣∣∣θ̃(θ)− a(θ)∣∣∣ ≤ Γε′

)
, (C.65)

with
Γ = 2

w
(1 + |φ|), (C.66)

and it suffices to control the function b(θ) = a(θ)− θ̃(θ) near its zeros to bound Z(ε, ε′).
First observe that

b′(θ′)− b′(θ)
θ′ − θ =

a′(θ′)− a′(θ)
θ′ − θ − 1

θ′ − θ

∫ θ′

θ

ds
∂2θ̃

∂θ2
(s)

and that, by assumption (H4′), a′(θ′)−a′(θ)
θ′−θ is of fixed sign and bounded below by Ka. We now show that

∂2θ̃
∂θ2 is bounded in magnitude by 1

2Ka. Suppose that q = p(0, θ∗)+p(0, a(θ∗)) with θ∗ in the current interval
Uκ(θ(n)). The generalisation to q = p(0, θ∗) + p(r∗, ϑ(2)(0, θ∗, r∗)) with r∗ 6= 0 is a small perturbation.
Differentiating (C.35) and recalling that ρ̃(θ∗) = 0 and θ̃(θ∗) = a(θ∗), we get at θ = θ∗

−∂θp(0, θ∗) =
∂ρ̃

∂θ
(θ∗)∂ρp(0, a(θ∗)) +

∂θ̃

∂θ
(θ∗)∂θp(0, a(θ∗)). (C.67)

Since ∂θp(0, a(θ∗)) = −∂θp(0, θ∗)) and since ∂ρp(0, θ) = u(p(0, θ))|∂ρp(0, θ)| and ∂θp(0, θ) are linearly
independent, we have

∂ρ̃

∂θ
(θ∗) = 0,

∂θ̃

∂θ
(θ∗) = 1. (C.68)
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The second derivative of (C.35) at θ = θ∗ gives

−∂2
θp(0, θ∗) =

∂2ρ̃

∂θ2
(θ∗)∂ρp(0, a(θ∗)) +

∂2θ̃

∂θ2
(θ∗)∂θp(0, a(θ∗)) + ∂2

θp(0, a(θ∗)).

By (2.36), ∂2
θp(0, a(θ∗)) ∂a∂θ (θ

∗) = −∂2
θp(0, θ∗) and

0 =
∂2ρ̃

∂θ2
(θ∗)∂ρp(0, a(θ∗)) +

∂2 θ̃

∂θ2
(θ∗)∂θp(0, a(θ∗)) +

(
1− ∂a

∂θ
(θ∗)

)
∂2
θp(0, a(θ∗)). (C.69)

Recalling that (∂θp)2 = 1 implies that ∂2
θp is orthogonal to ∂θp, we dot with ∂θp to get

∂2θ̃

∂θ2
(θ∗) = −∂ρp(0, a(θ∗)) · ∂θp(0, a(θ∗))

∂2ρ̃

∂θ2
(θ∗).

Substituting this in and dotting instead with ∂ρp(0, a(θ∗)) then yields

∂2ρ̃

∂θ2
(θ∗) =

(
1− ∂a

∂θ
(θ∗)

)
Xρ(θ, θ∗)

∂2θ̃

∂θ2
(θ∗) =

(
1− ∂a

∂θ
(θ∗)

)
Xθ(θ, θ∗)

(C.70)

where

Xρ(θ, θ∗) = − ∂2
θp(0, a(θ∗)) · ∂ρp(0, a(θ∗))(

∂ρp(0, a(θ∗))
)2 − [∂ρp(0, a(θ∗)) · ∂θp(0, a(θ∗))]2

Xθ(θ, θ∗) = −∂ρp(0, a(θ∗)) · ∂θp(0, a(θ∗))Xρ(θ, θ∗)

(C.71)

are bounded C0,h functions (because the change of variables is regular and ∂θp is a unit vector the denomi-
nator is bounded below by a fixed positive number). As ∂a

∂θ (θ
(n)) = 1, we conclude that, if κ is small enough,

∂2θ̃
∂θ2 is bounded above in magnitude by 1

2Ka and consequently b′(θ′)−b′(θ)
θ′−θ is of fixed sign and magnitude at

least 1
2Ka.

