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I Introduction

The Lamé equation is the best known of a class of one-dimensional, periodic

Schrödinger equations for which all Bloch eigenvalues and multipliers can

be explicitly parameterized by meromorphic functions defined on a compact

Riemann surface. The purpose of this paper is to prove that there is no

non-trivial two-dimensional analogue of this phenomenon. To make the last

statement precise, we begin with a review of the basic properties of the Lamé

equation.

Fix ω1, ω2 > 0 . Let

℘(z) =
1

z2
+

∑

ω∈2ω1Z⊕i2ω2Z

ω 6=0

1

(z − ω)2
− 1

ω2

be the Weierstrass function with primitive periods 2ω1 and i2ω2 . Then

2℘ (x + iω2)

is a real-valued, real analytic, periodic function of x with primitive period

2ω1 . The Lamé equation is

− d
2

dx2
ψ + 2℘ (x+ iω2)ψ = λψ (I.1)

A solution ψ(x, k) of (I.1) that satisfies

ψ(x + 2ω1, k) = ei2ω1kψ(x, k) (I.2)

is called a Bloch solution. Recall that

2℘(z) = −2
d2

dz2
log σ(z) (I.3)
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where

σ(z) = z
∏

ω∈2ω1Z⊕i2ω2Z

ω 6=0

(

1− z

ω

)

e
z
ω

+ 1
2

z2

ω2

and

ζ(z) = d
dz

log σ(z)

= 1
z

+
∑

ω∈2ω1Z⊕i2ω2Z

ω 6=0

1
z−ω

+ 1
ω

+ z
ω2

There are constants η1 and η2 satisfying

η1iω2 − η2ω1 = πi

such that

σ(z + 2ω1) = −σ(z) eη1(z+ω1) , σ(z + i2ω2) = −σ(z) eη2(z+iω2)

and

ζ(z + 2ω1) = ζ(z) + η1 , ζ(z + i2ω2) = ζ(z) + η2

Now set

λ(z) = −℘(z)

k(z) = −i
(

ζ(z)− z η1

2ω1

)

ξ(z) = e2ω1ik = e2ω1ζ(z)−zη1

ψ(x, z) = eζ(z)x σ(z−x−iω2)
σ(x+iω2)

By direct calculation

ψ(x+ 2ω1, z) = ξ(z) ψ(x, z)

and

− d
2

dx2
ψ(x, z) + 2℘ (x+ iω2)ψ(x, z) = λ(z)ψ(x, z) (I.4)
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For (I.4), first observe that

d

dx
ψ(x, z) = (ζ(z)− ζ(z − x− iω2)− ζ(x+ iω2))ψ(x, z)

Then, differentiate again and apply the standard identities

1
4

(
℘′(u)−℘′(v)
℘(u)−℘(v)

)2
= ℘(u+ v) + ℘(u) + ℘(v)

1
2

(
℘′(u)−℘′(v)
℘(u)−℘(v)

)

= ζ(u+ v)− ζ(u)− ζ(v)

Also,

ξ(z + 2ω1) = ξ(z) , ξ(z + i2ω2) = ξ(z)

Summarizing the discussion above, the energy λ and multiplier ξ = e2ω1ik

can be explicitly parameterized by meromorphic functions

λ(z) = −℘(z) , ξ(z) = e2ω1ζ(z)−zη1

on the elliptic curve C/2ω1Z⊕ i2ω2Z such that the boundary value problem

(I.1), (I.2) has a solution if and only if (λ, ξ) = (λ(z), ξ(z)) . The only if

implication follows from the observation that for almost all z the functions

ψ(x, z) and ψ(x,−z) are linearly independent solutions of (I.1) for λ(z) =

λ(−z) . In particular, ξ is an algebraic function of λ .

We shall prove that there is no non-trivial two dimensional analogue of this

phenomenon. Specifically, for any lattice Γ = γ1Z ⊕ γ2Z and real valued

function q in L2
(

IR2/Γ
)

it is impossible to parameterize the energy λ
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and multipliers ξ1, ξ2 by meromorphic functions λ(p), ξ1(p), ξ2(p) defined

on a compact complex surface P such that the boundary value problem

−∆ψ + q(x1, x2)ψ = λψ

ψ(x+ γ1) = ξ1ψ(x)

ψ(x+ γ2) = ξ2ψ(x)

has a solution ψ if and only if (λ, ξ1, ξ2) = (λ(p), ξ1(p), ξ2(p)) for some

p ∈ P unless q is essentially one-dimensional. That is,

q(x) = v(< β, x >)

where β is a primitive vector in the lattice Γ] dual to Γ , or

q(x) = v1(< β1, x >) + v2(< β2, x >)

where β1, β2 are primitive, perpendicular vectors in Γ] . Here, v(t), v1(t),

v2(t) are one-dimensional, periodic, “finite gap” potentials. For example,

the Lamé potential 2℘(t+ iω2) .

We now recall some necessary facts about one-dimensional potentials. See,

for example, [Mc] and [MW]. Let v be a real valued function in L2 (IR/TZ) .

The associated one dimensional Bloch variety B(v) is the set of all (k, λ) ∈
C× C such that there is a nontrivial function ψ ∈ H2

loc(IR
1) satisfying

− d
2

dx2
ψ + v(x)ψ = λψ (I.5)

and

ψ(x+ T ) = eiTkψ(x) (I.6)
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Set Dk = d/dk + ik . One can show (see,[KT]) that B(v) is the set of all

(k, λ) ∈ C× C obeying

(2 cosTk − 2 cos
√
λ) det2

(

(−D2
k + v − λ) · (−D2

k − λ)−1
)

= 0

and that

(2 cosTk − 2 cos
√
λ) det2

(

(−D2
k + v − λ) · (−D2

k − λ)−1
)

is a complex analytic function on C×C . Here, det2 is the second regularized

determinant. It follows from representation above that B(v) is a complex

analytic subvariety of C× C .

Denote by y1(x, λ) and y2(x, λ) the solutions of (I.5) satisfying the initial

conditions

y1(0, λ) = y′2(0, λ) = 1

y′1(0, λ) = y2(0, λ) = 0

and

∆(λ) = y1(T, λ) + y′2(T, λ)

Then, ([KT, p. 125])

(2 cosTk−2 cos
√
λ) det2

(

(−D2
k + v − λ) · (−D2

k − λ)−1
)

= 2 cosTk−∆(λ)

so that

B(v) = {(k, λ) ∈ C× C | 2 cosTk −∆(λ) = 0}
=

{

(k, λ) ∈ C× C | eiTk is a root of ξ2 −∆(λ)ξ + 1 = 0
}

(I.7)

The Bloch variety B(v) is invariant under translation of k by elements of

2π
T

Z . Consequently, the quotient
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B(v)/2π
T

Z = {(ξ, λ) ∈ C∗ × C | ξ2 −∆(λ)ξ + 1 = 0}
= C(v)

is well defined.

The roots

λ0 < λ1 ≤ λ2 < λ3 ≤ λ4 < · · ·

of ∆(λ) = ±2 are all real and tend to +∞ . The smallest, λ0 is a simple

root of ∆(λ) = 2 . The next two, λ1, λ2 are roots of ∆(λ) = −2 and so

on. It follows that B(v)/ 2π
T

Z is an irreducible transcendental hyperelliptic

curve. Furthermore, the point (ξ, λ) is singular if and only if

λ2n−1 = λ = λ2n ξ = (−1)n

If λ2n−1 = λ2n for all but a finite number of subscripts n , the potential v

is by definition “finite gap”. In this case the normalization N of C(v) =

B(v)/2π
T

Z is a compact Riemann surface with one point removed. We have

N −→ C(v) (ξ, λ)

↓ ↓ ↓
IP1 ←− C λ

(I.8)

In particular, the normalization map across the top parameterizes the energy

λ and multiplier ξ by meromorphic functions on N just as for the Lamé

potential. Conversely, if the normalization N of B(v)/ 2π
T

Z is a compact

Riemann surface with one point removed and (I.8) commutes, the potential

v is finite gap. We remark that the set of finite gap potentials is dense in

L2
real (IR/TZ) . See [GT], [M].
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The potentials of the last paragraph are referred to as finite gap since the

complement of the continuous spectrum of the associated Schrödinger oper-

ator is a finite set of intervals. As we have explained, the finite gap condition

is equivalent to the statement that the normalization of B(v)/ 2π
T

Z is a com-

pact Riemann surface with one point removed. In other words, the finite gap

potentials are those with an algebraic Bloch structure.

To illustrate (I.8), observe that

∆(z) = 2 cos i
(

ζ(z)− z η1

2ω1

)

for the Lamé potential 2℘(x + iω2) . Then, the diagram

z C/2ω1Z⊕ i2ω2Z − {0} −→ C(2℘(·+ iω2)) (ξ, λ)

↓ ↓ ↓ ↓
λ(z) IP1 ←− C λ

commutes. The map across the top is z −→ (ξ(z), λ(z)) . Thus, the tran-

scendental curve B(2℘(·+ iω2))/
2π
T

Z is covered by the complement of {0}
in the compact curve C/2ω1Z⊕ i2ω2Z .

