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Abstract

We prove a perturbative inversion theorem for the map between the interacting and the
noninteracting Fermi surface for a class of many fermion systems with strictly convex
Fermi surfaces and short-range interactions between the fermions. This theorem gives
a physical meaning to the counterterm function K that we use in the renormalization
of these models: K can be identified as that part of the self–energy that causes the
deformation of the Fermi surface when the interaction is turned on.

1 Introduction

The Fermi surface is an important feature of the quantum field theory
of solid state models. Besides being central to the theoretical analysis
of such models it is also important from a conceptual point of view. In
experiments, one observes and measures the Fermi surface of an inter-
acting system (for brevity, we call this the interacting Fermi surface) –
or more precisely, an approximation to it due to positive temperature ef-
fects, because the electrons interact with each other (say via a screened
Coulomb interaction, phonons and so on). On the other hand, the the-
oretical analysis usually starts from a model of noninteracting electrons,
moving in a crystal background, which exhibits the noninteracting Fermi
surface. The effects of the electron–electron interaction are taken into
account by ‘turning on a coupling constant’. Thus, while the model of
independent electrons exists only theoretically, important notions of solid
state physics, for instance Fermi liquid theory, start from it and then in-
corporate the changes in the system caused by the interaction. One of
these is a change in the dispersion relation, that gives the energy of a
particle as a function of momentum. This results in the transformation
of the Fermi surface from the noninteracting to the interacting one.

In this paper, we complete our perturbative analysis of the regular-
ity properties of interacting nonspherical Fermi surfaces by proving an
inversion theorem for the map between the interacting and the free dis-
persion relation that we used in the renormalization of these models. The
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main ingredients in the inversion theorem are an abstract iteration the-
orem that generalizes the usual contraction mapping theorem (which is
not sufficient here) and a number of regularity estimates. The estimates
are used to verify the hypotheses of this iteration theorem. The regularity
estimates are an application of the methods and the results of [2], [3], and
[4], referred to as I, II, and III in the following.

By ‘perturbative analysis’ we mean that the perturbation series is
truncated at any finite order R (which may be arbitrarily large) in the
coupling constant λ. There are situations where this expansion can be
proven to converge, so that the limit R → ∞ exists, but we do not give
such bounds here.

In the remainder of this introduction, we define our class of models
and state the inversion theorem. For a more detailed motivation, see the
introductory sections of I and II.

1.1 The models

Let Γ be a nondegenerate lattice in R
d and

Γ# = {b ∈ R
d : b · γ ∈ 2πZ for all γ ∈ Γ}(1.1)

its dual lattice. We denote the first Brillouin zone by B and choose it
to be the d-dimensional torus B = R

d/Γ#. It is compact. For example,
if Γ = Z

d, then Γ# = 2πZ
d and B = R

d/2πZ
d. We are interested in a

class of models characterized by an action A(ψ, ψ̄) that is a function of
two variables ψ = (ψk,σ)k∈R×B,σ∈{↑,↓} and ψ̄ = (ψ̄k,σ)k∈R×B,σ∈{↑,↓}. Note

that ψ̄ is not the complex conjugate of ψ. It is just another vector that is
totally independent of ψ. The zero component k0 of k is usually thought
as an energy, the final d components k as (crystal) momenta and σ as
a spin. There really should also be a sum over a band index n, but it
will not play a role here and has been suppressed. In these models, the
quantities one measures are represented by other functions f(ψ, ψ̄) of the
same two vectors and the value of the observable f(ψ, ψ̄) in the model
with action A(ψ, ψ̄) is given formally by the ratio of integrals

〈

f(ψ, ψ̄)
〉

A =

∫

f(ψ, ψ̄) eA(ψ,ψ̄)∏

k,σdψk,σ dψ̄k,σ
∫

eA(ψ,ψ̄)
∏

k,σdψk,σ dψ̄k,σ
(1.2)

The integrals are fermionic functional integrals. That is, linear functionals
on a Grassmann algebra.
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A typical action of interest is that corresponding to a gas of electrons,
of strictly positive density, interacting through a two–body potential u(x−
y). It is

Aµ,λ= −
∑

σ∈{↑,↓}

∫

R×B

dd+1k
(2π)d+1 (ik0 − ( k2

2m − µ))ψ̄k,σψk,σ

−λ
2

∑

σ,τ∈{↑,↓}

∫

R×B

∏4
i=1

dd+1ki

(2π)d+1 (2π)d+1δ(k1 + k2 − k3 − k4)(1.3)

ψ̄k1,σψk3,σû(k1 − k3)ψ̄k2,τψk4,τ

Here k2

2m is the kinetic energy of an electron, µ is the chemical potential,
which controls the density of the gas, and û is the Fourier transform of the
two–body interaction. The coupling constant λ is assumed to be small,
so that the interaction is weak.

More generally, when the electron gas is subject to a periodic poten-
tial due to the crystal lattice, Γ, and when the electrons are interacting
with the motion of the crystal lattice through the mediation of harmonic
phonons, the action is of the form

Aλ= −
∑

σ∈{↑,↓}

∫

R×B

dd+1k
(2π)d+1 (ik0 −E(k))ψ̄k,σψk,σ

−λ
2

∑

σ,τ∈{↑,↓}

∫

R×B

∏4
i=1

dd+1ki

(2π)d+1 (2π)d+1δ(k1 + k2 − k3 − k4)(1.4)

ψ̄k1,σψk3,σ v̂(k1,0 − k3,0,k1 − k3)ψ̄k2,τψk4,τ

where E(k) is the dispersion relation minus the chemical potential µ.

1.2 The class of dispersion relations

Let F be a fundamental cell for the action of the translation group Γ#.
In other words, F is an open set in R

d with the property that it together
with its translates under Γ# are dense in R

d. For example, if Γ = Z
d,

then Γ# = 2πZ
d and we may choose F = (−π, π)d. Let F2 = {p ∈ F :

2p ∈ F}. For a continuous function E from B to R let

SE = {p ∈ B : E(p) = 0}(1.5)

be the corresponding Fermi surface and IE = {p ∈ B : E(p) < 0} the
corresponding Fermi sea. For k ≥ 2 let

Cks (B,R) = {E ∈ Ck(B,R) : E(−p) = E(p) for all p ∈ B}(1.6)
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With the norm |f |k =
∑

|α|≤k ‖D
αf‖∞, it is a Banach space. For E ∈

Cks (B,R), let B
(k)
ε (E) = {e ∈ Ck

s (B,R) : |e−E|k < ε}.
For positive constants δ0, g0, G0, ω0, let Es = Es(δ0, g0, G0, ω0) be the

set of all E ∈ C2
s (B,R) that satisfy the following conditions

(i) SE ⊂ F2, IE 6= ∅, IE 6= B, d(SE , ∂F2) > δ0,

(ii) |∇E(p)| > g0 for all p ∈ SE :

(iii) |E|2 < G0

(iv) (t(p), E ′′(p)t(p)) > ω0 for all p ∈ SE and all unit vectors t(p)

tangent to SE at p

Since E is C2, the condition that ∇E 6= 0 on SE implies that the Fermi
surface SE is a (d − 1)–dimensional C2-submanifold of B, (in d = 2, the
‘surface’ is a curve). The condition (t(p), E ′′(p)t(p)) > ω0 implies that
SE has strictly positive curvature everywhere.

The set Es is open in (C2
s (B,R), | · |2). In this paper, we fix any δ0 >

0, g0 > 0, ω0 > 0 and G0 > max{g0, ω0}.

1.3 The class of interactions

We also define the class V of allowed interactions to be the set of all
functions V , whose Fourier transforms v̂(p0,p) obey

(i) |v̂|2 ≤ 1

(ii) v̂(−p0,p) = v̂(p0,p)

(iii) v̂(p0,−p) = v̂(p0,p)

(iv) There is a bounded function ṽ ∈ C2(B,R) and an α > 0 such that

lim sup
p0→∞

|p0|
α sup

p
|v̂(p0,p)− ṽ(p)| <∞

Condition (iv) is used only in the large k0 regime. If an ultraviolet cutoff is
placed on k0, it may be omitted. Condition (i) implies that the interaction
in momentum space, v̂, is in C2(Rd+1). This is the case if the position

space integral kernel V (x− y) is bounded by const
1+|x−y|d+3+ε for some ε > 0.

The 1 in the condition |v̂|2 ≤ 1 is not a restriction, since V and λ appear
only in the combination λV in the definition of the model, so a rescaling
of V can be absorbed by a rescaling of λ.
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1.4 The counterterm function

In I, we constructed a counterterm function K as a formal power series
in λ,

K(e, λV,p) =
∞
∑

r=1

λrKr(e, V,p)(1.7)

where Kr : D×V ×B → R is defined for a set D of dispersion relations e
with Es ⊂ D. The conditions required for having a finite Kr for all r are
much weaker than the conditions we impose here (see I and Section 4).
K is constructed such that, for a model with action

Aλ= −
∑

σ

∫

R×B

dd+1k
(2π)d+1 (ik0 − e(k)−K(e, λV,k))ψ̄k,σψk,σ

−λ
2

∑

σ,τ

∫

R×B

∏4
i=1

dd+1ki

(2π)d+1 (2π)d+1δ(k1 + k2 − k3 − k4)(1.8)

ψ̄k1,σψk3,σ v̂(k1,0 − k3,0,k1 − k3)ψ̄k2,τψk4,τ

the Fermi surface of the interacting model is fixed to Se, independently of
λ. The function K(p) is real–valued, and under the symmetry hypotheses
made here, K(−p) = K(p). By introducing the counterterm function,
we removed the infrared divergences to all orders in the perturbation
expansion in powers of λ. That is, when the expansion is truncated at
any finite order R, all Green functions are finite almost everywhere. We
showed in I that the counterterm function to any order R in λ,

K(R)(e, λV ) =
R
∑

r=1

λrKr(e, V ),(1.9)

is differentiable in p and e (and, of course, C∞ in λ since it is a polynomial
for any finite R).

Thus a model that has an action whose quartic part (in the fields) is
that corresponding to V and whose quadratic part is that corresponding
to a dispersion relation E will have an interacting Fermi surface that is
the zero set of a dispersion relation e if

e+K(e, λV ) = E.(1.10)

In this paper we take a given E and V and solve

e+K(R)(e, λV ) = E.(1.11)
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for e = e(R)(E, λV ). The dispersion relation e that appears in the prop-
agator is only an auxiliary quantity, which is to be determined by (1.11).
We shall solve (1.11) by iteration, starting from the given E. Clearly
this requires having bounds with uniform constants on a set of dispersion
relations that is mapped to itself by the function 1l +K (R).

