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1





Contents

1 The Temporal Ultraviolet Limit 1
1.1 Introduction 1
1.2 Motivation for the Stationary Phase Approximation 12
1.3 Bounds on the Stationary Phase Approximation 19
1.4 Functional Integrals 28
1.5 A Simple High Temperature Expansion 42

Appendix A Complex Gaussian Integrals 59

References 64



1

The Temporal Ultraviolet Limit

1.1 Introduction

1.1.1 The Physical Setting

These lectures1 concern the first, relatively small, step in a program whose long–term
goal is the, mathematically rigorous, construction of a standard model of a gas of
bosons. Even this first step is too long and complicated to present completely here.
But I will outline it and highlight a couple of the tools employed that tend to crop up
quite commonly in constructions of quantum field theories and many–body models.
The model of our gas of bosons is based on the following assumptions.

• Each particle in the gas has a kinetic energy. The corresponding quantum me-
chanical observable is an operator h. The most commonly used h is − 1

2m∆, which

corresponds to the classical kinetic energy p2

2m . (Balaban et al., 2010c) allows a
more general class of operators like this.

• The particles in the gas interact with each other through a translationally invari-
ant, exponentially decaying, strictly positive definite two-body potential, 2v(x,y).

• The system is in the thermodynamic equilibrium given by the grand canonical
ensemble with temperature T > 0 and chemical potential µ ∈ R. We shall not
place any further restrictions on T and µ. But the most interesting temperatures
are small and the most interesting chemical potentials are small and positive.

1.1.2 The Physics of Interest

I’ll formulate the model mathematically, carefully, later. But to get a first hint both
of the expected physical behaviour and of the formalism that we shall use, consider
the following, formal, functional integral representation of the partition function for
this system. This representation is commonly used in the Physics literature. See, for
example, (Negele and Orland, 1988, (2.66)).

Tr e−
1
kT (H−µN) =

∫
∏

x∈R3

0<τ≤ 1
kT

dατ (x)∗∧dατ (x)
2πi eA(α∗,α) (1.1)

where H is the Hamiltonian, N is the number operator and the “action”

A(α∗, α) =

∫ 1
kT

0

dτ

∫

R3

d3x ατ (x)∗ ∂∂τ ατ (x) −
∫ 1

kT

0

dτ K
(
α∗τ , ατ

)
(1.2)

1These notes expand upon lectures given by Joel Feldman.
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with

K(α∗, α) =

∫∫

dxdy α(x)∗h(x,y)α(y) − µ
∫

dx α(x)∗α(x)

+

∫∫

dxdy α(x)∗α(x) v(x,y)α(y)∗α(y) (1.3)

and h(x,y) being the kernel of the operator h. In the integral on the right hand side
of (1.1), there is a two parameter family of integration variables. The first parameter,
τ , runs over the “time” interval

(
0, 1

kT

]
(the reason for the half open, half closed

time interval is that there is a periodicity condition α0(x) = α 1
kT

(x)) and the second

parameter, x, runs over “space”, Rd. For each τ and x, there is an integration variable,
ατ (x), that runs over the complex plane, C. For a complex variable z = x+ iy, dz∧dz

∗

2πi
is the usual Euclidean measure 1

πdxdy.
Thus the “measure” for the integral on the right hand side of (1.1) is a Lebesgue

measure in uncountably many variables. It clearly has no mathematical meaning. But
it is still a useful source of intuition. If ατ (x) = Φ ∈ C is a constant, independent of τ
and x, the action A(α∗, α) simplifies to minus the integral over τ and x of the “naive
effective potential” v̂(0)|Φ|4 − µ|Φ|2 where v̂(0) =

∫
dy v(x,y) (recall that v(x,y) is

µ < 0 µ > 0

Re Φ

Fig. 1.1 Graph of the effective potential

translation invariant) and we have assumed and that h annihilates constants and that
v̂(0) > 0. This effective potential is graphed above. Its minimum is

• nondegenerate at the point Φ = 0 when µ < 0 and

• degenerate along the circle |Φ| =
√

µ
2v̂(0) when µ > 0.

This suggests that, if the temperature is low so that fluctuations about the minimum
are small, each integration variable ατ (x) tends to be localized about 0 when µ < 0

and tends to be localized about |ατ (x)| =
√

µ
2v̂(0) when µ > 0. To help us glean some

more detailed intuition from the formal functional integral, we introduce “Euclidean
time evolving” annihilation and creation operators

a(τ,x) = e(H−µN)τa(x)e−(H−µN)τa(x) a†(τ,x) = e(H−µN)τa†(x)e−(H−µN)τa†(x)

and notation for “expectation values” both in the physical Hilbert space and with
respect to the functional integral
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〈
f(a†, a)

〉
=

Tr
(
e−

1
kT (H−µN)f(a†, a)

)

Tr e−
1
kT (H−µN)

〈〈
f(α∗, α)

〉〉
=

∫ ∏

x,τ
dατ (x)∗∧dατ (x)

2πi eA(α∗,α)f(α∗, α)
∫ ∏

x,τ
dατ (x)∗∧dατ (x)

2πi eA(α∗,α)

We will use two more functional integral representations similar to the representation
(1.1) for the partition function. They are for the one and two point correlation functions

〈
a(†)(τ,x)

〉
=

〈〈
ατ (x)(∗)〉〉 (1.4)

〈
a†(τ,x) a(τ ′,x′)

〉
=

〈〈
ατ (x)∗ατ ′(x′)

〉〉
(1.5)

The first is valid for 1
kT ≥ τ ≥ 0 and the second is valid for 1

kT ≥ τ > τ ′ ≥ 0. Actually,
(1.4) is two formulae at once — one when the bracketed exponents are included and one
when the bracketed exponents are omitted. Let us try to compute these expectation
values, at least approximately.

(1) The one point function for µ < 0: First consider µ < 0. The one point function
(1.4) is zero by symmetry considerations. This can be seen by using either side of (1.4).
On the right hand side, make the change of variables which rotates each integration
variable by a fixed angle θ. That is

ατ (x)→ eiθατ (x) ατ (x)∗ → e−iθατ (x)∗

As both the measure dατ (x)∗∧dατ (x)
2πi and the action A(α∗, α) are invariant under this

change of variables, we have
〈〈
ατ (x)(∗)〉〉 = e(−)iθ

〈〈
ατ (x)(∗)〉〉 =⇒

〈〈
ατ (x)(∗)〉〉 = 0

For the corresponding argument on the left hand side, we unitarily transform the
Hilbert space using the operator eiNθ. By cyclicity of the trace

Tr
(
e−

1
kT (H−µN)a(†)(τ,x)

)
= Tr

(
e−iNθe−

1
kT (H−µN)a(†)(τ,x)eiNθ

)

= Tr
(
e−

1
kT (H−µN)e−iNθa(†)(τ,x)eiNθ

)

= e(−)iθ Tr
(
e−

1
kT (H−µN)a(†)(τ,x)

)

The critical step was the second equality, where we used that H −µN commutes with
the number operator N . That is, the Hamiltonian conserves particle number. For the
third equality, we used that

e−iNθa(†)(τ,x)eiNθ = e(−)iθa(†)(τ,x)

Once again, we have
〈
a(†)(τ,x)

〉
= e(−)iθ

〈
a(†)(τ,x)

〉
=⇒

〈
a(†)(τ,x)

〉
= 0

It would appear that this argument also implies
〈
a(†)(τ,x)

〉
= 0 when µ > 0. But

there is a subtlety when µ > 0 that we will discuss shortly.
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(2) The two point function for µ < 0: Now let’s move on to the two point function
(1.5) when µ < 0. We are expecting the most important contributions to the functional
integral to come from ατ (x) ≈ 0. So approximate the action A by dropping all terms of
degree strictly bigger than two in the integration variables. That is, drop the quartic,
v(x,y) part of (1.3). This turns the action into a quadratic function of the integration
variables. Using (the natural formal analog of) part (a) of Lemma A.1 with D =
−∂∂τ + h− µ, we have

〈〈
ατ (x)∗ατ ′(x′)

〉〉
=

(
− ∂

∂τ + h− µ
)−1(

(τ,x) , (τ ′,x′)
)

The right hand side is the kernel of the operator inverse of − ∂
∂τ + h− µ. Because h is

translation invariant we can use the Fourier transform to compute it.

(
− ∂
∂τ +h−µ

)−1(
(τ,x) , (τ ′,x′)

)
= kT

∑

k0∈2πkTZ

∫

R3

d3k
(2π)3 e

ik0(τ−τ ′)−ik·(x−x′) 1
−ik0+ĥ(k)−µ

(If you were expecting minus this answer, it is probably because you forgot that the
usual two–point function is defined to be −

〈〈
ατ (x)∗ατ ′(x′)

〉〉
.) The sum over k0 can be

evaluated exactly using a contour integral trick (see, for example, (Fetter and Walecka,
1971, (25.32)–(25.35))) giving

〈〈
ατ (x)∗ατ ′(x′)

〉〉
=

∫

R3

d3k
(2π)3 e

−ik·(x−x′)e(ĥ(k)−µ)(τ−τ ′)
(
e

1
kT (ĥ(k)−µ) − 1

)−1

For large k the integrand is bounded in absolute value by the exponential of minus a
constant times |k|2, since τ − τ ′ < 1

kT . Furthermore the denominator never vanishes,

because µ < 0. Both the last two sentences remain true even if, in e(ĥ(k)−µ)(τ−τ ′) and
(
e

1
kT (ĥ(k)−µ) − 1

)−1
, k is given a fixed, not too big, imaginary part. Consequently,

〈〈
ατ (x)∗ατ ′(x′)

〉〉
decays exponentially to zero as |x− x′| → ∞.

(3) The one point function for µ > 0: We have already seen that when µ > 0 the

naive effective potential takes its minimum value on the circle |Φ| =
√

µ
2v̂(0) in the

complex plane. This suggests that the integration variables ατ (x) would like to stay
near that circle. But nothing in the integral favours any phase of Φ over any other
phase. Something very similar happens in magnetic materials. Indeed it can be useful
to pretend that each ατ (x) represents the needle of a magnetic compass. As µ > 0 and

the temperature is very low, the length of each needle is essentially fixed at
√

µ
2v̂(0) .

But its orientation, the argument of ατ (x), is free. If we now subject the system to an
external magnetic field that favours one particular direction, all of ατ (x)’s will take
values near a single Φ on the circle. If the temperature is low enough, this will remain
the case even if the strength of the magnetic field is then reduced to zero. The same
thing happens if, instead of applying a weak bulk magnetic field, we impose boundary
conditions near infinity that favour one particular phase of Φ. The moral is that the
behaviour of the system, and in particular the one and two–point functions, can be
expected to depend not only on the action, but also on the limiting process used to
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carefully define the system. This is a very common phenomenon in symmetry breaking
scenarios.

So let’s assume that our limiting process favours one particular Φ. Make a change
of variables

ατ (x) = Φ + βτ (x) ατ (x)∗ = Φ∗ + βτ (x)∗ (1.6)

We are expecting βτ (x) to be small. Under this change of variables, the K(α∗, α)
of (1.3) becomes, supressing the τ subscripts and recalling that the kinetic energy
operator h annihilates constants,

K(α∗, α) =

∫∫

dxdy β(x)∗h(x,y)β(y)

+

∫

dx
[
− µ|Φ|2 + v̂(0)|Φ|4

]

+

∫

dx β(x)∗
[
− µ+ 2v̂(0)|Φ|2

]
Φ +

∫

dx Φ∗
[
− µ+ 2v̂(0)|Φ|2

]
β(x)

+

∫

dx β(x)∗
[
− µ+ 2v̂(0)|Φ|2

]
β(x) + 2|Φ|2

∫∫

dxdy β(x)∗v(x,y)β(y)

+ (Φ∗)2

∫∫

dxdy β(x)v(x,y)β(y) + Φ2

∫∫

dxdy β(x)∗v(x,y)β(y)∗

+O
(
|β|3

)
+O

(
|β|4

)

In computing the one and two–point functions, the constant (i.e. independent of β)
term in the second row will appear both in the numerator and in the denominator and
so will cancel out. So we may as well drop it. The two degree one terms in the third
row and the first degree two term in the fourth row are zero because |Φ2| = µ

2v̂(0) . We

drop all terms of degree three and four in β, β∗, by way of approximation. So we end
up with the action

Ã(β∗, β) =

∫ 1
kT

0

dτ

∫

d3x βτ (x)∗ ∂∂τ βτ (x)−
∫ 1

kT

0

dτ K̃
(
β∗τ , βτ

)
(1.7)

where

K̃(β∗, β) =

∫∫

dxdy β(x)∗
[
h(x,y) + 2|Φ|2v(x,y)

]
β(y)

+ (Φ∗)2

∫∫

dxdy β(x)v(x,y)β(y) + Φ2

∫∫

dxdy β(x)∗v(x,y)β(y)∗

This action is, of course, no longer invariant under β → eiθβ, β∗ → e−iθβ∗. But it is
still invariant under β → −β, β∗ → −β∗. Hence

〈〈
ατ (x)(∗)〉〉 = Φ(∗) +

〈〈
βτ (x)(∗)〉〉 = Φ(∗)

This is nonzero and shows us that conservation of particle number has been broken.

