
Review of Riemann Surfaces

Let X be a Riemann surface (one complex dimensional

manifold) of genus g. Then

(1) There exist curves A1, · · · , Ag, B1, · · · , Bg with

Ai ×Aj = 0

Ai ×Bj = δi,j

Bi ×Bj = 0
Ai

Bj

Ai ×Bj = 1

These curves are a basis for the homology of X.

That is, if C × Ai = C × Bi = 0 for all i then

C × D = 0 for all curves D. [For smooth F(V ):

true but with g = ∞.]

(2) There is a basis ω1, · · · , ωg for the vector space of

holomorphic one forms such that

∫

Ai

ωj = δi,j

[For smooth F(V ): replace “vector space of” by

“Hilbert space of square integrable”]

IG 1



a1
b1

a2
b2

b2

a2

b1

a1

IG 2



dividing cycle
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(3) The Riemann period matrix

Ri,j =

∫

Bi

ωj

is symmetric (Ri,j = Rj,i).

Torelli Theorem: Let X and X ′ be Riemann sur-

faces. If Ri,j = R′
i,j for all 1 ≤ i, j ≤ g then X and X ′

are biholomorphic.

[Infinite genus case [FKT2, Theorem 13.1]: X and X ′

have to obey axioms (all F(V )’s do) restricting size and

position of the handles.]
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Proposition [FKT1, Proposition 4.4] The Riemann

period matrix obeys

∑

i,j

ni (Im Ri,j)nj ≥
1

2π

∑

j

| log tj |n2
j (RLB)

[For smooth F(V ): true]

Idea of Proof. The Riemann bilinear relations state

that

∫

X

ω ∧ η =
∞
∑

i=1

(

∫

Ai

ω

∫

Bi

η −
∫

Bi

ω

∫

Ai

η
)

(for all smooth, closed, square integrable one forms ω

and η on X such that
∫

Ai
ω =

∫

Ai
η = 0 for all but

finitely many i , provided that there is an exhaustion

function with finite charge on X.) Now use

〈~n, (Im R)~n〉 =
∥

∥

∥

∑

i≥1

niωi

∥

∥

∥

2

L2(X)
≥

∑

j≥1

∥

∥

∥

∑

i≥1

niωi

∥

∥

∥

2

L2(Yj)

and
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Lemma [FKT1, Lemma 4.3] Fix 0 < t < 1 . Let

A =
{

(
√

t eiθ ,
√

t e−iθ
)

∣

∣

∣
0 ≤ θ ≤ 2π

}

be the oriented waist on the model handle

H(t) =
{

(z1, z2) ∈ C2
∣

∣

∣
z1z2 = t , |z1|, |z2| ≤ 1

}

For every holomorphic one form ω on H(t) ,

‖ω‖2 ≥
√

| log t|
2π

∣

∣

∣

∫

A

ω
∣

∣

∣

Proof: Write ω = f(z1) dz1. For any fixed r

∣

∣

∣

∫

A

ω
∣

∣

∣

2

=

∣

∣

∣

∣

∫ 2π

0

1 · f(reiθ) reiθdθ

∣

∣

∣

∣

2

≤ 2π

∫ 2π

0

|rf(reiθ)|2dθ

Hence

‖ω‖2
2 = 1

2

∫

t≤|z1|≤1

|f(z1)|2|dz1 ∧ dz̄1|

=

∫ 1

t

∫ 2π

0

|rf(reiθ)|2dθ dr
r

≥ 1
2π

∣

∣

∣

∫

A

ω
∣

∣

∣

2
∫ 1

t

dr
r = | log t|

2π

∣

∣

∣

∫

A

ω
∣

∣

∣

2
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(4) The theta function, which is defined by

θ(~z) =
∑

~n∈ZZg

e2πi<~n,~z>eπi<~n,R~n> : Cg → C

obeys

θ(~z + ~n) = θ(~z) (θP1)

θ(~z + ~Rj) = e−2πi(zj+Rjj/2)θ(~z) (θP2)

for all ~n ∈ ZZ
g.