In I–III, we proved the following estimate (Theorem III.3.13). For
all r ≥ 1, there are constants κr > 0 such that, for all e ∈ Es(δ0, g0, G0, ω0)
and V ∈ V, the contribution Kr(e, V ) is in C2

s (B,R) and obeys

|Kr(e, V )|2 ≤ κr.(1.12)

The constant κr depends only on (δ0, g0, G0, ω0) and r. Consequently,
K(R) satisfies

∣

∣

∣K(R)(e, λV )
∣

∣

∣

2
≤

R
∑

r=1

|λ|rκr(1.13)

so |K(R)(e, λV )|2 can be made arbitrarily small by decreasing λ. Because
Es is open in | · |2, e + K(R)(e, λV ) ∈ Es if e ∈ Es and λ is sufficiently
small.

1.5 The inversion theorem

To show that an iteration scheme for the solution converges, we need to
have bounds for the distance between successive elements of the iteration
sequence. For technical reasons that have nothing to do with the analysis
of I–III and that will be explained later, we have to restrict to dispersion
relations that have certain third order derivatives bounded, in order to
control the distance between successive iterates. This is the reason why,
in the following theorem, the starting E0 is required to be in C3.

Theorem 1.1 Let δ0, g0, ω0 > 0, G0 > max{g0, ω0} and R ∈ N. Then
there is a λR > 0 such that for each |λ| ≤ λR, each E ∈ Es(δ0, g0, G0, ω0)∩
C3(B,R) and each V ∈ V, there is a unique e(R) ∈ Es(δ0/2, g0/2, 2G0, ω0/2)
solving (1.11). Moreover, there is a constant AR > 0 such that

∣

∣

∣e(R) −E
∣

∣

∣

2
≤ AR |λ|.(1.14)

Theorem 1.1 follows from the more detailed Theorem 3.1 below. We shall
discuss the more detailed theorems about inversion in Section 5.

In this paper, we do not prove optimal bounds about the R–dependence
of λR. For the models at hand, in particular because of the symmetry
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E(p) = E(−p), one expects that convergence does not hold at zero tem-
perature. That is, one expects λR → 0 as R → ∞. The reason for
this is that at temperatures below a critical temperature, the ground
state of the system is superconducting, in which case the above pertur-
bation expansion cannot converge. As noted in [6], at a positive tem-
perature T = 1

β > 0, one can expect convergence of the expansion for
coupling constants λ in the region where λ log β is small enough, that is,
for T ≥ T0e

−λ0/|λ| where λ0 and T0 are fixed constants (see [6] for a Fermi
liquid criterion based on this convergence). For d = 2, a proof of this may
be possible using the techniques of [7]; see [11] for the case with rotational
symmetry (where there is no regularity problem because the symmetry
implies that the Fermi surface is a sphere). The bounds derived here do
not change in an essential way at positive temperature. So a variant of our
theorems can be expected to hold in this convergent positive temperature
regime. Note, however that convergence of the expansion for K does not
imply that the solution of the inversion equation can be expanded in λ.
In fact, it cannot. See [5, 8] for an informal explanation.

2 Preliminaries

2.1 Coordinates

Since e is going to change under the iteration, it is convenient to use
momentum space coordinates that are independent of e. Under our as-
sumptions, we can simply use polar coordinates in addition to the Fermi
surface coordinates that we used in I–III. We shall review the latter
shortly. It will be important that the angular variables θ are the same in
both coordinate systems. Only the radial coordinate is different.

Polar coordinates: Consider a small ball B around an E0 ∈ Es. Regard
a small neighbourhood of the Fermi surface SE0 as a subset of R

d instead
of the torus B and introduce polar coordinates (r, θ) ∈ R

+
0 × Sd−1, p =

p(r, θ). For d = 2, θ ∈ S1. In polar coordinates, the Fermi surface can be
parametrized, for e ∈ B, as

Se = {p(rF (e, θ), θ) : θ ∈ Sd−1}(2.1)

with rF : B × Sd−1 → R
+. If e ∈ Ck(B,R), then rF ∈ C

k(Sd−1,R+).

Lemma 2.1 Let 0 < k ≤ K. Let S be a (d − 1)–dimensional C 2 convex
surface in R

d all of whose principal curvatures are between k and K. Let
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c1, c2 be any two maximally separated points of S. That is, c1, c2 ∈ S
with

‖c1 − c2‖ = max {‖p1 − p2‖ : p1,p2 ∈ S}(2.2)

Set c = 1
2 (c1 + c2). Then, for every p ∈ S,

1
K ≤ ‖p− c‖ ≤ 1

k(2.3)

and the angle θ(p) between p− c and the outward pointing normal vector
n(p) to S at p obeys

cos(θ(p)) ≥ k
K(2.4)

If, in addition, −p ∈ S for every p ∈ S, then c is the origin.

Proof: See Appendix A

Lemma 2.2 Let δ0, g0, ω0 > 0 and G0 > max{g0, ω0}. There are ε, r0,

g1 > 0 such that, for every E0 ∈ Es(δ0, g0, G0, ω0) and every e ∈ B
(2)
ε (E0)

e ∈ Es(δ0/2, g0/2, 2G0, ω0/2)(2.5)

and

|rF (e, θ)− rF (E0, θ)| ≤ r0 for all θ ∈ Sd−1(2.6)
∂
∂re(p(r, θ)) > g1 for all |r − rF (E0, θ)| ≤ 2r0, θ ∈ S

d−1(2.7)

Note that the constants ε, r0 and g1 are independent of E0.

Proof: See Appendix B

Let E0, r0 and ε be as in Lemma 2.2. Set

R(θ) = rF (E0, θ)− 2r0

R(θ) = rF (E0, θ) + 2r0
(2.8)

and

A = {(r, θ) : θ ∈ Sd−1, R(θ) < r < R(θ)}

Ã = {p(r, θ) : (r, θ) ∈ A}
(2.9)

Then, Se = {p : e(p) = 0} ⊂ Ã for all e ∈ B
(2)
ε (E0).

We use the notation F̃ (r, θ) = F (p(r, θ)) for functions in terms of
the variables r and θ, for instance, ẽ(r, θ) = e(p(r, θ)). The above Lemma

then states that for all (r, θ) ∈ A, and all e ∈ B
(2)
ε (E0), ∂rẽ(r, θ) > g1 > 0.
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We could have introduced coordinates in the annulus Ã, based on any
vector field that is transversal to SE0 . This would only have changed the
constant in the lower bound for ∂re.

Fermi surface coordinates: These are the coordinates used in I–III.
They are the polar coordinate θ and ρ = e(p), and thus obviously de-
pend on e. We denote the corresponding inverse map, whose range is a
neighbourhood of E0’s Fermi surface, by ππ:

ππ : (−ρ0, ρ0)× Sd−1 → B, (ρ, θ) 7→ ππ(ρ, θ)(2.10)

Clearly e(ππ(ρ, θ)) = ρ. The projection to the Fermi surface is obtained
by setting ρ = 0. In terms of the polar coordinates, it is constructed

as follows. If F̃ : B
(2)
ε (E0) × A → C maps (e, r, θ) 7→ F̃ (e, r, θ), then

`eF̃ (e, r, θ) = F̃ (e, rF (e, θ), θ). Obviously, ∂r(`eF ) = 0. Observe that
ππ(0, θ) = p(rF (e, θ), θ).

2.2 Norms

Let ‖ · ‖k be the seminorm ‖F‖k =
∑

|α|=k
sup
p
|∂αF (p)| and

|F |k =
k
∑

l=0

‖F‖l.(2.11)

It does not matter whether we use the norm in Cartesian or polar coor-
dinates since the two are equivalent.

We define the radial norms for p ≥ 1 as

|F |p,r = |F |p−1 +
∥

∥

∥∂rF̃
∥

∥

∥

p−1
(2.12)

and denote the angular norms for p ≥ 0 as |F |p,θ. In the latter norms, all
derivatives are taken in the θ–directions.

Lemma 2.3 1. |F |p,r ≤ |F |p+1.

2. For all e ∈ B
(2)
ε (E0), ∂r`eF = 0, and

|`eF |p,r = |`eF |p−1 = |`eF |p−1,θ.(2.13)

3.

|FG|p ≤ 2p |F |p |G|p,

|FG|p ≤ ‖F‖0‖G‖p + ‖F‖p‖G‖0 + 2p+1|F |p−1|G|p−1,
(2.14)
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4.

|FG|p+1,r ≤ 2p+2|F |p|G|p + ‖∂rF‖p‖G‖0 + ‖F‖0‖∂rG‖p

≤ 2p+2
(

|F |p+1,r|G|p + |F |p|G|p+1,r

)

.
(2.15)

Proof: The first statement is an immediate consequence of ‖∂rF‖p ≤
‖F‖p+1. The second statement is an immediate consequence of the obser-
vation that the localization map `e does not depend on r. For the third
and fourth statements, use the Leibniz rule and that

∏
(αk

βk

)

≤
(p
q

)

for all
α1 + . . .+ αn = p and β1 + . . .+ βn = q (all nonnegative), to prove that

‖FG‖p ≤
p
∑

q=0

(

p

q

)

‖F‖q‖G‖p−q(2.16)

and

‖∂r(FG)‖p ≤
p
∑

q=0

(

p

q

)

(

‖∂rF‖q‖G‖p−q + ‖F‖p−q‖∂rG‖q

)

.(2.17)

3 The iteration

Given e0, e1, and t ∈ [0, 1], denote et = (1− t)e0 + te1.

Theorem 3.1 Let δ0, g0, ω0 > 0 and G0 > max{g0, ω0}. Let ε > 0 be as
in Lemma 2.2.

1. Regularity. For each R ∈ N, there is a constant D ≥ 1 such that
for all |λ| ≤ 1, all V ∈ V and all e ∈ Es(δ0/2, g0/2, 2G0, ω0/2)

∣

∣

∣K(R)(e)
∣

∣

∣

3,r
=
∣

∣

∣K(R)(e)
∣

∣

∣

2
< D|λ|.(3.1)

2. Norm bounds for the iteration. There is 0 < δ < 1 (in-
dependent of δ0, g0, G0, ω0) and, for each R ∈ N, there are con-
stants Q0, Q1 ≥ 1 such that for all |λ| ≤ 1, all V ∈ V, all E ∈

Es(δ0, g0, G0, ω0) and all e0 and e1 ∈ B
(2)
ε (E) ∩ C3

∣

∣

∣K(R)(e1)−K(R)(e0)
∣

∣

∣

0
≤ Q0|λ| |e1 − e0|0(3.2)

∣

∣

∣K(R)(e1)−K(R)(e0)
∣

∣

∣

1
≤ Q0|λ|

[

|e1 − e0|
δ
0 + |e1 − e0|1

]

(3.3)
∣

∣

∣K(R)(e1)−K(R)(e0)
∣

∣

∣

3,r
≤ Q0|λ|

[

|e1 − e0|
δ
1 + |e1 − e0|2

]

+ Q1|λ| sup
0≤t≤1

|et|3,r |e1 − e0|0.(3.4)
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In addition, if V1, V2 ∈ V with |V1 − V2|2 ≤ 1 and e ∈ Es then

∣

∣

∣K(R)(e, λV1)−K(R)(e, λV2)
∣

∣

∣

2
≤ Q0|λ| |V1 − V2|2.(3.5)

3. Existence of a unique solution to the inversion equation.
Let E ∈ Es(δ0, g0, G0, ω0) with |E|3,r = G3 < ∞. (This is the case

if, for example, E ∈ Es ∩ C
3). Set Q = max{Q0 +Q1(1 +G3), D}.