(4) The two point function for µ > 0: By making a change of variables ατ (x) →
ατ (x)eiθ we may always arrange that the favoured Φ has phase zero, so that it is
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positive. So for simplicity, we now set Φ =
√

µ
2v̂(0) , which we denote

√
n0. To compute

the two point functions, using the approximate action (1.7) we apply (the natural
formal analog) of part (b) of Lemma A.1 with

D = −∂∂τ + h+ 2n0v V = W = n0v

Note that, because v and h are translationally invariant, D and V = W commute with
each other and we may also compute with these operators using Fourier transforms.
In particular, in momentum space, the operators D, Dt = ∂

∂τ + h + 2n0v and V are

multiplication by −ik0 + ĥ(k)+2n0v̂(k), ik0 + ĥ(k)+2n0v̂(k) and n0v̂(k), respectively.

Hence the kernel of
(
DDt − 4V 2

)−1
is

(
DDt − 4V 2

)−1(
(τ,x) , (τ ′,x′)

)

= kT
∑

k0∈2πkTZ

∫

R3

d3k
(2π)3 e

ik0(τ−τ ′)−ik·(x−x′) 1

k2
0+[ĥ(k)+2n0v̂(k)]2−4n2

0v̂(k)2

= kT
∑

k0∈2πkTZ

∫

R3

d3k
(2π)3 e

ik0(τ−τ ′)−ik·(x−x′) 1
k2
0+ĥ(k)[ĥ(k)+4n0v̂(k)]

Combining (1.6), (three variants of) (A.1) and (A.3),

〈〈
ατ (x)∗ατ ′(x′)

〉〉
= n0 +

〈〈
βτ (x)∗βτ ′(x′)

〉〉

= n0 + kT
∑

k0∈2πkTZ

∫

R3

d3k
(2π)3 e

ik0(τ−τ ′)+ik·(x−x′) ik0+ĥ(k)+2n0v̂(k)

k2
0+ĥ(k)[ĥ(k)+4n0 v̂(k)]

〈〈
ατ (x)ατ ′(x′)

〉〉
= n0 +

〈〈
βτ (x)βτ ′(x′)

〉〉

= n0 − kT
∑

k0∈2πkTZ

∫

R3

d3k
(2π)3 e

ik0(τ−τ ′)+ik·(x−x′) 2n0 v̂(k)

k2
0+ĥ(k)[ĥ(k)+4n0 v̂(k)]

In contrast to the case µ < 0, these expectation values converge to n0, rather than
zero, as |x−x′| → ∞. This is called “long range order”. Note also that the integrands
have poles at

k0 = ±iE(k) where E(k) =

√

ĥ(k)[ĥ(k) + 4n0v̂(k)]

This E(k) is the (approximate) “single–particle excitation energy”. When ĥ(k) = k2

2m ,

E(k) ≈ c|k| with c =

√
2n0v̂(0)
m when k ≈ 0

This “linear dispersion relation” is used, because of the Landau theory of superfluid-
ity, as a signal that the interacting Bose gas is superfluid. The ideal Bose gas has a
quadratic dispersion relation and is not superfluid.

The above discussion suggests that there will be a phase transitiion. For µ below
some critical value (which will probably not be exactly zero, because of renormalization
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effects) the expected value of a single annihilation or creation operator will be zero, just
as you would expect from conservation of particle number. But, when the temperature
is low enough, for µ above the critical point, it will be Φ for some complex number of

modulus |Φ| ≈
√

µ
2v̂(0) 6= 0 (despite an action which conserves particle number) and

its precise value (i.e. which allowed Φ it is) will depend on the limiting process used
to define the model. So we have to be very careful about how we define the model.

1.1.3 A Rigorous Starting Point

To carefully define the model, for example to carefully define the partition function on
the left hand side of (1.1), you take a limit of obviously well–defined approximations.
One way to get a (pretty) obviously well–defined approximate partition function is to
replace space, R3, by a finite number of points, say X = Z3/LZ3. However, even for
an approximate model with space having only a finite number of points, the functional
integral on the right hand side of the corresponding (1.1) still has uncountably many
integration variables, because time is still (0, 1

kT ], and so is still not really defined.
At this point, I am just going to quote a theorem (I’ll give the important parts of the

proof in §1.4) which says that, when X is finite, you can get a rigorous representation
of the partition function by taking a limit of a sequence of integrals, with each integral
in the sequence having only finitely many integration variables. To get finitely many
integration variables, you replace “time”, (0, 1

kT ], by a finite number of points too.
The theorem, proven in (Balaban et al., 2008b, Theorem 2.2) is the following.

Theorem 1.1 Suppose that R(ε), r(ε)→∞ as ε→ 0 at suitable rates2. For each fixed
finite X,

Tr e−
1
kT (H−µN) = lim

ε→0

∫
∏

τ∈εZ∩(0, 1
kT ]

[

dµR(ε)(α
∗
τ , ατ ) I0(ε;α∗τ−ε, ατ )

]

(1.8)

with the convention that α0 = α 1
kT

. Here,

dµR(ε)(α
∗, α) =

∏

x∈X

dα∗(x)∧dα(x)
2πı e−α

∗(x)α(x) χ
(
|α(x)| < R(ε)

)

denotes an unnormalised Gaussian measure, cut off at radius R(ε), and

I0(ε;α∗, β) = ζε(α, β) e〈α
∗,j(ε)β〉−ε 〈α∗β , v α∗β〉

with
j(ε) = e−ε(h−µ)

and ζε(α, β) being the characteristic function of
{
α, β : C

X → C
∣
∣ ‖α− β‖∞ < r(ε)

}

We write the (R–style) scalar product3, 〈f, g〉 =
∑

x∈X f(x)g(x) for any two fields
f, g : X → C.

2One can think of R(ε) ∼ 1
4√ε

and of r(ε) as a power of ln 1

ε
or as a small power of 1

ε
.

3Thus the usual scalar product over C|X| is 〈f∗, g〉.
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Now the integrals in this theorem do not look very much like the functional integral
on the right hand side of (1.1). In fact, one has a lot of freedom in choosing the
integrand in (1.8) and I have deliberately chosen the integrand to make the next steps
easy, rather than to make it look like the integrand of (1.1). Here is how to see that
the integral of (1.8) is actually not so different from the integral of (1.1).

• First observe that (1.8) has one complex integration variable for each “space–
time” point (x, τ) with x ∈ X and τ ∈ εZ∩ (0, 1

kT ], a finite approximation to the
“time set” (0, 1

kT ].

• In contrast to the integration variables of (1.1), each complex integration variable
of (1.8) does not run over all C, because of the cutoff functions χ

(
|α(x)| < R(ε)

)
,

which restrict each integration variable to a finite disk in C, and ζε(ατ−ε, ατ ),
which restricts the time–derivative of ατ (x). But in the limit ε→ 0, these cutoffs
disappear.

• Consider the total exponent

−
∑

x∈X

τ∈εZ∩(0, 1
kT

]

ατ (x)∗ατ (x) +
∑

τ∈εZ∩(0, 1
kT ]

[〈
α∗τ−ε, e

−ε(h−µ)ατ
〉
− ε

〈
α∗τ−εατ , v α

∗
τ−εατ

〉 ]

of (1.8) (including the part of the exponent hidden inside the measure dµR(ε)).
Expand the exponential in powers of ε, keeping only 1l− ε(h − µ) and throwing
away all contributions of order at least ε2. This gives exactly

ε
∑

τ∈εZ∩(0, 1
kT ]

[〈
α∗τ−ε,

ατ−ατ−ε
ε

〉
−

〈
α∗τ−ε, (h− µ)ατ

〉
−

〈
α∗τ−εατ , v α

∗
τ−εατ

〉 ]

In the limit ε → 0, ε
∑

τ∈εZ∩(0, 1
kT ] becomes

∫ 1
kT

0
dτ and ατ−ατ−ε

ε becomes ∂
∂τ ατ

and we get A(α∗, α).

To get from the integral
∫

∏

τ∈εZ∩(0, 1
kT ]

[

dµR(ε)(α
∗
τ , ατ ) I0(ε;α∗τ−ε, ατ )

]

(1.9)

of the rigorous starting point, (1.8), to the full construction and analysis of the model
of interest, we still need to execute several steps.

• Step 1: Take the temporal ultraviolet limit, ε → 0. Of course Theorem 1.1 tells
us that the limit exists and tells us that it is the approximate partition function.
But that information by itself is virtually useless. We need to develop a picture
of the limiting value we can work with in later steps.

• Step 2: Take the spatial infrared limit (i.e. the thermodynamic limit) X → Z3

and possibly the temporal infrared limit 1
kT →∞ (i.e. T → 0).

• Step 3: Get properties of the limit, like symmetry breaking.

In these notes, we shall just discuss Step 1, the temporal ultraviolet limit. That
is only an extremely small part of full construction. In fact, steps 2 and 3 can be
expected to be exceptionally long and arduous and research on them has barely begun.
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Nonetheless, Step 1 is not only a necessary step, but its treatment provides a useful
glimpse, in a relatively simple setting, at techniques that are suitable for the later
steps, and other models, as well. For a different, earlier, treatment of the ultraviolet
limit in some related models see (Ginibre, 1965; Ginibre, 1971; Brydges and Federbush,
1976; Brydges and Federbush, 1977).

X

τ

1

kT

L

Fig. 1.2 The Integration Variables

In the initial integral, (1.9), there is one complex integration variable, ατ (x), for
each “space–time” point (x, τ) with x ∈ X and τ ∈ εZ ∩ (0, 1

kT ]. Recall that X is
the finite discrete torus Z3/(LZ)3, for some large L ∈ N. Figure 1.2 contains one dot
for each of the integration variable labels, (x, τ). (Ignore the the difference between
light and dark dots for a minute.) You will notice an asymmetry in that figure — the
distance, ε, between dots in the τ direction is miniscule compared to the distance, 1,
between dots in the X direction. In Step 1, we eliminate that asymmetry. We shall
“integrate out” all integration variables ατ (x) for which (x, τ) is located at one of the
lighter dots in Figure 1.2, leaving the integration variables ατ (x) for which (x, τ) is
located at one of the darker dots. That is, the final result for Step 1 is a representation
of the partition function as an integral having ατ as an integration variable only if
τ ∈ θZ where θ is some fixed constant, independent of ε. Thus the set of integration
variables for the final result of Step 1 looks like the set of integration variables for
a classical spin system (in four dimensions). In fact, the final result of Step 1 looks
somewhat like the classical N–vector spin system for which Balaban proved the exis-
tence of the infrared limit and of symmetry breaking in (Balaban 1995a, 1995b, 1996a,
1996b, 1996c, 1998a, 1998b, 1998c). However there are substantial technical differences
between the output of Step 1 and the class of models that Balaban considered. So one
cannot execute Steps 2 and 3 simply by saying “Balaban already did it”.

To execute Step 1, we repeatedly apply a simple version of a renormalization group
procedure, called “decimation”. In each decimation step we integrate out all ατ ’s
having every second remaining value of τ . In the first decimation step, we integrate
out ατ ′ with τ ′ = ε, 3ε, 5ε, · · · . The integral with respect to these variables factorizes
into the product, over τ = 2ε, 4ε, 6ε, · · · , of the independent integrals

∫

dµR(ε)(α
∗
τ−ε, ατ−ε) I0(ε;α∗τ−2ε, ατ−ε) I0(ε;α∗τ−ε, ατ )
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That is, assuming that 1
kT ∈ 2εN,

∫
∏

τ∈εZ∩(0, 1
kT ]

[

dµR(ε)(α
∗
τ , ατ ) I0(ε;α∗τ−ε, ατ )

]

=

∫
∏

τ∈2εZ∩(0, 1
kT ]

[

dµR(ε)(α
∗
τ , ατ ) I1(ε;α∗τ−2ε, ατ )

] (1.10)

where

I1(ε;α∗τ−2ε, ατ ) =

∫

dµR(ε)(α
∗
τ−ε, ατ−ε) I0(ε;α∗τ−2ε, ατ−ε) I0(ε;α∗τ−ε, ατ ) (1.11)

In the second decimation step, we integrate out ατ ′ with τ ′ = 2ε, 6ε, 10ε, · · ·
in the integral on the right hand side of (1.10). The integral with respect to these
variables factorizes into the product, over τ = 4ε, 8ε, 12ε, · · · , of the independent
integrals ∫

dµR(ε)(α
∗
τ−2ε, ατ−2ε) I1(ε;α∗τ−4ε, ατ−2ε) I1(ε;α∗τ−2ε, ατ )

That is, assuming that 1
kT ∈ 4εN,

∫
∏

τ∈εZ∩(0, 1
kT ]

[

dµR(ε)(α
∗
τ , ατ ) I0(ε;α∗τ−ε, ατ )

]

=

∫
∏

τ∈2εZ∩(0, 1
kT ]

[

dµR(ε)(α
∗
τ , ατ ) I1(ε;α∗τ−2ε, ατ )

]

=

∫
∏

τ∈4εZ∩(0, 1
kT ]

[

dµR(ε)(α
∗
τ , ατ ) I2(ε;α∗τ−4ε, ατ )

]

where

I2(ε;α∗τ−4ε, ατ ) =

∫

dµR(ε)(α
∗
τ−2ε, ατ−2ε) I1(ε;α∗τ−4ε, ατ−2ε) I1(ε;α∗τ−2ε, ατ )

=

∫
∏

τ ′∈εZ∩(τ−4ε,τ)

dµR(ε)(α
∗
τ ′ , ατ ′)