Finally, suppose v is a finite gap potential and N the normalization of

B(v)/2π
T

Z . Let Θ be the Riemann theta function for N . Then there are

vectors Ω1 and Ω2 such that

v(x) = −2
d2

dx2
log Θ (xΩ1 + Ω2) (I.9)

The representation (I.9) generalizes (I.3). Our discussion of one dimensional

potentials is finished.
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Let Γ = γ1Z ⊕ γ2Z be a lattice of maximal rank in IR2 and let q be a

real valued function in L2
(

IR2/Γ
)

. The associated two dimensional Bloch

variety B(q) is the set of all (k1, k2, λ) ∈ C × C × C such that there is a

nontrivial function ψ ∈ H2
loc(IR

2) satisfying

−∆ψ + q(x1, x2)ψ = λψ

and

ψ(x+ γ1) = ei<k,γ1>ψ(x)

ψ(x+ γ2) = ei<k,γ2>ψ(x)

where k = (k1, k2) . It is shown in [KT], by means of a regularized determi-

nant, that B(q) is a complex analytic hypersurface of C× C× C . Define

the projection π by
B(q) (k1, k2, λ)

↓ ↓
C λ

and the Fermi curves by

Fλ = π−1(λ)

Again, the lattice

Γ] =
{

b ∈ IR2 | < γ, b >∈ 2πZ for all γ ∈ Γ
}

dual to Γ acts by translation on B(q) . We can define the quotients

B(q)/Γ] Cλ = Fλ/Γ
]

and the projection π′

B(q)/Γ] (ξ1, ξ2, λ)

↓ ↓
C λ
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It is proven in [KT, p.137] that B(q)/Γ] is always irreducible.

By analogy with (I.8), we consider the class of real valued functions q in

L2
(

IR2/Γ
)

for which there is a compact complex analytic variety P , a

holomorphic projection map π̂

P
↓

IP1

(I.10)

a finite union D of curves on P and a finite, dominant holomorphic map

(morphism, if P or B(q)/Γ] is singular) Φ from P − D to B(q)/Γ]

such that the diagram

Φ

P − D −→ B(q)/Γ]

π̂ ↓ ↓ π′

IP1 ←− C

(I.11)

commutes. It is a direct consequence of (I.11) that for all λ the normalization

of Cλ = Fλ/Γ
] is a compact Riemann surface with a finite set of points

removed. In other words, after normalizing and closing the transcendental

curves Cλ one obtains a holomorphic family of compact algebraic curves.

Suppose v1 and v2 are one-dimensional finite gap potentials with periods

T1 and T2 . It is easy to see by separating variables that the two-dimensional

potential

q(x1, x2) = v1(x1) + v2(x2)
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in L2
(

IR2/T1Z⊕ T2Z

)

belongs to the class introduced above. In fact, the

Bloch variety B(v1 + v2)/Γ
] is the fiber product of C(v1) and C(v2) .

Also, by separation of variables, the potential

q(x1, x2) = v(< α, x >)

belongs to this class. Here, v is finite gap and α is any vector in Γ .

For any q ∈ L2
(

IR2/Γ
)

and γ ∈ Γ set

qγ(x) =
∑

b∈Γ]

<b,γ>=0

q̂(b) ei<b,x>

where

q̂(b) =
1

|IR2/Γ|
∫

IR2/Γ
q(x) e−i<b,x>

We have the

Theorem Let q be a real-valued function in L2
(

IR2/Γ
)

. Suppose that

there is a compact complex analytic variety P , a holomorphic projection

map π̂
P
↓

IP1

a finite union D of curves on P and a finite, dominant holomorphic map
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Φ from P − D to B(q)/Γ] such that the diagram

Φ

P − D −→ B(q)/Γ]

π̂ ↓ ↓ π′

IP1 ←− C

commutes. Then

q = qγ(x)

for some primitive γ ∈ Γ and qγ is finite gap, or

q = qγ1(x) + qγ2(x)− q̂(0)

for perpendicular, primitive vectors γ1, γ2 ∈ Γ and qγ1 , qγ2 are finite

gap. The converse also holds.

We actually prove a stronger result: Suppose that q is a real-valued function

in L2
(

IR2/Γ
)

such that for all λ ∈ C the normalization of the curve

Cλ = Fλ/Γ
] is a compact Riemann surface Cλ with a discrete set of points

removed and furthermore that the genus g (Cλ) is uniformly bounded in λ .

Then, the conclusion of the Theorem holds.

In 1976 Dubrovin, Krichever and Novikov [DKN] constructed two-dimensional

potentials such that for one energy λ the normalization of Cλ = Fλ/Γ
]

is a compact Riemann surface with a discrete set of points removed (Also

see, [NV]). Novikov has asked for regular potentials such that for all ener-

gies λ the normalization of Cλ = Fλ/Γ
] is a compact Riemann surface
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with a discrete set of points removed. It follows from our results that there

are no nontrivial examples in L2
(

IR2/Γ
)

. We remark that in [CV] spe-

cial potentials are constructed from simple Lie algebras that appear to have

an algebraic Bloch structure. However, these potentials are either complex

valued or have nonintegrable singularities.

II Outline of the Proof

If q is separable as a sum of finite gap potentials then, as we remarked above,

one constructs a parametrization of B(q)/Γ] using the normalizations of the

spectral curves of the one-dimensional finite gap potentials. For proving the

converse we can restrict ourselves to the case that the average q̂(0) of q is

zero.

The assumption that there exists a parametrization of B(q)/Γ] as in (I.10),

(I.11) implies that for each λ ∈ C the normalization of Cλ is dominated

by the normalization of π̂−1(λ)−D, which is a curve of finite and bounded

genus. Therefore there is a constant B such that the rank of the homology of

the normalization of Cλ is bounded above by B. In other words if Sing(Cλ)

denotes the set of singular points of Cλ and H
(r)
1 (Cλ, Z) denotes the image of

the map

H1 (Cλ − Sing(Cλ), Z)→H1(Cλ, Z)
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induced by inclusion then

rank H
(r)
1 (Cλ, Z) ≤ B for all λ ∈ C

We use the directional compactification of B(q) introduced in [KT] to con-

struct elements of H
(r)
1 (Cλ, Z) for λ ∈ IR close to −∞. Recall that for each

primitive vector γ ∈ Γ there is a plane Eγ := Eγ,0 in the cradle constructed

in [KT], Section 2 such that for any θ > 0 the closure of the intersection

of B(q) with Σ(θ) :=
{

(k, λ) ∈ C2 × C | arg(k2
1 + k2

2) 6∈ (−θ, θ)
}

meets Eγ

along a curve isomorphic to B(qγ), in short

B(q) ∩ Σ(θ) ∩ Eγ
∼= B(qγ) .

We identify B(qγ) with this subset of Eγ.

In addition it is shown in [KT] that near smooth points of B(qγ) the space

B(q) ∩ Σ(θ) has a locally cone-like structure. More precisely we have

Proposition 1 Let K ′ be a compact subset of B(qγ) consisting of smooth

points of B(qγ) only. Then there is a map

ψ : K ′ × (−ε, ε)× (−θ, θ) −→ B(q) ∩ Σ(θ)

such that

(i) ψ(s, 0, ϕ) = s for all s ∈ K ′

ψ(s, r, ϕ) 6∈ Eγ for r 6= 0

(ii) the restriction of ψ to {(s, r, ϕ) ∈ K ′ × (−ε, ε)× (−θ, θ) | r 6= 0} is a

diffeomorphism onto its image
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(iii) the diagram

K ′ × {r ∈ IR | 0 < |r| < ε} × (−θ, θ) ψ (K ′ × {r ∈ IR | 0 < |r| < ε} × (−θ, θ))ψ-

r2eiϕ IR − 1
λ

HHHHHHHHHHHj

������������

(s, r, ϕ) (k, λ)
HHHHHHHj

���������

��
AA

commutes

(iv) ψ is compatible with the action of Γ], i.e.

if s, s′ ∈ K ′ and b ∈ Γ] such that b · s = s′

then b · ψ(s, r, ϕ) = ψ(s′, r, ϕ) for all r, ϕ.

The differentiability of ψ and the situation near singular points will be in-

vestigated in Section III.

In any case, whenever K is a compact subset of the set of smooth points

of the spectral curve C(qγ) = B(qγ)/
{

γ ∈ Γ] | 〈b, γ〉 = 0
}

then, by Propo-

sition 1, for each λ ∈ IR sufficiently close to −∞ there is a subset Kλ ⊂
Cλ diffeomorphic to K. If γ, γ ′ are linearly independent primitive vectors

in Γ and K resp. K ′ are compact subsets of C(qγ) − Sing (C(qγ)) resp.

C(qγ′) − Sing (C(qγ′)) then for λ ∈ IR sufficiently close to −∞ the sets Kλ

and K ′
λ are disjoint, since Eγ and Eγ′ were obtained by blowing up points in

a cradle that lie in different Γ]-orbits.

Now assume that at least g gaps in the spectrum of the one-dimensional

Schrödinger operator associated to qγ are open. Then there exist cycles
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a1, . . . , ag, b1, . . . , bg in a compact subset K of C(qγ) − Sing (C(qγ)) whose

intersection numbers fulfil ai ·aj = bi ·bj = 0 for i, j = 1, . . . , g and ai ·bj = δij.