We are now in a position to bound Z(ε, ε′).

Z(ε, ε′) ≤
∫
U

dθ 1l (|b(θ)| ≤ Γε′)

≤
∫
U

dθ 1l (|b(θ)| ≤ Γε′) 1l
(
|b′(θ)| ≤

√
Γε′

)
+
∫
U

dθ 1l (|b(θ)| ≤ Γε′) 1l
(
|b′(θ)| ≥

√
Γε′

)

≤
∫
U

dθ 1l
(
|b′(θ)| ≤

√
Γε′

)
+
∫
U

dθ 1l (|b(θ)| ≤ Γε′) 1l
(
|b′(θ)| ≥

√
Γε′

)

≤ 4
Ka

√
Γε′ +

∫
U

dθ 1l (|b(θ)| ≤ Γε′) 1l
(
|b′(θ)| ≥

√
Γε′

)

As b′(θ) is monotone, b(θ) can have at most two zeros so∫
U

dθ 1l (|b(θ)| ≤ Γε′) 1l
(
|b′(θ)| ≥

√
Γε′

)
≤ 4

Γε′√
Γε′

and Z(ε, ε′) ≤ 4
(
1 + 1

Ka

)√
Γε′ ≤ 4

(
1 + 1

Ka

)√
Γε

1
3 .

Finally, we turn to V (ε, ε′). By (C.59),

V (ε, ε′) ≤
∫

U∩Nη

dθ 1l (|g(θ)| ≤ ε) 1l (|g′(θ)| > ε′) 1l
(
|f(θ)| ≥ 1

2ε
′) . (C.72)
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Denoting |Φ| = W, we have by (C.61) that |f(θ)| ≥ 1
2ε
′ implies |θ̃(θ)− a(θ)| ≥ 1

2W
ε′. We have just seen

that f has only two zeros on U ∩ Nη that decompose U ∩ Nη into at most three intervals. By (C.59) and
continuity of g′, g is monotonic on each of these intervals. Therefore, changing variables from θ to γ = g(θ)
on each of these intervals, and noting that the Jacobian is bounded by 2W

ε′ , we have

V (ε, ε′) ≤ 3
2W

ε′

∫
dγ 1l (|γ| ≤ ε) ≤ 12W

ε

ε′
= 12W ε

1
3 . (C.73)

We have thus proven (C.7) with α = 1
3 .

Appendix D. Properties of the Scale Zero Effective Action

In this appendix, we prove Lemma 2.3. The scale zero part of the propagator C is a bounded function
because the function a cuts off values of the denominator smaller than M−2. Since C ∼ 1

ip
for large p,

it is obvious that the integral over |C|n is finite for all n ≥ 2. Consequently, the most delicate part of the
proof of Lemma 2.3 is the proof that

∫
C and

∫
dpv̂(q − p)C(p) converge. These integrals correspond to

graphs with a loop containing only one fermion propagator. They are, actually, the first order graphs shown
in Figure 1, but with C as the fermion propagator. As discussed, for n = 1, the integral converges at large
p only because of sign cancellations that come from the boundary value prescription (2.44). The latter
implies by a contour integral argument that for the propagator without any cutoff,∫

dd+1p C(p, e(p)) =
∫
ddp 1l (e(p) < 0) . (D.1)

A similar contour integral argument for the first order
∫
v̂(q − p)C(p)dd+1p requires some analyticity prop-

erties of v̂. The cutoff function a appearing in the definition of C cannot be analytic in any neighbourhood
of IR, so the above contour argument does not apply to C. We show convergence of the integrals at large
p by a different argument which does not use any analyticity properties. This is of course possible since the
convergence of the integral only depends on properties of C on the real line, and since the function a does
not change the behaviour for large p. One advantage of this proof is that it applies to all v̂ satisfying (H1),

which is a rather general class of potentials (in particular, no properties of v̂ for p away from the real axis
are required at all.