∏

τ∈εZ∩(τ−4ε,τ ]

I0(ε;α∗τ ′−ε, ατ ′)

In general, for n ≥ 1 , ε > 0, set

In(ε;α∗, β) =

∫
∏

τ∈εZ∩(0,2nε)

dµR(ε)(α
∗
τ , ατ )

∏

τ∈εZ∩(0,2nε]

I0(ε;α∗τ−ε, ατ ) (1.12)

with α0 = α and α2nε = β . If, as in Figure 1.3, below, 1
kT = pθ and ε = 2−mθ, then

∫
∏

τ∈εZ∩(0, 1
kT ]

[

dµR(ε)(α
∗
τ , ατ ) I0(ε;α∗τ−ε, ατ )

]

=

∫ p
∏

`=1

[

dµR(ε)(φ
∗
` , φ`) Im(ε;φ∗`−1, φ`)

]

(1.13)
with the convention φ0 = φp . I have renamed α`θ = φ`.
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kT = pθθε

Fig. 1.3 The Integration Variables, Again

Combining (1.8) and (1.13) we get

Tr e−
1
kT (H−µN) = lim

m→∞

∫ p
∏

`=1

[

dµR(2−mθ)(φ
∗
` ,φ`) Im(2−mθ;φ∗`−1,φ`)

]

So far we have just made a trivial rearrangement of the order of integration. But . . .
(Balaban et al., 2010c) have shown that

• Iθ(α∗, β) = limm→∞ Im(2−mθ; α∗, β) exists

• and that the partition function can be written as

Tr e−
1
kT (H−µN) =

∫ p
∏

`=1

[
∏

x∈X
dφ`(x)∗φ`(x)

2πı e−φ`(x)∗φ`(x)
]

Iθ(φ
∗
`−1, φ`)

• and that, if θ was chosen sufficiently small, Iθ may be written as the sum of a
dominant part (which is shown to have a logarithm, which I will describe in more
detail below) plus (ugly) terms indexed by proper subsets of X and which are
nonperturbatively small, exponentially in the size of the subsets.

We call the dominant term the “stationary phase approximation” (SP), because it is
obtained by restricting all domains of integration in our functional integrals, simply
by fiat, to appropriate neighbourhoods of stationary points. I’ll describe this process
in more detail in §1.2. The dominant contribution looks just like a perturbation of the
original e〈α

∗,j(ε)β〉−ε 〈α∗β , v α∗β〉 in our starting point (1.8). Here is the precise form of
the dominant contribution to In(ε; α∗, β) .

I(SP)
n (ε; α∗, β) = Z2nε(ε)

|X| e〈α
∗, j(2nε)β〉+V2nε(ε;α

∗,β)+E2nε(ε;α∗,β) (1.14)

where, for every δ that is an integer multiple of ε,

Vδ(ε; α∗, β) = −ε
∑

τ∈εZ∩[0,δ)

〈 [
j(τ)α∗

][
j(δ − τ − ε)β

]
, v

[
j(τ)α∗

][
j(δ − τ − ε)β

]〉
(1.15)

The normalization constant Zδ(ε) is chosen so that Eδ(ε; 0, 0) = 0. It is extremely
close to 1. (See (Balaban et al., 2010b, Appendix C).) The function Eδ(ε; α∗, β) is
defined for real numbers 0 < ε ≤ δ ≤ Θ such that δ = 2nε for some integer n ≥ 0. It
is determined by the recursion relation

Eε(ε; α∗, β) = 0

E2δ(ε; α∗, β) = Eδ(ε; α∗, j(δ)β) + Eδ(ε; j(δ)α∗, β)

+ log

∫
dµr(δ)(z

∗, z) e∂Aδ(ε;α
∗,β;z∗,z)

∫
dµr(δ)(z∗, z)

(1.16)

where
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∂Aδ(ε; α∗, β; z∗, z) =
[
Vδ(ε; α∗, j(δ)β + z)− Vδ(ε; α∗, j(δ)β)

]

+
[
Vδ(ε; j(δ)α∗ + z∗, β)− Vδ(ε; j(δ)α∗, β)

]

+
[
Eδ(ε; α∗, j(δ)β + z)− Eδ(ε; α∗, j(δ)β)

]

+
[
Eδ(ε; j(δ)α∗ + z∗, β)− Eδ(ε; j(δ)α∗, β)

]
(1.17)

The motivation for this recursion relation comes from the stationary phase construc-
tion and is given in §1.2. In §1.3, I will outline the argument that the functions
Eδ(ε; α∗, β) are

• analytic function of the fields,

• of degree at least two in each of α∗ and β

• perturbatively small corrections

1.2 Motivation for the Stationary Phase Approximation

The functions In(ε; α∗, β) of (1.12) can also be defined recursively by

In+1(ε;α∗, β) =

∫

dµR(ε)(φ
∗, φ) In(ε;α∗, φ)In(ε;φ∗, β) (1.18)

One of the morals of (Balaban et al., 2010c) is that the integrand is highly oscil-
latory and that the dominant contributions may be extracted using stationary phase
by discarding contributions far away from the critical point of the (“free part”) of the
exponent.

By way of motivation for the stationary phase approximation, and in particular
for the recursive definition (1.16) of Eδ(ε; α∗, β), replace In by

I(SP)
n (ε; α∗, β) = Zεn(ε)|X| e〈α

∗, j(εn)β〉+Vεn (ε;α∗,β)+Eεn(ε;α∗,β)

in the recursion relation (1.18). Here, εn = 2nε. (Start with n = 0, Zε(ε) = 1 and
Eε(ε; α∗, β) = 0. Then, aside from the cutoff function ζε(α, β), which is going to

incorporated by our choice of domain of integration, I
(SP)
0 (ε; α∗, β) is the same as

I0(ε; α∗, β).) The resulting integral
∫

dµR(ε)(φ
∗, φ) I(SP)

n (ε; α∗, φ) I(SP)
n (ε; φ∗, β)

= Zεn(ε)2|X|
∫

dµR(ε)(φ
∗, φ) e〈α

∗, j(εn)φ〉+〈φ∗, j(εn)β〉 eVεn(ε;α∗,φ)+Vεn(ε;φ∗,β)

eEεn (ε;α∗,φ)+Eεn(ε; φ∗,β)

= Zεn(ε)2|X|
[

∏

x∈X

∫

|φ(x)|<R(ε)

dφ∗(x)∧dφ(x)
2πı

]

eA(α∗,β ;φ∗,φ)

= Zεn(ε)2|X|
[

∏

x∈X

∫

|φ(x)|<R(ε)
φ∗(x)=φ(x)∗

dφ∗(x)∧dφ(x)
2πı

]

eA(α∗,β ;φ∗,φ)

(1.19)

with
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A(α∗, β ; φ∗, φ) = −〈φ∗ , φ〉 + 〈α∗, j(εn)φ〉+ 〈φ∗, j(εn)β〉
+ Vεn(ε; α∗, φ) + Vεn(ε; φ∗, β)

+ Eεn(ε; α∗, φ) + Eεn(ε; φ∗, β)

Here we have written A as a function of four independent complex fields α∗, β, φ∗
and φ. The activity in the penultimate line of (1.19) is obtained simply by evaluat-
ing A(α∗, β;φ∗, φ) with φ∗ = φ∗, the complex conjugate of φ. But in the last line,
we introduce, for each x ∈ X , a new, complex integration variable φ∗(x). That is,
(
φ(x), φ∗(x)

)
∈ C2. To get equality between the second last line and the last line

of (1.19), we build the condition φ∗(x) = φ(x)∗ into the domain of integration. The
reason for introducing independent complex fields φ∗ and φ lies in the fact that the
critical point (where the first order derivatives with respect to φ∗ and φ vanish) of the
quadratic part

− 〈φ∗ , φ〉+ 〈j(εn)α∗, φ〉 + 〈φ∗, j(εn)β〉
= −〈φ∗ − j(εn)α∗ , φ− j(εn)β〉+ 〈j(εn)α∗, j(εn)β〉

︸ ︷︷ ︸

〈α∗, j(εn+1)β〉
(1.20)

of A is “not real”. Precisely, the critical point is

φcrit
∗ = j(εn)α∗, φcrit = j(εn)β

and in general
(
φcrit
∗

)∗ 6= φcrit . To do stationary phase, we introduce the “fluctuation
variables” z∗(x), z(x) and make the change of variables

φ∗(x) = φcrit
∗ (x) + z∗(x) , φ(x) = φcrit(x) + z(x) (1.21)

Under this change of variables the domain of integration
{ (

φ∗(x), φ(x)
) ∣

∣ φ∗(x) = φ(x)∗, |φ(x)| < R(ε)
}

is transformed into

M(x) =
{

(z∗(x), z(x))
∣
∣
(
φcrit
∗ (x) + z∗(x)

)∗
= φcrit(x) + z(x)

and
∣
∣φcrit(x) + z(x)

∣
∣ < R(ε)

}

After the change of variables, the integral (1.19) is over a real 2|X | dimensional subset
in the complex 2|X | dimensional space of fields z∗, z.

The first step in the stationary phase approximation is to replace, for each x ∈ X ,
the domain of integration M(x) by the neighbourhood

D(x) =
{

(z∗(x), z(x)) ∈ C
2
∣
∣
∣

∣
∣z∗(x)

∣
∣ ≤ r(εn),

∣
∣z(x)

∣
∣ ≤ r(εn),

(
z∗(x) + φcrit

∗ (x)
)∗

= z(x) + φcrit(x)
}

(1.22)

of the critical point. In (Balaban et al., 2010c) we justify this approximation by the
observation that, whenever (z∗(x), z(x)) /∈ D(x) for some x ∈ X , the integrand is
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extremely small. I will sketch the reasons for this in §1.2.2, below. Observe that,
in general, first, the critical point z(x) = z∗(x) = 0 is not in D(x), and, second,
z∗(x) 6= z(x)∗ on D(x).

The quadratic part (1.20) of the effective action A
(
α∗, β; φcrit

∗ + z∗, φcrit + z
)

in
the new variables is

− 〈j(εn)α∗ + z∗, j(εn)β + z〉+
〈
α∗, j(εn)

(
j(εn)β + z

)〉

+
〈
j(εn)

(
j(εn)α∗ + z∗

)
, β

〉

= −〈z∗, z〉+ 〈α∗, j(εn+1)β〉

(This is why we introduced the j(ε) in Theorem 1.1.) Inserting the change of variables
(1.21), we see that the part of (1.19) near the critical point is,

Zεn(ε)2|X|
[ ∏

x∈X

∫

D(x)

dz∗(x)∧dz(x)
2πı

]

eÃ(α∗,β; z∗,z) (1.23)

where

Ã(α∗, β; z∗, z) = −〈z∗, z〉+ 〈α∗, j(εn+1)β〉
+ Vεn(ε; α∗, φcrit + z) + Vεn(ε; φcrit

∗ + z∗, β)

+ Eεn(ε; α∗, φcrit + z) + Eεn(ε; φcrit
∗ + z∗, β)

= −〈z∗, z〉+ 〈α∗, j(εn+1)β〉+ Vεn+1(ε; α∗, β)

+ Eεn(ε; α∗, φcrit) + Eεn(ε; φcrit
∗ , β) + ∂Aεn(ε; α∗, β; z∗, z)

with the part of Ã(α∗, β; z∗, z) that is of degree at least one in (z∗, z) being (except
for the explicit −〈z∗, z〉)

∂Aδ(ε; α∗, β; z∗, z) =
[
Vδ(ε; α∗, j(δ)β + z)− Vδ(ε; α∗, j(δ)β)

]

+
[
Vδ(ε; j(δ)α∗ + z∗, β)− Vδ(ε; j(δ)α∗, β)

]

+
[
Eδ(ε; α∗, j(δ)β + z)− Eδ(ε; α∗, j(δ)β)

]

+
[
Eδ(ε; j(δ)α∗ + z∗, β)− Eδ(ε; j(δ)α∗, β)

]

We have used that

Vεn(ε; α∗, φcrit) + Vεn(ε; φcrit
∗ , β) = Vεn(ε; α∗, j(εn)β) + Vεn(ε; j(εn)α∗, β)

= Vεn+1(ε; α∗, β)

(The definition (1.15) of Vδ(ε; α∗, β) has been rigged to give this.) Apply Stokes’
Theorem, once for each x ∈ X , to replace the domain D(x) with the union of

{ (
z∗(x), z(x)

) ∣
∣ z∗(x) = z(x)∗, |z(x)| ≤ r(εn)

}

(which contains the critical point) and a “side boundary”. This is done in Lemma 1.2
below. (Choose r = r(εn) and ρ(x) = φcrit

∗ (x)∗ − φcrit(x) =
(
j(εn)(α − β)

)
(x).) This

gives that (1.23) is the sum of
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Zεn(ε)2|X|
[ ∏

x∈X

∫

|z(x)|≤r(εn)

dz∗(x)∧dz(x)
2πı

]

eÃ(α∗,β;z∗,z) (1.24)

and Zεn(ε)2|X| times

∑

R⊂X
R6=∅

[
∏

x∈R

∫

C(x)

dz∗(x)∧dz(x)
2πi

][
∏

x∈X\R

∫

|z(x)|≤r(εn)

dz(x)∗∧dz(x)
2πi

]

eÃ(α∗,β;z∗,z)
∣
∣
∣
z∗(x)=z(x)∗

for x∈X\R

where, for each x ∈ X , C(x) is a two real dimensional submanifold of C2 whose
boundary is the union of “circles” ∂D(x) and

{

(z∗(x), z(x)) ∈ C
2
∣
∣
∣ z∗∗(x) = z(x),

∣
∣z(x)

∣
∣ = r(εn)

}

The second step in the stationary phase approximation is to ignore all but the first
term. That is, to replace (1.23) with (1.24). In (Balaban et al., 2010c) we argue that
−z∗(x)z(x) has an extremely large negative real part whenever (z∗(x), z(x)) ∈ C(x)
(see part (b) of Lemma 1.2, below) and that this replacement introduces a nonpertur-
batively small error.