Let

Brad = {e ∈ Es(δ0/2, g0/2, 2G0, ω0/2) : |e−E|2 < ε, |e−E|3,r < 1}
(3.6)
and let λR > 0 be such that QλR < min{1, ε}. Then for all |λ| ≤ λR
and all V ∈ V, there is a unique e(R) ∈ Brad such that E = e(R) +
K(R)(e(R), λV ). Moreover

∣

∣

∣e(R) −E
∣

∣

∣

3,r
≤ D |λ|.(3.7)

4. Continuity in E and V . Let E,E ′ ∈ Es(δ0, g0, G0, ω0) satisfy
|E|3,r, |E

′|3,r ≤ G3 and |E −E′|3,r < ε/2. Then, for all |λ| ≤ λR/2
and all V, V ′ ∈ V with |V − V ′|2 ≤ 1,

∣

∣

∣e(R)(E, λV )− e(R)(E′, λV ′)
∣

∣

∣

2

≤ 4
(

∣

∣E −E′
∣

∣

2 +
∣

∣E −E′
∣

∣

δ
1 +

∣

∣E −E′
∣

∣

δ2

0 +
∣

∣V − V ′
∣

∣

δ2

2

)

.
(3.8)

Proof: Part 1 was proven in I–III: equation (3.1) follows directly
from (1.13). The bound (3.2) follows from Theorem I.3.5 by summation
over r ∈ {1, . . . R}. We reexplain that argument briefly in the proof of
Theorem 4.3 (Section 4.3). We shall shortly prove the remaining state-
ments of part 2 from the more detailed estimates given in Theorem 3.2.

To prove part 3, fix R, let V ∈ V, and denote for brevity K(E) =
K(R)(E, λV ) and B = Brad. Define Φ : B → C2

s (B,R) by

Φ(e) = E −K(e).(3.9)

By (3.1) and the hypothesis on λR,

|Φ(e)−E|3,r = |K(e)|3,r ≤ D|λ| ≤ QλR < min{ε, 1} < ε(3.10)
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so Φ(B) ⊂ B. Thus the sequence (en)n≥0 given by e0 = E and en+1 =
Φ(en) is well-defined. For n ≥ 1, let fn = en − en−1. Then f1 = −K(E),
en = E +

∑n
k=1 fk, and

fn+1 = Φ(en)− Φ(en−1) = K(en−1)−K(en).(3.11)

Let |λ| ≤ λR. We show that, for all n ≥ 1,

|fn|0 ≤ (Q|λ|)n(3.12)

|fn|1 ≤ BR(λ) (Q|λ|)nδ(3.13)

|fn|3,r ≤ CR(λ) max{BR(λ)δ , 1} (Q|λ|)nδ
2

(3.14)

with

BR(λ) =
(Q|λ|)1−δ

1− (Q|λ|)1−δ
, CR(λ) =

(Q|λ|)1−δ
2

1− (Q|λ|)1−δ2
(3.15)

Once this is done, (3.14) implies that
∑

fn converges in | · |3,r. Thus

e(R) = limn→∞ en exists. By (3.4), Φ is continuous in | · |3,r, so Φ(e(R)) =

e(R) and hence, by (3.9), E = e(R) +K(e(R)). By (3.10), every en obeys
|en − E|3,r ≤ D|λ|, so e(R) satisfies (3.7). Since Q0|λ| < 1, uniqueness
follows from (3.2).

We prove (3.12)–(3.15) by induction on n. The statements are true
for n = 1 because

|f1|0 ≤ |f1|1 ≤ |f1|3,r = |K(E)|3,r ≤ D|λ| ≤ Q|λ|(3.16)

and

(Q|λ|)δBR(λ) =
Q|λ|

1− (Q|λ|)1−δ
> Q|λ|,

(Q|λ|)δ
2
CR(λ) =

Q|λ|

1− (Q|λ|)1−δ2
> Q|λ|.

(3.17)

Assume (3.12)–(3.15) to hold for n. By (3.11), (3.2), and the inductive
hypothesis (3.12),

|fn+1|0 = |K(en)−K(en−1)|0 ≤ Q0|λ| |fn|0

≤ Q0|λ| (Q|λ|)
n ≤ (Q|λ|)n+1(3.18)

which proves (3.12) for n+ 1.
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By (3.11), (3.3), (3.12) and the inductive hypothesis (3.13),

|fn+1|1 = |K(en)−K(en−1)|1

≤ Q0|λ|
[

|fn|
δ
0 + |fn|1

]

≤ Q|λ|
[

(Q|λ|)nδ +BR(λ) (Q|λ|)nδ
]

=
[

(Q|λ|)1−δ +BR(λ) (Q|λ|)1−δ
]

(Q|λ|)(n+1)δ

(3.19)

Thus the induction goes through for (3.13) if

(Q|λ|)1−δ +BR(λ) (Q|λ|)1−δ ≤ BR(λ)(3.20)

With the definition (3.15), equality holds in (3.20).
By (3.11), (3.2), (3.13) and the inductive hypothesis (3.14),

|fn+1|3,r = |K(en)−K(en−1)|3,r = |K(en)−K(en−1)|2

≤ Q0|λ||fn|
δ
1 +Q0|λ||fn|2 +Q1(1 +G3)|λ||fn|0

≤ Q|λ|
[

|fn|
δ
1 + |fn|2

]

(3.21)

≤ Q|λ|
[

BR(λ)δ (Q|λ|)nδ
2
+ CR(λ)max{BR(λ)δ , 1} (Q|λ|)nδ

2
]

≤ max{BR(λ)δ , 1}
[

(Q|λ|)1−δ
2

+ (Q|λ|)1−δ
2
CR(λ)

]

(Q|λ|)(n+1)δ2

Here we used that en ∈ B implies |en|3,r ≤ 1 + |E|3,r ≤ 1 + G3. The
induction goes through for (3.14) if

(Q|λ|)1−δ
2
+ (Q|λ|)1−δ

2
CR(λ) ≤ CR(λ)(3.22)

With the definition (3.15), equality holds in (3.22). This completes the
proof of part 3.

We now prove part 4. Denote for brevity e = e(R)(E, λV ), e′ =
e(R)(E′, λV ′) and K = K(R). First, observe that both e, e′ ∈ Brad ⊂

B
(2)
ε (E) because, by part 3,

|e−E|2 ≤ D|λ| ≤ DλR/2 < ε/2
∣

∣e′ −E
∣

∣

2 ≤
∣

∣e′ −E′
∣

∣

2 +
∣

∣E −E′
∣

∣

2 ≤ DλR/2 + ε/2 < ε,
(3.23)

and because |e−E|3,r ≤ D|λ| < 1 and |e′ −E|3,r ≤ D|λ|+ ε/2 < 1 hold
by (3.7). Thus max{|e|3,r, |e

′|3,r} ≤ 1 +G3.
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By definition, e and e′ obey E = e+K(e, λV ) and E ′ = e′+K(e′, λV ′).
Hence

E −E′ = e− e′ +K(e, λV )−K(e′, λV ′)

= e− e′ +K(e, λV )−K(e′, λV )

+K(e′, λV )−K(e′, λV ′)

(3.24)

so that, by (3.2) and (3.5),
∣

∣e− e′
∣

∣

0 ≤
∣

∣E −E′
∣

∣

0 +Q0|λ|
∣

∣e− e′
∣

∣

0 +Q0|λ|
∣

∣V − V ′
∣

∣

2(3.25)

Recalling that Q0|λ| ≤
1
2QλR <

1
2 ,

∣

∣e− e′
∣

∣

0 ≤ 2
(

∣

∣E −E′
∣

∣

0 + 1
2

∣

∣V − V ′
∣

∣

2

)

≤ 2
∣

∣E −E′
∣

∣

0 +
∣

∣V − V ′
∣

∣

2

(3.26)

Similarly, by (3.3) and (3.5),

∣

∣e− e′
∣

∣

1 ≤
∣

∣E −E′
∣

∣

1 +Q0|λ|
[

∣

∣e− e′
∣

∣

δ
0 +

∣

∣e− e′
∣

∣

1

]

+Q0|λ|
∣

∣V − V ′
∣

∣

2

(3.27)

and
∣

∣e− e′
∣

∣

1 ≤ 2
(

∣

∣E −E′
∣

∣

1 + 1
2

∣

∣e− e′
∣

∣

δ
0 + 1

2

∣

∣V − V ′
∣

∣

2

)

≤ 2
(

∣

∣E −E′
∣

∣

1 + 2δ

2

∣

∣E −E′
∣

∣

δ
0 + 1

2

∣

∣V − V ′
∣

∣

δ
2 + 1

2

∣

∣V − V ′
∣

∣

2

)

≤ 2
(

∣

∣E −E′
∣

∣

1 +
∣

∣E −E′
∣

∣

δ
0 +

∣

∣V − V ′
∣

∣

δ
2

)

(3.28)

Similarly, by (3.2) and (3.5),

∣

∣e− e′
∣

∣

2 ≤
∣

∣E −E′
∣

∣

2 +Q0|λ|
[

∣

∣e− e′
∣

∣

δ
1 +

∣

∣e− e′
∣

∣

2

]

+ Q1|λ| (1 +G3)
∣

∣e− e′
∣

∣

0 +Q0|λ|
∣

∣V − V ′
∣

∣

2

(3.29)

and
∣

∣e− e′
∣

∣

2 ≤ 2
(

∣

∣E −E′
∣

∣

2 + 1
2

∣

∣e− e′
∣

∣

δ
1 + 1

2

∣

∣e− e′
∣

∣

0 + 1
2

∣

∣V − V ′
∣

∣

2

)

≤ 2
(

∣

∣E −E′
∣

∣

2 + 2δ

2

[

∣

∣E −E′
∣

∣

δ
1 +

∣

∣E −E′
∣

∣

δ2

0 +
∣

∣V − V ′
∣

∣

δ2

2

]

+1
2

[

2
∣

∣E −E′
∣

∣

0 +
∣

∣V − V ′
∣

∣

2

]

+ 1
2

∣

∣V − V ′
∣

∣

2

)

≤ 2
(

∣

∣E −E′
∣

∣

2 +
∣

∣E −E′
∣

∣

δ
1 + 2

∣

∣E −E′
∣

∣

δ2

0 + 2
∣

∣V − V ′
∣

∣

δ2

2

)

(3.30)
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Part 2 of Theorem 3.1 is proven by a multiscale analysis in which the
function K(R)(E, λV ) is represented as an infinite series

K(R)(E, λV ) =
∑

j<0

K
(R)
j (E, λV ),(3.31)

where, very roughly speaking, K
(R)
j is the contribution from integrating

out those fermions that have an energy in the interval [M j−1,M j ]. Here
M > 1 and j < 0, so the limit j → ∞ corresponds to momenta on the
Fermi surface.

