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knoerrer@math.ethz.ch, trub@math.ethz.ch

The temperature zero renormalized perturbation expansions of a class of interact-
ing many-fermion models in two space dimensions have nonzero radius of conver-
gence. The models have “asymmetric” Fermi surfaces and short range interactions.
One consequence of the convergence is the existence of a discontinuity in the par-
ticle number density at the Fermi surface. Here we describe the main results and
highlight some of the strategy of the construction.

1. The Results

The concept of a Fermi liquid was introduced by L. D. Landau in [16, 17, 18] and has become

the generally accepted explanation for the unexpected success of the independent electron

approximation. An elementary sketch of Landau’s well known physical arguments can be

found in [4, pp 345–351]. More thorough and technical discussions are presented in [1, pp

154-203] and [22].

Roughly speaking, at temperature zero, the single particle excitations of a noninteracting

Fermi gas become (almost stable) ‘quasi–particles’ in a Fermi liquid. The quasi–particle

spectrum has the ‘same structure’ as the noninteracting single particle excitation spectrum

and the quasi–particle density function n(k) still has a jump at the ‘Fermi surface’. The

quasi–particle interaction at temperature zero is encoded in Landau’s f–function f(kF ,k
′
F ).

It is well known that there are a number of potential instabilities that can drive an

interacting Fermi gas away from the Fermi liquid state. See, for example, [21, §1.2,4.5]. One

of the most celebrated is the BCS instability for the formation of Cooper pairs leading to

superconductivity in 2 and 3 dimensions. This is a potential instability for any time reversal

invariant system [15, 19].

Another important instability is the Luttinger instability. There are solvable models

in one space dimension that exhibit qualitatively different behavior from that of a three

dimensional Landau Fermi liquid. In particular, the quasi–particle density function n(k) is

continuous across the ‘Fermi surface’ but has infinite slope there. These systems are called

Luttinger liquids. For a rigorous treatment of Luttinger liquids in one dimension, see [5]

and the references therein.

Anderson [2, 3] suggested that a two dimensional Fermi gas should exhibit behavior
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similar to a one dimensional Luttinger liquid. [11, Theorem I.4] rigorously shows that this

is not the case for a specific class of models. In particular, we show that, at temperature zero,

the density function n(k) has a jump discontinuity across the Fermi surface [11, Theorem

I.5]. The existence of the Landau f-function and its basic regularity properties follow directly

from [11, Theorem I.7]. For results concerning Fermi liquids at strictly positive temperature,

see [7, 8, 23, 24].

The class of models that we consider is somewhat unusual in that the Fermi surface

survives the turning on of all sufficiently weak short range interactions. To motivate the

class, consider a gas of fermions with prescribed, strictly positive, density, together with a

crystal lattice of magnetic ions. The fermions interact with each other through a two-body

potential. The lattice provides periodic scalar and vector background potentials. As well,

the ions can oscillate, generating phonons and then the fermions interact with the phonons.

At the present time our result is restricted to d = 2 space dimensions. But we believe that

the difficulties preventing the extension to d = 3 are technical rather than physical. Indeed,

there has already been some progress in this direction [20, 6].

To start, turn off the fermion–fermion and fermion–phonon interactions. Then we have

a gas of independent fermions, each with Hamiltonian

H0 = 1
2m (i∇∇∇ + A(x))2 + U(x)

We assume that the vector and scalar potentials A, U are periodic with respect to some

lattice Γ in R2. Note that it is the magnetic potential, and not just the magnetic field, that

is assumed to be periodic. This forces the magnetic field to have mean zero. By convention,

bold face characters are two component vectors. Because the Hamiltonian commutes with

lattice translations it is possible to simultaneously diagonalize the Hamiltonian and the

generators of lattice translations. Call the eigenvalues and eigenvectors εν(k) and φν,k(x)

respectively. They obey

H0φν,k(x) = εν(k)φν,k(x)

φν,k(x + γγγ) = ei<k,γγγ>φν,k(x) ∀ γγγ ∈ Γ (1)

The crystal momentum k runs over R2/Γ# where

Γ# =
{

b ∈ R
2

∣

∣ < b, γγγ >∈ 2πZ for all γγγ ∈ Γ
}

is the dual lattice to Γ. The band index ν ∈ N just labels the eigenvalues for boundary

condition k in increasing order. When A = U = 0, εν(k) = 1
2m (k − bν,k)2 for some

bν,k ∈ Γ#.

In the grand canonical ensemble, the Hamiltonian H is replaced by H − µN where N is

the number operator and the chemical potential µ is used to control the density of the gas.

At very low temperature, which is the physically interesting domain, only those pairs ν,k

for which εν(k) ≈ µ are important. To keep things as simple as possible, we assume that

εν(k) ≈ µ only for one value ν0 of ν and we fix an ultraviolet cutoff so that we consider only

those crystal momenta in a region B for which |εν0(k)− µ| is smaller than some fixed small

constant. We denote E(k) = εν0(k) − µ.