As Kλ is diffeomorphic to K there are cycles a′1, . . . , a
′
g, b

′
1, . . . , b

′
g in Kλ with

the same intersection properties. In particular a′1, . . . , a
′
g, b

′
1, . . . , b

′
g represent

independent elements of H
(r)
1 (Cλ, Z). So 2g ≤ B, and qγ is a finite gap

potential. If γ1, . . . , γr are pairwise linearly independent primitive vectors

in Γ] such that for each j = 1, . . . , r at least one gap in the spectrum of

the one dimensional Schrödinger operator associated to qγj
is open then the

elements in H
(r)
1 (Cλ, Z) constructed as above are linearly independent. This

shows that for all but finitely many primitive vectors γ ∈ Γ the spectrum

of the one dimensional operator associated to qγ has no gaps. By Borg’s

theorem [B] this implies that qγ = 0 for all but finitely many γ. Thus we

have shown:

Lemma II.1 Let q ∈ L2
IR(IR2/Γ) with q̂(0) = 0. If (I.10), (I.11) hold then

there are pairwise linearly independent primitive vectors γ1, . . . , γr ∈ Γ such

that

q(x) = qγ1(x) + . . .+ qγr(x) ,

and each qγ1 is a finite gap potential.

Finite gap potentials are real analytic, so Lemma II.1 shows in particular

that any L2-potential for which (I.10), (I.11) holds is real analytic.

We now relax the condition that q be real and consider, possibly complex

valued, potentials of the form q(x) = qγ1(x) + . . .+ qγr(x) where γ1, . . . , γr

16



are pairwise linearly independent primitive vectors of Γ and each qγi
is a

finite gap potential. In this situation each of the spectral curves C(qγ) has

infinitely many double points. We now want to construct cycles inH
(r)
1 (Cλ, Z)

by opening up these double points. To make this precise, we use the following

notation.

Definition A double point p of C(qγ) opens up if for one (and then every)

point p′ ∈ B(qγ) above p there is a neighbourhood U of p′ in Σ(θ), an integer

n ≥ 1 and a homeomorphism from a neighbourhood U ′ of 0 in

{(x, y, t) ∈ C× C× IR | xy = tn, t ≥ 0}

to

{(k, λ) ∈ B(q) ∩ U | λ ∈ IR, λ < 0} =: U ′′

which is a diffeomorphism on {(x, y, t) ∈ U ′ | t 6= 0} such that the diagram

(x, y, t) U ′ U ′′ ⊃ U ′′ \ Eγ (k, λ)
ϕ-

t λIR IR

t − 1
t2

? ?? ?
-

-

commutes.

Now assume that at least g double points of C(qγ), say p1, . . . , pg open up.

Let Vi be a small neighbourhood of pi in C(qγ), and K a compact subset

of C(qγ) with smooth boundary such that Vi ⊂ C(qγ) and K \ {p1, . . . , pg} is

connected. As above one constructs, for λ ∈ IR sufficiently close to −∞, two
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disjoint subsets K
(i)
λ of Fλ and maps ψi : K

(i)
λ → K which are Γ]-compatible

diffeomorphisms between ψ−1
i (K \ {p1, . . . , pg}) andK\{p1, . . . , pg} and such

that ψ−1
i (Vj) is diffeomorphic to a hyperbola. Then K

(i)
λ is diffeomorphic to

a Riemann surface of genus at least g with a certain number of holes. In

particular there exist cycles a′1, . . . , a
′
g, b

′
1, . . . , b

′
g on K

(i)
λ with a′i ·a′j = b′i ·b′j =

0 for i, j = 1, . . . , g, a′i · b′j = δij. Again these cycles represent linearly

independent elements of H
(r)
1 (Cλ, Z). So we have shown

Lemma II.2 Let q ∈ L2
C(IR2/Γ) with q̂(0) = 0. If (I.10), (I.11) hold then

for each primitive γ ∈ Γ only finitely many double points of C(qγ) open up.

In fact the argument shows that there are only finitely many γ for which a
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double point may open up; but we do not need this. The next step is to

develop a criterion for double points to open up. If γ ∈ Γ is a primitive

vector such that qγ = 0 then

B(qγ) =
⋃

d∈Γ]

〈d,γ〉=0

B̄d ∩ Eγ

where Bd denotes the paraboloid Bd =
{

(k, λ) ∈ C2 × C | (k + d)2 − λ = 0
}

,

see [KT], Section 2. If d ∈ Γ] \ {0} with 〈d, γ〉 = 0 then B̄0 ∩Eγ and B̄d ∩Eγ

intersect in one point, which we call p′d. By pd we denote its image in C(qγ).

In Section IV we prove

Proposition 2 Let q ∈ L2
C(IR2/Γ) such that

∑

b∈Γ]

|q̂(b)| (1 + |b|12) < ∞. Let

γ be a primitive vector in Γ such that qγ = 0, and let d ∈ Γ] \ {0} with

〈d, γ〉 = 0. Define

∆d := |γ|2 ·
∑

b,c∈Γ]

b+c=d

〈b, c〉
〈b, γ〉 〈c, γ〉 q̂(b)q̂(c)

If ∆d∆−d is non-zero then the double point pd of C(qγ) opens up. When q is

real ∆−d = ∆̄d, so that the double point pd opens up whenever ∆d 6= 0.

Under the assumption that q is a sum of finitely many one dimensional real

valued finite gap potentials as in Lemma II.1 one can show that infinitely

many of the numbers ∆d are non-zero. Precisely, we show in Section V.

Proposition 3 Assume that

q(x) = qγ1(x) + . . .+ qγr(x)
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with γ1, . . . , γr pairwise linearly independent primitive vectors in Γ, such that

each qγj
is a non-constant real valued finite gap potential. Assume further-

more that r ≥ 3 or 〈γ1, γ2〉 6= 0 if r = 2. Then there is a primitive vector

γ ∈ Γ such that qγ = 0, and infinitely many d ∈ Γ] with 〈d, γ〉 = 0 such that

∆d 6= 0.

Clearly the Theorem follows by putting Lemma II.1, Lemma II.2, Proposi-

tion 2 and Proposition 3 together.

III Smoothness of the Directional Compact-

ification

Let γ be a primitive vector in Γ. We investigate the local behaviour of

B(q) ∩ Σ(θ) near Eγ .

Proposition 4 Suppose that
∑

b∈Γ]

|q̂(b)|
(

1 + |b|2k
)

< ∞. Let S ⊂ Eγ be a

compact subset with smooth boundary ∂S. Then for every 0 < θ < π there is

ε > 0, a Ck-parametrization

ψ : S × (−ε, ε)× (−θ, θ)→(C2 × C) ∪ Eγ

and a Ck-map

F : S × (−ε, ε)× (−θ, θ)→C

such that
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(i) ψ(s, 0, ϕ) = s for all s ∈ S,

ψ(s, r, ϕ) 6∈ Eγ for r 6= 0 and

the restriction of ψ to {(s, r, ϕ) ∈ S × (−ε, ε)× (−θ, θ) | r 6= 0} is a

diffeomorphism onto its image.

(ii) ψ−1 (B(q) ∪B(qγ)) = F−1(0),

i.e. F is a local equation for the Bloch variety

(iii) The derivative of F with respect to s has maximal rank at each point

(s, 0, ϕ) where s is a smooth point of B(qγ)

(iv) The diagram

S×{r ∈ IR | 0 < |r| < ε}×(−θ, θ) ψ (S×{r ∈ IR | 0 < |r| < ε}×(−θ, θ))ψ -

r2eiϕ IR − 1
λ

HHHHHHHHHHHj

������������

(s, r, ϕ) (k, λ)
HHHHHHHj

���������

��
AA

commutes

(v) ψ is compatible with the action of Γ], i.e.

if s, s′ ∈ S and b ∈ Γ] such that b · s = s′ then

b · ψ(s, r, ϕ) = ψ(s′, r, ϕ) for all r, ϕ.