Theorem 3.2 Let δ0, g0, ω0 > 0 and G0 > max{g0, ω0}. Let ε > 0 be as
in Lemma 2.2. Let E0 ∈ Es(δ0, g0, G0, ω0) ∩ C

3 and let

Brad = {e ∈ Es(δ0/2, g0/2, 2G0, ω0/2) : |e−E0|2 < ε, |e−E0|3,r < 1}.

There is a 0 < γ < 1 such that, for each R ∈ N, there is Q2 > 0 (Q2 is
uniform on Es!) such that for all e0, e1 ∈ Brad and all j < 0,

∣

∣

∣K
(R)
j (e)

∣

∣

∣

3,r
=
∣

∣

∣K
(R)
j (e)

∣

∣

∣

2
≤ Q2|λ|M

γj(3.32)

∣

∣

∣K
(R)
j (e1)−K

(R)
j (e0)

∣

∣

∣

1
≤

Q2|λ|
(

M−1.1 j|e1 − e0|0 +Mγj |e1 − e0|1

)

(3.33)

and

∣

∣

∣K
(R)
j (e1)−K

(R)
j (e0)

∣

∣

∣

3,r
=
∣

∣

∣K
(R)
j (e1)−K

(R)
j (e0)

∣

∣

∣

2
(3.34)

≤ Q2|λ|

(

M−2.1 j|e1 − e0|1 +Mγj sup
t∈[0,1]

|et|3,r|e1 − e0|0 +Mγj |e1 − e0|2

)

Moreover, for all e ∈ Es(δ0/2, g0/2, 2G0, ω0/2) and all V1, V2 ∈ V,

∣

∣

∣K
(R)
j (e, λV1)−K

(R)
j (e, λV2)

∣

∣

∣

2
≤ Q2|λ|M

γj |V1 − V2|2(3.35)

The proof of Theorem 3.2 is given in the next section. The factors M−1.1j

and M−2.1j come from bounds of the type M−j|j|α ≤ const(α)M−1.1j .
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Proof of parts 1 and 2 of Theorem 3.1: Eq.(3.32) implies (3.1)

when summed over j, with D = Q2
M−γ

1−M−γ . Eq. (3.2) was proven in I

(Theorem I.3.5). Again by summation, (3.35) implies continuity in V .

Denote, for brevity, Kj(e) = K
(R)
j (e, λV ). To prove (3.3), with δ = γ

3 ,

we split the sum over j in two parts. If j is such that |e1 − e0|0 ≤ M2j ,
then the inequality

|e1 − e0|0 ≤ (M2j)1−γ/3|e1 − e0|0
γ/3(3.36)

implies, by (3.33),

|Kj(e1)−Kj(e0)|1 ≤ Q2|λ|
(

M (0.9−2γ/3)j |e1 − e0|
γ/3
0 +Mγj |e1 − e0|1

)

≤ Q2|λ|
(

M0.2 j|e1 − e0|
γ/3
0 +Mγj |e1 − e0|1

)

(3.37)

and hence
∑

j≤0

|e1−e0|0≤M2j

|Kj(e1)−Kj(e0)|1 ≤ Q3|λ|
(

|e1 − e0|
γ/3
0 + |e1 − e0|1

)

(3.38)

with Q3 = Q2
1

1−M−γ′ , where γ′ = min{0.2, γ/3}. If j is such that |e1 −

e0|0 > M2j , then |e1 − e0|
−γ/3
0 ≤M−2γj/3 and therefore, by (3.32),

|Kj(e1)−Kj(e0)|1

|e1 − e0|
γ/3
0

≤ 2M−2γj/3 max
p=1,2

{|Kj(ep)|1} ≤ 2Q2|λ|M
γj/3(3.39)

so
∑

j≤0

|e1−e0|0>M2j

|Kj(e1)−Kj(e0)|1 ≤ 2Q3|λ| |e1 − e0|
γ/3
0 .(3.40)

To prove (3.4), with δ = γ
4 , we split the sum over j at |e1 − e0|1 = M3j .

This time, writing S3 = sup
t∈[0,1]

|et|3,r, and using

|e1 − e0|1 ≤ (M3j)(1−γ/4)|e1 − e0|
γ/4
1(3.41)

when |e1 − e0|1 ≤M3j gives, by (3.34), for the j with |e1 − e0|1 ≤M3j ,

|Kj(e1)−Kj(e0)|3,r(3.42)

≤ Q2|λ|
(

M−2.1 j |e1 − e0|1 +MγjS3|e1 − e0|0 +Mγj |e1 − e0|2

)

≤ Q2|λ|
(

M (0.9−3γ/4)j |e1 − e0|
γ/4
1 +MγjS3|e1 − e0|0 +Mγj |e1 − e0|2

)

≤ Q2|λ|
(

M0.15 j|e1 − e0|
γ/4
1 +MγjS3|e1 − e0|0 +Mγj |e1 − e0|2

)
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so
∑

j≤0

|e1−e0|1≤M3j

|Kj(e1)−Kj(e0)|3,r

≤ Q4|λ|
(

|e1 − e0|
γ/4
1 + S3|e1 − e0|0 + |e1 − e0|2

)

(3.43)

with Q4 = Q2
1

1−M−γ′
, where γ′ = min{0.15, γ/4}. If j is such that

|e1 − e0|1 > M3j , then |e1 − e0|1
−γ/4 ≤M−3γj/4 and therefore, by (3.32),

|Kj(e1)−Kj(e0)|3,r

|e1 − e0|
γ/4
1

≤ 2M−3γj/4 max
p=1,2

{|Kj(ep)|3,r}

≤ 2Q2|λ|M
γj/4

(3.44)

so
∑

j≤0

|e1−e0|1>M3j

|Kj(e1)−Kj(e0)|3,r ≤ 2Q4|λ| |e1 − e0|
γ/4
1 .(3.45)

4 Bounds with scales – proof of Theorem 3.2

The counterterm is the localization of a selfenergy function,

K
(R)
j (e, λV,p) = `eY

(R)
j (e, λV, p0,p).(4.1)

The renormalized tree expansion gives Y
(R)
j explicitly as

Y
(R)
j (e, λV, p) = −

R
∑

r=1

λr
∑

G

∑

T∼G

∏

f∈T

1

nf !

∑

J∈J (T,j,G)

Val (GJ )(p)(4.2)

whereG is summed over all one–particle irreducible (1PI) Feynman graphs
with two external legs and r interaction vertices. We now briefly describe
the genesis of this formula as well as the meaning of T , J , J (T, j,G) and
Val (GJ). For the details, see, e.g., [2].

The formula is generated by successive applications of renormalization
group maps, as follows (for details, see Section 2.3 of I). The covariance
corresponding to the quadratic part of the action is expressed as an infinite
sum C =

∑

j<0Cj , where the single–scale covariance, Cj , is supported in
the subset of R × B where M j−2 ≤ |ip0 − e(p)| ≤ M j (see Section 2.1
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of I). An infrared cutoff I < 0 is introduced by restricting the sum to
j ≥ I. Correspondingly, the Gaussian integral with the cutoff covariance
is expressed as an |I|–fold integral

∫

f(ϕ) dµΣ0<j≤ICj
(ϕ) =

∫

· · ·
∫

f(
∑I
j=1ϕj)

∏I
j=1dµCj

(ϕj)(4.3)

with respect to the Gaussian measures of covariance C1, · · · , CI . Fields
with lower and lower energy scales are integrated out one scale after the
other. The Gaussian integral with covariance Cj generates an effective
interaction on scale j. The integral kernels of the effective action on
scale j are given by a sum of values of Feynman graphs whose vertex
functions are the integral kernels of the effective action on scale j and
whose propagators are Cj .

The kernel of the part of the effective interaction on scale j that is
quadratic in the fields is renormalized by subtracting from it the part of
the counterterm whose value is `e applied to the kernel. The renormalized
two–legged kernel is called an r–fork of scale j. The remaining part of
the counterterm is the sum of all c–forks of scale j. See Section 2.3 of I.

The structure of the iteration is represented by GN (Gallavotti–Nicolò)
trees in a natural way. Each graph G contributing to the effective inter-
action at scale j has associated to it a GN tree, T . Each fork, f , in the
tree represents a connected subgraph Gf of G. The subgraph was intro-
duced as a vertex contributing to the effective interaction of some scale
jf . Hence each fork of T carries a label, jf , giving its scale and, if Gf is
two–legged, a label specifying it as an r–fork or a c–fork. The fork of T
corresponding to the entire graph G is called the root of T and its scale,
j, the root scale of T . The lines of T give the partial ordering of the forks
of T induced by the partial ordering of subgraphs of G by inclusion. If
π(f) is the fork immediately below f in the partial ordering of T , then

I ≤ jf ≤ jπ(f) if π(f) is a c–fork

1 ≥ jf > jπ(f) otherwise
(4.4)

The labelling J of G assigns a scale 0 < jl ≤ I to every line l of G and
a scale 0 < jf ≤ I to every fork f of T . The set J (T, j,G) is the set of
labellings determined by the requirements that (a) the root scale is j, (b)
(4.4) is satisfied and (c) if Gf is the smallest of the subgraphs Gf ′ , f

′ ∈ T
that contain the line l, then jl = jf .

The value Val (GJ )(p) of a Feynman graph is the integral over mo-
menta of the integrand which is a product of propagators associated to
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the lines and vertex functions associated to the vertices (see (I.2.54)).
For now, the propagators are given by the covariances Cj . Later we shall
combine strings of two–legged graphs into single lines, and thereby get
more general propagators on the lines.

For each r, the coefficient of λr is a sum of only finitely many terms.
Thus most perturbative questions can be reduced to bounding values of
individual graphs. In some of our estimates in I, however, we also needed
to avoid termwise bounds; this will also play a role in this paper.