Thus, the stationary phase approximation for
∫

dµR(ε)(φ
∗, φ) I(SP)

n (ε; α∗, φ) I(SP)
n (ε; φ∗, β)

is (1.24), which can also be written as

Zεn(ε)2|X|e〈α
∗,j(εn+1)β〉+Vεn+1

(ε;α∗,β)

eEεn (ε;α∗,j(εn)β) +Eεn(ε; j(εn)α∗,β)

∫

dµr(εn)(z
∗, z) e∂Aεn(ε;α∗,β;z∗,z)

This is indeed of the desired form, namely (1.14) with n replaced by n+ 1, if

Zεn+1(ε) = Zεn(ε)2

∫

|z|<r(εn)

dz∗∧dz
2πi e−|z|

2

and Eεn+1(ε; α∗, β) is given by the recursion relation (1.16).

1.2.1 Stokes’ Theorem

We next give a short discussion and proof of the version of Stokes’ Theorem that we
used above. The setting is that we are given a radius r > 0 and a complex vector
ρ ∈ C

X that obeys
∣
∣ρ(x)

∣
∣ < 2r for all x ∈ X and we wish to “move the domain of

integration” from the initial domain DC = ��@@
x∈X

DC(x), where

DC(x) =
{

(z∗(x), z(x)) ∈ C
2
∣
∣
∣

∣
∣z∗(x)

∣
∣ ≤ r,

∣
∣z(x)

∣
∣ ≤ r, z(x)− z∗(x)∗ = ρ(x)

}

(see (1.22) above) to the final domain DR = ��@@
x∈X

DR(x), where

DR(x) =
{

(z∗(x), z(x)) ∈ C
2
∣
∣
∣ z∗∗(x) = z(x),

∣
∣z(x)

∣
∣ ≤ r

}

We start by taking a closer look at DC(x). At each point of DC(x), the value of the
variable z∗(x) is completely determined by the value of the variable z(x) through



� �
The Temporal Ultraviolet Limit

z∗(x) = z(x)∗ − ρ(x)∗. The set of allowed values of the variable z(x) is precisely the
intersection of the two discs

∣
∣z(x)

∣
∣ ≤ r and

∣
∣z(x) − ρ(x)

∣
∣ ≤ r. The two discs overlap

because of the hypothesis
∣
∣ρ(x)

∣
∣ < 2r. At each point of the corresponding final domain

DR(x), the value of the variable z∗(x) is again completely determined by the value of
the variable z(x), through z∗(x) = z(x)∗, and the set of allowed values of the variable
z(x) can be though of as being precisely the intersection of the two discs

∣
∣z(x)

∣
∣ ≤ r

and
∣
∣z(x)− 0

∣
∣ ≤ r, which happen to coincide.

It is a simple matter to interpolate between DC(x) and DR(x). Define, for each
0 ≤ t ≤ 1,

Dt(x) =
{

(z∗(x), z(x)) ∈ C
2
∣
∣
∣ |z∗(x)| ≤ r, |z(x)| ≤ r, z(x)− z∗(x)∗ = tρ(x)

}

Once again, at each point of Dt(x), the value of the variable z∗(x) is completely
determined by the value of the variable z(x), this time through z∗(x) = z(x)∗−tρ(x)∗,
and the set of allowed values of the variable z(x) is precisely the intersection of the
two discs

∣
∣z(x)

∣
∣ ≤ r and

∣
∣z(x) − tρ(x)

∣
∣ ≤ r. When t = 1, Dt(x) = DC(x) and when

t = 0, Dt(x) = DR(x). Hence B(x) =
⋃

0≤t≤1

Dt(x) is a the three (real) dimensional set

z(x) = z∗(x)∗ + ρ(x)

z(x) = z∗(x)∗
z(x) = z∗(x)∗ + tρ(x)

C(x)C(x)

DC(x)

DR(x)

B(x)

Fig. 1.4 The domain of integration for Stokes’ Theorem

whose boundary is the union of DC(x) (that’s the part of the boundary with t = 1)
and DR(x) (that’s the part of the boundary with t = 0) and the two (real) dimensional
surface C(x) =

⋃

0<t<1 ∂Dt(x) (that’s the part of the boundary with 0 < t < 1) where

∂Dt(x) =
{

(z∗(x), z(x)) ∈ C
2
∣
∣
∣ max

{
|z∗(x)| , |z(x)|

}
= r, z(x)− z∗(x)∗ = tρ(x)

}

The surface C(x) the joins the curves bounding DR(x) and DC(x).

Lemma 1.2 (a) Let f(α∗, β; z∗, z) be a function that is analytic in the variables α∗, β

in a neighbourhood of the origin in C2X and in the variables (z∗, z) ∈ ��@@
x∈X
P(x), with,

for each x ∈ X, P(x) an open neighbourhood of B(x). Then
∫

DC

∏

x∈X

[
dz∗(x)∧dz(x)

2πi e−z∗(x)z(x)
]

ef(α∗,β;z∗,z)

=
∑

R⊂X

∏

x∈R

( ∫

C(x)

dz∗(x)∧dz(x)
2πi e−z∗(x)z(x)

)

∏

x∈X\R

( ∫

|z(x)|≤r

dz(x)∗∧dz(x)
2πi e−z∗(x)z(x)

)

ef(α∗,β;z∗,z)
∣
∣
∣
z∗(x)=z(x)∗

for x∈X\R



Motivation for the Stationary Phase Approximation
�

�

(b) We have

Re
(
z∗(x)z(x)

)
≥ 1

2

(
r2 − |ρ(x)|2

)

for all
(
z∗(x), z(x)

)
∈ C(x). Furthermore the area of C(x) is bounded by 4πr|ρ|. That

is,
∣
∣
∣
∣

∫

C(x)

dz∗(x)∧dz(x)
2πi f

(
z∗(x), z(x)

)
∣
∣
∣
∣
≤ 2r|ρ| sup

C(x)

∣
∣f

(
z∗(x), z(x)

)∣
∣

Proof (a) We apply Stokes’ Theorem once for each point x ∈ X to the differential
form

ω =
∧

x∈X

dz∗(x)∧dz(x)
2πi exp

{

− 〈z∗, z〉+ f(α∗, β; z∗, z)
}

Since ω is a holomorphic 2|X | form in C2|X|, dω = 0 and

∫

D

ω =
∑

R⊂X

∫

MR

ω where MR =
∏

x/∈R
DR(x) ×

∏

x∈R
C(x)

(b) Let
(
z∗, z) ∈ C(x). We suppress the dependence on x. There is a 0 ≤ t ≤ 1 such

that max
{
|z∗| , |z|

}
= r and z∗ = z∗ − tρ∗. So

z∗z = |z|2 − tρ∗z
z∗z = |z∗|2 + tρz∗ − |tρ|2

Adding and taking the real part,

2Re (z∗z) = |z|2 + |z∗|2 − t2|ρ|2 ≥ r2 − |ρ|2

By construction, C(x) is contained in the union of the two cylinders

U =
{ (

re−iθ − tρ∗, reiθ
) ∣

∣ θ ∈ [0, 2π], t ∈ [0, 1]
}

L =
{ (

reiθ , re−iθ + tρ
) ∣

∣ θ ∈ [0, 2π], t ∈ [0, 1]
}

The upper cylinder contains the part of C(x) with |z(x)| = r and the lower cylinder
contains the part with z∗(x) = r. We’ll bound the integral over the upper cylinder.
On U , we have dz = ireiθdθ and dz∗ = −ire−iθdθ − ρ∗dt, which gives

dz∗ ∧ dz = −iρ∗reiθdt ∧ dθ

since dθ ∧ dθ = 0. Hence

∣
∣
∣
∣

∫

U

dz∗∧dz
2πi f

(
z∗, z

)
∣
∣
∣
∣
≤ r|ρ|

2π

∫ 2π

0

dθ

∫ 1

0

dt
∣
∣f

(
re−iθ − tρ∗, reiθ

)∣
∣ ≤ r|ρ| sup

U

∣
∣f

(
z∗, z

)∣
∣

2
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1.2.2 The Error

We finish off this section by hinting at why the error introduced by the stationary phase
approximation is extremely small. We consider the case n = 0. The initial functional
integral representation (1.8) may be written

Tr e−
1
kT (H−µN) = lim

ε→0

∫
∏

τ∈εZ∩(0, 1
kT ]

{[ ∏

x∈X

dα∗
τ (x)∧dατ (x)

2πı χ
(
|ατ (x)| < R(ε)

)]

e−
1
2 〈α∗

τ−ε,ατ−ε〉I0(ε; α∗τ−ε, ατ )e−
1
2 〈α

∗
τ ,ατ 〉

}

where
I0(ε; α∗, β) = e〈α

∗, j(ε)β〉e−ε〈α
∗β , v α∗β〉ζε(α, β) (1.25)

(a) We first discuss why inserting the “time derivative small field characteristic func-
tions” ζε(α, β), with α = ατ−ε and β = ατ for the various different values of τ , (which
are not present in the formal functional integral (1.1)) introduced only a very small
error, which tends to zero quickly in the limit ε → 0. The critical observation is that
the quadratic part of the exponent of e−

1
2
〈α∗,α〉I0(ε; α∗, β)e−

1
2
〈β∗,β〉 obeys

Re
{
− 1

2 〈α∗, α〉 + 〈α∗, j(ε)β〉 − 1
2 〈β∗, β〉

}
≈ Re

{
− 1

2 〈α∗, α〉+ 〈α∗, β〉 − 1
2 〈β∗, β〉

}

= − 1
2‖α− β‖2L2

which generates a factor of order e−
1
2 r(ε)2 when (α, β) is not in the support of ζε(α, β).

This factor will be miniscule, because we shall choose r(ε) = 1
(εv)1/20

where v is a small

positive constant (and 1
20 is a randomly chosen small positive number).

(b) A similar mechanism generates small factors whenever the difference β − α (now
think of this as ατ − ατ−2ε) between the two arguments of

I1(ε; α∗, β) =

∫

dµR(ε)(φ
∗, φ) I0(ε; α∗, φ)I0(ε; φ∗, β)

is larger than roughly r(2ε). Consequently, we use the stationary phase approximation
for this integral only when the “time derivative small field condition” ‖α−β‖∞ ≤ r(2ε)
is satisfied. The change of variables (1.21) expresses I1 as

I1(ε; α∗, β) = e〈α
∗,j(2ε)β〉

[ ∏

x∈X

∫

M(x)

dz∗(x)∧dz(x)
2πı e−z∗(x)z(x)

]

eÃ(α∗,β;z∗,z)

ζε
(
α, j(ε)β + z

)
ζε

(
(j(ε)α∗ + z∗)

∗, β
)

The characteristic function ζε
(
α, j(ε)β + z

)
limits the domain of integration to z’s

obeying
‖z + j(ε)β − α‖∞ < r(ε)

Since ‖α − β‖∞ ≤ r(2ε) = 1
21/20 r(ε) and ‖j(ε)β − β‖∞ ≤ const εR(ε) � r(ε) (by

our choice of R(ε) – see part (d), below), this condition is more or less equivalent to
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‖z‖∞ < r(ε). Indeed, on the difference between the domain ‖z + j(ε)β − α‖∞ < r(ε)
and the domain ‖z‖∞ < r(ε), the integrand is extremely small, for reasons like those
given in part (a), above. Similarly, the condition imposed by the second ζε is roughly
equivalent to ‖z∗‖∞ < r(ε). The two conditions ‖z‖∞ ≤ r(ε) and ‖z∗‖∞ ≤ r(ε) are
built into the domains of integration D(x) in (1.22).

(c) The “time derivative small field condition” ‖α − β‖∞ ≤ r(2ε) = 1
21/20 r(ε) is also

used to ensure that −z∗(x)z(x) has an extremely large negative real part whenever
(z∗(x), z(x)) lies on C(x), the side of the Stokes’ “cylinder”. This may be seen from
part (b) of Lemma 1.2, with r = r(ε) and ρ = (φcrit

∗ )∗ − φcrit = j(ε)[α− β] .

(d) Another mechanism, which is similar in spirit to, but different from, the supression
of large time derivatives, arises from the e−ε〈α

∗β , v α∗β〉 in (1.25). When α ≈ β (i.e.
when the time derivative is small), the exponent is roughly

−ε 〈α∗α , v α∗α〉 ≤ −εv1 〈α∗α , α∗α〉 = −εv1

∑

x∈X
|α(x)|4

where v1 is the smallest eigenvalue of the integral operator with kernel v(x,y). Recall
that we have assumed that the integral operator with kernel v(x,y) is strictly positive.
So if for some x ∈ X , we have |α(x)| ≥ R(ε), then

e−ε〈α
∗α , v α∗α〉 ≤ e−v1εR(ε)4

The large field cutoff R(ε) is chosen so that this is, again, minuscule when ε is small.
For example, R(ε) = 1

(εv)3/10
, (with 3

10 a randomly chosen number that is strictly

bigger than, but close to 1
4 ) does the job.