Theorem [FKT1, Theorem 4.6, Proposition 4.12]

Suppose that R obeys (RLB) with tj ∈ (0, 1), j ≥ 1

obeying
∑

j≥1 tβj < ∞ for some 0 < β < 1
2 . Then θ(~z),

with
∑

~n∈ZZg replaced by
∑

~n∈ZZ∞∩`1 , converges absolutely

and uniformly on bounded subsets of the Banach space

B =
{

~z ∈ C∞
∣

∣

∣
lim

j→∞

zj

| ln tj |
= 0

}

‖~z‖B = sup
j≥1

zj

| ln tj |
to an entire function that does not vanish identically.

Furthermore, (θP1), (θP2) hold for all ~n ∈ ZZ
∞∩B and

all columns ~Rj of R with ~Rj ∈ B.
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(5) Zeroes of the Theta Function. One of Riemann’s

numerous classical results says for each fixed ~e ∈ Cg

and x0 ∈ X,

θ

(

~e +

∫ x

x0

~ω

)

either vanishes identically or has exactly g roots. To

show that, for any path joining x1 to x2 on X the

infinite component vector

∫ x2

x1

~ω =

(
∫ x2

x1

ω1 ,

∫ x2

x1

ω2 , · · ·
)

lies in the domain of definition of the theta function.

depend on bounds on the frame ω1, ω2, · · · .
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Suppose that one end of the jth handle is glued into the

ν1(j)
st sheet near s1(j) and that the other end is glued

into the ν2(j)
nd sheet near s2(j). When ν1(j) = ν2(j),

the pull back wν
j (z)dz = Φ∗νωj of ωj to the νth sheet

obeys [FKT2, Theorem 8.4]
∣

∣

∣

∣

wν
j (z)− 1

2πi

1

z − s1(j)
+

1

2πi

1

z − s2(j)

∣

∣

∣

∣

≤ const

1 + |z2|
if ν 6= ν1(j)

∣

∣wν
j (z)

∣

∣ ≤ const

1 + |z2| if ν = ν1(j)

On the other hand, when ν1(j) 6= ν2(j),
∣

∣

∣

∣

wν
j (z)− 1

2πi

1

z − s1(j)
+

1

2πi

1

z

∣

∣

∣

∣

≤ const

1 + |z2| if ν = ν1(j)

∣

∣

∣

∣

wν
j (z)− 1

2πi

1

z
+

1

2πi

1

z − s2(j)

∣

∣

∣

∣

≤ const

1 + |z2| if ν = ν2(j)

∣

∣wν
j (z)

∣

∣ ≤ const

1 + |z2| if ν 6= νi(j)

The const is independent of j. The pull backs of ωj to

Yj obeys [FKT2, Proposition 8.16]
∣

∣

∣

∣

φ∗jωj(z)

dz1/z1
− 1

2πi

∣

∣

∣

∣

≤ 2

5π
(|z1|+ |z2|)
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How to prove these bounds. The νth sheet is bi-

holomorphic to a complex plane from which a compact

neighbourhood of the origin and an infinite set of other

small holes have been cut. Draw a contour Cν around

the first hole and circles |z − s| = r(s), s ∈ Sν around

the other small holes.

Cν
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By the Cauchy integral formula

wν
j (z) = wν

j,com(z) +
∑

s∈Sν

wν
j,s(z)

where

wν
j,s(z) = − 1

2πi

∫

|z−s|=r(s)

wν
j (ζ)

ζ − z
dζ

wν
j,com(z) = − 1

2πi

∫

Cν

wν
j (ζ)

ζ − z
dζ

Step 1. By applying Cauchy-Schwarz to

wν
j,s(z) = − 1

2πr(s)i

∫ 2r(s)

r(s)

[

∫

|z−s|=r

wν
j (ζ)

ζ − z
dζ

]

dr

one gets an upper bound on wν
j,s(z) for |z − s| ≥ 3r(s)

in terms of the L2 norm of ωj restricted to the annulus

Φν

(

{r(s) ≤ |z − s| ≤ 2r(s)
)