It was shown in I that under general conditions, the limit

K(R)(e, λV,p) = lim
I→−∞

∑

I≤j<0

`eY
(R)
j (e, λV,p)(4.5)

exists and is C1 in p and Frèchet differentiable in e.

4.1 Proof of (3.32) and (3.35)

Eq. (3.32) is just a restatement of (III.3.110) in Theorem III.3.11. Be-
cause the function λn(j, ε) in (III.3.110) is bounded by a constant times
a power of |j| by Lemma I.2.44 (v), any γ < 1/3 will do.

To see (3.35), we note that the value of any graph G contributing to

K
(R)
j in (4.2) contains a product of factors V associated to the vertices.

The localization operator `e does not depend on V , and the expression

(4.2) is linear in Val (G). Let G be a graph contributing to K
(R)
j . By the

discrete product rule (II.3.126), the corresponding graph contributing to
the difference on the left hand side of (3.35) has a difference V1−V2 instead
of V in one factor. Because all that happens to the vertex functions in
the proofs is that they get differentiated (at most twice), and because the
estimate is linear in each vertex function, (3.35) follows trivially from the
proofs in I–III.

4.2 Weaker hypotheses for the proof of (3.2), (3.33), and

(3.34)

The bounds (3.2), (3.33), and (3.34) hold under much weaker hypotheses
than those stated in Theorem 3.2. In this section, we prove them under
hypotheses that are only slightly stronger than those of I. In particular,
we shall need neither convexity nor symmetry under p → −p nor the
requirement that the Fermi surface be small in the sense that SE ⊂ F2.
In fact, it need not even be connected.

Let
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N ⊂ B be an open set whose boundary has finitely many connected
components, each of which is a C∞ (d−1)–dimensional submanifold
of B

u be a unit C∞ vector field on a neighbourhood of the closure of N
that is transverse to the boundary of N

e0, e1 ∈ C
0(B,R) ∩ C2(N ,R)

We assume that there are constants δ0, u0, Qvol, γ > 0 such that, for all
s ∈ [0, 1], es = (1− s)e0 + se1 has the following properties.

F1 The set Ses = {p ∈ B : es(p) = 0} satisfies Ses ⊂ N and the distance
of Ses to B \ N is bounded below by δ0.

F2 For all p ∈ N , Dues(p) = u(p) · ∇es(p) > u0.

F3 For ε > 0, let U(e, ε) = {p ∈ B : |e(p)| ≤ ε}. For all 0 < ε1 ≤ ε2 ≤ ε3,
and all q ∈ B,
∫

U(es,ε1)

dp1

∫

U(es,ε2)

dp2 1l (|es(±p1 ± p2 + q)| ≤ ε3) ≤ Qvolε1ε2ε3
2γ .

These hypotheses imply those imposed in I (the volume improvement
exponent ε of I equals 2γ), so the results of I apply. Moreover, the
stronger hypotheses stated in Section 1.2 imply F1–F3 by the following
Lemma.

Lemma 4.1 Let B = B
(2)
ε (E0) be the ball of Lemma 2.2, N be the an-

nulus Ã defined in (2.9) and u = r̂, the radial vector field of polar coordi-
nates. Then there are constants δ0, u0, Qvol, γ > 0 such that F1–F3 hold
for all e0, e1 ∈ B.

Proof: B is convex, so for all s ∈ [0, 1], es = (1− s)e0 + se1 ∈ B ⊂
Es(δ0/2, g0/2, 2G0, ω0/2). F1 is obvious by the definition of Es. F2 follows
directly from Lemma 2.2, with u0 = g1. F3 follows from Theorem II.1.1
by the usual Taylor expansion which is described in (I.A.2)–(I.A.6).

F2 implies that there is g0 > 0 such that for all s ∈ [0, 1] and all p ∈ N ,
|∇es(p)| > g0. For a fixed e, the converse is proven in Lemma I.2.1.

Lemma 4.2 Let Nc be a connected component of N which has a nonempty
intersection with Ses for some 0 ≤ s ≤ 1.
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1. The boundary of Nc has precisely two connected components. These
two components are diffeomorphic.

2. Denote by S one of the two components of the boundary of Nc.
There is, for each 0 ≤ s ≤ 1, a C2 bijection ππs from a neighbourhood
of {0} × S in R × S to Nc such that es(ππs(ρ, θ)) = ρ, ∂ππs

∂ρ (ρ, θ) is
parallel to u(ππs(ρ, θ)) and

1

sups,p |∇es|
≤

∣

∣

∣

∣

∂ππs
∂ρ

∣

∣

∣

∣

≤
1

u0
.(4.6)

Proof: Denote by B1, . . . , Bn, the connected components of the
boundary of N . Since e0 ∈ C0(B,R) and B is compact, e0 is bounded
above and below on N . By F2, the value of e0 changes at a rate of at
least u0 per unit time along each trajectory of the vector field u. Hence
each trajectory must start on some Bi and end on some Bj. Because u is
transverse to the boundary of N and Bi and Bj do not themselves have
boundaries, each trajectory starting on Bi and ending on Bj has an open
neighbourhood in N that is a union of trajectories starting on Bi and

Bj

Bi

ending on Bj. Let, for each 1 ≤ i, j ≤ n, Ni,j be the set of all points
of N that lie on a trajectory which starts on Bi and ends on Bj . Then
the Ni,j’s are all open and mutually disjoint and their union is N . Hence
each Ni,j is either empty or a connected component of N .

We claim that if Ni,j has a nonempty intersection with Ses, then i 6= j.
By F1, es may not vanish in a neighbourhood of the boundary of N and
hence must be of uniform sign near each Bk. If es has the same sign,
say positive, near both Bi and Bj (as will certainly be the case if i = j)
then, as it vanishes somewhere in Ni,j, es must have a local minimum
somewhere in Ni,j. This violates F2.

Suppose that Nc = Ni,j. Then i 6= j and the components of the
boundary of Nc are Bi and Bj . The map which associates to each p ∈ Bi
the unique point of Bj that is on the same trajectory as p is a diffeo-
morphism, so we have completed the proof of part 1. For each p ∈ Nc,
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denote by Θ(p) the unique point of Bi that is on the same trajectory of u
as p. As Bi is a C∞ manifold, u is transverse to Bi and the trajectories
are C∞ in their dependence on time and initial conditions, Θ(p) is C∞.
The map p 7→ (es(p),Θ(p)) is defined and C2 on Nc, injective (as es is
strictly monotone on each trajectory and each trajectory hits a different
point of Bi) onto a neighbourhood of {0}×S (since es is of opposite sign
near Bi and Bj it must vanish once on each trajectory). Furthermore
the Jacobian of this map is nonsingular at each p ∈ Nc by F2 and the
transversality of u at Bi. We may thus take ππs to be the inverse of this
map.

Let P(es,p) = ππs(0,Θ(p)) be the projection on Ses , and let `es denote the
localization operator for es, as given by Definition I.2.6. Then Du`es = 0
for all s ∈ [0, 1]. Under the hypotheses of Section 1, and if u is chosen
to be the radial field u = r̂, P agrees with the projection p(r, θ) 7→
p(rF (es, θ), θ) in a neighbourhood of the Fermi surface.

We now take a fixed V ∈ V and prove bounds that are uniform on V.
Thus we again drop the λV from the notation.

Theorem 4.3 Under the hypotheses F1–F3, there are constants Q̃0 and
Q̃1, depending on G = sups |es|2, Qvol, γ, R, r0, and u0, such that

∣

∣

∣K(R)(e1)−K(R)(e0)
∣

∣

∣

0
≤ Q̃0|λ| |e1 − e0|0(4.7)

and
∣

∣

∣K
(R)
j (e1)−K

(R)
j (e0)

∣

∣

∣

1
≤Q̃1|λ|

(

M−1.1 j |e1 − e0|0 +Mγj|e1 − e0|1

)

.(4.8)

If for all s ∈ [0, 1] the norm |es|3,r = |es|2 + ‖Dues‖2 is finite, then
∣

∣

∣K
(R)
j (e1)−K

(R)
j (e0)

∣

∣

∣

3,r
=
∣

∣

∣K
(R)
j (e1)−K

(R)
j (e0)

∣

∣

∣

2
(4.9)

≤ Q̃1|λ|

(

M−2.1j |e1 − e0|1 +Mγj sup
t∈[0,1]

|et|3,r|e1 − e0|0 +Mγj |e1 − e0|2

)

.

By Lemma 4.1, Theorem 4.3 implies (3.2), (3.33), and (3.34), with Q0 =
Q̃0 and Q2 = Q̃1.

4.3 Proof of Theorem 4.3

Dropping uniform constants in the notation: We introduce the
notation A . B meaning that A ≤ const B where the constant depends
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only on G, Qvol, γ, R, r0, and u0 (thus in particular the constant is
uniform on Es). For instance, we have, for p ≤ 3, |FG|p . |F |p|G|p, and
|e|2 . 1 if e ∈ Es.

For a function F that depends on e, let DhF denote the directional deriva-
tive of F with respect to e, DhF = ∂

∂αF (e + αh) |α=0. We proved in I

that K is Fréchet differentiable in e, so these derivatives exist. More-
over, Fréchet differentiability holds for all quantities in which there is an
infrared cutoff.

Proof of (4.7)

By (4.2), for any s ∈ [0, 1],

∣

∣

∣

∣

∣

∣

Dh



`es

∑

I≤j<0

Y
(R)
j (es)





∣

∣

∣

∣

∣

∣

0

≤
R
∑

r=1

|λ|r
∑

G

∣

∣

∣

∣

∣

∣

∑

I≤j<0

∑

T∼G

∏

f∈T

1

nf !

∑

J∈J (T,j,G)

Dh

(

`es Val (GJ)(es)
)

∣

∣

∣

∣

∣

∣

0

(4.10)

By (I.3.35), there is a constant, depending only on G and on the constants
given in the Lemma, such that

∣

∣

∣

∣

∣

∣

Dh



`es

∑

I≤j<0

Y
(R)
j (es)





∣

∣

∣

∣

∣

∣

0

≤
R
∑

r=1

|λ|r
∑

G

const (G)|h|0.(4.11)

For fixed R, the sum over graphs G contains finitely many terms, so
∣

∣

∣

∣

∣

∣

De1−e0



`es

∑

I≤j<0

Y
(R)
j (es)





∣

∣

∣

∣

∣

∣

0

. |λ| |e1 − e0|0(4.12)

uniformly in I and s. Thus (4.7) follows by

∑

j<0

(K
(R)
j (e1)−K

(R)
j (e0)) =

1
∫

0

ds
∂

∂s
`es

∑

j<0

Y
(R)
j (es)

=

1
∫

0

ds De1−e0`es

∑

j<0

Y
(R)
j (es).

