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I Introduction

The Lamé equation is the best known of a class of one-dimensional, periodic
Schrodinger equations for which all Bloch eigenvalues and multipliers can
be explicitly parameterized by meromorphic functions defined on a compact
Riemann surface. The purpose of this paper is to prove that there is no
non-trivial two-dimensional analogue of this phenomenon. To make the last
statement precise, we begin with a review of the basic properties of the Lamé

equation.

Fix wi, wy >0 . Let

1 1

wE2w1 ZBi2waZ (Z - w)2 w2

w#0

be the Weierstrass function with primitive periods 2w; and 72w, . Then
20 (z + iws)

is a real-valued, real analytic, periodic function of x with primitive period

2wy . The Lamé equation is

2
—@1# + 2p(z+iw)p = A (I.1)

A solution ¢ (z,k) of (I.1) that satisfies
Y(x 4 2w, k) = e F(z, k) (1.2)

is called a Bloch solution. Recall that
2

20(z) = —2%log o(z) (1.3)
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where

o(z) = z H

Z\ z4122
WE2wq ZBI2woZ w

w#0

and
(z) = Llogo(z)
- ez ies
WE2wq ZBI12woZ
w#0
There are constants 7; and 17y satisfying
7]17:&)2 — MNaw1 = T
such that
o(z+2w) = —0(2) eME) | gz 4 i2uw) = —o(z) emEFw)
and
Cz+2w) = C(2)+m, C((z+i2w) = ((2) +m

Now set

By direct calculation

= —p(2)

i (¢(2) — 23%)

e2w1ik — €2w1C(z)—zr]1

¢(2)z o(z—z—iws)
€ o(z+iws)

Y(x+2w,2) = &(2) Y(z, 2)

and
2

_d_q/}(x,z) + 2p (x4 iws) Y(x,2) = M2)Y(x, 2)

dx?



For (I.4), first observe that

d . N
%w(% z) = (((2) = {(z — 2 —iwy) — ((z + iw2)) ¥(w, 2)
Then, differentiate again and apply the standard identities
(W) —o (v 2
§(S0 ) = () — () — ((0)

Also,

§(z+2w1) = £(2), £(z +i2wy) = £(2)

Summarizing the discussion above, the energy A and multiplier & = %1%

can be explicitly parameterized by meromorphic functions
M) = —pla) . €)=

on the elliptic curve €/2w1Z @ i2w»Z such that the boundary value problem
(I.1), (I.2) has a solution if and only if (A §) = (A(2),&(2)) . The only if
implication follows from the observation that for almost all z the functions
(x,z) and (x, —z) are linearly independent solutions of (I.1) for A\(z) =

A(—2) . In particular, ¢ is an algebraic function of A .

We shall prove that there is no non-trivial two dimensional analogue of this
phenomenon. Specifically, for any lattice I' = 11Z ® 12Z and real valued

function ¢ in L2 (IR2 /T ) it is impossible to parameterize the energy A



and multipliers &1, & by meromorphic functions A(p), &1(p), & (p) defined

on a compact complex surface P such that the boundary value problem

—AY 4 gz, m2)Y = A

ve+m) = &u(a)
v(e+1) = &Y
has a solution ¢ if and only if (A &1,&) = (A(p),&i(p), &2(p)) for some

p € P unless ¢ is essentially one-dimensional. That is,

q(z) = v(< B,z >)

where 3 is a primitive vector in the lattice T'* dual to I', or
q(x) = Ul(< 61,5(7 >) +’UQ(< /62,:1: >)

where (31, (B, are primitive, perpendicular vectors in I'¥ . Here, v(t), v1(t),
vo(t) are one-dimensional, periodic, “finite gap” potentials. For example,

the Lamé potential 2p(t + iws) .

We now recall some necessary facts about one-dimensional potentials. See,
for example, [Mc] and [MW]. Let v be a real valued function in L? (IR/TZ) .
The associated one dimensional Bloch variety B(v) is the set of all (k,\) €
C x € such that there is a nontrivial function € H2_(IR') satisfying

—5—;¢ + o)y = M (1.5)
and
(e +T) = () (1.6)

>



Set Dy = d/dk + ik . One can show (see,[KT]) that B(v) is the set of all
(k,\) € € x € obeying

(2cos Tk — 2 cos V) dety ((—D,% +v—A\)- (=D} - )\)_1) =0
and that
(2cos Tk — 2cos V) detsy ((—D,% +v—A)- (=D - )\)_1)

is a complex analytic function on CxC . Here, dety is the second regularized
determinant. It follows from representation above that B(v) is a complex

analytic subvariety of € x C .

Denote by y;(z,A) and ys(x, \) the solutions of (I.5) satisfying the initial

conditions
y1(0,A) = 15(0,A) =1

y1(0,A) = 22(0,A) =0
and

A()‘) = U (Tv )‘) + yé(T> )‘)

Then, ([KT, p. 125])
(2 cos Tk—2 cos V') dety ((—D,% +v—A)-(=Di — )\)_1) = 2cosTk—A(N)

so that
Bv) = {(k,A\)eCxC]|2cosTk—A(N) = 0}

{
= {(k,)\) e CxC|eTtisaroot of 2 —ANE+1 = O}
(1.7)

The Bloch variety B(v) is invariant under translation of k by elements of

2%2 . Consequently, the quotient



B(v)/%’fz = {(ENeC xC|E-ANE+1 = 0}
= C(v)
is well defined.

The roots

)\0 < )\1§)\2< )\3§)\4<

of A(A\) = £2 are all real and tend to +oo . The smallest, A\ is a simple
root of A(A\) = 2. The next two, A, Ay areroots of A(A) = —2 and so
on. It follows that B(v)/%Z is an irreducible transcendental hyperelliptic

curve. Furthermore, the point (£, \) is singular if and only if

)\211—1 =)A= )\2n 5 = (_1>n

If Xo,_1 = Ao, for all but a finite number of subscripts n , the potential v
is by definition “finite gap”. In this case the normalization N of C(v) =
B(v)/%7 is a compact Riemann surface with one point removed. We have
N — Cl) (&N
! | | (1.8)
P — C A
In particular, the normalization map across the top parameterizes the energy
A and multiplier ¢ by meromorphic functions on N just as for the Lamé
potential. Conversely, if the normalization N of B(v)/ Q%Z is a compact
Riemann surface with one point removed and (I.8) commutes, the potential

v is finite gap. We remark that the set of finite gap potentials is dense in

L2, (R/TZ) . See [GT], [M].



The potentials of the last paragraph are referred to as finite gap since the
complement of the continuous spectrum of the associated Schrodinger oper-
ator is a finite set of intervals. As we have explained, the finite gap condition
is equivalent to the statement that the normalization of B(v)/%Z is a com-
pact Riemann surface with one point removed. In other words, the finite gap

potentials are those with an algebraic Bloch structure.
To illustrate (I1.8), observe that

A(z) = 2cosi <C(z) - z£>

2w
for the Lamé potential 2p(x + iwy) . Then, the diagram
z  CR2wnZ®i2wZ — {0} — C2p(-+iwy)) (&N
| l l l
A(2) P! — C A
commutes. The map across the top is z — (£(2), A\(z)) . Thus, the tran-

scendental curve B(2p(-+1iws))/32Z is covered by the complement of {0}

in the compact curve C/2wZ @ 12wy7Z .