Proof: After rotating the lattice we may assume that γ = (0, γ2). Recall

from [KT], p. 133 that there are coordinates (κ, u, v) in a neighbourhood

of Eγ such that

k1 = κ, k2 = 1/v, λ = u+ 1/v2 (III.1)
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and Eγ is given by v = 0. Let S be a compact subset of Eγ as in Proposition 4,

and let G be a finite subset of
{

b ∈ Γ] | 〈b, γ〉 = 0
}

such that (κ+c1)
2−u 6= 0

for all (κ, u) ∈ S, c = (c1, 0) 6∈ G. Let H(κ, u, v) = (Hb,c)b,c∈Γ] be the matrix

with entries

Hb,c(κ, u, v) =







δbc + vq̂(b−c)

2c2+v((κ+c1)2+c22−u)
if c2 6= 0

δbc + q̂(b−c)
(κ+c1)2−u

if c2 = 0, c 6∈ G
((κ + c1)

2 − u) δb c + q̂(b− c) if c ∈ G

(III.2)

In [KT], Section 2 it is shown that for every 0 < θ < π there is an ε > 0 such

that for all (κ, u) ∈ S and

v ∈ Σ(θ, ε) :=
{

z ∈ C | |z| < ε, arg(−z2) ∈ (−θ, θ)
}

the matrix H(κ, u, v) − 1 is Hilbert-Schmidt, depends continuously in the

Hilbert Schmidt norm on (κ, u, v) ∈ S × Σ(θ, ε), and that

{(κ, u, v) ∈ S × Σ(θ, ε) | v 6= 0} ∩ B(q)

= {(κ, u, v) ∈ S × Σ(θ, ε) | det2H(κ, u, v) = 0}

If G was chosen sufficiently big and ε sufficiently small then for all (κ, u, v) ∈
S × Σ(θ, ε)

∑

c∈Γ],c2=0
c6∈G

1

|(κ + c1)2 − u|2
+
∑

c∈Γ]

c2 6=0

|v|2
|2c2 + v((κ+ c1)2 + c22 − u)|2

<
1

4||q||22
(III.3)

so that the subblock

1 +W := (Hbc)b,c∈Γ]\G
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is invertible. In this case we block H in the form

G Γ] \G
︷︸︸︷ ︷︸︸︷

H =
G{

Γ] \G{







R V

U 1 +W







(III.4)

Then

det2H = (det2(1 +W )) detM (III.5)

where M = M(κ, u, v) is the finite G×G-matrix

M = R− V (1 +W )−1U . (III.6)

Proposition 4 will be a direct consequence of

Proposition 5 Assume that
∑

b∈Γ]

|q̂(b)|
(

1 + |b|2k
)

<∞. Let

ψ : S × (−ε, ε)× (−θ, θ)→(C2 × C) ∪ Eγ

be the map given by

(κ, u, r, ϕ)→ (κ, u, v(u, r, ϕ))

where v(u, r, ϕ) :=
√
−1reiϕ/2

√
1+ur2eiϕ . If ε was chosen sufficiently small then M◦ψ is

a Ck-differentiable map from S × (−ε, ε)× (−θ, θ) to the space of (G×G)-

matrices.

To see that Proposition 4 follows from Proposition 5 put F (κ, u, r, ϕ) =

detM (ψ(κ, u, r, ϕ)). Part (i) of Proposition 4 is obvious from the construc-

tion. Part (ii) follows from (III.5) since det2(1 + W )−1 is nowhere zero and
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det2H = 0 is an equation for (B(q) ∩ Imψ). Part (iii) follows from the fact

that detH(κ, u, 0) = 0 is a holomorphic reduced equation for B(qγ) on Eγ .

Parts (iv) and (v) are obvious from the choice of ψ and (III.1).

Proof of Proposition 5: Since ψ is a C∞-map and for sufficiently

small ε there is θ0 with θ < θ0 < π such that the image of ψ is contained in
{

(κ, u, v) ∈ S × C | v =
√
−1reiϕ for some r, ϕ with |r| < 2ε, ϕ ∈

(

− θ0

2
, θ0

2

)}

it suffices to show for each θ < π
2

there is an ε > 0 such thatM(κ, u,
√
−1reiϕ)

is a Ck-differentiable matrix valued function of (κ, u) ∈ S, r ∈ (−ε, ε),
ϕ ∈ (−θ, θ).

Three ingredients are used to control the matrix M and its derivatives. The

first is the decay of the Fourier coefficients q̂(b − c) as b − c gets large. For

a general Ab,c : Γ] × Γ] → C we enforce decay between b and c through the

norm

|||A||| = max






sup
b∈Γ]

∑

c∈Γ]

|Ab,c|
[

1 + |b− c|2
]k+1

,sup
c∈Γ]

∑

b∈Γ]

|Ab,c|
[

1 + |b− c|2
]k+1







This norm obeys

|||AB||| ≤ |||A||| |||B|||
||A|| ≤ |||A|||

where ||A|| is the operator norm of A viewed as the kernel of an operator on

`2(Γ]). See [FKT, p. 261, 230]. We select an arbitrary positive constant Q

and consider all potentials q for which

|||q||| ≤ Q .
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The second ingredient is the fact that the denominator






2c2 + v ((κ+ c1)
2 + c22 − u) if c2 6= 0

(κ+ c1)
2 − u if c2 = 0, c 6∈ G







that appears in V and W remains bounded away from zero. When c2 = 0

this is part of the definition of G. When c2 6= 0, we prove it in

Lemma III.1 There exist constants E(S, θ) > 0 and D(S, θ) > 0 such that

c2 6= 0, (κ, u) ∈ S, |ϕ| ≤ θ <
π

2
, |r| ≤ E(S, θ)

implies
∣
∣
∣2c2 + v

(

(κ+ c1)
2 + c22 − u

)∣
∣
∣ ≥ D(S, θ) ,

where

v = i r eiϕ .

Proof of Lemma III.1: We first evaluate the real and imaginary parts

R = Re (−i eiϕ [2c2 + v ((κ+ c1)
2 + c22 − u)])

= −2c2 sinϕ+ r [(c1 +Reκ)2 − (Imκ)2 + c22 −Reu]
I = Im (−i eiϕ [2c2 + v ((κ+ c1)

2 + c22 − u)])
= −2c2 cosϕ+ r [2(c1 +Reκ)2Imκ− Imu] .

There are two possiblities to be considered. Either

|r [2(c1 +Reκ)Imκ− Im u]| ≤ |c2 cosϕ| ,

in which case

|I| ≥ |c2 cosϕ| ≥ 2π

|γ2|
cos θ ,
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or

|r [2(c1 +Reκ)Imκ− Imu] | ≥ |c2 cosϕ| .

In the latter case, since S is compact,

2|r| |c1 +Reκ| |Imκ| ≥ |c2 cosϕ| − |r| |Imu|
≥ 1

2
|c2| cos θ

provided E(S, θ) is small enough. This implies, again by the compactness

of S, that

|c1 +Reκ| ≥ D1(S, θ)
|c2|
|r| .

Hence, if E(S, θ) is small enough, the real part

|R| ≥ |r|
[

D2
1

c22
r2 − c22 −D2

2

]

− 2|c2|
≥ |r|D3

c22
r2 − 2|c2|

≥ D4
c22
|r|

≥ D4

(
2π
|γ2|

)2
1

E(S,θ)
.

It suffices to choose

D(S, θ) = min

(

2π

|γ2|
cos θ, D4

4π2

γ2
2

1

E(S, θ)

)

.

�

The third and final ingredient used to control the derivatives of M is the

observation that each derivative ∂
∂v

, ∂
∂κ

, ∂
∂u

append to Hb,c(κ, u, v) produces,

at worst a “bad factor bounded by const |c|2.” This may be seen by iteratively
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applying

∂
∂v

1

2c2+v((κ+c1)2+c22−u)
= − 1

[2c2+v((κ+c1)2+c22−u)]
2 [(κ+ c1)

2 + c22 − u]
∂
∂u

1

2c2+v((κ+c1)2+c22−u)
= − 1

[2c2+v((κ+c1)2+c22−u)]
2 [−v]

∂
∂κ

1

2c2+v((κ+c1)2+c22−u)
= − 1

[2c2+v((κ+c1)2+c22−u)]
2 2v(κ+ c1)

∂
∂u

1
(κ+c1)2−u

= 1
[(κ+c1)2−u]2

∂
∂κ

1
(κ+c1)2−u

= − 1
[(κ+c1)2−u]2

2(κ+ c1)

Define the multiplication operator

(Mf)(b) =
(

1 + |b|2
)

f(b)

on `2(Γ]). A precise version of the above is

Lemma III.2 Let (κ, u) ∈ S, |ϕ| ≤ θ < π
2

and |r| ≤ E(S, θ). Then there is

a constant C1(S, θ, G) such that is at least one of b, c 6∈ G
∣
∣
∣
∣
∣

∂n1

∂vn1

∂n2

∂un2

∂n3

∂κn3
(Hbc − δbc)

∣
∣
∣
∣
∣
≤ (n1+n2+n3)!C

n1+n2+n3+1
1 |q̂(b− c)|Mn1+n2+n3

cc

Proof: The n1, n2, n3 dependence of the above bound is of no interest to us.

But we will prove it anyway. The proof is by induction on n1 + n2 + n3 with

the inductive hypothesis that
∂n1

∂vn1

∂n2

∂un2

∂n3

∂κn3
(Hbc − δbc) is a sum of at most

[2(n1 + n2 + n3 + 1)]n1+n2+n3 terms, each of which is a product of at most

2(n1+n2+n3+1) factors. Each of the variables κ, u, v appears at most once in

each factor. Each term is bounded by constn1+n2+n3+1 |q̂(b− c)|Mn1+n2+n3
cc .

For example

vq̂(b− c)
2c2 + v ((κ + c1)2 + c22 − u)

=

[

q̂(b− c)
2c2 + v ((κ + c1)2 + c22 − u)

]

[v]
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is viewed as a product of two factors.

Each action of a derivative on a product of N such factors produces N terms.

By the derivative formulae just before the statement of the Lemma, each new

term produced contains at most N +2 factors. For example ∂
∂v

acting on the

single factor 1

2c2+v((κ+c1)2+c22−u)
produces a single term with the three factors

[

1

2c2 + v ((κ+c1)2+c22−u)

][

1

2c2 + v ((κ+c1)2+c22−u)

]
[

−(κ+c1)
2+c22−u

]

We start, at n1 = n2 = n3 = 0, with one term containing at most two factors.