When the fermion–fermion and fermion–phonon interactions are turned on, the models

at temperature zero are characterized by the Euclidean Green’s functions, formally defined
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by

G2n(p1, · · · , qn)δ(Σpi − Σqi) =

〈

n
∏

i=1

ψpi ψ̄qi

〉

=

∫ (
∏n
i=1 ψpi ψ̄qi

)

eA(ψ,ψ̄)
∏

k,σ dψk,σ dψ̄k,σ
∫

eA(ψ,ψ̄)
∏

k,σ dψk,σ dψ̄k,σ
(2)

The action

A(ψ, ψ̄) = −
∫

dk
(

ik0 −E(k)
)

ψ̄kψk + V(ψ, ψ̄) (3)

The interaction V will be specified shortly. We prefer to split A = Q + V where Q =

−
∫

dk
(

ik0 −E(k)
)

ψ̄kψk and write

〈

f(ψ, ψ̄)
〉

=

∫

f(ψ, ψ̄) eA(ψ,ψ̄)
∏

k,σ dψk,σ dψ̄k,σ
∫

eA(ψ,ψ̄)
∏

k,σ dψk,σ dψ̄k,σ

=

∫

f(ψ, ψ̄) eV(ψ,ψ̄) dµC(ψ, ψ̄)
∫

eV(ψ,ψ̄) dµC(ψ, ψ̄)

where dµC is the Grassmann gaussian “measure” with covariance

C(k) = 1
ik0−E(k)

We have here dropped some factors of 2π. We will continue to routinely drop various

unimportant constants through this article.

We now take some time to explain (2). The fermion fields are vectors

ψk =

[

ψk,↑
ψk,↓

]

ψ̄k =
[

ψ̄k,↑ ψ̄k,↓
]

whose components ψk,σ , ψ̄k,σ , k = (k0,k) ∈ R×B, σ ∈ {↑, ↓} , are generators of an infinite

dimensional Grassmann algebra over C. That is, the fields anticommute with each other.

( )

ψk,σ
( )

ψp,τ = −( )

ψp,τ
( )

ψk,σ

We have deliberately chosen ψ̄ to be a row vector and ψ to be a column vector so that

ψ̄kψp = ψ̄k,↑ψp,↑ + ψ̄k,↓ψp,↓ ψkψ̄p =

[

ψk,↑ψ̄p,↑ ψk,↑ψ̄p,↓
ψk,↓ψ̄p,↑ ψk,↓ψ̄p,↓

]

In the argument k = (k0,k), the last d components k are to be thought of as a crystal

momentum and the first component k0 as the dual variable to an imaginary time. Hence

the
√
−1 in ik0 − E(k). Our ultraviolet cutoff restricts k to B. In the full model, k is

replaced by (ν,k) with ν summed over N and k integrated over Rd/Γ#. On the other hand,

the ultraviolet cutoff does not restrict k0 at all. It still runs over R. So we could equally well

express the model in terms of a Hamiltonian acting on a Fock space. We find the functional

integral notation more efficient, so we use it. The relationship between the position space

field ψ(x), with x = (t,x) running over (imaginary)time×space, and the momentum space

field ψk is really given, in our single band approximation, by

ψ(x) =

∫

dk eik0tφν0 ,k(x)ψk
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We find it convenient to use a conventional Fourier transform, so we work in a “pseudo”

space–time and instead define

ψ(x) =

∫

dk eik·xψk

Under suitable conditions on φν0,k(x), it is easy to go from the pseudo space–time ψ(x) to

the real one.

For a simple two–body fermion–fermion interaction, with no phonon interaction,

V = − 1
2

∑

σ,τ∈{↑,↓}

∫

dtdxdy u(x− y)ψ̄σ(t,x)ψσ(t,x)ψ̄τ (t,y)ψτ (t,y)

The general spin independent form of the interaction is

V(ψ, ψ̄) = 1
2

∑

σ,τ∈{↑,↓}

∫

4
∏

i=1

dxi V (x1, x2, x3, x4)ψ̄σ(x1)ψσ(x3)ψ̄τ (x2)ψτ (x4)

= 1
2

∫

4
∏

i=1

dki δ(k1+k2−k3−k4) ψ̄k1ψk3 〈k1, k2|V|k3, k4〉 ψ̄k2ψk4

Spin independence is imposed purely for notational convenience. It plays no role. The

function V (x1, x2, x3, x4), or equivalently 〈k1, k2|V|k3, k4〉, can implement both the fermion–

fermion and fermion–phonon interactions. Its precise value does not concern us. We just

assume

Hypothesis 1.1. The interaction is weak and short range. That is, V is sufficiently near

the origin in V, which is a Banach space of fairly short range, translation invariant functions

V (x1, x2, x3, x4). See [11, Theorem I.4] for V’s precise norm.