Finally, suppose v is a finite gap potential and A the normalization of
B(v)/%7 . Let © be the Riemann theta function for A" . Then there are
vectors €27 and )y such that

2

d

The representation (1.9) generalizes (1.3). Our discussion of one dimensional

potentials is finished.



Let T' = 91Z ® vZ be a lattice of maximal rank in IR? and let ¢ be a
real valued function in L2 (]R2 / F) . The associated two dimensional Bloch
variety B(q) is the set of all (k1, k2, A\) € C x € x € such that there is a

nontrivial function 1 € H2_ (IR?) satisfying

=AY + q(z1, 1) = M
and

Y@ +m) = EFNY(x)

Ylx+7) = € (r)

where k = (ky, ko) . It is shown in [KT], by means of a regularized determi-
nant, that B(q) is a complex analytic hypersurface of € x € x € . Define

the projection 7 by
Blq) (k1 k2, )

| |

C A
and the Fermi curves by

F A= T -t ()\)

Again, the lattice
M = {beR*| <y,b>e2nzforall yeT}|
dual to I' acts by translation on B(q) . We can define the quotients
B(q)/T* Cy = F\/T*

and the projection 7’

B(q)/T* (&1, 0)



It is proven in [KT, p.137] that B(q)/T* is always irreducible.

By analogy with (I.8), we consider the class of real valued functions ¢ in
L? (IR2 /T ) for which there is a compact complex analytic variety P , a
holomorphic projection map 7

P

! (1.10)

P!
a finite union D of curves on P and a finite, dominant holomorphic map
(morphism, if P or B(q)/T* is singular) ® from P —D to B(q)/T'*
such that the diagram

P-D — Blg/r

! ! u
P! — C

(1.11)

>

commutes. It is a direct consequence of (I.11) that for all A the normalization
of Cy = Fy/T* is a compact Riemann surface with a finite set of points
removed. In other words, after normalizing and closing the transcendental

curves (), one obtains a holomorphic family of compact algebraic curves.

Suppose v; and w, are one-dimensional finite gap potentials with periods
Ty and T, . It is easy to see by separating variables that the two-dimensional
potential

q(z1,22) = vi(21) + v2(22)

10



in L? (]R2 JTh\Z & T 2Z) belongs to the class introduced above. In fact, the
Bloch variety B(v; + vy)/I'* is the fiber product of C(v;) and C(vy) .

Also, by separation of variables, the potential

q(x1,29) = v(< a,z>)
belongs to this class. Here, v is finite gap and « is any vector in I .
For any ¢ € L? (]RQ/F) and v eI set

n@) = X () &

beT#
<b,y>=0

where
1

~ b — / —i<b,x>
q( ) |]R,2/F| R2/F C_I($> e

We have the

Theorem Let q be a real-valued function in L* (]Rz/F) . Suppose that
there is a compact complex analytic variety P , a holomorphic projection

map T

P

|
]PI

a finite union D of curves on P and a finite, dominant holomorphic map

11



® from P—D to B(q)/T* such that the diagram
)

P-D — B/
! ! ud
| A — C

>

commutes. Then
q = ¢y(x)
for some primitive v €1I' and q, s finite gap, or

A~

q = ¢y () + g, () —q(0)

for perpendicular, primitive vectors -1, v» € 1I' and q,,, q,, are finite

gap. The converse also holds.

We actually prove a stronger result: Suppose that ¢ is a real-valued function
in L? (]R2 / F) such that for all A € € the normalization of the curve
Cy = F\/ I'* is a compact Riemann surface C, with a discrete set of points
removed and furthermore that the genus ¢ (C,) is uniformly bounded in A .

Then, the conclusion of the Theorem holds.

In 1976 Dubrovin, Krichever and Novikov [DKN] constructed two-dimensional
potentials such that for one energy A the normalization of C\ = F)/I'*

is a compact Riemann surface with a discrete set of points removed (Also
see, [NV]). Novikov has asked for regular potentials such that for all ener-

gies A the normalization of C, = F\,/I* is a compact Riemann surface

12



with a discrete set of points removed. It follows from our results that there
are no nontrivial examples in L2 (]R2 /F) . We remark that in [CV] spe-
cial potentials are constructed from simple Lie algebras that appear to have
an algebraic Bloch structure. However, these potentials are either complex

valued or have nonintegrable singularities.

II Outline of the Proof

If ¢ is separable as a sum of finite gap potentials then, as we remarked above,
one constructs a parametrization of B(q)/T"* using the normalizations of the
spectral curves of the one-dimensional finite gap potentials. For proving the
converse we can restrict ourselves to the case that the average ¢(0) of ¢ is

zZero.

The assumption that there exists a parametrization of B(q)/I'* as in (1.10),
(1.11) implies that for each A € € the normalization of C) is dominated
by the normalization of #71(\) — D, which is a curve of finite and bounded
genus. Therefore there is a constant B such that the rank of the homology of
the normalization of C is bounded above by B. In other words if Sing(C))
denotes the set of singular points of C'y and H l(r)(C',\, Z) denotes the image of
the map
H, (Cy = Sing(Cy),2) —H1(Cy, Z)

13



induced by inclusion then
rank H"(C\,z) < B  forall A € C

We use the directional compactification of B(g) introduced in [KT] to con-
struct elements of HlT)(C,\, z) for A € R close to —oo. Recall that for each
primitive vector v € I' there is a plane E. := E,  in the cradle constructed
n [KT], Section 2 such that for any 6 > 0 the closure of the intersection
of B(q) with $(0) := {(k,\) € €* x C | arg(k? + k3) ¢ (~0,0)} meets E,
along a curve isomorphic to B(g,), in short

B(q) NX(0) N E, = B(q,) -

We identify B(q,) with this subset of E.,.

In addition it is shown in [KT] that near smooth points of B(g,) the space
B(gq) N'3(A) has a locally cone-like structure. More precisely we have

Proposition 1 Let K' be a compact subset of B(q,) consisting of smooth

points of B(q,) only. Then there is a map
Y K' x (—e,e) x (—0,0) — B(q) N X(0)

such that

(i) ¥(s,0,¢0) =s for all s € K’
¢(87T790> g E’Y fOTT 7é 0

(ii) the restriction of 1 to {(s,r,p) € K' X (—e,e) x (=0,0) | r #0} is a

diffeomorphism onto its image

14



(iii) the diagram

K x{reR|0<|r|<elx(—0,0) —Yvy(K' x {reR|0<]r| <e}x(—0,0))

(5,7, ) (k5 A)

1261 R _

>

commautes

(iv) 1 is compatible with the action of T*, i.e.
if 5,8 € K" and b € T* such thatb-s = s
then b - (s,r, @) =Y(s',r,¢) for all r,p.

The differentiability of 1) and the situation near singular points will be in-

vestigated in Section III.

In any case, whenever K is a compact subset of the set of smooth points
of the spectral curve C(q,) = B(q,)/ {7 e | (b,y) = 0} then, by Propo-
sition 1, for each A € IR sufficiently close to —oo there is a subset K, C
C) diffeomorphic to K. If ~,~" are linearly independent primitive vectors
in I' and K resp. K’ are compact subsets of C(g,) — Sing (C(q,)) resp.
C(gy) — Sing (C(g,)) then for A € R sufficiently close to —oo the sets K
and K are disjoint, since E, and E,, were obtained by blowing up points in

a cradle that lie in different T'*-orbits.