So the parts of the inductive hypothesis dealing with the numbers of terms

and factors is verified.

The bound on each term follows from the fact that there is always an explicit

q̂(b− c), and

|2c2 + v ((κ + c1)
2 + c22 − u)| ≥ D(S, θ)

|(κ+ c1)
2 − u| ≥ const(G) for c 6∈ G

|(κ + c1)
2 + c22 − u| ≤ const(S) [1 + |c|2]

2|κ+ c1| ≤ const(S) [1 + |c|2]

�

The “bad factors” of [1 + |c|2] are controlled by using the decay of q̂(b − c)
to move them to places where |c| is small. The “bad factor moving lemma”

is our next order of business. We consider, not only the lattice Γ], but any

Λ ⊂ Γ]. We denote by PΛ the orthogonal projector onto `2(Λ). We introduce
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Λ so as to enable us, later, to write M = R − V (1 + W )−1U as a limit

lim
Λ→Γ]

MΛ. In the Lemma we also prove the invertibility of 1 + W . For this

we need to insure that 1
(κ+c1)2−u

is small for all c 6∈ G. Hence we impose the

requirement on G that

(κ, u) ∈ S, c 6∈ G⇒
∣
∣
∣(κ+ c1)

2 − u
∣
∣
∣ ≥ 2 · 4k+1Q . (III.7)

Lemma III.3 Let G be finite and obey (III.7). Let Λ,Λ′ ⊂ Γ]. Let (κ, u)∈S,

|ϕ| ≤ θ < π
2

and |r| ≤ min
(

E(S, θ),
[

2 · 4k+1Q D(S, θ)
]−1

)

. Then there is a

constant C2(S, θ, G,Q, k) such that for all |n| ≤ k + 1 and potentials q with

|||q||| ≤ Q

a) ||MnPΛq̂(b− c)PΛ′M−n|| ≤ 4nQ

b) ||MnPΛW PΛ′M−n|| ≤ 1
2
, ||MnPΛV PΛ′M−n|| ≤ 3

2

c) ||MnPΛU || , ||V PΛMn|| ≤ C2

d) ||Mn(PΛ + PΛW PΛ)−1M−n|| ≤ 2.

The inverse here refers, of course, to the restriction to `2(Λ).

Proof: First note that for any operator on `2(Γ]) with kernel Ab,c

|(MnPΛA PΛ′M−n)| ≤ (1 + |b|2)n |Abc| (1 + |c|2)−n

≤ 4n|Ab,c| (1 + |c− b|2)|n|
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since
1+|b|2
1+|c|2 ≤

1+(|c|+|c−b|)2
1+|c|2

≤ 1+4|c|2+4|c−b|2
1+|c|2

≤ 4 (1 + |c− b|2)
and

1 + |c|2
1 + |b|2 ≤ 4

(

1 + |c− b|2
)

.

So, by the L1 − L∞ operator bound

||B|| ≤


sup
b∈Γ]

∑

c∈Γ]

|Bb,c|




1/2 

sup
c∈Γ]

∑

b∈Γ]

|Bb,c|




1/2

,

we have
∣
∣
∣

∣
∣
∣MnPΛA PΛ′M−n

∣
∣
∣

∣
∣
∣ ≤ 4n|||A||| .

Part a) is now immediate.

Part b) follows from first,

∣
∣
∣
∣

vq̂(b−c)

2c2+v((κ+c1)2+c22−u)

∣
∣
∣
∣ ≤ |v|

D(S,θ)
|q̂(b− c)|

≤ 1
2
|q̂(b−c)|
4k+1Q

for all c2 6= 0, and second

∣
∣
∣
∣
∣

q̂(b− c)
(κ + c1)2 − u

∣
∣
∣
∣
∣
≤ 1

2

|q̂(b− c)|
4k+1Q

for all c2 = 0, c 6∈ G.

Part c) follows from part b) and the observation that, because G is finite,

both ((κ+ c1)
2 − u) andMn

cc remain bounded as c runs over G.
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Finally, to prove part d), expand

M−n(PΛ + PΛW PΛ)−1Mn =
∞∑

j=0

(−1)jPΛ[M−nPΛW PΛMn]j

and apply the bound on W from part b).

�

Completion of the proof of Proposition 5 Since R is a polynomial

in (κ, u) we need only consider V (1 + W )−1U . Let ∂j denote any jth order

derivative with respect to (κ, u, v). Then any derivative of V (1+W )−1U (of

order at most k) is a sum of terms of the form

(∂j1V )(1 +W )−1(∂j2V )(1 +W )−1 · · · (∂jp−1V )(1 +W )−1(∂jpU)

= [∂j1VM−j1] [Mj1(1 +W )−1M−j1] [Mj1(∂j2W )M−j1−j2]

[Mj1+j2(1 +W )−1M−j1−j2] · · · [Mj1+···+jp−2(∂jp−1W )M−j1···−jp−1]

[Mj1+···+jp−1(1 +W )−1M−j1···−jp−1] [Mj1+···+jp−1∂jpUM−j1−···−jp]

[Mj1+···+jpPG] .

with j1 + . . .+ jp ≤ k.

The factors

[∂j1VM−ji] ,
[

Mj1+···+jα−1(∂jαW )M−j1···−jα

]

and

[Mj1+···+jp−1∂jpUM−j1···−jp]

are all of bounded norm by Lemmas III.2 and III.3.a. The factors

[

Mj1+···+jα(1 +W )−1M−j1···−jα

]
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are of bounded norm by Lemma III.3.d. The final factor Mj1+···+jpPG is of

bounded norm by the finiteness of G.

�

We now prove a Lemma that allows us to evaluate derivatives of M (or

its determinant) as the limit of restrictions to finite subsets Λ ⊂ Γ]. More

generally let Λ by any subset of Γ] that contains G and define

MΛ = R− V PΛ(1 + PΛW PΛ)−1PΛU

Lemma III.4 Let G be finite and obey (III.7) and let θ < π
2
. Then there

is a constant C3(S, θ, G,Q, k) such that for all (κ, u) ∈ S, |ϕ| ≤ θ, |r| ≤
min

(

E(S, θ),
[

2 · 4k+1Q D(S, θ)
]−1

)

, n1 + n2 + n3 ≤ k and potentials q with

|||q||| ≤ Q

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∂n1

∂vn1

∂n2

∂un2

∂n3

∂κn3
[M −MΛ]

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
≤ C3

dist(0,Γ] \ Λ)2
.

Remark The decay rate depends primarily on the smoothness of q. If q

is C∞ the difference will decrease to zero faster than any inverse power of

dist(0,Γ] \ Λ).
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Proof: As in the proof of Proposition 5, ∂j[M −MΛ] is a sum of terms of

the form

(∂j1V )(1 +W )−1(∂j2W )(1 +W )−1 · · · (∂jp−1W )(1 +W )−1(∂jpU)

−(∂j1V )PΛ(1 + PΛW PΛ)−1(∂j2PΛW PΛ)(1 + PΛW PΛ)−1

· · · (∂jp−1PΛW PΛ)(1 + PΛW PΛ)−1(∂jPPΛU) .

Now apply

A1A2 · · ·Am −B1B2 · · ·Bm =
m∑

α=1

B1 · · ·Bα−1(Aα − Bα)Aα+1 · · ·Am

with

A1 = ∂j1V B1 = ∂j1V PΛ

A2 = (1 +W )−1 B2 = (1 + PΛW PΛ)−1

and so on and then apply

∂j1V − ∂j1V PΛ = ∂j1VM−1(1− PΛ)M
∂jpU − ∂jpPΛU = M−1(1− PΛ)M∂jPU

∂jαW − ∂jαPΛW PΛ = M−1(1− PΛ)M∂jαW+PΛ∂
jαWM−1(1− PΛ)M

and

(1 +W )−1 − (1 + PΛW PΛ)−1

= −(1 + PΛW PΛ)−1(W − PΛW PΛ)(1 +W )−1

= −(1 + PΛW PΛ)−1M−1(1− PΛ)MW (1 +W )−1

− (1 + PΛW PΛ)−1PΛWM−1(1− PΛ)M(1 +W )−1 .

The result is a finite sum of terms of much the same form as

(∂j1V )(1 +W )−1(∂j2W )(1 +W )−1 · · · (∂jP−1W )(1 +W )−1(∂jPU)

but with same extra PΛ’s tossed in, possibly with an extra W (1 + W )−1

tossed in and definitely with oneM−1(1−PΛ)M. The additional PΛ’s and
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W (1 + W )−1 are unimportant. On the other hand the M−1(1 − PΛ)M is

crucial because

∣
∣
∣

∣
∣
∣M−1(1− PΛ)

∣
∣
∣

∣
∣
∣ = max

b∈Γ]\Λ

1

1 + |b|2 ≤
[

dist(0,Γ] \ Λ)
]−2

.

We may now continue just as in the proof of Proposition 5. The remainingM
fromM−1(1− PΛ)M just causes the replacement of some of the exponents

j1 + · · ·+ jα (those to the right of theM−1(1− PΛ)M) by j1 + · · ·+ jα + 1.

