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Abstract
We show that, in three dimensions, there are no nontrivial, isotropic, unitary solu-

tions of the gap equation for angular momentum greater than one, while in two dimensions
they exist in all angular momentum sectors.
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Consider the many Fermion system in three dimensions characterized by the effective

potential

G(ψe, ψ̄e) = log
1

Z

∫

e−λV(ψ+ψe,ψ̄+ψ̄e)dµC(ψ, ψ̄),

V(ψ, ψ̄) = 1

2

∑

ai∈{↑,↓}

∫ 4
∏

i=1

d4ki

(2π)4
(2π)4δ(k1 + k2 − k3 − k4)δa1,a3

δa2,a4

〈k1, k2|V |k3, k4〉ψ̄(k1, a1)ψ̄(k2, a2)ψ(k4, a4)ψ(k3, a3),

where dµC(ψ, ψ̄) is the fermionic Gaussian measure in the Grassmann variables

{

ψ(ξ), ψ̄(ξ)|ξ = (τ,x, σ), τ ∈ IR,x ∈ IR3, σ ∈ {↑, ↓}
}

with covariance
C(ξ1, ξ2) = 〈ψ(ξ1)ψ̄(ξ2)〉

= δσ1,σ2

∫

dd+1k

(2π)d+1

ei〈k,ξ1−ξ2〉−

ik0 − e(k)

〈k, (τ,x)〉− = −k0τ + k · x , k = (k0,k)

e(k) =
k2

2m
− µ.

and where the two-body interaction 〈k1, k2|V |k3, k4〉 is rotation invariant.That is

〈Rk1, Rk2|V |Rk3, Rk4〉 = 〈k1, k2|V |k3, k4〉

for any element R of SO(3) acting on spatial components. The chemical potential µ in e(k)

determines the election density of the model.

The infrared behaviour of this model is determined (see [FT]) by a running coupling

“constant” F (h)(t′, s′), h ≤ 0 where at scale h the momentum k is restricted to a shell Mh

away from the Fermi surface e(k) = 0 and t′ =
(

0, t

|t|kF
)

projects t onto the Fermi surface.

Initially

F (0)(t′, s′) = −λ〈t′,−t′|V |s′,−s′〉.

The kernel F (h)(t′, s′) defines an operator on L2(kFS
2).

By rotation invariance the operator F (h) commutes with the action of SO(3).

Therefore the eigenspaces of F (h) coincide with the SO(3) irreducible invariant subspaces
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of L2(kFS
2). Recall that the space Hn, obtained by restricting homogeneous harmonic poly-

nomials of degree n to S2, is a 2n + 1 dimensional SO(3) irreducible invariant subspace of

L2(kFS
2) and that

L2(kFS
2) = ⊕n≥0H

n.

It follows that

F (h)(t′, s′) =
∑

n≥0

λ(h)n πn(t
′, s′)

where πn is the orthogonal projection onto Hn and λn, n ≥ 0 is the spectrum of F (h). Here,

πn(t
′, s′) = (2n+ 1)k−2−n

F Pn(〈t′, s′〉) where Pn is the Legendre polynomial of degree n.

It is widely believed that any (sufficiently weak) interaction 〈k1, k2|V |k3, k4〉 flows,
after, say, h steps, to an effective interaction F (h) that is dominated by a single attractive

angular momentum sector λ
(h)
ℓ > 0 (see [KL]). The infrared behaviour is then likely to be

determined by the corresponding BCS model with gap equation

∆(p) =
1

2

∫

|e(q)|≤ǫ

d3q

(2π)
3 λ

(h)
ℓ πn(p

′,q′)∆(q)
1

E(q)
tanh

(

1

2
βE(q)

)

. (1)

Here,

∆(p) = (∆σ,σ′(p))
σ,σ′∈{↑,↓}

is a 2× 2 matrix satisfying

∆(p) = −∆(−p)T

and

E(q)2 = e(q)2 +∆(q)∗∆(q).

The expression 1
E(q) tanh

(

1
2βE(q)

)

is unambiguously defined by expanding 1√
x
tanh

(

1
2β

√
x
)

as a power series in x. For a derivation of (1) see [AB], [BW].

Every solution of (1) is of the form

∆(p) = (Yσ,σ′(p)) , Yσ,σ′ ∈ Hℓ.