Now assume that at least g gaps in the spectrum of the one-dimensional

Schrodinger operator associated to ¢, are open. Then there exist cycles

15



ai,...,aq,by,...,by in a compact subset K of C(q,) — Sing (C(q,)) whose

intersection numbers fulfil a;-a; = b;-b; =0fori,j =1,...,g and a;-b; = 0;;.
As K is diffeomorphic to K there are cycles ay, ..., agy, by, ..., b, in Ky with
the same intersection properties. In particular aj, ..., a;, b}, ..., b represent

independent elements of Hl(T)(C’A,Z). So 2g < B, and ¢, is a finite gap
potential. If ~1,...,, are pairwise linearly independent primitive vectors
in I'* such that for each j = 1,...,r at least one gap in the spectrum of
the one dimensional Schrodinger operator associated to g,, is open then the
elements in A 1(”(6’,\, z) constructed as above are linearly independent. This
shows that for all but finitely many primitive vectors v € I' the spectrum
of the one dimensional operator associated to ¢, has no gaps. By Borg’s
theorem [B] this implies that ¢, = 0 for all but finitely many ~. Thus we

have shown:

Lemma II.1 Let ¢ € L% (IR*/T) with §(0) = 0. If (1.10), (1.11) hold then
there are pairwise linearly independent primitive vectors vi,...,7%, € I' such

that

q(z) = ¢y (x) + ... + ¢, (2) ,

and each g, is a finite gap potential.

Finite gap potentials are real analytic, so Lemma II.1 shows in particular

that any L?-potential for which (7.10), (1.11) holds is real analytic.

We now relax the condition that ¢ be real and consider, possibly complex

valued, potentials of the form ¢(x) = ¢,, () + ...+ ¢, (x) where vy,...,7,

16



are pairwise linearly independent primitive vectors of I' and each ¢, is a
finite gap potential. In this situation each of the spectral curves C(g,) has
infinitely many double points. We now want to construct cycles in H 1(T) (Cy,zZ)
by opening up these double points. To make this precise, we use the following

notation.

Definition A double point p of C(g,) opens up if for one (and then every)

point p’ € B(g,) above p there is a neighbourhood U of p’ in ¥(6), an integer

n > 1 and a homeomorphism from a neighbourhood U’ of 0 in
{(z,y,t) ECXxCx R |zy=1",t >0}

to

{(k,\) e Blg)NU |ANe R, A< 0} =U"

which is a diffeomorphism on {(z,y,t) € U’ | t # 0} such that the diagram

/ SO " "
(e.9,1) U 20" SUNE, (kN

[ l |

13 R R A

1
s -
t 2

commutes.

Now assume that at least g double points of C(g,), say p1,...,p, open up.
Let V; be a small neighbourhood of p; in C(g,), and K a compact subset
of C(q,) with smooth boundary such that V; C C(g,) and K\ {p1,...,p,} is

connected. As above one constructs, for A € IR sufficiently close to —oo, two

17



disjoint subsets K /(\i) of F\ and maps ; : K)(\i) — K which are I'*-compatible
diffeomorphisms between ;' (K \ {p1,...,py}) and K\{ps, ..., p,} and such
that ;' (V;) is diffeomorphic to a hyperbola. Then K /(\i) is diffeomorphic to

a Riemann surface of genus at least g with a certain number of holes. In

particular there exist cycles ay, ..., ag, by,..., b, on K\ with d}- ay = b;- b =
0 for i,j = 1,...,9, a; - b, = d;5. Again these cycles represent linearly

independent elements of H 1(T)(C,\, Z). So we have shown

Lemma I1.2 Let ¢ € LZ(IR?/T) with ¢(0) = 0. If (1.10),(1.11) hold then
for each primitive v € I' only finitely many double points of C(q.,) open up.

In fact the argument shows that there are only finitely many v for which a

18



double point may open up; but we do not need this. The next step is to
develop a criterion for double points to open up. If v € I' is a primitive
vector such that ¢, = 0 then
Bl(gy) = Uﬁ BiNE,

der

(d,7)=0
where B, denotes the paraboloid By = {(k, NeCxC|(k+d?—\= O},
see [KT], Section 2. If d € I'*\ {0} with (d,~) = 0 then ByN E, and B;N E,
intersect in one point, which we call p/;. By p; we denote its image in C(g,).

In Section IV we prove

Proposition 2 Let ¢ € LZ(IR?/T) such that 3 |¢(b)| (1 + |b]'?) < co. Let
beTt
v be a primitive vector in T’ such that ¢, = 0, and let d € T*\ {0} with
(d,v) = 0. Define
(o) ..\,
Ag=h* Y 7 db)ilc)
2, T )

b+c=d
If AgA_y is non-zero then the double point py of C(q,) opens up. When q is
real A_g = Ay, so that the double point py opens up whenever Ag # 0.

Under the assumption that ¢ is a sum of finitely many one dimensional real
valued finite gap potentials as in Lemma II.1 one can show that infinitely

many of the numbers A, are non-zero. Precisely, we show in Section V.

Proposition 3 Assume that

9(7) = ¢ (@) + - + 45, (2)

19



with v1, ..., 7y, pairwise linearly independent primitive vectors in I', such that
each q,; is a non-constant real valued finite gap potential. Assume further-
more that r > 3 or (y1,72) # 0 if r = 2. Then there is a primitive vector
v € T such that ¢, = 0, and infinitely many d € T* with (d,~) = 0 such that
Ay # 0.

Clearly the Theorem follows by putting Lemma II.1, Lemma II.2, Proposi-
tion 2 and Proposition 3 together.

III Smoothness of the Directional Compact-

ification

Let ~ be a primitive vector in I'. We investigate the local behaviour of

B(q) N X(0) near E.,.

Proposition 4 Suppose that > |G(b)| (1 + |b\2k) < oo0. Let S C E, bea
bel't
compact subset with smooth boundary 0S. Then for every 0 < 6 < m there is

e > 0, a C*-parametrization
S x (—e,e) % (—0,0)—(C* x C)U E,

and a C*-map

F:S8x(—¢e¢e)x(-0,0)—C
such that

20



(i) ¥(s,0,0) =s forall s € S,
P(s,r,p) & E, forr #0 and
the restriction of ¥ to {(s,r,¢) € S x (—¢g,e) x (=0,0) | r #0} is a

diffeomorphism onto its image.

(ii) =" (B(q) U B(gy)) = F7(0),

1.e. Fis a local equation for the Bloch variety

(iii) The derivative of F with respect to s has mazimal rank at each point

(s,0,¢) where s is a smooth point of B(q,)

(iv) The diagram

Sx{reR|0<|r| <elx(—0,0) —Y + p(Sx{reR|0<|r| <clx(—0,0))

(s,7,0) /\ / (k,\)

commautes

>

(v) ) is compatible with the action of T, i.e.
if 5,8 €S and b € I'* such that b-s = s' then

b- w(sﬂ“; 90) = 1/1(5,,7’, (,0) fOT all r, Q.