(4.13)
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Preliminaries for the proof of (4.8) and (4.9)

To prove the single–scale bounds (4.8) and (4.9), we show that for k ≤ 2,

the seimnorms ‖K
(R)
j (e1)−K

(R)
j (e0)‖k obey bounds with the same right

hand side as in (4.8) and (4.9). Note that even the bound for k = 0
does not follow from (4.12) because we are now considering a fixed scale
j, not a sum over scales, and the summation over scales provided a can-
cellation that was important in the proof of Theorem I.3.5. However,
the proof does not require very detailed estimates because the coefficient
of |e1 − e0|k−1 is (up to factors |j|, which we bound by M−0.1j) a fac-
tor M−kj larger than the undifferentiated power counting behaviour M j

of a single–scale selfenergy contribution like Y
(R)
j . This is naive power

counting behaviour. The estimates will again follow by applying bounds
already proven in I.

We now interpolate the difference of the two K functions. The deriva-
tive of `e with respect to e was calculated in Lemma I.3.1. The interpo-
lation gives

K
(R)
j (e1)−K

(R)
j (e0) =

1
∫

0

ds (Y1(s)− Y2(s))(4.14)

with

Y1(s) = `es

(

De1−e0Y
(R)
j (es)

)

(4.15)

Y2(s) = `es

[

(e1 − e0)
1

Dues
DuY

(R)
j (es)

]

,(4.16)

with Du defined in hypothesis F2. Because Kj is the localization of Yj,
DuKj = 0, so the first equality in (4.9) holds. Thus we have to bound
‖Yi‖k for k ∈ {0, 1, 2}. In the following, we drop the superscript R from

Y
(R)
j .

Estimates for ‖Y2‖k

Let k = 0. The bound |Y2|0 ≤ |e1 − e0|0
1
u0
|DuYj |0 and Theorem I.2.46

(i) imply that

|Y2|0 . |j|RM2γj |e1 − e0|0 . Mγj |e1 − e0|0.(4.17)

Let k = 1. Because

∂
∂pα

(`esF )(p) = ∂
∂pα

F (0,P(es,p)) =
∑

β

∂Pβ

∂pα
(es,p)

[

∂
∂qβ

F (0,q)
]

q=P(es,p)
,

(4.18)
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we have
∂
∂pα

Y2(s)(p) =
∑

β

∂Pβ

∂pα
(es,p) Xβ(P(es,p))(4.19)

with
Xβ(q) = ∂

∂qβ

[

(e1 − e0)(q) 1
Dues(q)DuYj(0,q)

]

.(4.20)

Thus

‖Y2(s)‖1 ≤ d ‖P(es)‖1

(

‖e1 − e0‖1
1
u0
|DuYj|0

+ |e1 − e0|0
1
u2
0
‖Dues‖1|DuYj|0

+ |e1 − e0|0
1
u0
‖DuYj‖1

)

. |e1 − e0|1|DuYj |0 + |e1 − e0|0‖DuYj‖1(4.21)

because ‖P(es)‖1 . 1 and ‖Dues‖1 . |es|2 . 1.

Let k = 2. Because

∂2

∂pγ∂pα
Y2(p) =

∑

β

[

Xβ(P(es,p))
∂2Pβ

∂pγ∂pα
(es,p)

+
∑

ρ

(∂ρXβ)(P(es,p))∂γPρ(es,p)∂αPβ(es,p)

]

,(4.22)

we have

‖Y2(s)‖2 ≤ d ‖P(es)‖2 max
β
|Xβ|0 + ‖P(es)‖1

2
∑

β,ρ

|∂ρXβ|0.(4.23)

Because ‖P(es)‖2 . 1 and

∣

∣

∣

∂
∂qρ
Xβ(q)

∣

∣

∣ . |e1 − e0|2|DuYj|0 + |e1 − e0|0|DuYj|0‖Dues‖2

+ |e1 − e0|1‖DuYj‖1 + |e1 − e0|0‖DuYj‖2,(4.24)

we have

‖Y2(s)‖2 . |e1 − e0|2 |DuYj |0 + |e1 − e0|1 ‖DuYj‖1

+ |e1 − e0|0
(

|DuYj|0 ‖Dues‖2 + ‖DuYj‖2

)

.(4.25)

The term ‖Dues‖2 is the reason why we have to deal with functions that
have bounded radial derivatives. Because it arises only from the deriva-
tive of the localization operator, it has got nothing to do with the scale
dependence of Yj.
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By (4.2), it suffices to bound the contribution from every 1PI two–
legged graphG separately. That is, we may replace Yj byW =

∑

J∈J (T,j,g)

Val (GJ ) in (4.17), (4.21), and (4.25) if we take a maximum over G and
T and multiply by the number of graphs and the number of possible T ’s.
By Theorem I.2.46 (i), and using λn(j, γ)M

γj . 1, we have

‖Y2(s)‖1 . |e1 − e0|1M
γj + |e1 − e0|0M

(γ−1)j(4.26)

‖Y2(s)‖2 . |e1 − e0|2M
γj + |e1 − e0|1M

(γ−1)j

+ |e1 − e0|0

(

Mγj ‖Dues‖2 + ‖DuYj‖2

)

.(4.27)

Thus sups ‖Y2(s)‖k obey bounds that imply (4.8) and (4.9) if we can prove
that

‖DuYj‖2 . M−2.1 j(4.28)

and that

‖Y1(s)‖1 . M−1.1j |e1 − e0|0, ‖Y1(s)‖2 . M−2.1j |e1 − e0|0.(4.29)

To do this, we need to exhibit the structure of the graphs G that con-
tribute to Yj in a little bit more detail.

Graphical tools

Let G be a graph contributing to (4.2), T a rooted tree compatible to G,
with an r and c labelling assigned to the forks, and J (T, j,G) the set of
labellings of G compatible with T and root scale j. Let φ be the root of
T . To every fork f ∈ T there corresponds a connected subgraph Gf of
G, which is a proper subgraph of G for f > φ. We call f an m–legged
fork if Gf has m external legs. In the following we construct a graph Γ,
a tree T ′ compatible with Γ, and a set of labellings J ′ with the following
properties.

• Γ is two–legged and 1PI, and Γ has only four–legged vertices with
vertex functions v̂.

• The associated tree T ′ has no 2–legged forks.

• The scale assignments in J ′ are jf > jπ(f) for all f ∈ T ′. With
propagators associated to Γ in the way given below,

∑

J∈J (T,j,G)

Val (GJ ) =
∑

J ′∈J ′(T ′,j,Γ)

Val (ΓJ
′
)(4.30)
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Summation over the trees gives

∑

T∼G

∏

f∈T

1

nf !

∑

J∈J (T,j,G)

Val (GJ )

=
∑

T ′∼Γ

∏

f ′∈T ′

1

nf ′ !

∑

J ′∈J ′(T ′,j,Γ)

Val (ΓJ
′
).

(4.31)

This construction is similar to that of Remark I.2.45, only simpler, be-
cause here we do not aim at tight bounds for the powers of |j| generated
by scale sums of four–legged subdiagrams.

If no f > φ is two–legged, then Γ = G, T ′ = T , J ′ = J . Otherwise,
let f1, . . . fn > φ be all minimal two–legged forks of T . That is, there is
no two–legged fork f ′ with φ < f ′ < fi. Let T̃ be the tree where the
subtrees Ti rooted at the forks fi are replaced by leaves λi. To obtain
the corresponding graph G̃, replace Gfi

by a two–legged vertex vi with
(jπ(fi)–dependent) vertex function

Ai = Pi
∑

ji

∑

Ji∈J (Ti,jπ(fi)
,Gfi

)

Val (GJi

fi
).(4.32)

The projection Pi is `es if fi is a c–fork and 1 − `es if Fi is an r–fork of
T . The summation range is ji > jπ(fi) if fi is an r–fork and ji ≤ jπ(fi) if
fi is a c–fork.

Because all c–forks have now been replaced by vertices (or hidden
inside two–legged vertices), J̃ = {J |T̃ : J ∈ J (T, j,G)} consists only of

labellings with jf > jπ(f) for all f ∈ T̃ . With the standard definition of
the value of a labelled graph (see, e.g., (I.2.54)),

∑

J∈J (T,j,G)

Val (GJ ) =
∑

J̃∈J̃ (T̃ ,j,G̃)

Val
(

G̃J̃
)

.(4.33)

The graph G̃ is not yet what we want because the graph Gfi
whose value

appears in (4.32) is not necessarily 1PI and because G̃ may contain two–
legged vertices. In order to apply Theorem I.2.46, we want to reduce all
vertex functions of two–legged vertices to sums over values of 1PI graphs.

If fi is a c–fork, Gfi
is 1PI because otherwise `es of its value would van-

ish. If fi is an r–fork, Gfi
may be 1PR; then Pi Val (GJfi

) = Val (GJfi
) and

it is a string of two–legged subgraphs, some of which may be single–scale
insertions (SSI’s) defined in Remark I.2.45. Momentum conservation, the
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scale structure on T , and the support properties of the cutoff function fix
the scale of the lines connecting the 1PI pieces to jπ(fi) + 1. When every
r–fork corresponding to an 1PR graph is replaced by its string as above,
the only changes to G̃ are that additional two–legged vertices may appear
and that, besides the cases Pi = `es , 1− `es , there is the third case Pi = 1
for SSI’s, with the scale sum for a SSI consisting only of the one term
where all scales are jπ(fi) + 1 (see Remark I.2.45 for details).

Let Γ be the graph where all strings of two–legged subgraphs are re-
placed by single lines, and T ′ be the tree in which all leaves of T̃ that
correspond to two–legged vertices of G̃ are removed. For a line ` of Γ, let
j` be the minimum over all j ˜̀, where ˜̀ runs over the lines of G̃ on the

string σ` in G̃ replaced by `. The propagator associated to ` is

S`,j`(p) =
∑

(j˜̀)˜̀ on σ`

∏

˜̀ on σ`

Cj˜̀(p)
∏

v on σ`

Av(4.34)

where the summation is over all scale assignments j ˜̀ ∈ {j`, j` + 1} that

are compatible with T̃ , and, if n propagators appear in the product, n−1
factors Av appear. By construction, (4.30) and (4.31) hold.

Lemma 4.4 Let α be a multiindex with w = |α| ≤ 1. Then the propaga-
tors S`,j` given by (4.34) satisfy

|DαS`,j`(p)| . M−j`(1+w)+j`γg 1l
(

|ip0 − es(p)| ≤M j`
)

(4.35)

where g is the number of c–forks plus the number of SSI on the string σ`
corresponding to S`,j`.