For some results, we also assume that V is “k0–reversal real”

V (Rx1, Rx2, Rx3, Rx4) = V (x1, x2, x3, x4) (4)

where R(x0,x) = (x0,−x) and “bar/unbar exchange invariant”

V (−x2,−x1,−x4,−x3) = V (x1, x2, x3, x4) (5)

If V corresponds to a two–body interaction u(x1−x3) with a real–valued Fourier transform,

then V obeys (4) and (5).

Our goal is to prove that perturbation expansions for various objects converge. These

objects depend on both E(k) and V and are not smooth in V when E(k) is held fixed.

However, we can recover smoothness in V by a change of variables. To do so, we split E(k) =

e(k) − δe(V,k) into two parts and choose δe(V,k) to satisfy an implicit renormalization

condition. This is called renormalization of the dispersion relation. Define the proper self

energy Σ(p) for the action A by the equation

(

ip0 − e(p) − Σ(p)
)−1

δ(p− q) =

∫

ψpψ̄q eA(ψ,ψ̄)
∏

dψk,σdψ̄k,σ
∫

eA(ψ,ψ̄)
∏

dψk,σdψ̄k,σ

The counterterm δe(V,k) is chosen so that Σ
(

0,p
)

vanishes on the Fermi surface F =
{

p
∣

∣ e(p) = 0
}

. We take e(k) and V , rather than the more natural, E(k) and V as input

data. The counterterm δe will be an output of our main theorem. It will lie in a suitable
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Banach space E . While the problem of inverting the map e 7→ E = e − δe is reasonably

well understood on a perturbative level [13], our estimates are not yet good enough to do

so nonperturbatively. Our main hypotheses are imposed on e(k).

Hypothesis 1.2. The dispersion relation e(k) is a real-valued, sufficiently smooth, func-

tion. We further assume that

(a) the Fermi curve F =
{

k ∈ R2
∣

∣ e(k) = 0
}

is a simple closed, connected, convex

curve with nowhere vanishing curvature.

(b) ∇e(k) does not vanish on F .

(c) For each q ∈ R2, F and −F + q have low degree of tangency. (F is “strongly

asymmetric”.) Here −F + q =
{

− k + q
∣

∣ k ∈ F
}

.

Again, for the details, see [11, Hypothesis I.12].

It is the strong asymmetry condition, Hypothesis 1.2.c, that makes this class of models

somewhat unusual and permits the system to remain a Fermi liquid when the interaction is

turned on. If A = 0 then, taking the complex conjugate of (1), we see that εν(−k) = εν(k) so

that Hypothesis 1.2.c is violated for q = 0. Hence the presence of a nonzero vector potential

A is essential. We shall say more about the role of strong asymmetry later. For now, we

just mention one model that violates these hypotheses, not only for technical reasons but

because it exhibits different physics. It is the Hubbard model at half filling, whose Fermi

surface looks like

F

This Fermi curve is not smooth, violating Hypothesis 1.2.b, has zero curvature almost

everywhere, violating Hypothesis 1.2.a, and is invariant under k → −k so that F = −F ,

violating Hypothesis 1.2.c with q = 0.

To give a rigorous definition of (I.2) one must introduce cutoffs and then take the limit

in which the cutoffs are removed. To impose an infrared cutoff in the spatial directions

one could put the system in a finite periodic box Rd/LΓ. To impose an ultraviolet cutoff

in the spatial directions one may put the system on a lattice. By also imposing infrared

and ultraviolet cutoffs in the temporal direction, we could arrange to start from a finite

dimensional Grassmann algebra. We choose not to do so. Our goal is to prove that formal

renormalized perturbation expansions converge. The coefficients in those expansions are

well–defined even without a finite volume cutoff. So we choose to start with x running over

all R
3. We impose a (permanent) ultraviolet cutoff through a smooth compactly supported

function U(k). This keeps k permanently bounded. We impose a (temporary) infrared
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cutoff through a function νε
(

k2
0 + e(k)2

)

where νε(κ) looks like

κ

1

ε

When ε > 0 and νε
(

k2
0 + e(k)2

)

> 0, |ik0 − e(k)| is at least of order ε. The coefficients

of the perturbation expansion (either renormalized or not) of the cutoff Euclidean Green’s

functions

G2n;ε(x1, σ1, · · · , yn, τn) =

〈

n
∏

i=1

ψσi(xi)ψ̄τi(yi)

〉

ε

where

〈f〉ε =

∫

f(ψ, ψ̄) eV(ψ,ψ̄) dµCε(ψ, ψ̄)
∫

eV(ψ,ψ̄) dµCε(ψ, ψ̄)
with Cε(k; δe) =

U(k)νε(k2
0+e(k)2)

ik0−e(k)+δe(k)

are well–defined. Our main result is

Theorem 1.1. [11, Theorem I.4]

Assume that d = 2 and that e(k) fulfils Hypothesis 1.2. There is

• a nontrivial open ball B ⊂ V, centered on the origin, and

• an analytic function V ∈ B 7→ δe(V ) ∈ E, that vanishes for V = 0,

such that:

• For any ε > 0 and n ∈ N, the formal Taylor series for the Green’s functions G2n;ε

converges to an analytic function on B.