PROOF: After rotating the lattice we may assume that v = (0,72). Recall
from [KT], p. 133 that there are coordinates (k,u,v) in a neighbourhood
of E, such that

ki =k, ke =1/v, A =u+1/v? (I11.1)

21



and E, is given by v = 0. Let S be a compact subset of £, as in Proposition 4,
and let G be a finite subset of {b e | (b,y) = 0} such that (k+¢1)?—u # 0
for all (k,u) € S, c=(c1,0) € G. Let H(k,u,v) = (Hp)pcer: be the matrix

with entries

vg(b—c) .
Ope + 2024_”((,{_,_01)2_,_0%_“) if ¢y 7é 0
ol V) =1 b+ s ifey=0,cgG (IL2)

(k+a)—u)dpe+qlb—c) ifceq@

In [KT], Section 2 it is shown that for every 0 < § < 7 there is an ¢ > 0 such

that for all (k,u) € S and
veX(e) = {z € C||z| < e, arg(—2%) € (—9,9)}

the matrix H(k,u,v) — 1 is Hilbert-Schmidt, depends continuously in the
Hilbert Schmidt norm on (k,u,v) € S x ¥(0,¢), and that

{(k,u,v) € S xX(0,¢) | v#£0}NB(q)
= {(k,u,v) € S x X(0,¢) | deto H (K, u,v) = 0}

If G was chosen sufficiently big and ¢ sufficiently small then for all (k,u,v) €
S x %(6,¢)
1 |v|? 1

D + 2

<
o [+ ) —ul® 20 +u((k+ e + 3 —u)” 4l
cgG co#0
(IT1.3)

so that the subblock
1+ W = (Hp)pcernc

22



is invertible. In this case we block H in the form

G TI''\G
A~ o~
(R v (IT1.4)
H =
C\NG{\U 1+W
Then
deto H = (deto(1 + W)) det M (I11.5)
where M = M (k,u,v) is the finite G x G-matrix
M=R-VA+W)'U . (I11.6)

Proposition 4 will be a direct consequence of

Proposition 5 Assume that > |G(b)] (1 + \b|2k) < oo. Let
belt

P S % (—¢,e) % (—0,0)—(C* x C)U E,
be the map given by

(K, u,r, )= (K, u, v(u, 7, 0))
. \/—_1rei‘P/2 . .
where v(u, T, p) := Wimmmr et If € was chosen sufficiently small then Mo is
a C*-differentiable map from S x (—e,€) x (=0, 0) to the space of (G x G)-

matrices.

To see that Proposition 4 follows from Proposition 5 put F(k,u,r,¢) =
det M (¢(k,u,r,¢)). Part (i) of Proposition 4 is obvious from the construc-
tion. Part (ii) follows from (IIL.5) since dety(1 + W)~! is nowhere zero and

23



dety H = 0 is an equation for (B(q) N Im1). Part (iii) follows from the fact
that det H(x,u,0) = 0 is a holomorphic reduced equation for B(g,) on E,.
Parts (iv) and (v) are obvious from the choice of ¥ and (III.1).

PROOF OF PROPOSITION 5: Since ¢ is a C"°-map and for sufficiently
small € there is 6y with 6 < 6y < w such that the image of 1 is contained in
{(/-c,u,v) €S x C|v=+/—1re"” for some r, p with |r| < 2e,¢ € (—%0, %0)}
it suffices to show for each § < % there is an e > 0 such that M (x, u, /—1re’?)

is a C*-differentiable matrix valued function of (k,u) € S, r € (—¢,¢),

w € (—06,0).

Three ingredients are used to control the matrix M and its derivatives. The
first is the decay of the Fourier coefficients ¢(b — ¢) as b — ¢ gets large. For
a general Ay, : I'* x T¥ — € we enforce decay between b and ¢ through the
norm

|| A]]| = max {sup > 1A [1 +|b— C|2}k+1 sup Y |Apc] [1 +|b— C|2]k+1}

bel? Lo c€T¥ pers

This norm obeys

ABI| < [IIA[Il 111BII]
Al < [lIAll|
where || A|| is the operator norm of A viewed as the kernel of an operator on
(2(T*). See [FKT, p. 261, 230]. We select an arbitrary positive constant @

and consider all potentials ¢ for which

lalll <@ -
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The second ingredient is the fact that the denominator
2c0+v((k+ec1)?+c2—u) ifcg#0
(k+c)?—u ifco=0,c¢G

that appears in V' and W remains bounded away from zero. When cs = 0

this is part of the definition of G. When ¢y # 0, we prove it in

Lemma III.1 There exist constants E(S,6) > 0 and D(S,0) > 0 such that
0, (ku) €S, ol <6< 2, |r| < B(S,6)
implies
‘202 + v ((FL +c1)’ + 5 — u)‘ > D(S,0) ,

where

v=1re".

PrROOF OF LEMMA III.1: We first evaluate the real and imaginary parts
R = Re(—ie¥[2ca+v((k+c1)?+ 3 —u))
= —2csing +r[(c; + Rek)? — (Imk)? + ¢ — Reul
I = Im(=ie¥[2c+0((k+c)?+ G —u))
= —2cycos¢ +1[2(c; + Rek)* Imk — Imu] .

There are two possiblities to be considered. Either
|7 [2(c1 + Rer)Im Kk — Imul| < |cacosg| ,

in which case
2

|72|

|| > [eacosp| > — cosO
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or

| [2(c1 + Rer)Im Kk — Imu|| > |cacos | .
In the latter case, since S is compact,

2|r| |ey + Rek| |[Im k| > |eacos| — |r| |[Imul

> 1] cosd

provided E(S,0) is small enough. This implies, again by the compactness

of S, that

lc1 + Rek| > Dy (S, 9)% .

Hence, if F(S,0) is small enough, the real part

Rl > |r][D3% - & - D3] - 2l
> [r|Ds% — 2l
> D4%
> D) mhm
It suffices to choose
27 472 1
D(S,6) = min (m cos 0, D47§m>

The third and final ingredient used to control the derivatives of M is the

observation that each derivative %, %, a% append to Hy.(k, u,v) produces,

at worst a “bad factor bounded by const |c|2.” This may be seen by iteratively
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applying

9 1 - _ 1 2 2
ov 2024_”((,{4_01)2_’_0%_”) [202+v((ﬁ+01)2+cg—u)]2 [(K} + Cl) + C5 ’U,]
8i p 2402 = - : 2 [_U]
u 202“‘”((”""01) +02—u) [202+v((f@+01)2+c§—u)]
9 1 _ 1
Ok 202+v((n+01)2+c§—u) [202+v((fe+c1)2+c§—u)]2 QU(FJ + Cl)
o ___ 1 _ 1
Ou (k+ec1)2—u [(k4c1)2—u]?
o) 1 _ 1
Ok (kte1)>—u  — [(kter)2—ul? 2("{ + Cl)

Define the multiplication operator

(MF)®B) = (1+ ) £(0)

on ¢2(T'%). A precise version of the above is

Lemma III.2 Let (k,u) € S, |p| <0 < T and |r| < E(S,0). Then there is
a constant C1(S, 0, G) such that is at least one of b,c & G

oo s

Ov™ Qun2 OKns (Hbe = Gpe)| < (mingtng)|CPmtat g(b — o) | Mzt

cc

PROOF: The nq, ny, n3 dependence of the above bound is of no interest to us.

But we will prove it anyway. The proof is by induction on n; + ng + nz with
g gnr g
du™ Junz OK"s
[2(ny + ng +ng 4+ 1)]™ ™7™ terms, each of which is a product of at most

the inductive hypothesis that (Hpe — Ope) is a sum of at most

2(n14ng+ns+1) factors. Each of the variables k, u, v appears at most once in

each factor. Each term is bounded by const™ T2+l G(h — )| MM tn2tns,

For example

'UqA(b - C) _ Cj(b — C) [U]

205 + v ((k+c¢1)?+ 3 —u) 200 +v((k+c¢1)?+ 3 —u)

27



is viewed as a product of two factors.