. To obtain a bound that

decays like 1
|z−s|2 rather than 1

|z−s| one exploits the fact

that
∫

|z−s|=r
wν

j (ζ) dζ = 0, unless the circle |z − s| = r

happens to be homologous to ±Aj . If so, one works

with wν
j (ζ) ∓ 1

2πi
1

ζ−s instead of wν
j (ζ). One also gets

the analogous bound on wν
j,com(z).
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|z1| = 1 |z2| = 1z1z2 = tj

s1(j)

s2(j)

|k2 − s1(j)| = r1(j)

|k2 − s2(j)| = R2(j)
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Step 2. Consider the handle Yi. One end is glued into

sheet ν1(i) near the point s1(i) and the other is glued

into sheet ν2(i) near s2(i). Denote by Y ′
i the part of the

handle Yi bounded by Φν1(i)

(

{|z − s1(i)| = R1(i)}
)

and

Φν2(i)

(

{|z− s2(i)| = R2(i)}
)

. The radii Rµ(i) are chosen

in (GH3,5) to be much larger than the corresponding

radii rµ(i). Using Stoke’s Theorem and the holomor-

phicity of ωj one obtains a bound on the L2 norm of the

restriction of ωj to Y ′
i in terms of the values of w

νµ(i)
j

on {|z − sµ(i)| = Rµ(i)}, µ = 1, 2.

Step 3. Substituting the first family of bounds into the

second family gives a system of inequalities relating the

L2 norms of ωj restricted to the Y ′
i s. This family of

inequalities may be “solved” to get inequalities on the

L2 norms themselves.

Step 4. Bounds on the L2 norms are turned into point-

wise bounds on the sheets by the “Step 1” bounds above

and on the handles by a similar method.
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The above bounds on ~ω imply that for any path joining

x1 to x2 on X, the integral
∫ x2

x1

~ω ∈ B and remains in

B in the limit as x1 tends to infinity along a reasonable

path. If X has m sheets we can choose m such paths

each approaching infinity on a different sheet. Call the

limits
∫ x2

∞ν
~ω, 1 ≤ ν ≤ m. The precise statement that

θ
(

~e +
∫ x

∞1

~ω
)

has exactly “genus(X)” roots is

Theorem [FKT2, Theorem 9.11] Let ~e ∈ B be such

that θ(~e) 6= 0 and θ
(

~e +
∫∞ν

∞1

~ω
)

6= 0 for all 1 < ν ≤ m.

Then, there is a compact submanifold Y with boundary

such that the multivalued, holomorphic function

θ

(

~e +

∫ x

∞1

~ω

)

has

(i) exactly genus(Y ) roots in Y

(ii) exactly one root in each handle of X outside of Y

(iii) and no other roots.
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Idea of Proof. That θ
(

~e +
∫ x

∞1

~ω
)

has no zeroes

near ∞ν , except in handles, is a consequence of the facts

that θ
(

~e +
∫∞ν

∞1

~ω
)

6= 0 by hypothesis, that
∥

∥

∫∞ν

x
~ω
∥

∥

B

is small for all sufficiently large x in the νth sheet and

that θ is continuous in the norm of the Banach space

B. The proof that there is exactly one zero in each,

sufficiently far out, handle is based on the argument

principle and the computation
∫

AjBjA−1

j
B−1

j

d log θ
(

~e +
∫ x

∞1

~ω
)

=

∫

Aj

d log θ
(

~e +
∫ x

∞1

~ω
)

+

∫

Bj

d log θ
(

~e +~ıj +
∫ x

∞1

~ω
)

−
∫

Aj

d log θ
(

~e + ~Rj +
∫ x

∞1

~ω
)

−
∫

Bj

d log θ
(

~e +
∫ x

∞1

~ω
)

= 2πi

∫

Aj

d
(

ej +
∫ x

∞1

ωj + 1
2Rjj

)

= 2πi

where ~ıj is the vector whose kth component is δjk and

~Rj is the jth column of the Riemann period matrix.