1.3 Bounds on the Stationary Phase Approximation

In this section, we outline the proof of some bounds on the Eδ(ε; α∗, β)’s of (1.16).
The bounds are expressed in terms of a family of norms on analytic functions of
{
α∗(x), β(x)

∣
∣ x ∈ X

}
.

An analytic function f(α∗, β) of α∗ and β may be expanded in a power series

f(α∗, β) =
∑

k,`≥0

∑

x1,··· ,xk∈X
y1,··· ,y`∈X

a(x1, · · · ,xk ; y1, · · · ,y`) α(x1)∗ · · ·α(xk)∗ β(y1) · · ·β(y`)

(with the coefficients a(x1, · · · ,xk ; y1, · · · ,y`) invariant under permutations of x1,
· · · , xk and of y1, · · · , y`). For the functions of interest, the “symmetric coefficient
system” a(x1, · · · ,xk ; y1, · · · ,y`) will be translation invariant (recall that X is the
finite discrete torus Z3/(LZ)3, for some large L ∈ N) but otherwise exponentially
decaying (uniformly in L). We tailor our norms to these two characteristics by defining
the norm

‖f(α∗, β)‖δ =
∑

k,`≥0

max
x∈X

max
1≤i≤k+`

∑

(~x,~y)∈Xk×X`

(~x,~y)i=x

wδ(~x ; ~y)
∣
∣a(~x ; ~y)

∣
∣ (1.26)
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with the “weight system”

wδ(~x ; ~y) = κ(δ)k+` emd(~x,~y) for (~x, ~y) ∈ Xk ×X` (1.27)

where τ(~x, ~y) is the minimal length of a tree whose set of vertices contains the set
{x1, · · · ,xk,y1, · · · ,y`}. We refer to (1.27) as the weight system with mass m that
associates the constant weight factor κ(δ) to the fields α∗ and β. During the course of
the proof, we will use other similar norms, with different weights. Roughly speaking,
for ‖f(α∗, β)‖δ to be finite, each coefficient a(x1, · · · ,xk ; y1, · · · ,y`)
• must decay a bit better than exponentially with rate m when one argument is

held fixed and at least one other argument is moved far away and

• must be of size smaller than 1
κ(δ)k+`

. (The weight κ(δ) will be chosen shortly.)

If ‖f(α∗, β)‖δ is finite, then f(α∗, β) is analytic, and bounded by |X |‖f(α∗, β)‖δ , on
the domain

{
(α∗, β) ∈ C2|X| ∣∣ |α(x)|, |β(x)| < κ(δ) for all x ∈ X

}
.

The decay properties of En’s arise from the decay properties of the operators j(τ) =
e−τ(h−µ) and v in the initial I0 of Theorem 1.1. In general, we capture the decay
properties of any operator A on L2(X) = CX , with kernel A(x,y) (i.e. that maps
ϕ(x) ∈ L2(X) to (Aϕ)(x) =

∑

y∈X A(x,y)ϕ(y) ∈ L2(X)), by using the weighted

L1–L∞ operator norm

|||A||| = max

{

sup
x∈X

∑

y∈X
emd(x,y)

∣
∣A(x,y)

∣
∣ , sup

y∈X

∑

x∈X
emd(x,y)

∣
∣A(x,y)

∣
∣

}

(1.28)

where d(x,y) is the metric on X = Z3/LZ3. Some useful properties of this norm are
given in

Lemma 1.3 (a) For any two operators A,B : L2(X)→ L2(X)

|||AB||| ≤ |||A||| |||B|||

(b) For any operator A : L2(X)→ L2(X) and any complex number α

∣
∣
∣
∣
∣
∣eαA

∣
∣
∣
∣
∣
∣ ≤ e|α| |||A|||

∣
∣
∣
∣
∣
∣eαA − 1l

∣
∣
∣
∣
∣
∣ ≤ |α| |||A|||e|α| |||A|||

Proof (a) By the triangle inequality, for each x ∈ X ,

∑

y∈X
emd(x,y)

∣
∣(AB)(x,y)

∣
∣ ≤

∑

y,z∈X
emd(x,z)

∣
∣A(x, z)

∣
∣emd(z,y)

∣
∣B(z,y)

∣
∣

≤
∑

z∈X
emd(x,z)

∣
∣A(x, z)

∣
∣ |||B|||

≤ |||A||| |||B|||

The other bound, in which one sums over x rather than y, is similar.
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(b) By part (a),

∣
∣
∣
∣
∣
∣eαA

∣
∣
∣
∣
∣
∣ ≤

∞∑

n=0

1
n!

∣
∣
∣
∣
∣
∣αnAn

∣
∣
∣
∣
∣
∣ ≤

∞∑

n=0

1
n! |α|n |||A|||n = e|α| |||A|||

and
∣
∣
∣
∣
∣
∣eαA − 1l

∣
∣
∣
∣
∣
∣ ≤

∞∑

n=1

1
n!

∣
∣
∣
∣
∣
∣αnAn

∣
∣
∣
∣
∣
∣ ≤

∞∑

n=1

1
n! |α|n |||A|||n ≤ |α| |||A|||e|α| |||A|||

2

Corollary 1.4 Let τ ≥ 0.

|||j(τ)||| ≤ eτ(|||h|||+µ) |||j(τ)− 1l||| ≤ τ(|||h|||+ |µ|)eτ(|||h|||+|µ|)

Proof Write j(τ) = eτµe−τh and j(τ)−1l = eτµ(e−τh−1l)+eτµ−1l. By the previous
Lemma

|||j(τ)||| = eτµ|||e−τh||| ≤ eτµeτ |||h|||

and

|||j(τ)− 1l||| ≤ eτµ|||e−τh − 1l|||+ |||eτµ − 1l||| ≤ τ |||h|||eτµeτ |||h|||+ |eτµ − 1|

2

The quantities relevant for the estimates of Eδ(ε; α∗, β), in addition to the radii
r(δ), of the domain of integration, and κ(δ), of the domain of analyticity, are the norm
|||v||| of the interaction, the decay rate m, a constant Kj such

|||j(τ)||| ≤ eKjτ and |||j(τ)− 1l||| ≤ Kjτ e
Kjτ for τ ≥ 0 (1.29)

(see Corollary 1.4) and a constant 0 < Θ ≤ 1 that bounds the range of θ’s (see (1.13))
for which the constructions work. In (Balaban et al., 2010b, Hypothesis 1.1) we give a
set of hypotheses on these constants. (For the full temporal ultraviolet limit, not just
the stationary phase approximation, see (Balaban et al., 2010c, Appendix F).) For
the purposes of these lectures, I’ll just make one reasonably specific choice. I’ll allow
any Kj ,m > 0 and view them just as fixed constants. Then I’ll pick sufficiently small
(depending on Kj and m) 0 < v,Θ ≤ 1 and allow any interaction v with |||v||| < v.
Then I’ll set

r(δ) = 1

(δv)
1
20

κ(δ) = 1

(δv)
3
10

(1.30)

Think of the exponents 1
20 and 3

10 as being just a tiny bit bigger than 0 and 1
4 ,

respectively.
I will outline the proof of
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Theorem 1.5 Under the above hypotheses, there is a constant KE such that

∥
∥Eδ(ε; α∗, β)

∥
∥
δ
≤ KEδ

2|||v|||2r(δ)2κ(δ)6

for all 0 ≤ ε ≤ δ ≤ Θ for which δ
ε is a power of 2. The function Eδ(ε; α∗, β) has degree

at least two both4 in α∗ and β.

In (Balaban et al., 2010b, Theorem 1.4), we also prove

Theorem 1.6 The limit

Eθ(α∗, β) = lim
m→∞

Eθ(2−mθ; α∗, β)

exists uniformly in 0 ≤ θ ≤ Θ. It fulfills the estimate

∥
∥Eθ(α∗, β)

∥
∥
θ
≤ KE θ

2|||v|||2r(θ)2κ(θ)6

and has degree at least two in both α∗ and β.

The proof of Theorem 1.6 uses the same techniques as the proof of Theorem 1.5. So I
won’t discuss the former at all.

Remark 1.7 Theorem 1.5 implies that
∥
∥Eδ(ε; α∗, β)

∥
∥
δ
≤ KE

( |||v|||
v

)2
for all 0 ≤ ε ≤

δ ≤ Θ. In particular Eδ(ε; α∗, β) is analytic and bounded pointwise by KE|X |
( |||v|||

v

)2

on
{

(α∗, β) ∈ C2|X| ∣
∣ |α(x)|, |β(x)| < (δv)−

3
10 for all x ∈ X

}
. The coefficients in its

power series expansion decay exponentially at rate at least m.

We formulate the recursion relation (1.16) that defines Eεn(ε; α∗, β) more ab-
stractly.

Definition 1.8 Let 0 ≤ ε ≤ δ. For an action E(α∗, β) we set

Rδ,ε

[
E
]
(α∗, β) = E(α∗, j(δ)β) + E(j(δ)α∗, β) + log

∫
dµr(δ)(z

∗, z) e∂Aδ,ε(E;α∗,β;z∗,z)

∫
dµr(δ)(z∗, z)

whenever the logarithm is defined. Here

∂Aδ,ε(E ; α∗, β; z∗, z) =
[
Vδ(ε; α∗, j(δ)β + z)− Vδ(ε; α∗, j(δ)β)

]

+
[
Vδ(ε; j(δ)α∗ + z∗, β)− Vδ(ε; j(δ)α∗, β)

]

+
[
E(α∗, j(δ)β + z)− E(α∗, j(δ)β)

]

+
[
E(j(δ)α∗ + z∗, β)− E(j(δ)α∗, β)

]

4By this we mean that every monomial appearing in its power series expansion contains a factor
of the form α∗(x1) α∗(x2) β(x3) β(x4) .
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The recursion relation (1.16) is equivalent to

Eε(ε; α∗, β) = 0

Eεn+1(ε; α∗, β) = Rεn,ε

[
Eεn(ε; α∗, β)

] (1.31)

To prove Theorem 1.5, we perform induction on n to successively bound Eεn(ε; · )
for n = 0, · · · , log2

Θ
ε . The heart of the induction step is given in Proposition 1.11.

Proposition 1.11, in turn, is an application of a corollary to (Balaban et al., 2010a,
Theorem 3.4), which, specialized to the current setting, says

Theorem 1.9 Let κ > 0 and denote by ‖ · ‖fl the norm5 with weight system of mass
m that assigns the weight κ > 0 to the fields α∗ and β and the weight 4r(δ) to the fields
z∗ and z. If f(α∗, β; z∗, z) is an analytic function on a neighbourhood of the origin in
C4|X| that obeys ‖f‖fl < 1

16 , then there is an analytic function g(α∗, β) such that
∫
ef(α∗,β;z∗,z) dµr(δ)(z

∗, z)
∫
ef(0,0;z∗,z) dµr(δ)(z∗, z)

= eg(α
∗,β) (1.32)

and
‖g‖fl ≤ ‖f‖fl

1−16‖f‖fl

I’ll give an outline of the proof of this theorem in §1.5. See Theorem 1.29. The corollary
that we shall use is (Balaban et al., 2010a, Corollary 3.5), which, again specialized to
the current setting, says

Corollary 1.10 Let f(α∗, β; z∗, z) be an analytic function on a neighbourhood of
the origin in C4|X| that obeys ‖f‖fl < 1

32 . Define, for each complex number ζ with
|ζ|‖f‖fl < 1

16 , the function G(ζ) = G(ζ;α∗, β) by the condition
∫
eζf(α∗,β;z∗,z) dµr(δ)(z

∗, z)
∫
eζf(0,0;z∗,z) dµr(δ)(z∗, z)

= eG(ζ;α∗,β) (1.33)

as in Theorem 1.9. Then G(ζ) is a (Banach space valued) analytic function of ζ and,
for each n ∈ N, the g(α∗, β) = G(1;α∗, β) of Theorem 1.9 obeys

∥
∥
∥g − dG

dζ (0)− · · · − 1
n!
dnG
dζn (0)

∥
∥
∥

fl
≤

( ‖f‖fl
1
20 − ‖f‖fl

)n+1

We have G(0) = 0 and

dG
dζ (0) =

∫
[
f(α∗, β; z∗, z)− f(0, 0; z∗, z)] dµr(δ)(z

∗, z)

If the symmetric coefficient system a(~x∗, ~x; ~y∗, ~y) of f obeys a(~x∗, ~x; ~y∗, ~y) = 0 when-
ever ~y = ~y∗, then dG

dζ (0) = 0.

5The “fl” in ‖ · ‖fl stands for fluctutation. This norm is defined just as in (1.26), except that
there are four fields, α∗, β, z∗ and z, instead of two, and the κ(δ)k+` of (1.27) is replaced by

κk+`
`

4r(δ)
´n∗+n

, where k is the number of α∗ fields, ` is the number of β fields, n∗ is the number of
z∗ fields and n is the number of z fields.
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Proof The proof of the bound in this corollary is a short, straight–forward appli-
cation of the Cauchy integral formula. For the details, see (Balaban et al., 2010a,
Corollary 3.5).