Each action of a derivative on a product of N such factors produces N terms.
By the derivative formulae just before the statement of the Lemma, each new

term produced contains at most N + 2 factors. For example % acting on the

1
2co +v((n+cl )2 +cg —u

single factor j produces a single term with the three factors

1 1
200 +v ((fi—i—cl)?—l—c%—u)] [202 + v ((k+c1)2+cd—u

)M—(n+c1)2+c§—u]

We start, at n; = ny = ng = 0, with one term containing at most two factors.
So the parts of the inductive hypothesis dealing with the numbers of terms

and factors is verified.

The bound on each term follows from the fact that there is always an explicit

G(b—c), and

12¢o +v ((K + ¢1)? + 3 — u)

v

D(S,0)

const(G) forc & G
const(S) [1 + |c|?]
const(S) [1+ |c|?]

V

|(k 4+ c¢1)? — ul
|(k+ 1)+ 3 — ul

IN

2|k + 1|

IA

The “bad factors” of [1 + |c|?] are controlled by using the decay of G(b — c)
to move them to places where |c| is small. The “bad factor moving lemma”

is our next order of business. We consider, not only the lattice I'*, but any

A C T*. We denote by P, the orthogonal projector onto ¢?(A). We introduce
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A so as to enable us, later, to write M = R — V(1 + W)7'U as a limit

Alinl}u M. In the Lemma we also prove the invertibility of 1 + W. For this

we need to insure that 1

(k+c1)?2—u

is small for all ¢ ¢ G. Hence we impose the

requirement on G that

(k,u) €S, c ¢ G= ’(/i +c1)? - u’ > 2. 4F1Q | (II1.7)

Lemma II1.3 Let G be finite and obey (II1.7). Let A, A’ C T*. Let (k,u)€S,
|@g9<gamuﬂgnm(EwﬁLpuﬁﬂQDwﬁﬂ*):mmmmmma
constant Cy(S, 0, G, Q, k) such that for all |n| < k+ 1 and potentials q with
Halll < @

a) [|M"Pyg(b— )Py M| < 47Q
b) [|M*PAW PyM™"|| < 5, [|MPPAV Py M~ < 5
) |[MMPAUL| [V PAM™ || < Co

d) ||M™(Py + PAW Py)*M™|| < 2.
The inverse here refers, of course, to the restriction to £*(A).

PROOF: First note that for any operator on £*(I'*) with kernel Ay,

[(MPPyA Py M™™) < (14 b)) [Ape] (1 + [¢]?) "
< A" Ay (1 + |c—b2)"
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since

L2 1+(lel+le=b])?
1+[c)2 — 1+]c|?
1+4|c|?+4|c—b|?
S 1+|C|2
< 41+ |e—0b?)
and
1+ |c|?

T <4(1+e—b?) .

So, by the L' — L> operator bound

1/2

|1B|| < |sup > Byl

ber? cert

1/2
[sup Z | Bb.c|

c€l pert

we have

HM"PAA PA/M_"H < 4[] A[][ -

Part a) is now immediate.

Part b) follows from first,

vg(b—c) v A
2cotv((kter)2+c3—u)| — D(S0) |4(b = <)
<yl
for all ¢ # 0, and second
ab-c | _ 1o
(k+c1)?—u|~ 2 41Q

forall co =0, c ¢ G.

Part ¢) follows from part b) and the observation that, because G is finite,

both ((k + ¢1)? — u) and M™, remain bounded as c runs over G.
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Finally, to prove part d), expand

MT(Py 4 PAW Ppy) 7' M™ =3 (=1) PA[JM ™" PAW PyM"}}

j=0

and apply the bound on W from part b).

Completion of the proof of Proposition 5 Since R is a polynomial
in (k,u) we need only consider V(1 + W)~1U. Let &’ denote any j*® order
derivative with respect to (k,u,v). Then any derivative of V(1 4+ W)~'U (of
order at most k) is a sum of terms of the form
(V)1 4+ W) HoRV) (1 + W)~ (091 V) (1 + W)Y (97 U)
= [0V M ML 4+ W) M [MI(§72W ) M I1772]
[MI+2(1 4 W) LM 1=02] - [ M+ -2 (-1 ) M1 =31
(M 41 (1 4 W) =E M9 =dn1] M1 g0 [T M1 =d]
(Mt B
with j1 4+ ...+ j, < k.

The factors
[0V M [Mj1+---+ja—1(8ja W)M—jl---—ja}
and
[Mj1+~~.+jp—1ajp UM_jl“‘_jp]
are all of bounded norm by Lemmas II1.2 and III.3.a. The factors

|:Mj1+"'+ja(1 + W)—IM—jr"—ja}
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are of bounded norm by Lemma II1.3.d. The final factor M7+ %J» Py is of

bounded norm by the finiteness of G.

We now prove a Lemma that allows us to evaluate derivatives of M (or
its determinant) as the limit of restrictions to finite subsets A C I'*. More

generally let A by any subset of I'* that contains G and define

My = R—VPA(1+PAW PA)_IPAU

Lemma III.4 Let G be finite and obey (II1.7) and let 6 < 5. Then there
is a constant C3(S,0,G,Q, k) such that for all (k,u) € S, |p] < 0, |r| <
min <E(S, 9), [2 - ARLQ D(S, 9)}_1>, ny + ne +ns < k and potentials q with

lalll <@

Remark The decay rate depends primarily on the smoothness of ¢q. If ¢

g g g

ov™ Qun2 Or™3

< Cs
= dist(0,TF\ A)2

[M — M,]

is C'*° the difference will decrease to zero faster than any inverse power of

dist(0,T%\ A).
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PROOF: As in the proof of Proposition 5, 3/[M — M,] is a sum of terms of
the form
(VYA + W) L o2W) (1 + W)=t (39— W) (1 + W) =1 (9#U)
—(0NV)PA(1 + PA\W Py)7H (072 PAW Pp)(1 + PAW Py)~!
o (0L PAW Pp) (14 PAW Py (077 PAU) .

Now apply
AyAy -+ Ay — BBy By, = ZBl"'Ba—l(Aa — Ba) Aot Am
a=1
with
Ay =01V B, = 0"V Py
A2 = (1—|—W)_1 B, = (1—|—PAWPA)_1
and so on and then apply

IV -V Py = VM YL — Py)M
Il — P P\U = M™Y(1 — PA)MIPU
FaW — g« P\W Py = M Y1 — Py) MW+ Prd*W M1 — Py)M
and
(1+W)™L— (1 + PAW Py)™!
= —(14 PAW Py)"Y(W — PA\W Py)(1 + W)~}
= —(1+ PA\W P\)"*M1 1 - PAYMW (A + W)~
— (14 PAW Py) 'PAWM ™Y1 — PA)M(1 + W)L,

The result is a finite sum of terms of much the same form as
(0j1V)(1 + W)_1(8j2W)(1 + VV)_1 . (0jP*1W)(1 + W)_l(ﬁjPU)

but with same extra Pp’s tossed in, possibly with an extra W (1 + W)™
tossed in and definitely with one M~1(1 — P, )M. The additional P,’s and
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W (1 + W)~ are unimportant. On the other hand the M~1(1 — Py\)M is

crucial because

M- Py dist(0,T*\ A)]

)H = max _ < [
bel'\A 1 4 |b]2 —
We may now continue just as in the proof of Proposition 5. The remaining M
from M~(1 — Py,)M just causes the replacement of some of the exponents

J1 4+ + ja (those to the right of the M~*(1 — Py\)M) by ji + -+ + jo + 1.
Since j1 + ...+ jo + 1 < k+ 1 we may still apply Lemma III.3.