• As ε → 0, G2n;ε converges uniformly, in x1, · · · , yn and V ∈ B, to a transla-

tion invariant, spin independent, particle number conserving function G2n that is

analytic in V .

If, in addition, V is k0–reversal real, as in (4), then δe(k;V ) is real for all k.

Theorem 1.2. [11, Theorem I.5]

Under the hypotheses of Theorem 1.1 and the assumption that V ∈ B obeys the symme-

tries (4) and (5), the Fourier transform

Ĝ2(k0,k) =

∫

dx0d
dx eı(−k0x0+k·x)G2((0,0,↑),(x0,x,↑))

=

∫

dx0d
dx eı(−k0x0+k·x)G2((0,0,↓),(x0,x,↓))

= 1
ik0−e(k)−Σ(k) when U(k) = 1

of the two–point function exists and is continuous, except on the Fermi surface (precisely,

except when k0 = 0 and e(k) = 0). The momentum distribution function

n(k) = lim
τ→0+

∫

dk0
2π eık0τ Ĝ2(k0,k)
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is continuous except on the Fermi surface F . If k̄ ∈ F , then lim
k→k̄

e(k)>0

n(k) and lim
k→k̄

e(k)<0

n(k) exist

and obey

lim
k→k̄

e(k)<0

n(k) − lim
k→k̄

e(k)>0

n(k) = 1 +O
(

V
)

> 1
2

Theorem 1.3. [11, Theorem I.7]

Let

Ĝ4(k1, k2, k3, k4) =
k1

k4

k2

k3

(spin dropped from notation) be the Fourier transform of the four–point function and

ĜA4 (k1, k2, k3, k4) = Ĝ4(k1, k2, k3, k4)
4
∏

`=1

1
Ĝ2(k`)

its amputation by the physical propagator. Under the hypotheses of Theorem 1.2, ĜA4 has a

decomposition

ĜA4 (k1, k2, k3, k4) = N(k1, k2, k3, k4)

+ 1
2L

(

k1+k2
2 , k3+k42 , k2 − k1

)

− 1
2L

(

k3+k2
2 , k1+k42 , k2 − k3

)

with

• N continuous

• L(q1, q2, t) continuous except at t = 0

• lim
t0→0

L(q1, q2, t) continuous

• lim
t→0

L(q1, q2, t) continuous

Think of L as a particle–hole ladder

L(q1, q2, t) =
q1 + t

2

q1 − t
2

q2 + t
2

q2 − t
2

2. Blocking the Cooper Channel

We now discuss further the role of the geometric conditions of Hypothesis 1.2 in blocking the

Cooper channel. When you turn on the interaction V , the system itself effectively replaces

V by more complicated “effective interaction”. The (dominant) contribution

p

−p+ t

q

−q + t
k

to the strength of the effective interaction between two particles of total momentum t =

p1 + p2 = q1 + q2 is
∫

dk
stuff

[ik0 − e(k)][i(−k0 + t0) − e(−k + t)]
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Note that

[ik0 − e(k)] = 0 ⇐⇒ k0 = 0, e(k) = 0

⇐⇒ k0 = 0, k ∈ F

[i(−k0 + t0) − e(−k + t)] = 0 ⇐⇒ k0 = t0, e(−k + t) = 0

⇐⇒ k0 = t0,k ∈ t − F

We can transform 1
ik0−e(k) locally to 1

ik0−k1 by a simple change of variables. Thus 1
ik0−e(k) is

locally integrable, but is not locally L2. So the strength of the effective interaction diverges

when the total momentum t obeys t0 = 0 and F = t−F , because then the singular locus of
1

ik0−e(k) coincides with the singular locus of 1
i(−k0+t0)−e(−k+t) . This always happens when

F = −F (for example, when F is a circle) and t = 0. Similarly the strength of the effective

interaction diverges when F has a flat piece and t/2 lies in that flat piece, as in the figure on

the right below. On the other hand, when F is strongly asymmetric, F and t − F always

k −k

F

t

2

Ft − F

intersect only at isolated points. A “worst” case is illustrated below. There the antipode,

a(k), of k ∈ F , is the unique point of F , different from k, such that the tangents to F at k

and a(k) are parallel.

k a(k)

F

k a(k)

Fk + a(k) − F

For strongly asymmetric Fermi curves, 1
[ik0−e(k)][i(−k0+t0)−e(−k+t)] remains locally integrable

in k for each fixed t and strength of the effective interaction remains bounded.

3. Power Counting and Nonperturbative Bounds

The proofs of Theorems 1.1, 1.2 and 1.3 are quite technical. The whole construction is given

in a series of papers [10]. In the first paper, [11], of the series, the main difficulties and our

strategies to overcome them are described. Here, we concentrate on one aspect, namely the

need to use both position space and momentum space arguments and the problems created

by the interplay between them.