The left hand side is 1 when α∗ = β = 0, so G(0) = 0. To show that dG
dζ (0) =

0, under the specified conditions on the coefficient system, expand f(α∗, β; z∗, z) in
powers of the fields α∗, β, z∗ and z. This expresses

∫
f(α∗, β; z∗, z) dµr(δ)(z

∗, z) as a
sum of terms, with each term being some coefficient (depending on α∗ and β) times

∫
∏

x∈X

{[
z(x)∗

]nx

z(x)mx

}
dµr(δ)(z

∗, z)

Switching to polar coordinates, z(x) = ρ(x)eiθ(x),

∫
∏

x∈X

{[
z(x)∗

]nx

z(x)mx

}
dµr(δ)(z

∗, z)

=
∏

x∈X

1
π

∫ r(δ)

0

dρ(x)

∫ 2π

0

dθ(x) e−ρ(x)2ρ(x)nx+mx+1ei(mx−nx)θ(x)

(1.34)

Unless mx = nx for every x ∈ X , the right hand side is zero because of the θ(x)
integrals. When mx = nx for every x ∈ X , the coefficient multiplying this integral is
zero because of the hypothesis on the symmetric coefficient system. Hence

∫

f(α∗, β; z∗, z) dµr(δ)(z
∗, z) =

∫

f(0, 0; z∗, z) dµr(δ)(z
∗, z) = 0

2

For the induction step, we use

Proposition 1.11 For all 0 ≤ ε ≤ δ ≤ Θ/2, with δ an integer multiple of ε, the
following holds:

Let E(α∗, β) be an analytic function which has degree at least two both in α∗ and
in β and which obeys

∥
∥E(α∗, β)

∥
∥
δ
≤ 4 e5δKjδ|||v||| r(δ)κ(2δ)3 . Then Rδ,ε

[
E
]
(α∗, β) is

well defined, has degree at least two both in α∗ and in β, and satisfies the estimate

∥
∥Rδ,ε

[
E
]∥
∥

2δ
≤ 220 e10δKjδ2|||v|||2 r(δ)2 κ(2δ)6 + 2 e2δKj

(
κ(2δ)
κ(δ)

)4

‖E‖δ

Proof Observe that the functions

Vδ(ε; α∗, j(δ)β + z)− Vδ(ε; α∗, j(δ)β) and E(α∗, j(δ)β + z)− E(α∗, j(δ)β)

both have degree at least two in α∗, degree at least one in z and do not depend on z∗.
Similarly, Vδ(ε; j(δ)α∗+z∗, β)−Vδ(ε; j(δ)α∗, β) and E(j(δ)α∗+z∗, β)−E(j(δ)α∗, β)
have degree at least two in β, degree at least one in z∗ and do not depend on z. Since
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the integral of any monomial against dµr(δ)(z
∗, z) is zero unless there are the same

number of z’s and z∗’s (see (1.34)),
∫

dµr(δ)(z
∗, z) ∂Aδ,ε(E ; α∗, β; z∗, z) = 0 (1.35)

and log
R

dµr(δ)(z
∗,z) e∂Aδ,ε(E;α∗,β;z∗,z)

R

dµr(δ)(z∗,z)
has degree at least two both in α∗ and in β. This

implies that Rδ,ε

[
E
]
(α∗, β) has degree at least two both in α∗ and in β.

We apply Corollary 1.10, with κ = κ(2δ). Clearly, ‖f(α∗, β)‖2δ = ‖f(α∗, β)‖fl for
functions that are independent of the fluctuation fields z∗, z. To apply the Corollary,
we need to bound ‖∂Aδ,ε(E ; α∗, β; z∗, z)‖fl.

We’ll first bound

Vδ(ε; α∗, j(δ)β + z)− Vδ(ε; α∗, j(δ)β)

= ε
∑

τ∈εZ∩[0,δ)

[
〈 γ∗τgτ+ε, v γ∗τgτ+ε〉 − 〈 γ∗τ ĝτ+ε, v γ∗τ ĝτ+ε〉

]

with

γ∗τ = j(τ)α∗ gτ = j(2δ − τ)β ĝτ = j(δ − τ)
(
j(δ)β + z

)
= j(2δ − τ)β + j(δ − τ)z

Expand out ĝτ as a sum of two terms, as in the last equation, expressing the summand
〈 γ∗τgτ+ε, v γ∗τgτ+ε〉 − 〈 γ∗τ ĝτ+ε, v γ∗τ ĝτ+ε〉 itself as a sum of three terms, each of
which is (except for a minus sign) of the form

〈(Γ1γ1)(Γ2γ2), v (Γ3γ3)(Γ4γ4)〉

=
∑

x1,x2,x3,x4∈X
y1,y2∈X

[
∏

`=1,2

Γ`(y1,x`)γ`(x`)

]

v(y1,y2)

[
∏

`=3,4

Γ`(y2,x`)γ`(x`)

]

with

Γ1 = Γ2 = j(τ − ε) γ1 = γ3 = α∗ (Γ3, γ3), (Γ4, γ4) ∈
{

(j(2δ− τ), β) , (j(δ− τ), z)
}

and with at least one of (Γ3, γ3), (Γ4, γ4) being (j(δ − τ), z). In general

∑

x2,x3,x4∈X
y1,y2∈X

emτ(x1,x2,x3,x4)

∣
∣
∣
∣

[
∏

`=1,2

Γ`(y1,x`)κ`

]

v(y1,y2)

[
∏

`=3,4

Γ`(y2,x`)κ`

]∣
∣
∣
∣

≤
∑

x2,x3,x4
y1,y2

∣
∣
∣
∣

[
∏

`=1,2

emd(x`,y1)Γ`(y1,x`)κ`

]

v(y1,y2)emd(y1,y2)

[
∏

`=3,4

emd(x`,y2)Γ`(y2,x`)κ`

]∣
∣
∣
∣

≤
4∏

`=1

κ`
∑

x2∈X
y1,y2∈X

[
∏

`=1,2

emd(x`,y1)|Γ`(y1,x`)|
]

|v(y1,y2)|emd(y1,y2)|||Γ3||| |||Γ4|||

≤
4∏

`=1

κ`
∑

x2,y1∈X

[
∏

`=1,2

emd(x`,y1)|Γ`(y1,x`)|
]

|||v||| |||Γ3||| |||Γ4|||



� �
The Temporal Ultraviolet Limit

≤ |||v|||
4∏

`=1

κ`|||Γ`|||

To get from the first line to the second line, we used that the set of vertices of the tree
in the figure below contains x1, x2, x3 and x4 so that

τ(x1,x2,x3,x4) ≤ d(x1,y1) + d(x2,y1) + d(y1,y2) + d(y2,x3) + d(y2,x4)

The bounds when x2 or x3 or x4 is fixed instead of x1 are the same.

x1

x2

x3

x4
y1

y2

Fig. 1.5 A longer tree

As

|||j(τ)||| ≤ eKjδ |||j(2δ − τ − ε)||| ≤ e2Kjδ |||j(δ − τ − ε)||| ≤ eKjδ

and α∗, β and z have weights κ(2δ), κ(2δ) and 4r(δ), respectively, we have, for each
τ ∈ εZ ∩ (0, δ],

∥
∥ 〈 γ∗τgτ+ε, v γ∗τgτ+ε〉 − 〈 γ∗τ ĝτ+ε, v γ∗τ ĝτ+ε〉

∥
∥

fl
≤ 12e5Kjδ |||v||| r(δ)κ(2δ)3

Here, we have assumed that Θv ≤ 1
210 so that 4r(δ) ≤ κ(2δ). Summing over τ and

multiplying by ε gives
∥
∥Vδ(ε; α∗, j(δ)β + z)− Vδ(ε; α∗, j(δ)β)

∥
∥

fl
≤ 12e5Kjδ δ|||v||| r(δ)κ(2δ)3

Similarly
∥
∥Vδ(ε; j(δ)α∗ + z∗, β)− Vδ(ε; j(δ)α∗ + z∗, β)

∥
∥

fl
≤ 12e5Kjδ δ|||v||| r(δ)κ(2δ)3

Next, we bound E(α∗, j(δ)β+z)−E(α∗, j(δ)β). For any analytic function f(α∗, β),
∥
∥f(α∗, j(δ)β + z)− f(α∗, j(δ)β)

∥
∥

fl
≤

∥
∥f(α∗, j(δ)β + z)

∥
∥

fl

since the symmetric coefficient system for f(α∗, j(δ)β + z)− f(α∗, j(δ)β) is precisely
the symmetric coefficient system for f(α∗, j(δ)β + z), but with the coefficients for
terms having no z’s replaced by 0. So, by Proposition 1.326,

∥
∥f(α∗, j(δ)β + z)− f(α∗, j(δ)β)

∥
∥

fl
≤

∥
∥f(α∗, j(δ)β + z)

∥
∥

fl
≤

∥
∥f(α∗, β)

∥
∥
δ

since

|||j(δ)|||κ(2δ) + 4r(δ) ≤ eδKjκ(2δ) + 4r(δ) =
[
eδKj 1

2
3
10

+ 4(δv)
1
4

]
κ(δ) ≤ κ(δ)

if Θ and v are small enough. In particular
∥
∥E

(
α∗, j(δ)β+z

)
−E

(
α∗, j(δ)β

)∥
∥

fl
≤ ‖E‖δ .

Similarly
∥
∥E

(
j(δ)α∗ + z∗, β

)
− E

(
j(δ)α∗, β

)∥
∥

fl
≤ ‖E‖δ .

6Actually, by an obvious generalization of Proposition 1.32, since the g of Proposition 1.32 is a
function of a single field. See (Balaban et al., 2010a, Corollary A.2) for such a generalization.
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Combining the bounds of the previous two paragraphs and then using the hypoth-
esis that ‖E‖δ ≤ 4e5δKjδ|||v||| r(δ)κ(2δ)3, we get

∥
∥∂Aδ,ε(E ; · )

∥
∥

fl
≤ 24 e5δKjδ|||v||| r(δ)κ(2δ)3 + 2‖E‖δ ≤ 25 e5δKjδ|||v||| r(δ)κ(2δ)3

≤ 25 e5δKj 1

2
9
10

(δv)
1
20 ≤ 1

64 (1.36)

if Θ ≤ 1 and Θv is small enough. Finally, by (1.35) and Corollary 1.10

∥
∥
∥
∥

log

∫
dµr(δ)(z

∗, z) e∂Aδ,ε(E;α∗,β;z∗,z)

∫
dµr(δ)(z∗, z)

∥
∥
∥
∥

2δ

≤ ‖∂Aδ,ε(E; · )‖2fl(
1
20−‖∂Aδ,ε(E; · )‖fl

)2

≤ 220 e10δKjδ2|||v|||2 r(δ)2 κ(2δ)6

Combining this estimate and the estimate of Lemma 1.12, below, with f = E , we get
the desired bound on

∥
∥Rδ,ε

[
E
]∥
∥

2δ
. 2

Lemma 1.12 Let f(α∗, β) be an analytic function that has degree at least two both in
α∗ and β. Then

∥
∥f

(
α∗, j(δ)β

)∥
∥

2δ
,

∥
∥f

(
j(δ)α∗, β

)∥
∥

2δ
≤ e2δKj

(
κ(2δ)
κ(δ)

)4

‖f‖δ

Proof Introduce the auxiliary norm ‖ · ‖aux that uses the weight system of mass m
that associates the constant weight factor κ(δ) to the field α∗ and the constant weight
factor e−δKjκ(δ) to the field β. Since, by (1.29), |||j(δ)||| e−δKjκ(δ) ≤ κ(δ), part (i) of
Proposition 1.32 gives

∥
∥f

(
α∗, j(δ)β

)∥
∥
waux

≤ ‖f‖δ

As f
(
α∗, j(δ)β

)
has degree at least two both in α∗ and β and e−δKjκ(δ) ≥ κ(2δ) , if

Θ is small enough,

∥
∥f

(
α∗, j(δ)β

)∥
∥

2δ
≤

(
κ(2δ)
κ(δ)

)2(
κ(2δ)

e−δKj κ(δ)

)2∥
∥f

(
α∗, j(δ)β

)∥
∥
waux

≤ e2δKj
(
κ(2δ)
κ(δ)

)4

‖f‖δ

The estimate on
∥
∥f

(
j(δ)α∗, β

)∥
∥

2δ
is similar. 2

Proof of Theorem 1.5 Choose KE = 221e10Kj . We write δ = εn = 2nε and prove
the statement by induction on n. In the case n = 0 there is nothing to prove. For the
induction step from n to n + 1, set δ = εn. The hypothesis of Proposition 1.11, with
E = Eδ, is satisfied since, by the inductive hypothesis,

∥
∥Eδ

∥
∥
δ
≤ KE δ

2|||v|||2 r(δ)2κ(δ)6 = KE (δv)
1
20 2

9
10 δ|||v||| r(δ)κ(2δ)3 ≤ δ|||v||| r(δ)κ(2δ)3

(1.37)
if Θv has been chosen small enough. Using (1.31) and Proposition 1.11, we see that
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∥
∥Eεn+1

∥
∥
εn+1

≤ 220 e10δKjδ2|||v|||2 r(δ)2 κ(2δ)6 + 2 e2δKj
(
κ(2δ)
κ(δ)

)4

KE δ
2|||v|||2 r(δ)2 κ(δ)6

=
[

220 e10δKj + 2 e2δKj
(
κ(δ)
κ(2δ)

)2

KE

]

δ2|||v|||2 r(δ)2 κ(2δ)6

= 1
2

[
219 e10δKj

KE
+ e2δKj

(
κ(δ)
κ(2δ)

)2] (
r(δ)
r(2δ)

)2

KE(2δ)2|||v|||2 r(2δ)2 κ(2δ)6

= 1
2

[
1
4 + e2δKj2

6
10

]

2
1
10 KE(2δ)2|||v|||2 r(2δ)2 κ(2δ)6

≤ KE(2δ)2|||v|||2 r(2δ)2 κ(2δ)6 (if Θ has been chosen small enough)

= KE ε
2
n+1|||v|||2 r(εn+1)2 κ(εn+1)6

2

1.4 Functional Integrals

In this section, I will outline the proof of a functional integral representation of the
partition function like that of Theorem 1.1. It is an example of the class of rigorous
functional integral representations in which the object of interest is expressed as a limit
of finite dimensional integrals. At the end of this section, I will mention, and provide
references to, a couple of other classes of rigorous functional integral representations
that are used in mathematical physics.