The periodicity properties of the theta function are used
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twice in this computation. We also used

∫

B−1

j

d log θ
(

~e + ~Rj +
∫ x

∞1

~ω
)

= −
∫

Bj

d log θ
(

~e +
∫ x

∞1

~ω
)

and an analogous formula for A−1
j .
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(6) Riemann’s Vanishing Theorem. In preparation

for Riemann’s vanishing theorem, we introduce the no-

tion of a divisor of degree “genus(X)” on the univer-

sal cover of X . This is done by fixing an auxiliary

point ê ∈ B with θ(ê) 6= 0 and comparing sequences

of points to the “genus(X)” many roots x̂1 , x̂2 · · · of

θ
(

ê +
∫ x

∞1

~ω
)

= 0. Precisely, let π : X̃ → X be the

universal cover of X and choose x̃j ∈ π−1(x̂j). A se-

quence yj , j ≥ 1 , on X̃ represents a divisor of degree

“genus(X)” if eventually yj lies in the same component

of π−1(Yj) as x̃j and the vector

(
∫ y1

x̃1

ω1 ,

∫ y2

x̃2

ω2 , · · ·
)

lies in B . The space W (0) of all these sequences is

given the structure of a complex Banach manifold mod-

eled on B . The quotient S(0) of W (0) by the group

of all finite permutations is the manifold of divisors of

degree “genus(X)” . The construction is independent of
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the auxiliary point ê . We similarly construct Banach

manifolds S(−n) of divisors of index n , that is, of de-

gree “genus(X)−n” , by deleting the first n components

in a sequence y1, y2, · · · belonging to W (0) .

Fix ê as above. The right hand side of

(y1 , y2 , · · · ) 7→ ê−
∑

i≥1

∫ yi

x̃i

~ω

is invariant under permutations of the yi’s and induces

the analog

f (0) : S(0) −→ B

of the Abel-Jacobi map. The map f (0) is holomorphic

[FKT2, Proposition 10.1] and indeed is a biholomor-

phism between f (0)−1 (B \Θ) and B \Θ where

Θ =
{

~e ∈ B
∣

∣ θ(~e) = 0
}

is the theta divisor of X .

Similarly, the map

f (−1) : S(−1) −→ B
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is induced by

(y2 , y3 , · · · ) 7→ ê −
∫ ∞1

x̃1

~ω −
∑

i≥2

∫ yi

x̃i

~ω

The analogue of the Riemann vanishing theorem is

Theorem [FKT2, Theorem 10.4]

f (−1)
(

S(−1)
)

⊂ Θ

and
{

~e ∈ Θ
∣

∣ θ
(

~e−
∫ x

∞1

~ω
)

6= 0 for some x inX
}

⊂ f (−1)
(

S(−1)
)

In contrast to the case of compact Riemann surfaces, one

can construct zeroes of the theta function that are not in

the range of f (−1) by taking limits of f (−1)([y1, y2, · · ·])
as some of the yi’s tend to infinity. The set

{

~e ∈ Θ
∣

∣ θ
(

~e−
∫ x

∞1

~ω
)

= 0 for all x in X
}

is stratified and studied in [FKT2, Theorem 11.1].
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The proof of the Riemann Vanishing Theorem is based

on the following result, which, in turn, is a residue com-

putation.

Theorem 9.16 Let ~e,~e ′ ∈ B be such that

θ(~e− ê1 + êν) 6= 0, θ(~e ′− ê1 + êν) 6= 0 for ν = 1, · · · , m

Let x1, x2, · · · and x′1, x
′
2, · · · be the zeroes of θ

(

~e +
∫ x

∞
~ω
)

and θ
(

~e ′ +
∫ x

∞
~ω
)

, respectively, such that xj , x
′
j ∈ Yj for

all sufficiently big j. Then there are paths γj joining xj

to x′j such that γj ⊂ Y ′
j for all sufficiently large j

(
∫

γ1

ω1,

∫

γ2

ω2, · · ·
)

∈ B

and

~e− ~e ′ =
∑

j≥1

∫

γj

~ω
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(7) Torelli Theorem: Let X and X ′ be Riemann sur-

faces. If Ri,j = R′
i,j for all 1 ≤ i, j ≤ g then X and X ′

are biholomorphic.