As an almost immediate consequence of Lemma II1.4, we have the analyticity

of M and its derivatives in the potential q.

Lemma IIL5 Let 0 < 0 < 5 and k > 0. Let G be finite and obey (II1.7). If
ni+ns+n3 <k, |p| <0 and|r] < min (E(S, 0), {2 AMLQD(S, 9)}_1) then

gm g o

ov™ Qunz O3

M(v,u, K, q)

is analyic in q on the domain |||q||| < Q.

PROOF: For any finite A the finite matrices V Py, PAU, R and P\W P, and
their derivatives with respect to (k,u,v) are polynomials (of degree 1) in ¢
and hence trivially analytic. Furthermore [|[PA\W Py|| = § so (14+Py\W Py)~!

am o o
and consequently Sumt D D My are analytic too. By Lemma III1.4 the
vl Qun K
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anl 8n2 8n3
latter converge uniformly on |||q||] < @ to M. The Lemma
Jv™ Qu™2 Ok™

now follows by Weierstrass’ theorem.

IV  Opening up double points

In this Section we prove Proposition 2. Again we assume that v = (0,7s)

and use the coordinates ,u,v described in (II1.1). Then for b € I'* with

{b,7) =0
B,NE, = {(/-c,u,O) €E,| (l-ﬂ—l—bl)2—u:0}

so that the point of intersection between By N E, and By N E, in (k,u,v)

coordinates is
Py = (—di/2,d7/4,0) .

In a neighbourhood U of p; we can use
vi=k"—u, y:=(k+d)?*—u and v (1V.1)
as local coordinates on (C* x C) U E,,.

We shall work with two matrices Hy.(x,y,v) of the form (//1.2). The first,
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denoted Hj ., (with s standing for small) has G = G* = {0,d}. It is

20pe +4(b—c)N(c) ifc=0
Hi. =14 ydye+Gb—c)N(c) ifc=d (IV.2)
Set+Gb—c)N(c) ifec#0,d

where

1 forc=0,d
N(C) = m for c € Fﬁ \ {0, d} with Cy = C ([V?))
for ¢ € I'* with ¢, # 0.

v
2¢o —i—v((f@—i—cl)z—i-c% —u)

When the potential ¢ is sufficiently small the 2 x 2 matrix
M* =R — V(1 + W U* (1V.4)

where R°,U°,V*® and W?* are defined by the blocking (/I1.4) of H® with

G = (7, is well-defined. We shall do most of our computations using M?®.

For the second H, we first select a bounded open subset S C E., containing py,
and a positive real number ). Then we choose a finite subset G* C {b € T'* |

by = 0} that obeys (II1.7) with k = 5.
The matrix
M =R - V(A +WwH U (IV.5)

arising from the blocking (/I1.4) of H® with G = G* is defined for all ¢
with |||¢||| £ Q. Furthermore, since M* and its derivatives with respect

to (k,u,v) are analytic in ¢ we can get all the information we need about
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them from M?*. The precise relationship between det M*¢ and det M*® is, for

q sufficiently small,

det H
det M* = lim ———2
¢ amrt det(L+ W)
det H3
= 1T N(c)™ lim —AZ
CEGZ\{Qd} A—TH det(]. + WA)

(I1V.6)

1 Y H;
_ [ N lim det(1 4+ W/z) det H} :
ccGt\{0.d} A—Tt det(1 + W) det(1 + W3)

[I N 'det (R—V(1+W")'U)det M*
ceGA\{0,d}

where R,V and U are defined by blocking 1 + W* = (H®)peer: \ {0,d} as

G\ {0,d} TH\ G

a\{o,a| BV (1V.-7)

14+ W = i
NG| U 1+W*

The blocks R, U,V are restrictions of RY,U%, V¢ with R’ and U’ multiplied
by the finite matrix [N<C)_15b,0]b,cea\{o,d}’ Hence, by Lemmas I11.3 and I11.4,

R—V(1+WH U is well-defined for all |||¢]|]| < Q and its determinant is
iy det@EWs)

At det(T+WR)”
We want to determine the first few terms in the Taylor series of det M* along
imaginary v-directions. For this purpose we introduce a grading in the formal
power series ring C [[z, y, v]] by giving x and y weight two and v weight one.
Let I, be the ideal in C [[k, y, v]] consisting of all elements of weight at least r,
and put

R :=Cllk,y,v]] /15 .
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Below we shall prove

Proposition 6 Assume that ¢, = 0 and Y (1+ [b]'2) |¢(D)|* is sufficiently
belt
small. Then

4
(i) det M* = (z — T1)(y — Tb) — %AdA_d in R
with T; € I

(i) det (R —V(+ WZ)_lﬁ) =1 mod I,

i) T NOT= T ol medl
c€GA\{0.d} ceGf\{o.a} TN

We first show how Proposition 6 implies Proposition 2. Proposition 6 shows

that, in R, for small ¢,

1 4
(@ —T)(y—Tp) — =AgA_,

L __
det M = H 16

ceai\{o,dy 1 (c1 —dy)

so that the Taylor polynomial of det M* for arg(—v?) € (—0,0) is, up to a
1

nonzero multiplicative constant, equal to (x — Ty )(y — Tz) — %AdA_d mod I5.
By analyticity in ¢ (Lemma II1.5) this is the case for all |||q||| < @. We make

the change of variables

v

V1+u?

ZE'/:ZL'—Tl, y,:y_T2> w =

Then
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and by Proposition 5

= o (| + Iy'|* + |w|*) .
(1V.8)

1
det M*(2',y/, w) — (x’y’ — 1—6AdA_dw4)

If AgA_4 # 0 then the double point p; opens up by the topological Lemma
stated in the appendix.

Before we begin with the proof of Proposition 6 we note that, since x = k2 —u,

y=k?—u+2dr+d3

di —
(/<;—|—01)2—u: ! Clx+ﬁy+cl(cl—d1) ([V9>
dy dy
and
1 c=0,d
— dq _
N(C) = crdr (c1—d1)+(di—c1)a+ery Cy = 0, C 7£ O, d
vd
202d1+v[(d1 —Cl)(E—‘rClyl—l-Cldl (Cl—dl)—‘rcgdl] C2 # 0

(IV.10)

1 c=0,d

_ Wl_dl)modlg co=0,c#0,d
202+v[01(01—d1)+c§] mod Iy Cy 7é 0
= 50 mod I
c2
so that
b,c € I with by = —c; # 0=N(b) + N(c) € I, (IV.11)
§ Z01(by — dy) + b2
beTh by #0=Nb) £ Nd—b) = —v = mod I
2
_— (IV.12)
_ v <’72_> mod I,

2 b2
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We now give the

PROOF OF PROPOSITION 6: Part (iii) is an immediate consequence of
(IV.10). Since ¢, = 0 all the Fourier coefficients ¢(b — ¢) with by = ¢,

are zero. So
det M* = det{[5 °] — 5}
= (v— 53,0)(@/ - Scsz,d) - Sos,dscsl,o
and
det (R —V(+ WZ)_ll'j) — det(1 — S)

where S° = V(1 +W*)~'U® and S = V(1 + W) ~'U.