Proof: The support condition follows directly from that of Cj`. We
now bound the functions Av and their first derivatives. This is a direct
application of Theorem I.2.46 (i), which states (with ε = 2γ) that if G is
two–legged and 1PI, then for all r ∈ {0, 1, 2},

∑

J∈J (T,j,G)

∣

∣

∣ ValGJ
∣

∣

∣

r
. |j|nGM j(1+2γ−r) . M j(1+γ−r).(4.36)

Let w ∈ {0, 1} and α be a multiindex with |α| = w. For v corresponding
to an r–fork and for p such that |ip0 − es(p)| ≤M j` ,

|DαAv(p)| .
∑

j>j`

∣

∣

∣

∣

∣

∣

∣

∑

J∈J (Ti,j,Gfi
)

Dα(1− `es) Val (GJfi
)(p)

∣

∣

∣

∣

∣

∣

∣

(4.37)
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For w = 0, Taylor expansion gives the renormalization gain M j` and one
derivative acting on Val (GJ

fi
). By (4.36), with r = 1 + w = 1,

|DαAv(p)| . M j`
∑

j>j`

M j(1+γ−1) . M j` .(4.38)

For w = 1, we estimate the 1 and `es terms separately. By (4.36),

|DαAv(p)| . 2
∑

j>j`

M j(1+γ−1) . 1.(4.39)

For v corresponding to a c–fork,

|Av|w .
∑

j≤j`

∣

∣

∣

∣

∣

∣

∣

∑

J∈J (Ti,j,Gfi
)

`es Val (GJfi
)

∣

∣

∣

∣

∣

∣

∣

w

,(4.40)

so (4.36) implies

|Av|w .
∑

j≤j`

M j(1+γ−w) . M j`(1+γ−w).(4.41)

The estimate for v corresponding to an SSI is similar to that of a c–fork,
except that there is not even a scale sum to do because the scales are all
fixed in an SSI. Using the product rule for derivatives acting on (4.34)
and using that

|DαCj(p)| . M−j(1+|α|) 1l
(

|ip0 − es(p)| ≤M j
)

(4.42)

we get the statement of the Lemma.

Lemma 4.4 gives us control over first order derivatives of the propagators
S`,j` with respect to momentum. The next lemma will imply that we can
always arrange the integral for the value of a graph contributing to Yj
such that every line of the graph gets differentiated at most once, even if
we take three derivatives with respect to the external momentum.

In I, Definition 2.19, we introduced the notion of overlapping graphs.
A graph is overlapping if there is a line ` of G which is part of two
independent (non self–intersecting) loops. We say that the line ` is part
of the two overlapping loops.

Lemma 4.5 Let G be a two–legged 1PI graph with two external vertices
v1 and v2. Let all vertices of G have an even incidence number. Let T be
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any spanning tree of G, and let θ be the linear subtree of T corresponding
to the unique path from v1 to v2 over lines of T . Then every line ` ∈ θ is
part of two overlapping loops generated by lines `1 6∈ T and `2 6∈ T . For
i ∈ {1, 2}, the graph Ti, obtained from T by removing ` and adding `i, is
a spanning tree for G.

Proof: Let ` be a line of θ. Cut ` to get a four–legged graph F =
G−`. Because G is 1PI, F is connected, so there is a (nonselfintersecting)
path π in F that joins the endpoints of `. Because T is a tree, T − ` has
two connected components, T1 and T2. As T1 ∪ T2 ∪ π is connected, one
of the lines on π, say `1, joins T1 and T2, but is not in T . Thus ` is
on the loop generated by `1. Go back to G and cut `1. The result is a
four–legged graph F ′ = G− `1. Because `1 6∈ T , T is still a spanning tree
for F ′. Cutting ` does not disconnect F ′ because if it did, each of the
connected components would have to have three external lines – one of
G’s original external lines, one end of `1 and one end of ` (as all vertices
of G have even incidence number, all connected graphs must have an even
number of external lines). Let `2 be a line on the shortest path in F ′ − `
connecting the endpoints of ` with `2 joining T1 and T2 but not in T .
Then ` is in the loop generated by `2. Thus the loops generated by `1
and `2 overlap on `.

It would not have been a loss of generality to assume that G has no proper
two–legged subgraphs. In that case, Remark I.2.23 implies that F ′ is also
1PI. If T is chosen such that θ is a shortest path from v1 to v2 in G, the
statement of the Lemma is an obvious consequence of Lemma III.2.5 (see
Figures III.2.3–III.2.6; note that the lines from vr to vr+1 and from vs
to vs+1 can be any pair of lines on θ).

The bound for ‖DuYj‖2

Because ‖DuYj‖2 ≤ |Yj|3, it suffices to prove that

|Yj |3 . M−2.1j.(4.43)

By (4.2), it suffices to prove the same bound for

W =
∑

J∈J (T,j,G)

Val (GJ ).(4.44)

All graphs that contribute are two–legged and 1PI, so by (4.36),

|W|2 . M j(1+2γ−2)(1 + |j|R) . M−jMγj . M−2j ,(4.45)
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so it suffices to bound ‖W‖3. Let Γ be the graph associated to G with
the properties (4.30) and (4.31), then

‖W‖3 ≤
∑

J∈J (T ′,j,Γ)

∥

∥

∥ Val (ΓJ)
∥

∥

∥

3
.(4.46)

Let T be a spanning tree for Γ. The only factors in the integrand for
Val ΓJ that can depend on the external momentum q are

• vertex functions v̂; the dependence is of the form v̂(q − p) where p
is a loop momentum or a sum of loop momenta because G is 1PI
and two–legged (it can happen that v̂ does not depend on any loop
momentum; this is, however, only the case for tadpoles, in which
case only v̂(0) appears).

• propagators S`,j` for those ` that are in the path on T connecting the
external vertices (if there is only one external vertex, no propagator
depends on q).

We now take three derivatives of Val (ΓJ) and use the above lemmas to
avoid having two derivatives acting on any propagator and three on any
vertex function, as follows.

If Γ has only one external vertex and is not a tadpole, we first route q
through the v̂ of the external vertex. We let two derivatives act and then
change variables from p to q − p in the loop integral in which v̂(q − p)
appears. The third derivative can then not act on this vertex function
any more. It can act on another vertex function or on a propagator.

If Γ has two external vertices, there are two cases, depending on where
the first derivative acted.

1. The first derivative acts on a vertex function. Take another deriva-
tive. If it acts on the same vertex function, change variables from p
to q − p in the loop integral in which v̂(q − p) appears. The third
derivative can then not act on this vertex function any more. If
the second derivative acts on the propagator S`,j`, we change the
spanning tree using Lemma 4.5. The third derivative can then not
act on S`,j` any more.

2. The first derivative acts on the propagator S`,j`. We change the
spanning tree to T1 by replacing ` with another line `1 (this is pos-
sible by Lemma 4.5) and take another derivative. It can act on a
propagator on a line `′ on the path in T1 that connects the external
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vertices (`′ = `1 is possible). By Lemma 4.5, there are two lines, `′1
and `′2, such that for i ∈ {1, 2}, T ′i , obtained by replacing `′ by `′i
in T1, is still a spanning tree for Γ. At most one of `′1 and `′2 may
be `, so we may change to a spanning tree that contains neither `
nor `′. Once this is done, the third derivative cannot act on the
propagators associated to the lines ` and `′.

In summary, the net effect of taking three derivatives in the way just
described is, by Lemma 4.4, at most a factor M−3j, as compared to
standard power counting (a factor M−3j arises only if all three derivatives
act on propagators; when vertex functions get differentiated, no factor
M−j is produced). Because the GN tree T ′ associated to Γ has no 2–
legged forks, the scale sum converges by standard arguments (see Lemma
I.2.4 and Remark I.2.5), and is bounded by |j|RM j . Thus

‖W‖3 . |j|RM jM−3j . M−2.1j .(4.47)

The bound for ‖Y1(s)‖2

In the following bounds we keep the tree sums inside of the norms. By
(4.31), we thus need to estimate

∥

∥

∥

∥

∥

∥

∑

T ′∼Γ

∏

f∈T ′

1

nf !

∑

J∈J (T ′,j,Γ′)

Dh Val (ΓJ )

∥

∥

∥

∥

∥

∥

k

(4.48)

for k ∈ {0, 1, 2}, with h = e1 − e0. By construction of Γ, Dh acts only on
the propagators S`,j`.

Lemma 4.6 For all s ∈ [0, 1] and all lines ` of Γ

|DhS`,j`(p)| . |h|0 M
−2j` 1l

(

|ip0 − es(p)| ≤M j`
)

.(4.49)

Proof: By definition (4.34), Dh can act on factors (a) Cj, (b) Av
coming from an r–fork, (c) Av coming from a c–fork, (d) Av coming from
an SSI. In the last three cases, by (4.32), we have to estimate the norms
of

W̃i = Pi
∑

ji

∑

Ti∼Gfi

∏

f∈Ti

1

nf !

∑

Ji∈J (Ti,jπ(fi)
,Gfi

)

Val (GJi

fi
).(4.50)

(a) by (I.3.44),
∣

∣

∣DhCj˜̀(p)
∣

∣

∣ . |h|0 M
−2j` 1l

(

|ip0 − es(p)| ≤M j˜̀
)

.(4.51)
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(b) By Lemma I.3.1,

Dh(`esWi)(es) = `es(DhWi)− `es

(

h
Dues

DuWi

)

(es)(4.52)

so
Dh(1− `es)Wi = (1 − `es)DhWi + `es

(

h
Dues

DuWi

)

.(4.53)

If p is such that |ip0 − es(p)| ≤M j` , then by Taylor expansion

|(1− `es)DhWi(p)| . M j` |DhWi|1.(4.54)

By (I.3.42), this is

. |h|0 M
j`
∑

j>j`

M j(2γ−1)|j`|
Ri . |h|0|j`|

RiM2γj` . |h|0(4.55)

with Ri the number of vertices of Gfi
. The second term in (4.53) is

bounded by
∣

∣

∣

h
Dues

DuWi

∣

∣

∣

0
. |h|0|DuWi|0 . |h|0|Wi|1 . |h|0(4.56)

(in the last step, we used (4.36)).

(c) Eq. (I.3.41) (with depth P ≤ R) implies that

|DhAv |0 . |h|0.(4.57)

(d) Eq. (I.3.42) again implies (4.57).

Thus in all cases, the derivative produces at most an additional factor
. M−j` in the bounds. Applying (4.38), (4.41) with w = 0, and (4.42)
with |α| = 0, counting up factors M j` , now implies the bound.

Thus the effect of a derivative with respect to the dispersion relation
acting on the propagator S`,j` can be bounded in exactly the same way
as a derivative with respect to momentum (see Lemma 4.4), except that
γ (which was never actually used) has been replaced by zero. By Lemma
4.5 we can again prevent the at most two derivatives that appear in the
norms from acting on DhS`,j`. Thus, repeating the argument from (4.46)
to (4.47), again using Lemma I.2.4 and Remark I.2.5, and using |j|R .