I remind you that we have decided to approximate the left hand side of (1.1)
by replacing space R3 by a finite number of points, say X = Z3/LZ3 and that the
Hamiltonian is

H =

∫

dxdy ψ†(x) h(x,y)ψ(y) +

∫

dx1dx2 ψ
†(x1)ψ†(x2) v(x1,x2)ψ(x1)ψ(x2)

(1.38)
with

∫
dx just meaning

∑

x∈X . We are still assuming that the kinetic energy operator
h ≥ 0 and that the two–dody potential 2v(x,y) is strictly positive when viewed as
the kernel of an integral operator. I have claimed that then the partition function is
(pretty obviously) well–defined. Let’s check that this is indeed the case. The Hilbert
space of all states of this system is

F =

∞⊕

n=0

Fn with Fn = L2
s(X

n) = C
|X|n/Sn

Here

• a vector in the n–particle subspace Fn is a function f(x1, · · · ,xn), with each
argument xj running over X , that is invariant under permutation of its arguments

• the inner product between two n–particle vectors f, g ∈ Fn is

〈f, g〉Fn =

∫

Xn
dx1 · · · dxn f(x1, · · · ,xn) g(x1, · · · ,xn)

where
∫

X dx f(x) just means
∑

x∈X f(x)
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• F0 = C

• the inner product between two vectors f =
(
fn

)

n≥0
and g =

(
gn

)

n≥0
in F is

〈f ,g〉F =
∑

n≥0

〈fn, gn〉Fn

Now both H and N map the n–particle space Fn (which is finite dimensional) into

itself. We’ll show that the, positive, operator e−
1
kT (H−µN) is trace class by bounding,

for each nonnegative integer n, the trace of the restriction of e−
1
kT (H−µN) to Fn and

then observe that the bound is easily summable over n. Now the restriction of N to
Fn is just n1l and the following lemma provides a lower bound on H � Fn.

Lemma 1.13 There are constants C,D > 0 such that the restriction of H to Fn is
bounded below by (Cn−D)n1l.

Proof Use ψ†(x), ψ(x) to denote the annihilation and creation operators at x ∈ X .
By the commutation relations

[
ψ(x), ψ†(x′)

]
= δx,x′ , the interaction

V =

∫

dx1dx2 ψ
†(x1)ψ†(x2) v(x1,x2)ψ(x1)ψ(x2) (1.39)

=

∫

dx1dx2 ψ
†(x1)ψ(x1) v(x1,x2)ψ†(x2)ψ(x2)−

∫

dx ψ†(x) v(x,x)ψ(x)

=

∫

dx1dx2 n(x1) v(x1,x2)n(x2)−
∫

dx v(x,x)n(x)

where n(x) = ψ†(x)ψ(x) is the local number operator at x. Now, restricted to Fn,
{
n(x)

∣
∣ x ∈ X

}
is a family of commuting, bounded self–adjoint operators on the

finite dimensional Hilbert space Fn (that is, they are self–adjoint matrices). So there
is an orthonormal basis

{
δY

}
for Fn consisting of simultaneous eigenvectors for all

of the n(x)’s. We denote the eigenvalues µY (x). (All this is easy to find and is given
in (Balaban et al., 2008a), but we don’t need the explicit formulae.) So, for any ϕ =
∑

Y ϕY δY ,

〈

ϕ ,

∫

X2

dx1dx2 n(x1)v(x1,x2)n(x2) ϕ
〉

=
∑

Y1,Y2

ϕY1 ϕY2

〈

δY1 ,

∫

X2

dx1dx2 n(x1)v(x1,x2)n(x2) δY2

〉

=

∫

X2

dx1dx2 v(x1,x2)
∑

Y1,Y2

ϕY1 ϕY2

〈
n(x1)δY1 , n(x2) δY2

〉

=

∫

X2

dx1dx2 v(x1,x2)
∑

Y1,Y2

ϕY1 ϕY2 µY1(x1)µY2(x2)
〈
δY1 , δY2

〉

=
∑

Y

|ϕY |2
∫

X2

dx1dx2 µY (x1)v(x1,x2)µY (x2)
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By hypothesis, v is a strictly positive operator on L2(X). Denote by λ0 > 0 its smallest
eigenvalue. Then

∫

X2

dx1dx2 µY (x1)v(x1,x2)µY (x2) ≥ λ0

∫

X

dx µ2
Y (x) ≥ λ0

|X|

(∫

X

dx µY (x)
)2

= λ0

|X| n
2

by Cauchy–Schwartz and the fact that, on Fn,
∫

X dx n(x) = n. Hence
〈

ϕ ,

∫

X2

dx1dx2 n(x1)v(x1,x2)n(x2) ϕ
〉

≥ λ0

|X| n
2
∑

Y

|ϕY |2 = λ0

|X| n
2‖ϕ‖2

Since, on Fn the n(x)’s are positive operators adding up to n, every 0 ≤ µY (x) ≤ n
and

‖ψ(x)‖2Fn→Fn−1
= ‖ψ(x)†ψ(x)‖Fn = ‖n(x)‖Fn ≤ n

‖ψ(x)†‖Fn−1→Fn = ‖ψ(x)‖Fn→Fn−1 ≤
√
n

Consequently

∥
∥H0

∥
∥ =

∥
∥
∥
∥

∫

dxdy ψ†(x) h(x,y)ψ(y)

∥
∥
∥
∥
≤ n

∫

dxdy |h(x,y)| (1.40)

We can easily do better than this, but we don’t need to. The lemma follows with
C = λ0

|X| . 2

Now back to the trace. Since the dimension of Fn is less than |X |n and every eigenvalue
of (H − µN) � Fn is at least Cn2 −Dn− µn, we have

TrFn e
− 1
kT (H−µN) ≤ e−

1
kT (Cn2−Dn−µn)|X |n

This is obviously summable over n.

1.4.1 A Rigorous Version of the Functional Integral

So we now know that, when X is finite, the partition function TrF e
− 1
kT (H−µN) is

well–defined. I’ll now outline the proof of a functional integral representation for

TrF e
− 1
kT (H−µN) that is similar to that of Theorem 1.1, but whose integrand looks a

lot more like the eA(α∗,α) with the A(α∗, α) of (1.2).
We use the notation β = 1

kT and, for any p ∈ N,

Tp =
{
τ = q βp

∣
∣ q = 1 , · · · , p

}

εp = β
p

dµp,r(α
∗, α) =

∏

τ∈Tp

∏

x∈X

[
dα∗

τ (x)∧dατ (x)
2πı χ(|ατ (x)| < r)

]

K(α∗, α) =

∫∫

dxdy α(x)∗h(x,y)α(y) − µ
∫

dx α(x)∗α(x)

+

∫∫

dxdy α(x)∗α(x) v(x,y)α(y)∗α(y)
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Theorem 1.14 Suppose that the sequence R(p) → ∞ as p → ∞ at a suitable rate.
Precisely

lim
p→∞

p e−
1
2 R(p)2 = 0 and R(p) < p

1
24|X|

Then

Tr e−β (H−µN) = lim
p→∞

∫

dµp,R(p)(α
∗, α)

∏

τ∈Tp
e
−

R

dy [α∗
τ (y)−α∗

τ−εp
(y)]ατ (y)

e
−εpK(α∗

τ−εp
,ατ )

with the convention that α0 = αβ .

Almost all of the rest of this section is used to outline the proof of Theorem 1.14.

1.4.2 The Main Ingredients – Coherent States

The first main ingredient in the proof is the use of coherent states. I’ll give the formulae
only for the case |X | = 1, because then they are short and clean. The general case is
very similar. If |X | = 1, then

F =

∞⊕

n=0

Fn with Fn = C

Let en = 1 ∈ C = Fn. We can think of each vector in F as a sequence
(
v0, v1, v2, · · ·

)

of complex numbers. Then en is the sequence all of whose components are zero, except
for that with index n, which is 1. For each α ∈ C the coherent state

|α 〉 =
∞∑

n=0

1√
n!
αnen ∈ F (1.41)

is an eigenvector for the field (or annihilation) operator

ψen =
√
n en−1

To check this, we compute

ψ |α 〉 =
∞∑

n=1

1√
(n−1)!

αnen−1 = α |α 〉 (1.42)

The action of the creation operator

ψ†en =
√
n+ 1 en+1

on the αth coherent state vector is

ψ† |α 〉 =

∞∑

n=0

√
n+1√
n!
αnen+1 = ∂

∂α

∞∑

n=0

1√
(n+1)!

αn+1en+1 = ∂
∂α |α 〉 (1.43)
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Because the en’s form an orthonormal basis, the inner product between two coherent
states is

〈
α

∣
∣ γ

〉
=

∞∑

m,n=0

αm√
m!

γn√
n!
δm,n =

∞∑

n=0

1
n!(αγ)n = eαγ

For general X , there is a similar coherent state |α 〉 for each |X |–component complex
vector α ∈ C|X|. The inner product between two such coherent states is

〈
α

∣
∣ γ

〉
= e

R

dy α(y) γ(y)

1.4.3 The Main Ingredients – Approximate Resolution of the Identity

One of our main tools is going to be the analog for coherent states of the identity that
for any orthonormal basis

1lv =
∑

n

(en, v) en

Formally, the corresponding statement for coherent states is

1l =

∫
∏

x∈X

[
dα∗(x)∧dα(x)

2πı

]

e−
R

dy |α(y)|2 |α 〉 〈α |

where |α 〉 〈α | is the linear operator that maps v ∈ F to the inner product of v and
|α 〉 times the vector |α 〉. The integral “sums” over all possible coherent states and

the exponential e−
R

dy |α(y)|2 = 1
‖|α 〉‖2 turns the coherent states into unit vectors.

Here is a rigorous version of the resolution of the identity for coherent states.

Theorem 1.15 For each r > 0, let

Ir =
∏

x∈X

[ ∫

|α(x)|<r

dα∗(x)∧dα(x)
2πı

]

e−
R

dy |α(y)|2 |α 〉 〈α | (1.44)

Then

(a) 0 < Ir < 1l.

(b) Ir commutes with N .

(c) The operator norm of Ir is bounded by one for all r and, for each vector v ∈ F ,
Irv converges to v as r →∞. That is, Ir convergences strongly to 1l.

(d) For all n and r, the operator norms

∥
∥(1l− Ir) � Fn

∥
∥ ≤ |X | 2n+1 e−r

2/2
∥
∥Ir � Fn

∥
∥ ≤ 1

n!

(
|X |r2

)n

Remark 1.16 Observe, from part (d), that if n
r2 � 1 then Ir � Fn ≈ 1l while if

n
r2 � 1, then Ir � Fn ≈ 0 (use that n! ≈ nn). So we can think of Ir as being, very

roughly, projection onto
⊕r2

n=0 Fn.
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Proof We first observe that when you apply the operator e−
R

dy |α(y)|2 |α 〉 〈α | to
some vector v, the resulting vector is of norm at most 1

‖|α 〉‖2 ‖ |α 〉 ‖ ‖ |α 〉 ‖ ‖v‖ ≤ ‖v‖.
So integrand of the right hand side of (1.44) is of operator norm at most one. As it is
also continuous in α and the domain of integration is of finite volume, the right hand
side of (1.44) is obviously well–defined.

The proof is easy once one has an orthonormal basis of eigenvectors for Ir — and
it is easy to just guess such a basis. Again, to simplify the notation, I’ll just give the
proof for |X | = 1. Then

F =
∞⊕

n=0

Fn with Fn = C

and
{
em = 1 ∈ C = Fm

∣
∣ m = 0, 1, 2, 3, · · ·

}
is an orthonormal basis for F . If part

(b) of the Theorem is true, then each of the Fm’s, which has basis {em}, will be left
invariant by Ir. So each em will be an eigenvector. To verify that this is indeed the
case, and to find the corresponding eigenvalues, we compute Irem.