Expanding in a geometric series in W (which by Lemma II1.3 converges)

She = Z(—l)n Z %71,(1) Wbu),b(z) Wb(2),b(3> e Wb(n)’b(nﬁ»l) Ub(n+1)7c
n=0 b(l) b(n+1)

with 6M ... 6" summed over T'*\ {0,d} in the case of S* and I'* \ G* in
the case of S. Note that Sp,c always has b, c € G* and hence by = ¢5 = 0 and

that
‘/b,c = Wb,c = Ub,c if b2 = C2

Wb,cv ‘/b,c c ]1 1f Co % 0.
Thus Sy € I; and

She = Y. VoUwe— Y. Vo Wy o U,
(1) b(1) p(2)
b§ 70 b{M 20,682 20

(1V.13)
+ Z Vi 50 W) p2 Wi p3 Ups) . mod I3 .

5(1) 5(2) p(3)
bgl)¢0,b;3)750
b§? =0
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In fact for any b, ¢ with by = ¢ = 0 the first sum is

> q(b— b)) (b — N (N G®)
1)
b;bl)#o

=1 py g(b— b)Y — )N (c) [N(BD) + N(b+ c — bD)]
b§ %0
which is in I by (IV.11). This proves part ii of the Proposition as well as
the claims that 77 = 0.0 € Iy and Ty = Sj,d € I,. It also proves that the

third term in (/V.13) is in I3.

It remains only to calculate S§, and Sj,. In C[[x,y,v]] /I3

ba = 3 2 4(=0)q(b— d) [N (b) + N(d — )]

= X G=bIN OG0 — BN ()G — d)
b(1) b(2)
02 §(—b)(b,d—b)d(b—d
_ Zzb:q( )¢ g)‘Z( )

1 ~ 1 A DN A 2
3‘<1>,b(22>,€<(3> JA(=b)a(=0 ) ey by ( ) ( )
s.t. b)) 45(2) 45(3) =g

2
v
1 A_g

since, for b® +b® + b3 = d, b5 £ 0, b5 #£ 0,55 #£0

_|_

_|_

1 1 1
O R I S (S O R Ol SR Q)

_|_

1 4 1 4 1
2 2 3 3 3 3 2 3
o708 +07) el U400y T bgY (7 +057)

1 1 1
=, T o T e
OO R 2
b2 +b2 +b2 —
bél)béZ)bg’))

Similarly S, = —%Ad so that

U4

det M* = (ZL’ - SS,O)(y - Scsl,d) 16

AdA_d mod [5
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V  Sums of finite gap potentials

We first note a property of the asymptotic expansion of the Fourier coeffi-

cients of finite gap potentials which we will use later.

Lemma V.1 Let V € L& (IR/27Z) be a potential such that the spectrum of
—% + V(2) has only finitely many gaps. Then there are complex numbers
G, J=1,....,m with |(;| = 1, positive integers k;, and y > O such that
V(n) = —|nle” " 3" k(" + O(e ")
j=1

for some y' > y.

PROOF: It is well known that there is an entire function 6(z) on C such that
2

d
V(z) = _2@ log 6(z) + const.

(see 1.9). Therefore at each pole a of V(z)

2m,

I EET

+0(1)

where my,, is the order of the zero of (z) at a. Let ay, ..., a, be the zeroes with

maximal negative imaginary part —y < 0in {z € C| 0 < Re z < 27}. Put
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kj :=2m,;. Choose y' > y such that all poles a of V (2) with —y' < Im a <0
fulfil Im a = —y. Then by the residue theorem for n > 0

J=1

2 m '
V(in) = &= g Viz—iy)e @ ¥Indy — i Y res.q, (V(2)e™""?)
= - gb: kine "% +O(e ™ v
j=1

= —n e_ny . Zl kjé'jn_i_O(e—n y/)
]:

with ¢; := e *f¢ %, For n <0, V(n) = V(—n)

For sums like in Lemma V.1 we need the following

Lemma V.2 Let (i, ..., be pairwise different complex numbers of absolute

value one, and let k; € C\ {0}. Put

j=1
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Then

limsup [F(n)| >0
PROOF: Write ¢; = €*™% with §; € IR. Choose real numbers ¢, = 1,
©1,-..,%¢ which are linearly independent over @ such that each 6; lies in
the @-vectorspace spanned by g, ..., ;. Then there exist N € IN and

integers a;; such that

1 V4
=+ > miPm
m=0

SO
r n £ .
F(n) — E kj (627ri aoj/N) H e2mi (nem/N) am;
Jj=1 m=1
— Aa(n) ﬁ e2mi (nem/N) am
a=(ai,...,ap)€Zt m=1

where each A,(n) is of the form
N .
Au(n) = 3 Aggem ki
k=1
and not all the A, j, are zero. However, all but finitely many A,(n) are zero.

Each A,(n) is periodic with period N. Using the Vandermonde determinant

det (627r2' kn/N)
kn=1,...N

one sees that A,(n) is not identically zero whenever A, # 0 for some k.
Choose ng € IN such that A,(ng) # 0 for some a € z*. Put

l
f(zh . .7z£) = Z (Aa(n0> . H e27ri (nopm/N) am) zibl .. .z?e )

a€zl m=1
Then
F(no +nN) = f(e2 ™1, ¢¥mimeny
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The polynomial f(21,...,2:) does not vanish identically on the torus
T := {(21,...,%) E@d|‘zm| =1, m:1,...,d},

The sequence (e ™1 .. e*™ ™) is ergodic on this torus. This shows that

limsup,,_, ., |F(no +n N)| # 0.

We now begin with the proof of Proposition 3. By Lemma V.1 there is for
each j = 1,...,r a positive number y; such that for b € T'* with (b,7;) =0

1(b)] = O (|ple")

but for no e > 0 |§(b)| = O(e=wit9l). Let 3; be a vector of length 1/y;

perpendicular to ;. Again by Lemma V.1 there are for each j = 1,....,r

strictly positive real numbers k;;, and real number ¢;;, ¢ = 1,...,m; such
that
G(A\3;) = —|Me P 3" ke + O(e M) (V.1)
i=1

whenever \3; € T*.

Now fix any v € ', d € I'* such that (,d) = 0 and d is not parallel to any

B;. Then, for each 1 <1i < j <r, d has a unique representation
d = NijBi + piiB;

and

Apa = 27| Z: %@(”)\Uﬁi)qm“ijﬁj) :
nX;;B; €Tt
np; Bt
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Note that the decay rate as n — oo of

QA B)a(npisB;) = 12|y |pigle Pl tesh

X ( % kaieiAgaam) (Z kﬁjei)\@ﬁjn>+0(e—n()\i]‘+|Hij|))
a=1 3

is controlled by |A;;| + ||, which has the following geometric interpretation.
First choose two signs o;,0; € {4+, —} so that d is in the cone generated by

Uiﬁi and O-jﬁj- Then
d = |Nij|(0i8;) + |ps] (0553))

and |A;;| + |5] is the factor by which one must scale d in order that the head
of (|Ai;| + |pi;]) " d lie on the line through o;5; and o;0;.
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If we choose d appropriately we may identify precisely which i, 5 give the

smallest decay rate. This is done using the following Lemma. Put

Bi={£8;|j=1...r} .

Lemma V.3 Under the hypotheses of Proposition 3 there exist points
gV, .80 eB, 1>2

with the following properties.

(i) BN, ..., B89 liec on a line g in R?, and B lies strictly between 301
and Y on g

(iii) (BD,80) >0 fori=2,....0 and if (BV,30) =0 then { > 3.