[Infinite genus case: X and X ′ have to obey axioms (all

F(V )’s do) restricting size and position of the handles.]
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Idea of Proof. The proof mimics the argument of An-

dreotti [An,GH] for the compact case. We look at how

the tangent space T~eΘ varies as ~e moves in directions

~v ∈ T~eΘ. In particular, we look for directions ~v such

that T~eΘ is stationary, equivalently such that C∇θ(~e)

is stationary. In other words, we investigate the ram-

ification locus of the Gauss map on the theta divisor.

Stationarity is given by the conditions

∇θ(~e) 6= 0, ∇θ(~e) · ~v = 0,
d

dλ
∇θ(~e + λ~v)

∣

∣

∣

λ=0
∈ C∇θ(~e)

(S)

For generic ~e = f (−1)(y) we find, in [FKT2, Proposition

11.8], necessary and sufficient conditions that the set

of ~v’s satisfying (S) is of dimension 1 and determine

precisely what the set is. The conditions are that the

form ω~e(z) =
∑

k≥1∇θ(~e)kωk(z) have a zero of precisely

the right order, namely ] {i | π(yi) = π(yj)}, at each yj

j ≥ 2 with one exception, say yj = x. And that ω~e(z)

have one excess zero, in other words a zero of order
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]{i | π(yi) = x}+1, at z = x. Then the set of stationary

directions ~v ∈ T~eΘ is precisely C~ω(x).

Note that the conditions (S) are stated purely in terms

of the function θ. They do not involve the Riemann

surface that gave rise to θ. On the other hand the state-

ment “the set of stationary directions ~v ∈ T~eΘ is pre-

cisely C~ω(x)” does involve the Riemann surface and in-

deed assigns, in the nonhyperelliptic case, a unique point

x ∈ X to the given ~e ∈ Θ [FKT1, Proposition 3.26]. In

[FKT2, Proposition 11.10] we find, in the nonhyperel-

liptic case, a set E ⊂ Θ of such ~e’s, that is dense in a

subset of codimension 1 in Θ. Furthermore, for x in a

dense subset of X, the set
{

~e ∈ E
∣

∣ ~e is paired with x
}

is, roughly speaking, of codimension 2 in Θ. The pair-

ing of points ~e in E with points x ∈ X is the principal

ingredient in the proof of the Torelli Theorem for the

nonhyperelliptic case.
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For hyperelliptic Riemann surfaces, the map x ∈ X 7→
C~ω(x) is of degree two. Except for a discrete set of

points x, #
{

x′ ∈ X
∣

∣ ~ω(x′) ‖ ~ω(x)
}

= 2 . At the

exceptional points, called Weierstrass points,

#
{

x′ ∈ X
∣

∣ ~ω(x′) ‖ ~ω(x)
}

= 1

For each Weierstrass point b ∈ X, we find a set H (b)

which is dense in a subset of codimension 1 in Θ with

every point e ∈ H(b) paired, as above, with b.

Using these observations it is possible to recover the

Riemann surface X from Θ , which in turn is completely

determined by the period matrix of X.
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Let
z = k2

S = set of holes in F(V )reg

r(s) = radius of hole s

g = genus of F(V )com

and for each j > g

ωj = wj(z)dz on F(V )reg

s1(j), s2(j) = centres of holes to which Yj hooks

By the Cauchy integral formula

wj(z) =
∑

s∈S

wj,s(z)

where

wj,s(z) = − 1
2πi

∫

∂s

wj(ζ)

ζ − z
dζ

is analytic in C \ s.
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Lemma. If |z − s| > 3r(s) for all s ∈ S, then for all

s 6= s1(j), s2(j)

|wj,s(z)| ≤ 3r(s)

|z − s|2 ‖ωj‖L2(Ys)

For s = sµ(j)

∣

∣

∣

∣

wj,s(z)− (−1)µ+1

2πi

1

z − sµ(j)

∣

∣

∣

∣

≤ 3r(s)

|z − s|2
∥

∥

∥

∥

ωj − (φ∗j )

(

1

2πi

dz1

z1

)
∥

∥

∥

∥

L2(Yj)
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