The simplest solutions are unitary and isotropic. A solution is unitary when

∆(p)∗∆(p) = |d(p)|2I
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and isotropic when d(p) is a constant. In this case the quasiparticle dispersion relation
(

e(q)2 + |d|2
)

1

2 is isotropic and has a gap |d| determined by

1 =
1

2

∫

|e(q)|≤ǫ

d3q

(2π)
3 λ

(h)
ℓ

(

e(q)2 + |d|2
)− 1

2 tanh

[

1

2
β
(

e(q)2 + |d|2
)

1

2

]

(2)

when d 6= 0. Intuitively, they have the best chance of being stable.

There are two important examples of isotropic, unitary solutions. For ℓ = 0 there

is the BCS model

∆ =

[

0 d

−d 0

]

for phononic superconductivity. Balian and Werthamer discovered, in the ℓ = 1 sector, the

solution

∆ = d

[

−p1 + ip2 p3

p3 p1 + ip2

]

, p2
1 + p2

2 + p2
3 = k2F

which describes the B phase of He3.

Theorem There are no nontrivial, isotropic, unitary solutions of (1) for ℓ ≥ 2.

One therefore expects that solutions will have nodes for ℓ ≥ 2 making the flow

harder to control. Such nodes are observed in the A phase of He3 and in the ℓ = 2 theory of

heavy fermionic superconductivity. Nodes also appear in the gap function for systems with

cubic symmetry. See, for example, [VG].

The proof of Theorem 1 follows immediately from the

Lemma Let f, g ∈ Hℓ satisfy f f̄ + gḡ = 1 on S2. Then, ℓ = 0, 1.

Proof Let Pℓ, ℓ ≥ 0, be the homogeneous polynomials of degree ℓ on IR3 with SO(3) invariant

inner product

< f, g >:= f

(

∂

∂k1
,
∂

∂k2
,
∂

∂k3

)

ḡ.

As usual Hℓ is identified with H∗
ℓ by the SO(3) equivariant isomorphism

f 7→< ·, f̄ > .

We shall show that under the hypothesis of the lemma

U = f ⊗ f̄ + f̄ ⊗ f + g ⊗ ḡ + ḡ ⊗ g
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is the (unique up to scalars) SO(3) invariant element of Hℓ ⊗ Hℓ. It follows that the

homomorphism

U ∈ Hℓ ⊗Hℓ
∼= Hℓ ⊗H∗

ℓ
∼= Hom(Hℓ, Hℓ)

commutes with SO(3) and is of rank at most four. Moreover, by Schur’s Lemma, U is an

isomorphism since Hℓ is irreducible. Consequently, 2ℓ+ 1 ≤ 4.

Consider the SO(3) equivariant multiplication map

Hℓ ⊗s Hℓ
M−→ P2ℓ

∑

cjφj ⊗ ψj 7−→
∑

j

cjφjψj .

Observe that

dim Hℓ ⊗s Hℓ = 2ℓ+ 1 +
(2ℓ+ 1)(2ℓ)

2
=

(

2ℓ+ 2

2

)

= dim P2ℓ

and

MU = 2|k|2ℓ.

If M is surjective it is an isomorphism and U is invariant.

The projection of

M
(

(k1 + ik2)
ℓ ⊗s (k1 − ik2)

ℓ
)

=
(

k21 + k22
)ℓ

onto the irreducible subspace |k|2(ℓ−m)H2m of P2ℓ is nonzero because
〈

|k|2(ℓ−m) (k1 + ik3)
2m

,
(

k21 + k22
)ℓ
〉

=

(

∂

∂k1
+ i

∂

∂k3

)2m

∆ℓ−m (

k21 + k22
)ℓ

=
ℓ−m−1
∏

j=0

4(ℓ− j)2
(

∂

∂k1
+ i

∂

∂k3

)2m
(

k21 + k22
)m

6= 0.

Recall that every invariant subspace of P2ℓ is of the form

⊕ji |k|2ji H2(ℓ−ji)

with 0 ≤ j1 < j2 · · · < jr ≤ ℓ and in particular

P2ℓ = ⊕ℓj=0 |k|2j H2(ℓ−j).

Finally the image of M is invariant and therefore all of P2ℓ.
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We observe that in two dimensions there are unitary isotropic solutions of the gap

equation for every angular momentum. For example,

∆(p) = d

[

cos ℓθ sin ℓθ
sin ℓθ − cos ℓθ

]

when ℓ is odd and

∆(p) = d

[

0 eiℓθ

−eiℓθ 0

]

when ℓ is even. Here, p = |p|(cos θ, sin θ).
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