Since j1 + . . .+ jα + 1 ≤ k + 1 we may still apply Lemma III.3.

�

As an almost immediate consequence of Lemma III.4, we have the analyticity

of M and its derivatives in the potential q.

Lemma III.5 Let 0 < θ < π
2

and k ≥ 0. Let G be finite and obey (III.7). If

n1 +n2 +n3 ≤ k, |ϕ| ≤ θ and |r| ≤ min
(

E(S, θ),
[

2 · 4k+1QD(S, θ)
]−1

)

then

∂n1

∂vn1

∂n2

∂un2

∂n3

∂κn3
M(v, u, κ, q)

is analyic in q on the domain |||q||| < Q.

Proof: For any finite Λ the finite matrices V PΛ, PΛU,R and PΛWPΛ and

their derivatives with respect to (κ, u, v) are polynomials (of degree 1) in q

and hence trivially analytic. Furthermore ||PΛW PΛ|| = 1
2

so (1+PΛW PΛ)−1

and consequently
∂n1

∂vn1

∂n2

∂un2

∂n3

∂κn3
MΛ are analytic too. By Lemma III.4 the
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latter converge uniformly on |||q||| < Q to
∂n1

∂vn1

∂n2

∂un2

∂n3

∂κn3
M . The Lemma

now follows by Weierstrass’ theorem.

�

IV Opening up double points

In this Section we prove Proposition 2. Again we assume that γ = (0, γ2)

and use the coordinates κ, u, v described in (III.1). Then for b ∈ Γ] with

〈b, γ〉 = 0

B̄b ∩ Eγ =
{

(κ, u, 0) ∈ Eγ | (κ+ b1)
2 − u = 0

}

so that the point of intersection between B̄0 ∩ Eγ and B̄d ∩ Eγ in (κ, u, v)

coordinates is

p′d = (−d1/2, d
2
1/4, 0) .

In a neighbourhood U of p′d we can use

x := κ2 − u, y := (κ+ d1)
2 − u and v (IV.1)

as local coordinates on (C2 × C) ∪ Eγ .

We shall work with two matrices Hb,c(x, y, v) of the form (III.2). The first,
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denoted Hs
b,c, (with s standing for small) has G = Gs = {0, d}. It is

Hs
b,c =







xδb,c + q̂(b− c)N(c) if c = 0

yδb,c + q̂(b− c)N(c) if c = d

δb,c + q̂(b− c)N(c) if c 6= 0, d

(IV.2)

where

N(c) :=







1 for c = 0, d

1
(κ+c1)2−u

for c ∈ Γ] \ {0, d} with c2 = c

v

2c2+v((κ+c1)2+c22−u)
for c ∈ Γ] with c2 6= 0.

(IV.3)

When the potential q is sufficiently small the 2× 2 matrix

M s = Rs − V s(1 +W s)−1U s , (IV.4)

where Rs, U s, V s and W s are defined by the blocking (III.4) of Hs with

G = Gs, is well-defined. We shall do most of our computations using M s.

For the second H, we first select a bounded open subset S ⊂ Eγ containing p′d,

and a positive real number Q. Then we choose a finite subset G` ⊂ {b ∈ Γ] |
b2 = 0} that obeys (III.7) with k = 5.

The matrix

M ` = R` − V `(1 +W `)−1U ` (IV.5)

arising from the blocking (III.4) of H ` with G = G` is defined for all q

with |||q||| ≤ Q. Furthermore, since M ` and its derivatives with respect

to (κ, u, v) are analytic in q we can get all the information we need about
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them from M s. The precise relationship between detM ` and detM s is, for

q̂ sufficiently small,

detM ` = lim
Λ→Γ]

Λ finite

detH`
Λ

det(1 +W `
Λ)

=
∏

c∈G`\{0,d}
N(c)−1 lim

Λ→Γ]

detHs
Λ

det(1 +W `
Λ)

(IV.6)

=
∏

c∈G`\{0,d}
N(c)−1 lim

Λ→Γ]

det(1 +W s
Λ)

det(1 +W `
Λ)

detHs
Λ

det(1 +W s
Λ)

=
∏

c∈G`\{0,d}
N(c)−1 det

(

R̃− Ṽ (1 +W `)−1Ũ
)

detM s

where R̃, Ṽ and Ũ are defined by blocking 1 +W s = (Hs)b,c∈Γ] \ {0, d} as

G \ {0, d} Γ] \G
︷︸︸︷ ︷︸︸︷

1 +W s =
G \ {0, d}

Γ] \G







R̃ Ṽ

Ũ 1 +W `







(IV.7)

The blocks R̃, Ũ , Ṽ are restrictions of R`, U `, V ` with R` and U ` multiplied

by the finite matrix [N(c)−1δb,c]b,c∈G\{0,d}. Hence, by Lemmas III.3 and III.4,

R̃ − Ṽ (1 + W `)−1Ũ is well-defined for all |||q||| ≤ Q and its determinant is

lim
Λ→Γ]

det(1+W s
Λ)

det(1+W `
Λ
)
.

We want to determine the first few terms in the Taylor series of detM ` along

imaginary v-directions. For this purpose we introduce a grading in the formal

power series ring C [[x, y, v]] by giving x and y weight two and v weight one.

Let Ir be the ideal in C [[κ, y, v]] consisting of all elements of weight at least r,

and put

R := C [[κ, y, v]] /I5 .
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Below we shall prove

Proposition 6 Assume that qγ ≡ 0 and
∑

b∈Γ]

(1 + |b|12) |q̂(b)|2 is sufficiently

small. Then

(i) detM s = (x− T1)(y − T2)−
v4

16
∆d∆−d in R

with Ti ∈ I2

(ii) det
(

R̃ − Ṽ (1 +W `)−1Ũ
)

= 1 mod I2

(iii)
∏

c∈G`\{0.d}
N(c)−1 =

∏

c∈G`\{0.d}
1

c1(c1−d1)
mod I2

We first show how Proposition 6 implies Proposition 2. Proposition 6 shows

that, in R, for small q,

detM ` =
∏

c∈G`\{0,d}

1

c1(c1 − d1)

[

(x− T1)(y − T2)−
v4

16
∆d∆−d

]

so that the Taylor polynomial of detM ` for arg(−v2) ∈ (−θ, θ) is, up to a

nonzero multiplicative constant, equal to (x− T1)(y − T2)−
v4

16
∆d∆−d mod I5.

By analyticity in q (Lemma III.5) this is the case for all |||q||| < Q. We make

the change of variables

x′ = x− T1 , y
′ = y − T2 , w =

v√
1 + uv2

.

Then

λ = w−2
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and by Proposition 5

∣
∣
∣
∣detM `(x′, y′, w)−

(

x′y′ − 1

16
∆d∆−dw

4
)∣
∣
∣
∣ = o

(

|x′|2 + |y′|2 + |w|4
)

.

(IV.8)

If ∆d∆−d 6= 0 then the double point pd opens up by the topological Lemma

stated in the appendix.

Before we begin with the proof of Proposition 6 we note that, since x = κ2−u,
y = κ2 − u+ 2d1κ + d2

1

(κ+ c1)
2 − u =

d1 − c1
d1

x +
c1
d1
y + c1(c1 − d1) (IV.9)

and

N(c) =







1 c = 0, d

d1

c1d1(c1−d1)+(d1−c1)x+c1y
c2 = 0, c 6= 0, d

vd1

2c2d1+v[(d1−c1)x+c1y+c1d1(c1−d1)+c22d1]
c2 6= 0

(IV.10)

=







1 c = 0, d

1
c1(c1−d1)

mod I2 c2 = 0, c 6= 0, d
v

2c2+v[c1(c1−d1)+c22]
mod I4

= v
2c2

mod I2
c2 6= 0

so that

b, c ∈ Γ] with b2 = −c2 6= 0⇒N(b) +N(c) ∈ I2 (IV.11)

b ∈ Γ], b2 6= 0⇒N(b) +N(d− b) = −v2 b1(b1 − d1) + b22
2b22

mod I4

(IV.12)

=
v2

2

〈b, d− b〉
b22

mod I4
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We now give the

Proof of Proposition 6: Part (iii) is an immediate consequence of

(IV.10). Since qγ = 0 all the Fourier coefficients q̂(b − c) with b2 = c2

are zero. So

detM s = det
{[

x
0

0
y

]

− Ss
}

= (x− Ss
0,0)(y − Ss

d,d)− Ss
0,dS

s
d,0

and

det
(

R̃ − Ṽ (1 +W `)−1Ũ
)

= det(1− S̃)

where Ss = V s(1 +W s)−1U s and S̃ = Ṽ (1 +W `)−1Ũ .

Expanding in a geometric series in W (which by Lemma III.3 converges)

Sb,c =
∞∑

n=0

(−1)n
∑

b(1),...,b(n+1)

Vb,b(1)Wb(1),b(2)Wb(2),b(3) · · ·Wb(n),b(n+1)Ub(n+1),c

with b(1), . . . , b(n+1) summed over Γ] \ {0, d} in the case of Ss and Γ] \G` in

the case of S̃. Note that Sb,c always has b, c ∈ G` and hence b2 = c2 = 0 and

that

Vb,c = Wb,c = Ub,c if b2 = c2

Wb,c, Vb,c ∈ I1 if c2 6= 0 .