M−0.1j , we have

‖Y1(s)‖1 . M−1.1j|e1 − e0|0,(4.58)

‖Y1(s)‖2 . M−2.1j|e1 − e0|0.(4.59)

Summing the seminorms ‖ · ‖k, we get (4.8) and (4.9).
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5 Discussion

In this section, we briefly discuss the role of the various hypotheses we used
in our proofs, to summarize which parts of our argument extend easily
to general Fermi surface geometries and where more work is needed. We
also discuss the role of the symmetry condition e(−p) = e(p) because
cases where this symmetry does not hold are interesting from a physical
point of view.

The two main ingredients for the iteration by which we construct the
solution to (1.11) are

1. the existence of an invariant set for the map e 7→ e+K (R),

2. the contraction–like bounds (3.2), (3.3), and (3.4).

To prove item 2, we needed only rather weak hypotheses on the Fermi
surface geometry. In particular, we neither used a symmetry e(−p) =
e(p) in that part of the proof, nor any assumption about strict convexity,
nor that Se ⊂ F2. With a different localization operator, defined as in
[10], one can even drop F3 in the proof of (4.8) and (4.9) (recall that these
bounds imply (3.3) and (3.4) by Theorem 3.2 and Lemma 4.1). However,
F3 is also necessary for the Lipschitz continuity, eq. (3.2), in | · |0, proven
in I, which is essential for our iteration estimates. One should also keep
in mind that if F3 does not hold, the selfenergy Σ and the function K will
in general not even be C1 (in one dimension, where there are no curvature
effects, Σ is not C1; this is the source of anomalous decay exponents of
the two–point function).

The result that requires the most restrictive hypotheses is that, for

e ∈ Es, the bound (3.1) for
∣

∣

∣K(R)
∣

∣

∣

2
holds. This provides an invariant

set for the iteration. The proof of (3.1), contained in II and III, uses
very detailed geometric estimates which require convexity and positive
curvature, as well as the condition Se ⊂ F2.

The conditions stated in Section 1.2 (including, in particular, the sym-
metry (Sy): e(−p) = e(p) for all p) imply hypotheses (H2)2,0, (H3), (H4),
and (H5) of II and thus imply (3.1). In the asymmetric case, where the
condition (Sy) is dropped, the regularity proof of II and III requires an
additional hypothesis, stated as (H4’) in II, which imposes a minimal rate
of change of the curvature of the Fermi surface at those points where the
curvature coincides with that at the antipode. This condition (H4’) is not
stable under an iteration in | · |3,r. It is, however, only needed to estimate
the contributions to K of a very special class of graphs (the so–called
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wicked ladders; see Section II.4). We shall analyze these contributions
in a further paper, to extend our regularity proof, and thus the inversion
theorem, to the asymmetric case. The asymmetry plays a critical role
in the proof of the existence of a two–dimensional Fermi liquid at zero
temperature that was announced in [9].

The set Es(δ0, g0, G0, ω0)∩C
3(B,R) of starting E allowed in Theorem

1.1 is not an open subset of C2
s (B,R). However, a look at the more

detailed Theorem 3.1 shows that the inversion map really maps the ball
Brad, defined in (3.6), which is open in |·|3,r, to itself (see (3.7)). Thus
in the space of functions with bounded radial derivatives, there is an
open set for which the inversion equation has a solution. Observe that,
for our inversion theorem, in contrast to the KAM theorem, there is no
diophantine condition for irrationality of frequencies.

As mentioned above, we needed the norm | · |3,r instead of | · |2 merely
for apparently rather technical reasons. A superficial look at part 4 of
Theorem 3.1 even seems to suggest that one can extend the inversion
map to balls in Es that are open in | · |2 However, this is not the case
because λR depends on G3, so (3.8) does not imply that the inverse map

is defined on a dense subset of B
(2)
ε/2.

A Proof of Lemma 2.1

We first show that (2.4) follows from (2.3). Fix any p ∈ S. Let T be the
tangent plane to S at p and let x be the point of T nearest c. Since S is
convex it lies on one side of T . So the sphere of radius 1

K centered on c,
which by (2.3) is inside S, also lies on one side of T . Hence ‖x− c‖ ≥ 1

K .
The vector x − c is normal to T and hence parallel to n(p). So θ(p) is
the angle between x− c and p− c and

cos θ(p) = ‖x−c‖
‖p−c‖ ≥

1/K
1/k = k

K(A.1)

c

p

x
n(p)

θ

T

S



36 J.FELDMAN, M.SALMHOFER, AND E.TRUBOWITZ

We now prove (2.3), starting with ‖p − c‖ ≥ 1
K . This is a variant of

a classical result. See, for example, §24 of [1]. Let L > K and define, for
each p ∈ S,

p̃(p) = p− 1
Ln(p)(A.2)

Set
S̃ = {p̃(p) : p ∈ S}(A.3)

Then S̃ is a C1 surface.
We claim further that n(p) is normal to S̃ at p̃(p). To see this, let

t be a unit vector that is a principal direction for S at p. Call the
corresponding principal curvature κ. Let q(s) be a curve on S that is
parametrized by arc length, passes through p at s = 0 and has tangent
vector t there. Then s 7→ p̃(q(s)) = q(s)− 1

Ln(q(s)) is a curve on S̃ that
passes through p̃(p) at s = 0 and has tangent vector

d
ds p̃(q(s))

∣

∣

∣

s=0
= t− 1

L
d
dsn(q(s))

∣

∣

∣

s=0
= t− κ

Lt(A.4)

there. Since κ < L, t is also a tangent vector to S̃ at p̃(p). As this is
the case for all principal directions t, the tangent plane to S̃ at p̃(p) is
parallel to the tangent plane to S at p.

Since S is strictly convex, with principal curvatures bounded away
from zero, the Gauss map p ∈ S 7→ n(p) is bijective and has a C 1 inverse
n ∈ Sd−1 7→ p(n) ∈ S. The map n ∈ Sd−1 7→ p̃(p(n)) is then C1 and
surjective. Furthermore, the normal to S̃ at p̃(p(n)) is the same as the
normal to S at p(n), which is n. Consequently, S̃ is convex.

As the chord c1 − c2 is of maximal length, it must be parallel to both
n(c1) and n(c2). Thus

n(c1) =
c1 − c2

‖c1 − c2‖
= −n(c2)(A.5)

so that

c = 1
2 (c1 + c2) = 1

2 (c1 −
1
Ln(c1)) + 1

2(c2 −
1
Ln(c2))(A.6)

is also the midpoint of a line joining two points of S̃. By convexity, c
is inside S̃. The convexity of S̃ also implies that S̃ lies on one side of
the tangent plane at p̃(p), the side opposite n(p). Hence c, which is
inside S̃ and p ∈ S are on opposite sides of the tangent plane to p̃(p). In
particular, the straight line from c to the nearest point, say p0, of S is
parallel to n(p0) and coincides, in part, with the line from p̃(p0) to p0,



FERMI SURFACE INVERSION THEOREM 37

which is of length 1
L . We conclude that ‖p−c‖ ≥ 1

L for every L > K and
every p ∈ S.

n(p0)

S

S̃

p̃(p0)

c

p0

The proof that ‖p‖ ≤ 1
k is similar. This time, one lets ` < k and

defines

p̃(p) = p− 1
`n(p)(A.7)

and sets

S̃ = {p̃(p) : p ∈ S}(A.8)

This time, S̃, and hence c, lies on the same side of the tangent plane at
p̃(p) as n(p). So the straight line from c to the farthest point, say p0, of
S is contained in the line from p̃(p0) to p0, which is of length 1

` . When
S is invariant under inversion in the origin, n(c1) = −n(c2) implies that
c1 = −c2 so that c = 1

2(c1 + c2) = 0.

S

S̃

p̃(p0)
c

p0 n(p0)



38 J.FELDMAN, M.SALMHOFER, AND E.TRUBOWITZ

B Proof of Lemma 2.2

Let p be any point of SE0 and let t be any principal direction for SE0

at p. Let q(s) be a curve on SE0 that is parametrized by arc length,
passes through p at s = 0 and has tangent vector t there. The principal
curvature κ corresponding to t obeys

κt = d
ds

∇E0(q(s))
‖∇E0(q(s))‖

∣

∣

∣

∣

s=0
= E0

′′(p)t
‖∇E0(p)‖ +∇E0(p) d

ds
1

‖∇E0(q(s))‖

∣

∣

∣

∣

s=0
(B.1)

and hence

κ =
(t, E0

′′(p)t)

‖∇E0(p)‖
.(B.2)

Consequently, SE0 is a convex surface that is invariant under inversion
in the origin and has all principal curvatures between ω0

G0
and G0

g0
. By

Lemma 2.1,

∂

∂r
E0(p(r, θ)) = ∇E0(p(r, θ))·

∂p

∂r
(r, θ) ≥ ‖∇E0(p(r, θ))‖

ω0/G0

G0/g0
≥
ω0g0

2

G0
2

(B.3)

for all r = rF (E0, θ). Choose g1 = ω0g02

4G0
2 and r0 = min{ g1G0

, δ0}. Then

∂

∂r
E0(p(r, θ)) = ∇E0(p(rF (E0, θ), θ)) ·

∂p
∂r (r, θ)

+
[

∇E0(p(r, θ)) −∇E0(p(rF (E0, θ), θ))
]

· ∂p∂r (r, θ)(B.4)

and
∣

∣

∣

[

∇E0(p(r, θ))−∇E0(p(rF (E0, θ), θ))
]

· ∂p∂r (r, θ)
∣

∣

∣

≤ G0|r − rF (E0, θ)|
(B.5)

so

∂
∂rE0(p(r, θ)) ≥ 2g1 for all |r − rF (E0, θ)| ≤ 2r0, θ ∈ S

d−1(B.6)

Similarly, if |e−E0|1 ≤ g1,

∂
∂re(p(r, θ)) ≥ g1 for all |r − rF (E0, θ)| ≤ 2r0, θ ∈ S

d−1(B.7)

This verifies (2.7). We merely need to choose ε < g1.
To verify (2.6), observe that if |e−E0|0 ≤ r0g1, then |e(rF (E0, θ), θ)| ≤

r0g1 and hence
|rF (e, θ)− rF (E0, θ)| ≤ r0(B.8)
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by (2.7).
The same argument that shows that Es is open in (C2

s (B,R), | · |2)
also yields e ∈ Es(δ0/2, g0/2, 2G0, ω0/2), if we choose ε small enough,
depending only on δ0, g0, G0 and ω0.
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