The Green’s functions G2n are constructed using a multiscale analysis and renormaliza-

tion. The multiscale analysis is introduced by choosing a parameterM > 1 and decomposing

momentum space into a family of shells, with the jth shell consisting of those momenta k

obeying |ik0 − e(k)| ≈ 1
Mj . Correspondingly, we write the covariance as a telescoping series
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C(k) =
∑∞
j=0 C

(j)(k) where, for j ≥ 1,

C(j) = CM−j − CM−j+1

is the “covariance at scale j”. By construction C (j)(k) vanishes unless
√

k2
0 + e(k)2 is of

order M−j , and ‖C(j)(k)‖L∞ ≈M j .

We consider, for each j, the effective interaction at scale j

Wj(φ, φ̄, ψ, ψ̄) = log 1
Zj

∫

eφJζ+V(ψ+ζ,ψ̄+ζ̄)dµCM−j (ζ, ζ̄)

where the source term φJζ =
∫

dx φ̄(x)ζ(x) + ψ̄(x)ζ(x) and the partition function Zj is

chosen so that Wj(0, 0, 0, 0) = 0. The coefficients in the expansion of Wj(φ, φ̄, 0, 0) in powers

of φ are the Euclidean Green’s functions G2n;M−j . The effective interactions are controlled

using the recursion relation

Wj+1(φ, φ̄, ψ, ψ̄) = log 1
Z

∫

eφJζ+Wj(φ,φ̄,ψ+ζ,ψ̄+ζ̄)dµC(j) (ζ, ζ̄) (6)

The recursion relation (6) is the renormalization group map. The main difficulties in con-

trolling it already arise when φ = φ̄ = 0. We fix a scale j and consider the passage from

Wj(0, 0, ψ, ψ̄) to Wj+1(0, 0, ψ, ψ̄).

Expand

Wj(0, 0, ψ, ψ̄) =
∑

n≥0

∫

dx1···dxn dy1···dyn w2n(x1,··· ,xn, y1,··· ,yn) ψ̄(x1)···ψ̄(xn)ψ(y1)···ψ(yn)

=
∑

n≥0

∫

dp1···dpn dq1···dqn δ(p1+···+pn−q1−···−qn)

ŵ2n(p1,··· ,pn, q1,··· ,qn) ψ̄p1 · · · ψ̄pn ψq1 · · ·ψqn

with the position space kernels w2n(x1,··· ,xn, y1,··· ,yn) translation invariant and antisymmetric

in the x and y variables separately. Similarly, write

Wj+1(0, 0, ψ, ψ̄) =
∑

n≥0

∫

dx1···dxn dy1···dyn w
′
2n(x1,··· ,xn, y1,··· ,yn) ψ̄(x1)···ψ̄(xn)ψ(y1)···ψ(yn)

=
∑

n≥0

∫

dp1···dpn dq1···dqn δ(p1+···+pn−q1−···−qn)

ŵ′
2n(p1,··· ,pn, q1,··· ,qn) ψ̄p1 · · · ψ̄pn ψq1 · · ·ψqn

Then w′
2n can be written as a sum of values of connected directed Feynman graphs with

vertices w2, w4, · · · and propagator C(j). See [14, Chapter 3].

By power counting we mean finding simple j–dependent bounds on appropriate norms

of w2n such that all diagrams contributing to w′
2n fulfil analogous bounds with j replaced
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by j+1. Also, two and four–legged vertices should remain bounded as j → ∞.a The choice

of an appropriate system of norms is an important issue in our construction. To treat all

orders in perturbation theory, but without worrying about convergence of the series, the

supremum norm in momentum space ‖ŵ2n‖L∞ seems to be the most convenient norm.

To illustrate power counting, observe that every diagram can be built by successively

applying one of the two following procedures.

(i) Contraction, that is connecting two disjoint vertices ϕ1 and ϕ2 by one line to form

a new diagram Γc.

ϕ1 ϕ2Γc =

(ii) Tadpole formation, that is connecting one outgoing leg to one incoming leg of a

single vertex ϕ to form a new diagram Γt.

ϕΓt =

For example, let ϕ1 be a six–legged vertex and ϕ2 a four–legged vertex. The diagram

ϕ1 ϕ2Γ =

can be constructed by first contracting once to yield the graph Γc above and then forming

two tadpole lines.