Thus Sb,c ∈ I1 and

Sb,c =
∑

b(1)

b
(1)
2

6=0

Vb,b(1)Ub(1),c −
∑

b(1),b(2)

b
(1)
2

6=0,b
(2)
2

6=0

Vb,b(1)Wb(1),b(2)Ub(2),c

(IV.13)

+
∑

b(1),b(2),b(3)

b
(1)
2

6=0,b
(3)
2

6=0

b
(2)
2

=0

Vb,b(1)Wb(1),b(2)Wb(2),b(3)Ub(3),c mod I3 .
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In fact for any b, c with b2 = c2 = 0 the first sum is

∑

b(1)

b
(1)
2

6=0

q̂(b− b(1))q̂
(

b(1) − c)N(c)N(b(1)
)

= 1
2

∑

b(1)

b
(1)
2

6=0

q̂(b− b(1))q̂(b(1) − c)N(c)
[

N(b(1)) +N(b + c− b(1))
]

which is in I2 by (IV.11). This proves part ii of the Proposition as well as

the claims that T1 = Ss
0,0 ∈ I2 and T2 = Ss

d,d ∈ I2. It also proves that the

third term in (IV.13) is in I3.

It remains only to calculate Ss
0,d and Ss

d,0. In C [[x, y, v]] /I3

Ss
0,d = 1

2

∑

b
q̂(−b)q̂(b− d) [N(b) +N(d− b)]

− ∑

b(1),b(2)
q̂(−b(1))N(b(1))q̂(b(1) − b(2))N(b(2))q̂(b(2) − d)

= v2

4

∑

b

q̂(−b)〈b,d−b〉q̂(b−d)
b22

−1
4

∑

b(1),b(2),b(3)

s.t. b(1)+b(2)+b(3)=d

q̂(−b(1))q̂(−b(2))q̂(−b(3)) v2

b
(1)
2 (b

(1)
2 +b

(2)
2 )

by (IV .10), (IV .12)

= −v2

4
∆−d

since, for b(1) + b(2) + b(3) = d, b
(1)
2 6= 0, b

(2)
2 6= 0, b

(3)
2 6= 0

1

b
(1)
2 (b

(1)
2 +b

(2)
2 )

+ 1

b
(1)
2 (b

(1)
2 +b

(3)
2 )

+ 1

b
(2)
2 (b

(1)
2 +b

(2)
2 )

+ 1

b
(2)
2 (b

(2)
2 +b

(3)
2 )

+ 1

b
(3)
2 (b

(1)
2 +b

(3)
2 )

+ 1

b
(3)
2 (b

(2)
2 +b

(3)
2 )

= 1

b
(1)
2 b

(2)
2

+ 1

b
(1)
2 b

(3)
2

+ 1

b
(2)
2 b

(3)
2

=
b
(1)
2 +b

(2)
2 +b

(3)
2

b
(1)
2 b

(2)
2 b

(3)
2

= 0

Similarly Ss
d,0 = −v2

4
∆d so that

detM s = (x− Ss
0,0)(y − Ss

d,d)−
v4

16
∆d∆−d mod I5 .
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V Sums of finite gap potentials

We first note a property of the asymptotic expansion of the Fourier coeffi-

cients of finite gap potentials which we will use later.

Lemma V.1 Let V ∈ L2
IR(IR/2πZ) be a potential such that the spectrum of

− d2

dz2 + V (z) has only finitely many gaps. Then there are complex numbers

ζj, j = 1, . . . , m with |ζj| = 1, positive integers kj, and y > O such that

V̂ (n) = −|n|e−|n|y
m∑

j=1

kjζ
n
j +O(e−|n|y

′

)

for some y′ > y.

Proof: It is well known that there is an entire function θ(z) on C such that

V (z) = −2
d2

dz2
log θ(z) + const.

(see I.9). Therefore at each pole a of V (z)

V (z) =
2ma

(z − a)2
+O(1)

where ma is the order of the zero of θ(z) at a. Let a1, . . . , ar be the zeroes with

maximal negative imaginary part −y < 0 in {z ∈ C | 0 ≤ Re z < 2π}. Put
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kj := 2maj
. Choose y′ > y such that all poles a of V (z) with −y′ < Im a ≤ 0

fulfil Im a = −y. Then by the residue theorem for n ≥ 0

V̂ (n) = 1
2π

2π∫

0
V (x− i y′)e−i(x−i y′)ndx− i

m∑

j=1
resz=aj

(V (z)e−i n z)

= −
m∑

j=1
kjn e

−i n aj +O(e−n y′)

= −n e−n y ·
m∑

j=1
kjζ

n
j +O(e−n y′)

with ζj := e−i Re aj . For n < 0, V̂ (n) = V̂ (−n).

�

For sums like in Lemma V.1 we need the following

Lemma V.2 Let ζ1, . . . , ζr be pairwise different complex numbers of absolute

value one, and let kj ∈ C \ {0}. Put

F (n) :=
r∑

j=1

kjζ
n
j .
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Then

lim sup
n→∞

|F (n)| > 0 .

Proof: Write ζj = e2πiθj with θj ∈ IR. Choose real numbers ϕ0 = 1,

ϕ1, . . . , ϕ` which are linearly independent over Q such that each θj lies in

the Q-vectorspace spanned by ϕ0, . . . , ϕ`. Then there exist N ∈ IN and

integers aij such that

θj =
1

N

∑̀

m=0

amjϕm

so

F (n) =
r∑

j=1
kj

(

e2πi a0j/N
)n ∏̀

m=1
e2πi (nϕm/N) amj

=
∑

a=(a1 ,...,a`)∈Z`

Aa(n) · ∏̀
m=1

e2πi (nϕm/N) am

where each Aa(n) is of the form

Aa(n) =
N∑

k=1

Aa,ke
2πi kn/N ,

and not all the Aa,k are zero. However, all but finitely many Aa(n) are zero.

Each Aa(n) is periodic with period N . Using the Vandermonde determinant

det
(

e2πi kn/N
)

k,n=1,...,N

one sees that Aa(n) is not identically zero whenever Aa,k 6= 0 for some k.

Choose n0 ∈ IN such that Aa(n0) 6= 0 for some a ∈ Z
`. Put

f(z1, . . . , z`) :=
∑

a∈Z`

(

Aa(n0) ·
∏̀

m=1

e2πi (n0ϕm/N) am

)

za1
1 · · · za`

` .

Then

F (n0 + nN) = f(e2πi nϕ1, . . . , e2πi nϕ`) .
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The polynomial f(z1, . . . , z`) does not vanish identically on the torus

T :=
{

(z1, . . . , z`) ∈ Cd | |zm| = 1 , m = 1, . . . , d
}

.

The sequence (e2πi nϕ1, . . . , e2πi nϕ`) is ergodic on this torus. This shows that

lim supn→∞ |F (n0 + n N)| 6= 0.

We now begin with the proof of Proposition 3. By Lemma V.1 there is for

each j = 1, . . . , r a positive number yj such that for b ∈ Γ] with 〈b, γj〉 = 0

|q̂(b)| = O
(

|b|e−yj |b|
)

,

but for no ε > 0 |q̂(b)| = O(e−(yj+ε)|b|). Let βj be a vector of length 1/yj

perpendicular to γj. Again by Lemma V.1 there are for each j = 1, . . . , r

strictly positive real numbers kij, and real number ϕij, i = 1, . . . , mj such

that

q̂(λβj) = −|λ|e−|λ| ·
mj∑

i=1

kije
iλϕij +O(e−|λ|) (V.1)

whenever λβj ∈ Γ].

Now fix any γ ∈ Γ, d ∈ Γ] such that 〈γ, d〉 = 0 and d is not parallel to any

βj. Then, for each 1 ≤ i < j ≤ r, d has a unique representation

d = λijβi + µijβj

and

∆nd = 2|γ|2
∑

i<j

nλijβi∈Γ]

nµijβj∈Γ]

〈βi, βj〉
〈βi, γ〉 〈γ, βj〉

q̂(nλijβi)q̂(nµijβj) .
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Note that the decay rate as n→∞ of

q̂(nλijβi)q̂(nµijβj) = n2|λij| |µij|e−n(|λij |+|µij |)

×
(

mi∑

α=1
kαie

iλϕαin

)(

∑

β
kβje

iλϕβjn

)

+O(e−n(|λij |+|µij |))

is controlled by |λij|+ |µij|, which has the following geometric interpretation.

First choose two signs σi, σj ∈ {+,−} so that d is in the cone generated by

σiβi and σjβj. Then

d = |λij|(σiβi) + |µij|(σjβj)

and |λij|+ |µij| is the factor by which one must scale d in order that the head

of (|λij|+ |µij|)−1 d lie on the line through σiβi and σjβj.
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If we choose d appropriately we may identify precisely which i, j give the

smallest decay rate. This is done using the following Lemma. Put

B := {±βj | j = 1 . . . r} .

Lemma V.3 Under the hypotheses of Proposition 3 there exist points

β(1), . . . , β(`) ∈ B , ` ≥ 2

with the following properties.