(iv) All points of B — {BW),..., 3O} lie in the halfplane of R? — g con-
taining 0, with the possible exception of one point 3, which then fulfils
<ﬁ,ﬁ(1)> = 0. In this case the lines span(3,3'), 3 € B — {5} all

intersect g strictly on the same side of S as 5.

PrROOF: Let D be the boundary of the convex hull of B. Since r > 2

it is a convex polygon which is symmetric with respect to the origin. If e

is an edge of D which forms an angle less than § with 0 we can take for

B, BY the points of e N B. If there is no such edge, all the edges

of D form the angle § with the origin, i.e. D is a diamond. If one of
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the edges e of the diamond contains at least 3 points of B we can again
take {BM,..., 30} = en D. Otherwise there are 3, 3 € B such that
DN B = {£pW,£8} and <ﬁ,/6(1)> = 0. Let D' be the convex hull of
B — {+3}. By assumption it is again a convex polygon which is symmetric
around 0. Therefore it contains an edge e, with ) as vertex, which forms
an angle less than T with 0. We then take for s, ..., 3© the points of

2
eN B.

Without loss of generality we may assume that 3% = g; for i = 1,...,¢. If
all points of B\ {01,..., 5} lie on the same side of g let C' be the interior
of the cone IR, () + IR (5. If there exists § € B which is separated from 0
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by ¢ let 3 be the point of {span(3,3)Ng | € B — {5 }} closest to f. It
lies in the segment between [3; and (5. In this case let C' be the interior of

the cone spanned by 3; and B By construction we have

Lemma V.4 Letd e C. Forl <i<j<r write
d = NijBi + i 35 -
Then for j =2,...,¢ one has X\ij > 0, 1;; >0 and
A2+ piz = Mg+ paz = -0 = A+ plae -
We call this number rq. Furthermore if (i,7) € {(1,2),...,(1,£)} then

Nl + gl > ra . unless possibly i = 1, 3, =

PROOF: First consider ¢ = 1, j € {2,...,¢}. Since d € C C R4 + R0,
we have \;;, i;; > 0. Since span(By, B2) = span(f1, 5;) we have Ajg + 12 =
A1+ gy forall 2 < 5 < C.

Next consider any ¢ < j except i = 1, j € {2,...,¢}. Also exclude ; = 3
and 3; = (3 in the event that there exists a 3 € B separated from 0 by g.
Choose 0y, 0; € {£1} so that o;\;; > 0, oju;; > 0. Then the line segment
ao;f; + (1 — a)o;f;, 0 < a <1, is contained in the convex hull of B\ {£3}
but is not contained in the edge of this hull with end points 3, and 3,. Thus
as ( increases, starting with ¢ = 0, {(d must hit the line segment joining o;;

and o;3; before it hits the line segment joining 4y and 3, (where it leaves the
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convex hull). Consequently |A;;| + || > Az + pa2.

Finally consider ;, ¢ # 1 and 3; = 3. By Lemma V.3.iv and the definition
of B, the line span(o;0;,0;0;) separates the origin from the line segment

joining f; and 3. Therefore \Nij| + i) > A2 + e -

For j =1,...,/¢ the sublattice
It = (R4 NI¥) @ (RB; N T¥)
is of finite index in I'*. Choose
¢
deCnOI%,

j=1
and let v € I be a primitive vector perpendicular to d. Define A;;, j;; as in

Lemma V.4. By (V.1) and Lemma V.4 there is an € > 0 such that

Z .
Ang = X %Q(HAljﬁl)Q(nﬂljﬁj) + 0 (e‘”(’“d+€))
7=1 ) )
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(V.2)
= \7\2n26_"’"dF(n) + O(ne ")

_ ‘ ﬁl’ﬁj )\1]”1] ( 2)\1] 11 ) < z 15 U )
F(n)_z B (3] > ka(e?® > k(e

=1

Since % < 0, and it is equal to zero only if j = ¢, (51, 5;) = 0, and

ki; > 0, the function F'(n) is of the form of Lemma V.2. So

limsup |F(n)| > 0

n—0o0

and Proposition 3 follows from (V.2)

V1 Appendix

Here we prove a topological statement used in Section IV.

Lemma VI.1 Let U be a neighbourhood of the origin in C* x IR and let
g : U — C be a continuous function whose restriction to {(z,w) € U | w =0}
and to {(z,w) € U | w # 0} are analytic such that for some n >0

li Q(Zh Z27w) - (2122 — wn)

=0 .
(zw)—0 |21]2 + |22]? + |w|™

Then there is a homeomorphism v : U'" — U" between neighbourhoods of 0

in € x IR with the following properties
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(i) ¥ commutes with the projection m : U — IR, (z,w) — w, i.e. the
U’L u”
A/

R

(ii) ¥ (z,0) = (z,0) for all (2,0) € U’

diagram

18 commutative.

(iii) The restriction of ¥ to {(z,w) € U’ | w # 0} is a diffeomorphism
(1) ¥ maps {(z,w) € U | g(21, 22, w) = 0} onto

{(z1,22,w) € U" | 220 —w" = 0}

In particular, for small € > 0 and wy # 0 the set
{(va()) eU | g(z,wo) = 07 |Z| < 5}

1s diffeomorphic to a cylinder.

PROOF: By the Morse Lemma we may assume that g(z1, 29,0) = z129. Write
go(21, 20, w) = 2129 —w"
9(31732771)) = gO(Z17227w)+h(217Z27w)

Then h(z1, 22,0) = 0 and

h(z1, 2o, w) B
(z,w)—0 |Zl‘2 + 22‘2 + |w\”
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The multiplicative group IR* := {7 € IR | 7 # 0} acts on C* x R by
T - (21, 2, w) = (721, T" 20, T?W).
This action preserves
Xy = {(zl,zz,w) € C* xR | go(z1, 20, w) = 0} )

Since the set of IR*-orbits on €* x IR—{0} is compact there is an IR *-invariant
open neighbourhood 7" of Xy — {0} in C* x IR\ {0}, a finite covering T; of T

by IR*-invariant open sets and C'*°-projections
VIVEn E—>UZ = T‘z N XO

whose fibres 7; (2, w) over (z,w) € Xy are complex submanifolds of C* x {w}
isomorphic to {¢ € C | || < 1}. By the assumption on h and the compact-
ness of (C* x IR\ T')/IR* we may, after possibly shrinking U, assume that

|h(z17 225 U))| < ‘g(](zlv 22, w)‘
for all (21, 29, w) € U—T. So, by Rouché’s theorem, for each (z,w) € U; and
each t € [0,1] the function go(z,w) +t h(z,w) has a unique zero in 7; * (2, w).
Therefore there are a neighbourhood U’ of 0 in €* x R and IR*-invariant

vectorfields V; on T;NU’ such that integration for time ¢ € [0, 1] maps U;NU’

to the intersections of U’ with
Xi :={(z,w) € U | go(z,w) +t h(z,w) =0} .

V; can be chosen to be zero in {(z,w) € T; | w = 0} and on 97} and to be C*
on {(z,w) € T; | w# 0}. Using a partition of unity we get a neighbour-
hood U’ of 0 in €? and a IR*-invariant vectorfield V on 7' N U’ such that
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integration for time ¢ maps Xo N U’ to X; N T’ and such that V' = 0 on

{(z,w) €T |w=0}UIT, andV{(

is C°°. V can be prolonged
z,w)€eT|w#0}

by 0 to U"\ T, and integration of V' gives the desired map .
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