ϕ1 ϕ2

If, in the contraction described above, ϕ1 has 2r legs and ϕ2 has 2s legs, then Γc has

2(r + s− 1) legs and

Γ̂c(p1, · · · , pr+s−1, q1, · · · , qr+s−1) (7)

= ϕ̂1(p1, · · · , pr, q1, · · · , qr−1, k) C
(j)(k) ϕ̂2(k, pr+1, · · · , pr+s−1, qr, · · · , qr+s−1)

with k = p1 + · · ·+ pr − q1 − · · · − qr−1 = qr + · · ·+ qr+s−1 − pr+1 − · · · − pr+s−1. Therefore

‖Γ̂c‖L∞ ≤ c ‖ϕ̂1‖L∞ ‖ϕ̂2‖L∞ with c = ‖C(j)(k)‖L∞ ≈M j

If, in the tadpole formation described above, ϕ has 2n legs, then Γt has 2(n− 1) legs and

Γ̂t(p1, · · · , pn−1, q1, · · · , qn−1) =

∫

dk ϕ̂(p1, · · · , pn−1, k, q1, · · · , qn−1, k) C
(j)(k)

Therefore

‖Γ̂t‖L∞ ≤ b ‖ϕ̂‖L∞ with b = ‖C(j)(k)‖L1 ≈M−j

aTo achieve this, special effects like renormalization and the special geometry of the Fermi surface, mentioned
above, are also used.
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since C(j)(k) is supported in a region having volume of order M−2j so that ‖C(j)(k)‖L1 ≈
M−2j‖C(j)(k)‖L∞ ≈M−j .

In general, if one has a system of norms ‖ · ‖ for vertices having arbitrarily many legs,

we call c a contraction bound with respect to those norms if, in the contraction described

above,

‖Γc‖ ≤ c ‖ϕ1‖ ‖ϕ2‖

Similarly, we call b a tadpole bound if, in the tadpole formation described above,

‖Γt‖ ≤ b ‖ϕ‖

Standard power counting can be phrased in this language as follows. If one assumes that

‖w2n‖ = O
(

1
cbn−1

)

for all n (8)

then every graph contributing to w′
2n is again of order 1

cbn−1 . For example, if such a graph

Γ has two vertices, w2n1 and w2n2 then there are r = n1 + n2 − n connecting lines and the

norm of Γ is bounded by

cbn1+n2−n−1‖w2n1‖‖w2n2‖ = O
(

cbn1+n2−n−1 1
cbn1−1

1
cbn2−1

)

= O
(

1
cbn−1

)

A general graph may be bounded by building it up one vertex at a time. In the case of the

supremum norm in momentum space, c ≈M j and b ≈M−j so that 1
cbn−1 ≈M j(n−2).

Problems with the convergence of the perturbation expansion can arise when one builds

diagrams from one vertex by forming a large number n of tadpoles.

There are n! choices for connecting the outgoing arrows to the incoming arrows. For each

choice one gets a diagram whose norm can be bounded by bn‖ϕ‖. The estimate n! bn‖ϕ‖ is

too weak to prove convergence for the series for Wj+1. However, due to the Pauli exclusion

principle, the sum of all n! diagrams obtained in this way has a bound of order
√
n! bn‖ϕ‖.

All known strategies for implementing the Pauli exclusion principle, that is, to exploit

the antisymmetry of the kernels, use position space variables. One way of implementing

the Pauli exclusion principle is to observe, [9, §2.10, Exercise 4], that the Fourier transform

f̂(k1, · · · , kn) of an antisymmetric function f(x1, · · · , xn) fulfils a better bound than the

standard estimate

‖f̂‖L∞ ≤ ‖f‖L1
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To see this, note that

f̂(k1, · · · , kn) =

∫

dx1 · · · dxn eık1·x1 · · · eıkn·xnf(x1, · · · , xn)

=

∫

dx1 · · · dxn eık1·x1 · · · eıkn·xn 1
n!

∑

π∈Sn

sgnπ f(xπ(1), · · · , xπ(n))

= 1
n!

∫

dx1 · · · dxn f(x1, · · · , xn)
∑

σ∈Sn

sgnσ eık1·xσ(1) · · · eıkn·xσ(n)

= 1
n!

∫

dx1 · · · dxn f(x1, · · · , xn) D(k1, · · · kn;x1 · · ·xn)

where

D(k1, · · · kn;x1 · · ·xn) = det
[

eıki·xj
]

i,j=1,··· ,n

The Euclidean length of each column of this matrix is
√
n. Therefore, by Hadamard’s

estimate,
∥

∥D
∥

∥

L∞ ≤ (
√
n)n so that

‖f̂‖L∞ ≤ nn/2

n! ‖f‖L1 ≤ constn
√
n!

‖f‖L1

This suggests that the L1 norm in position space — or rather, to break translation

invariance

‖w2n‖1,∞ = max
x1

∫

dx2 · · ·xn |w2n(x1, · · · , x2n)|

— should be used as the principal norm for estimating the effective interaction. Whenever

one encounters a situation in which one forms all possible tadpoles between n incoming and

n outgoing legs of a kernel ϕ, one could take the partial Fourier transform of ϕ with respect

to the variables associated to the legs involved in tadpole formation. The argument sketched

above gives a factor
(

constn
√
n!

)2
relating the norm of the partial Fourier transform to ‖ϕ‖1,∞.

The number n! of such tadpole terms is compensated for by this factor. In this way one

shows that iterated tadpole formation does not create a convergence problem if one uses the

‖ · ‖1,∞ norm.