Lemma D.1 Assume that (H1)k,h and (H2)k,h hold, and let C be given by (2.47). Then the function

I(q) =
∫

IR×B
v̂(q − p) C(p, e(p))dd+1p = lim

τ↓0

∫
IR×B

v̂(q − p) a(p
2
 + e(p)2)

ip − e(p)
eipτdd+1p (D.2)

is finite, uniformly bounded, and Ck,h.

Proof: We do the case v̂ independent of q first. The integrand is bounded because of the cutoff function
a. We do the p–integration first. Fix p ∈ B, and let e = e(p). We show that

lim
τ↓0

lim
A→−∞

lim
B→∞

B∫
A

C(p, e)eipτdp (D.3)
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converges. It is obvious that the integral from −1 to 1 converges uniformly in τ since the function a makes
C bounded. Thus we may assume A < −1, B > 1, and we have to show that the integrals over [A,−1] and
[1, B] converge. Both contributions are similar, so we consider only the second one. Using

1
ip − e

− 1
ip

= − e

p2
 + iep

, (D.4)

we have
B∫

1

dp
a(p2

 + e(p)2)
ip − e(p)

eipτ =

B∫
1

dp
a(p2

 + e(p)2)
ip

eipτ − Ĩ(τ) (D.5)

The integrand in Ĩ(τ) is bounded by ē
p2

1l (|p| ≥ 1) (here ē = max
p∈B

e(p)), so the integral is absolutely

convergent, uniformly in τ , to a function that is continuous in τ . Hence we only have to show that
B∫
1

dp

ip
eipτ

converges. The convergence of this integral at fixed τ is now a consequence of

B∫
1

dp
ip

eipτ =

B∫
1

dp
ip

1
iτ

d

dp
eipτ = −e

ipτ

pτ

∣∣∣∣∣
B

1

−
B∫

1

dp
τp2


eipτ (D.6)

Although the above bounds are not uniform in τ , they show that at fixed τ , the limit

J(τ) = lim
A→−∞,B→∞

B∫
A

dp
a(p2

 + e(p)2)
ip − e(p)

eipτ (D.7)

exists. Thus we may calculate it by taking B = L, A = −L. Since

−1∫
−L

dp
eipτ

ip
+

L∫
1

dp
eipτ

ip
= 2

L∫
1

dp
sin(pτ)
p

= 2

Lτ∫
τ

dx
sinx
x

−→
L→∞

2

Lτ∫
τ

dx
sinx
x

−→
τ→0

2

∞∫
0

dx
sinx
x

= π,

(D.8)

we see that J(τ) converges as τ → 0.
If v̂ is not constant, but obeys (H1), we write the integral as a sum of ones with the p–independent

constant ṽ(q − p) and the difference v̂(q − p,q − p) − ṽ(q − p). The decay assumed in (H1) makes the
second integral convergent and bounded uniformly in q. The first one was treated above and is independent
of q. Convergence of the integral for the derivatives of I is even easier: apply integration by parts to move
one derivative to C, then the integral converges absolutely.

The remaining integral over p is over a compact region, so its convergence is trivial since the integrand
is bounded.

Proof of Lemma 2.3: The kernels V (0)
m,r of the scale zero effective actions are sums over values of Feynman

graphs, with propagator C and vertex function v̂. The vertex function v̂ is bounded. If we slice

C(p, e(p)) =
∞∑
n=1

Cn(p, e(p)) (D.9)
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with Cn(p, e(p)) having p support contained in [Mn,Mn+2] for n ≥ 2, and p support contained in [0,M3]
for n = 1, then

sup |Cn| ≤ const M−n

vol supp Cn ≤ const Mn
(D.10)

Consequently, the degree of any graph G is

− |{lines of G}|+ |{loops of G}| =

− |{lines of G}|+ (|{lines of G}| − |{vertices of G}|+ 1)

= 1− |{vertices of G}|

(D.11)

which is convergent for all graphs having strictly more than one vertex. The graphs with only one vertex
were treated in Lemma D.1. Lemma 2.3 now follows by the standard power counting bounds (see, e.g. I,
Theorem 2.40).
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