(i) β(1), . . . , β(`) lie on a line g in IR2, and β(i) lies strictly between β(i−1)

and β(i+1) on g

(ii) g ∩ B = {β1, . . . , β`}

(iii)
〈

β(1), β(i)
〉

≥ 0 for i = 2, . . . , ` and if
〈

β(1), β(`)
〉

= 0 then ` ≥ 3.

(iv) All points of B − {β(1), . . . , β(`)} lie in the halfplane of IR2 − g con-

taining 0, with the possible exception of one point β, which then fulfils
〈

β, β(1)
〉

= 0. In this case the lines span(β, β ′), β ′ ∈ B − {β1} all

intersect g strictly on the same side of β(1) as β(2).

Proof: Let D be the boundary of the convex hull of B. Since r ≥ 2

it is a convex polygon which is symmetric with respect to the origin. If e

is an edge of D which forms an angle less than π
2

with 0 we can take for

β(1), . . . , β(`) the points of e ∩ B. If there is no such edge, all the edges

of D form the angle π
2

with the origin, i.e. D is a diamond. If one of
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the edges e of the diamond contains at least 3 points of B we can again

take {β(1), . . . , β(`)} = e ∩ D. Otherwise there are β(1), β ∈ B such that

D ∩ B = {±β(1),±β} and
〈

β, β(1)
〉

= 0. Let D′ be the convex hull of

B − {±β}. By assumption it is again a convex polygon which is symmetric

around 0. Therefore it contains an edge e, with β(1) as vertex, which forms

an angle less than π
2

with 0. We then take for β(1), . . . , β(`) the points of

e ∩ B.

�

Without loss of generality we may assume that β(i) = βi for i = 1, . . . , `. If

all points of B \ {β1, . . . , β`} lie on the same side of g let C be the interior

of the cone IR+β1 + IR+β2. If there exists β ∈ B which is separated from 0
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by g let β̂ be the point of {span(β, β ′) ∩ g | β ′ ∈ B − {β1}} closest to β1. It

lies in the segment between β1 and β2. In this case let C be the interior of

the cone spanned by β1 and β̂. By construction we have

Lemma V.4 Let d ∈ C. For 1 ≤ i < j ≤ r write

d = λijβi + µijβj .

Then for j = 2, . . . , ` one has λij > 0, µij > 0 and

λ12 + µ12 = λ13 + µ13 = · · · = λ1` + µ1` .

We call this number rd. Furthermore if (i, j) 6∈ {(1, 2), . . . , (1, `)} then

|λij|+ |µij| > rd , unless possibly i = 1, βj = β

Proof: First consider i = 1, j ∈ {2, . . . , `}. Since d ∈ C ⊂ IR+β1 + IR+βj

we have λij, µi,j > 0. Since span(β1, β2) = span(β1, βj) we have λ12 + µ12 =

λ1j + µ1j for all 2 ≤ j ≤ `.

Next consider any i < j except i = 1, j ∈ {2, . . . , `}. Also exclude βi = β

and βj = β in the event that there exists a β ∈ B separated from 0 by g.

Choose σi, σj ∈ {±1} so that σiλij > 0, σjµij > 0. Then the line segment

ασiβi + (1− α)σjβj, 0 ≤ α ≤ 1, is contained in the convex hull of B \ {±β}
but is not contained in the edge of this hull with end points β1 and β`. Thus

as ζ increases, starting with ζ = 0, ζd must hit the line segment joining σiβi

and σjβj before it hits the line segment joining β1 and β` (where it leaves the
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convex hull). Consequently |λij|+ |µij| > λ12 + µ12.

Finally consider βi, i 6= 1 and βj = β. By Lemma V.3.iv and the definition

of β̂, the line span(σiβi, σjβj) separates the origin from the line segment

joining β1 and β̂. Therefore |λij|+ |µij| > λ12 + µ12 .

�

For j = 1, . . . , ` the sublattice

Γ]
j = (IRβ1 ∩ Γ])⊕ (IRβj ∩ Γ])

is of finite index in Γ]. Choose

d ∈ C ∩
⋂̀

j=1

Γ]
j ,

and let γ ∈ Γ be a primitive vector perpendicular to d. Define λij, µij as in

Lemma V.4. By (V.1) and Lemma V.4 there is an ε > 0 such that

∆n d = |γ|2
∑̀

j=1

〈β1, βj〉
〈β1, γ〉 〈βj, γ〉

q̂(nλ1jβ1)q̂(nµ1jβj) +O
(

e−n(rd+ε)
)
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(V.2)

= |γ|2n2e−nrdF (n) +O(ne−nrd)

where

F (n) =
∑̀

j=1

〈β1, βj〉λ1jµ1j

〈β1, γ〉 〈βj, γ〉

(
m1∑

i=1

ki1(e
iλ1jϕi1)n

)

·
(mj∑

i=1

kij(e
iµ1jϕij )n

)

Since
〈β1,βj〉λ1jµ1j

〈β1,γ〉〈βj ,γ〉 ≤ 0, and it is equal to zero only if j = `, 〈β1, β`〉 = 0, and

kij > 0, the function F (n) is of the form of Lemma V.2. So

lim sup
n→∞

|F (n)| > 0

and Proposition 3 follows from (V.2)

VI Appendix

Here we prove a topological statement used in Section IV.

Lemma VI.1 Let U be a neighbourhood of the origin in C2 × IR and let

g : U → C be a continuous function whose restriction to {(z, w) ∈ U | w = 0}
and to {(z, w) ∈ U | w 6= 0} are analytic such that for some n > 0

lim
(z,w)→0

g(z1, z2, w)− (z1z2 − wn)

|z1|2 + |z2|2 + |w|n = 0 .

Then there is a homeomorphism ψ : U ′ → U ′′ between neighbourhoods of 0

in C2 × IR with the following properties
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(i) ψ commutes with the projection π : U → IR, (z, w) 7→ w, i.e. the

diagram
U ′ ψ

U ′′

π π

IR

-

A
A
A
AU

�
�

�
��

is commutative.

(ii) ψ(z, 0) = (z, 0) for all (z, 0) ∈ U ′

(iii) The restriction of ψ to {(z, w) ∈ U ′ | w 6= 0} is a diffeomorphism

(iv) ψ maps {(z, w) ∈ U ′ | g(z1, z2, w) = 0} onto

{(z1, z2, w) ∈ U ′′ | z1z2 − wn = 0}

In particular, for small ε > 0 and w0 6= 0 the set

{(z, w0) ∈ U | g(z, w0) = 0, |z| < ε}

is diffeomorphic to a cylinder.

Proof: By the Morse Lemma we may assume that g(z1, z2, 0) = z1z2. Write

g0(z1, z2, w) = z1z2 − wn

g(z1, z2, w) = g0(z1, z2, w) + h(z1, z2, w)

Then h(z1, z2, 0) = 0 and

lim
(z,w)→0

h(z1, z2, w)

|z1|2 + z2|2 + |w|n = 0
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The multiplicative group IR∗ := {τ ∈ IR | τ 6= 0} acts on C2 × IR by

τ · (z1, z2, w) = (τnz1, τ
nz2, τ

2w).

This action preserves

X0 :=
{

(z1, z2, w) ∈ C2 × IR | g0(z1, z2, w) = 0
}

.

Since the set of IR∗-orbits on C2×IR−{0} is compact there is an IR∗-invariant

open neighbourhood T of X0−{0} in C2× IR \ {0}, a finite covering Ti of T

by IR∗-invariant open sets and C∞-projections

πi : Ti→Ui := Ti ∩X0

whose fibres π−1
i (z, w) over (z, w) ∈ X0 are complex submanifolds of C2×{w}

isomorphic to {ζ ∈ C | |ζ| < 1}. By the assumption on h and the compact-

ness of (C2 × IR \ T )/IR∗ we may, after possibly shrinking U , assume that

|h(z1, z2, w)| < |g0(z1, z2, w)|

for all (z1, z2, w) ∈ U −T . So, by Rouché’s theorem, for each (z, w) ∈ Ui and

each t ∈ [0, 1] the function g0(z, w)+ t h(z, w) has a unique zero in π−1
i (z, w).

Therefore there are a neighbourhood U ′ of 0 in C2 × IR and IR∗-invariant

vectorfields Vi on Ti∩U ′ such that integration for time t ∈ [0, 1] maps Ui∩U ′

to the intersections of U ′ with

Xt := {(z, w) ∈ U ′ | g0(z, w) + t h(z, w) = 0} .

Vi can be chosen to be zero in {(z, w) ∈ Ti | w = 0} and on ∂Ti and to be C∞

on {(z, w) ∈ Ti | w 6= 0}. Using a partition of unity we get a neighbour-

hood U ′ of 0 in C2 and a IR∗-invariant vectorfield V on T̊ ∩ U ′ such that
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integration for time t maps X0 ∩ U ′ to Xt ∩ T ′ and such that V = 0 on

{(z, w) ∈ T | w = 0} ∪ ∂T , and V
∣
∣
∣
{(z,w)∈T |w 6=0}

is C∞. V can be prolonged

by 0 to U ′ \ T , and integration of V gives the desired map ψ.
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