However, there are at least two obstacles which prevent us from using this position space

norm. One is that special effects like the suppression of the Cooper channel due to the special

geometry of the Fermi surface, sketched in §2, is naturally seen in momentum space. The

other is that the contraction bound for this norm is worse than for the supremum norm in

momentum space. In position space, the contraction (7) is

Γc(x1, · · · , xr+s−1, y1, · · · , yr+s−1)

=

∫

dudu′ ϕ1(x1, · · · , xr, y1, · · · , yr−1, u) Č
(j)(u− u′) ϕ2(u

′, xr+1, · · · , yr+s−1)

where Č(j)(x) is the inverse Fourier transform of C(j)(k). It follows that

‖Γc‖1,∞ ≤
∥

∥Č(j)(x)
∥

∥

L1 ‖ϕ1‖1,∞ ‖ϕ2‖1,∞

A naive computation, given in the next paragraph, gives a bound on ‖Č(j)(x)‖L1 that is of

order M2j . A more refined argument, sketched in the [11, §II.7] gives a more realistic bound
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of order M3j/2. In any event, M3j/2 � ‖C(j)(k)‖L∞ and naive power counting in position

space does not coincide with power counting in momentum space. It is easily seen that

‖Č(j)(x)‖L∞ is a tadpole bound for the ‖ · ‖1,∞ norm. Clearly, ‖Č(j)(x)‖L∞ ≤ ‖C(j)(k)‖L1 ,

so that we again have a tadpole bound of order 1
Mj . Substituting c = O

(

M3j/2
)

and

b = O
(

1
Mj

)

into (8) yields the requirement that ‖w2n‖1,∞ be order M j(n− 5
2 ). In particular

the norm of the four point function would have to decrease like 1√
Mj

as j increased. This

is absurd, since the original interaction V is, at each scale, the dominant part of the four

point function.

We sketch the standard calculation that gives the naive bound on ‖Č(j)(x)‖L1 . For a

multi index δ = (δ0, δ1, δ2) of non negative integers write |δ| = δ0+δ1+δ2 and xδ = xδ00 x
δ1
1 x

δ2
2 .

Then, integrating by parts |δ| times,

(

x
Mj

)δ|Č(j)(x)| ≤ 1
Mj|δ| ‖∂

|δ|

∂kδ C
(j)(k)‖1 = O( 1

Mj )

since the support of ∂|δ|

∂kδ C
(j)(k) has volume of order 1

M2j and ‖∂|δ|

∂kδ C
(j)(k)‖L∞ is of order

M j(|δ|+1). Therefore
(

1 +
(

x0

Mj

)2
)(

1 +
(

x1

Mj

)2
)(

1 +
(

x2

Mj

)2
)

|Č(j)(x)| = O( 1
Mj )

Dividing by
∏

ν=0,1,2

(

1 +
(

xν

Mj

)2
)

and integrating over R3 gives the bound ‖Č(j)(x)‖L1 =

O(M2j).

To overcome the mismatch between position and momentum space we use, as in [12], a

hybrid of the supremum norm in momentum space and the L1 norm in position space: We

cover the support of C(j)(k) by a union of “sectors”

One Sector

that are short enough to not feel the curvature of the Fermi curve. Then we write

ŵ2n(k1, · · · , k2n) as a sum of terms for which each variable ki is supported in a single

sector and apply the position space L1 norm to each term. In this way one constructs

a norm which allows one to implement the Pauli exclusion principle and has good power

counting properties in two space dimensions. For details, and for the obstacle hindering the

extension of this procedure to three space dimension, see [11, §II.8].

It is an intriguing question whether it is possible to implement the Pauli exclusion

principle by an argument which only uses momentum space variables. The would almost

surely dramatically simplify the proof of Theorems 1.1–1.3.

4. A Model Problem

In this section, we formulate an elementary question about permutations that may be con-

nected with implementing the Pauli exclusion principle in momentum space.
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Let p1, · · · , pn, s1, · · · , sn be real numbers. For a permutation π ∈ Sn, set

ε(π; ~p,~s) =

{

sgnπ if pπ(1) ≤ s1, pπ(1) + pπ(2) ≤ s2, . . . , pπ(1) + · · · + pπ(n) ≤ sn

0 otherwise

Question 4.1. Is there a constant K such that, for all natural numbers n and all ~p =

(p1, · · · , pn), ~s = (s1, · · · , sn) in Rn,
∣

∣

∣

∑

π∈Sn

ε(π; ~p,~s)
∣

∣

∣
≤ Kn

√
n!

The following slight variation of Question 4.1 is directly related to cancellations between

Fermionic diagrams.

Question 4.2. For all natural numbers n and all ~p = (p1, · · · , pn), ~q = (q1, · · · , qn) and

~s = (s1, · · · , sn) in Rn and all pairs of permutations π, π′ ∈ Sn, set

ε(π, π′; ~p, ~q, ~s) =















sgnπ sgnπ′ if pπ(1) + · · · + pπ(`) − qπ′(1) − · · · − qπ′(`) ≤ s`

for all ` = 1, · · · , n− 1

0 otherwise

Is there a constant C such that, for all n and all ~p, ~q, ~s,
∣

∣

∣

∑

π,π′∈Sn

ε(π, π′; ~p, ~q, ~s)
∣

∣

∣
≤ Cnn!

Observe that pπ(1) + · · ·+ pπ(n) − qπ′(1) −· · · − qπ′(n) = p1 + · · ·+ pn− q1 − · · · − qn ≤ sn
either for every pair π, π′ of permutations or for no such pair.

To illustrate how Question 4.2 is connected with cancellations between fermionic dia-

grams, let C(k) be a covariance that depends on one real variable k and is Schwartz class.

We consider a kernel that is obtained from n four–legged vertices by iterated contraction.

Each vertex has the kernel δ(p1 + p2 − q1 − q2) in momentum space.

p1

q1

p2

q2

pn

qn

k

The (amputated) value of this diagram is a momentum conserving delta function times

ϕ̂(k, p1, · · · , pn, q1, · · · , qn) (9)

= C(k + p1 − q1)C(k + p1 + p2 − q1 − q2) · · ·C(k + p1 + · · · + pn−1 − q1 − · · · − qn−1)

Denote by S(k) the sum (with appropriate fermionic signs) of all diagrams obtained from

ϕ by forming tadpoles from all legs pi to all legs qj . That is

S(k) =
∑

π∈Sn

sgnπ

∫

dp1 · · · dpn ϕ̂(k, p1, · · · , pn, pπ(1), · · · , pπ(n)) C(p1) · · ·C(pn)

There are n! terms in the sum. Applying the tadpole estimate term by term gives

‖S(k)‖L∞ ≤ n! ‖C(k)‖nL1‖ϕ̂‖L∞ (10)
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Equation (9) immediately gives ‖ϕ̂‖L∞ ≤ ‖C(k)‖n−1
L∞ and we get the “perturbative estimate”

‖S(k)‖L∞ ≤ n! ‖C(k)‖nL1‖C(k)‖n−1
L∞

The Fourier transform of Equation (9) also shows that, in position space,

‖ϕ‖1,∞ ≤ ‖Č(x)‖n−1
L1 (11)

Let

ϕ̂ant = 1
n!2

∑

π,π′∈Sn

sgnπ sgnπ′ ϕ̂(k, pπ(1), · · · , pπ(n), qπ′(1), · · · , qπ′(n), k + Σpi − Σqi)

be the antisymmetrization of ϕ̂ in its p and q variables separately. S(k) is also the sum

of all diagrams obtained from ϕant by forming tadpoles from all p–legs to all q–legs. The

argument concerning the Fourier transforms of antisymmetric functions, described in the

last section, shows that

‖ϕ̂ant‖L∞ ≤ const2n

n! ‖ϕant‖1,∞ ≤ const2n

n! ‖ϕ‖1,∞ (12)

Combining (10), with ϕ̂ replaced by ϕ̂ant, (12) and (11) gives the “nonperturbative estimate”

‖S(k)‖L∞ ≤ const2n ‖C(k)‖nL1 ‖Č(x)‖n−1
L1 (13)

However, this argument uses position as well as momentum space.

If the answer to Question 4.2 were positive, one could get an estimate like (13) without

passing to position space. Recall that

ϕ̂ant = 1
n!2

∑

π,π′∈Sn

sgnπ sgnπ′
n−1
∏

`=1

C(k + pπ(1) + · · · + pπ(`) − qπ′(1) − · · · − qπ′(`))

For each r = pπ(1) + · · · + pπ(`) − qπ′(1) − · · · − qπ′(`),

C(k + r) =

∫

dt δ(k + r − t)C(t) =

∫

dt θ(t− k − r)C ′(t)

where θ is the Heavyside step function. Consequently,

ϕ̂ant = 1
n!2

∫

dt1 · · · dtn−1Θ(t1, · · · , tn−1; k, ~p, ~q) C
′(t1) · · ·C ′(tn−1) (14)

where

Θ(t1, · · · , tn−1; k, ~p, ~q) =
∑

π,π′∈Sn

sgnπ sgnπ′
n−1
∏

`=1

θ
(

t`−k−(pπ(1)+· · ·+pπ(`)−qπ′(1)−· · ·−qπ′(`))
)

If the answer to Question 4.2 were positive, it would follow, setting s` = t` − k, that

‖Θ‖L∞ ≤ Cnn!

It would then follow from (14) that

‖ϕ̂ant‖L∞ ≤ Cn

n! ‖C ′(k)‖n−1
L1 (15)

Again, combining (10), with ϕ̂ replaced by ϕ̂ant, (15) and (11) would give the “nonpertur-

bative estimate”

‖S(k)‖L∞ ≤ Cn ‖C(k)‖nL1 ‖C ′(k)‖n−1
L1

by a purely momentum space argument.
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