Recall that

|α 〉 =

∞∑

n=0

1√
n!
αnen

So

Irem =

∫

|α|<r
dᾱ∧dα

2πı e−|α|
2 |α 〉

〈
α

∣
∣ em

〉
=

∫

|α|<r
dᾱ∧dα

2πı e−|α|
2 |α 〉 1√

m!
ᾱm

=

∞∑

n=0

1√
n!
√
m!

en

∫

|α|<r
dᾱ∧dα

2πı e−|α|
2

ᾱmαn

Now switch to polar coordinates. That is, make the change of variables α = ρeiθ.
Recalling that if z = x+ iy, then dz̄∧dz

2πi = dx∧dy
π ,

Irem =

∞∑

n=0

1√
n!
√
m!

en

∫ 2π

0

dθ

∫ r

0

dρ 1
π e
−ρ2ρm+n+1eiθ(n−m)

= 1
m! em

∫ r

0

dρ 2e−ρ
2

ρ2m+1 = 1
m! em

∫ r2

0

dt e−ttm where t = ρ2

=

{

1− 1
m!

∫ ∞

r2
e−ttm dt

}

em

This tells us that each em is an eigenvector of Ir with eigenvalue 1− 1
m!

∫∞
r2
e−ttm dt,

which is always between 0 and 1 and which tends to zero as r → ∞. Parts (a), (b)
and (c) follow. For part (d) , just bound

1
n!

∫ ∞

r2
e−ttn dt = 2n

∫ ∞

r2
e−t 1

n!

(
t
2

)n
dt ≤ 2n

∫ ∞

r2
e−tet/2 dt = 2n+1 e−r

2/2

and

1
n!

∫ r2

0

e−ttn dt ≤ 1
n!r

2n

∫ ∞

0

e−t dt = 1
n!r

2n

2
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1.4.4 The Main Ingredients – Trace

Formally, the analog of

TrB =
∑

n

(en, Ben)

for coherent states is

TrB =

∫
∏

x∈X

[
dα∗(x) dα(x)

2πı

]

e−
R

dy |α(y)|2 〈α |B | α 〉

Our next main tool for the proof is the following rigorous version of that formula.

Proposition 1.17 Let B be a bounded operator on F . For all r > 0, BIr is trace
class and

TrBIr =
∏

x∈X

[ ∫

|α(x)|<r

dα∗(x) dα(x)
2πı

]

e−
R

dy |α(y)|2 〈α |B | α 〉

Proof As usual, I’ll just give the proof for |X | = 1.
Recall that, by definition, BIr is trace class when the eigenvalues of the operator

square root of IrB
∗BIr (all of which are nonnegative) are summable. There is a theorem

which says that a product of a trace class operator (in our case Ir) and a bounded
operator (in our case B) is trace class. In our case, we can also easily check directly that
BIr is trace class. Here is the argument. By the min–max principle (Reed and Simon,
1978, Theorem XIII.1, with H = −IrB∗BIr) the (n + 1)st eigenvalue of IrB

∗BIr,
counting from largest to smallest, is

inf
ϕ1,···ϕn∈F

sup
ψ∈F, ‖ψ‖=1
ψ⊥ϕ1,··· ,ϕn

〈ψ | IrB∗BIr | ψ 〉 ≤ sup
ψ∈⊕m≥nFm

‖ψ‖=1

〈ψ | IrB∗BIr | ψ 〉

≤ ‖B‖2 sup
m≥n

(
1
m!r

2m
)2

by part (d) of Theorem 1.15. Hence the (n + 1)st eigenvalue of the operator square
root, again counting from largest to smallest, is at most ‖B‖ supm≥n

1
m!r

2m and this
is clearly summable over n.

So BIr is trace class and the trace itself is

Tr BIr =
∑

m

〈 em |BIr | em 〉

=
∑

m

∫

|α|<r
dᾱ∧dα

2πı e−|α|
2 〈 em |B |α 〉

〈
α

∣
∣ em

〉

=

∫

|α|<r
dᾱ∧dα

2πı e−|α|
2 ∑

m

〈
α

∣
∣em

〉
〈 em |B | α 〉

=

∫

|α|<r
dᾱ∧dα

2πı e−|α|
2 〈α |B | α 〉



Functional Integrals � �

Moving the sum over m inside the integral is justified by the Lebesgue dominated
convergence theorem, since

∑

m

∣
∣
〈
α

∣
∣ em

〉
〈 em |B |α 〉

∣
∣ ≤ ‖ |α 〉 ‖ ‖B |α 〉 ‖ ≤ ‖B‖e|α|2

2

1.4.5 Consolidation – Where We Are Now

Combining Theorem 1.15 and Proposition 1.17, we now have

Lemma 1.18 Assume that lim
p→∞

p e−
1
2 R(p)2 = 0. Then

Tr e−β(H−µN) = lim
p→∞

∏

x∈X
τ∈Tp

[ ∫

|ατ (x)|<R(p)

dα∗
τ (x) dατ (x)

2πı e−|ατ (x)|2
] ∏

τ∈Tp

〈

ατ− βp

∣
∣
∣ e−

β
p (H−µN)

∣
∣
∣ ατ

〉

Proof By Theorem 1.15,

Tr e−β(H−µN) = Tr
∏

τ∈Tpe
−βp (H−µN)1l = lim

p→∞
Tr

∏

τ∈Tpe
−βp (H−µN)IR(p)

To justify the last step

• Let ε > 0.

• Denote by Pn the orthogonal projector onto ⊕nm=0Fn. Use Lemma 1.13 to select
an n ∈ N, independent of p, such that
∣
∣
∣ Tr (1l− Pn)

∏

τ∈Tpe
−βp (H−µN)1l

∣
∣
∣ < ε

4

∣
∣
∣ Tr (1l− Pn)

∏

τ∈Tpe
− βp (H−µN)IR(p)

∣
∣
∣ < ε

4

• Express

Pn
∏

τ∈Tpe
−βp (H−µN)1l− Pn

∏

τ∈Tpe
−βp (H−µN)IR(p)

as the telescoping sum over 1 ≤ ` ≤ p of

Pn
∏

τ∈Tpe
−βp (H−µN)I`τ with I`τ =







1l if τ < `βp
1l− IR(p) if τ = `βp
IR(p) if τ > `βp

• By Lemma 1.13 and part (d) of Theorem 1.15, the trace of each of the p terms
in the telescoping sum is bounded by a constant C, which depends on |X | and n,

times e−R(p)2/2.

• Finally, by hypothesis, if p is sufficiently large then Cpe−R(p)2/2 < ε
2 .

It now suffices to substitute in the definition (1.44) of Ir and apply Proposition 1.17.

2
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1.4.6 The Main Ingredients – Perturbation Theory

Lemma 1.18 has given us a functional integral representation for the partition function,
but has not told us very much about what the integrand looks like. The next step is
to exploit the fact that β

p is very small when p is large to help us understand what
〈

ατ−βp

∣
∣
∣ e−

β
p (H−µN)

∣
∣
∣ ατ

〉

looks like.

Proposition 1.19 There are constants C, c such that the following holds. For each
ε > 0, there is an analytic function F (ε, α∗, β) such that

〈

α
∣
∣
∣ e−ε(H−µN)

∣
∣
∣ β

〉

= eF (ε,α∗,β)

on the domain ‖α‖∞, ‖β‖∞ < C 1√
ε
, where, as usual ‖α‖∞ = maxx∈X |α(x)|. Write

F (ε, α∗, β) =

∫

X

dx α(x)∗β(x) − εK(α∗, β) + F0(ε, α∗, β)

where K(α∗, β) was defined in (1.3). Then

|F0(ε, α∗, β)| ≤ c ε2(Φ2 + ‖v‖21,∞Φ6)

for all 0 < ε ≤ 1 and ‖α‖∞, ‖β‖∞ ≤ Φ ≤ 1
2C

1√
ε
.

Idea of Proof
〈
α

∣
∣ e−ε(H−µN)

∣
∣ β

〉
is an entire function of α∗ and β and a C∞

function of ε for ε ≥ 0. (Just plug in the definitions (1.41) of |α 〉 and |β 〉 in terms
of the standard basis and use that the operator norm of e−ε(H−µN)(H − µN)m re-
stricted to Fn is bounded by a constant times (n + 1)m for all integers m,n ≥ 0 and
ε ≥ 0.) But

〈
α

∣
∣ e−ε(H−µN)

∣
∣ β

〉
can take the value zero (see (Balaban et al., 2008a,

Example 3.12)), so its logarithm need not be everywhere defined. Since
〈
α

∣
∣β

〉
=

e
R

α∗(x)β(x)dx 6= 0, continuity implies that the matrix element has the representation
〈

α
∣
∣
∣ e−ε(H−µN)

∣
∣
∣ β

〉

= eF (ε,α∗,β) (1.45)

in some neighbourhood of 0, with F (ε, α∗, β) is analytic in α∗, β. But is the neigh-
bourhood big enough and what can we say about F ? To go further, differentiate (1.45)
with respect to ε to give

eF (ε,α∗,β) ∂F
∂ε (ε, α∗, β) = −

〈

α
∣
∣
∣ (H − µN)e−ε(H−µN)

∣
∣
∣ β

〉

Now, downstairs on the right hand side, substitute in the definitions of H and N in
terms of the annihilation and creation operators ψ(x) and ψ†(x) (see (1.38)) and use

ψ(x) |α 〉 = α(x) |α 〉 ψ†(x) |α 〉 = ∂
∂α(x) |α 〉

This gives us the differential equation

∂
∂εF = −K(α∗, ∂∂α∗ )F −

∫∫

X

dxdy α(x)∗α(y)∗ v(x,y) ∂ F
∂α(x)∗

∂ F
∂α(y)∗
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where

K(α∗, ∂∂α∗ ) =

∫∫

X

dxdy α(x)∗ h(x,y) ∂∂α(y)∗ − µ
∫

X

dx α(x)∗ ∂∂α(x)∗

+

∫∫

X

dxdy α(x)∗α(y)∗ v(x,y) ∂∂α(x)∗
∂
∂α(y)∗

The details are in (Balaban et al., 2008a, Lemma 3.8)). As F also satisfies the initial
condition

F (0, α∗, β) = ln
〈
α

∣
∣β

〉
=

∫

X

dxα(x)∗β(x)

we now have a first order initial value problem for F , viewed as a function of ε. It
is tedious but straight forward to convert this into a system of integral equations for
coefficients in the Taylor expansion of F (ε, α∗, β) in powers of α∗ and β. (See (Balaban
et al., 2008a, Lemma 3.9).) The system can be solved and bounded by iteration. The
details are in (Balaban et al., 2008a, Lemmas 3.8 and 3.9 and Proposition 3.6). 2

1.4.7 Finishing off the Proof of Theorem 1.14

So we now have

Tr e−β (H−µN) = lim
p→∞

∫

dµp,R(p)(α
∗, α)

∏

τ∈Tp
e
−

R

dy [α∗
τ (y)−α∗

τ−εp
(y)]ατ (y)

e
−εpK(α∗

τ−εp
,ατ )

∏

τ∈Tp
e
−F0(εp,α

∗
τ−εp

,ατ )

and we just have to show that discarding the F0’s does not affect the value of the
p→∞ limit. Before I outline the argument that this is the case, I’ll make two remarks;

• If the functional integral representation is going to be used as a starting point
for a renormalization group construction, it may not be necessary to show that
discarding the F0’s does not affect the value of the p → ∞ limit. The bound on
F0 provided by Proposition 1.19 may be adequate in itself.

• Observe that the sum ∑

τ∈Tp
F0(εp, α

∗
τ−εp, ατ )

has p terms and that each term is of order ε2 = 1
p2 . So the sum is of order 1

p .
This is a first hint that these terms disappear in the limit p → ∞. But it does
not prove anything, since the volume of the domain of integration is growing like
R(p)2|X|p. (The order ε2 in the bound of Proposition 1.19 is also multiplied by a
Φ6 ≤ R(p)6, but it grows relatively slowly with p.)

Now here is an outline of the argument that we may discard the F0’s. The details are
in (Balaban et al., 2008a). Let r > 0. Define, for I : C2|X| → C, the seminorm

‖I‖r = sup
α,φ∈CX

|α|X,|φ|X≤r

|I(α, φ)|
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and, for I,J : C2|X| → C, with ‖I‖r, ‖J ‖r <∞, the “r–product” of I,J

(I ∗r J )(α, γ) =

∫

I(α, φ)J (φ, γ) dµr(φ
∗, φ)

where
dµr(φ

∗, φ) =
∏

x∈X

[
dφ∗(x)∧dφ(x)

2πı χ(|φ(x)| < r)
]

The qth power with respect to this product is denoted

I∗r q =

q factors
︷ ︸︸ ︷

I ∗r I ∗r · · · ∗r I
For each ε > 0, set

Iε(α, φ) = e−
1
2‖α‖

2− 1
2‖φ‖

2

eF (ε,α∗,φ) = e−
1
2‖α‖

2− 1
2‖φ‖

2
〈

α
∣
∣
∣ e−ε(H−µN)

∣
∣
∣ φ

〉

Ĩε(α, φ) = e−
1
2‖α‖

2− 1
2‖φ‖

2

eF (ε,α∗,φ)−F0(ε,α∗,φ)

= exp
{

− 1
2‖α‖2 − 1

2‖φ‖2 +

∫

dx α∗(x)φ(x) − εK(α∗, φ)
}

Lemma 1.18 and Proposition 1.19 state that, for R(p) obeying lim
p→∞

pe−
1
2 R(p)2 = 0,

Tr e−βK = lim
p→∞

∫

dµr(φ
∗, φ) I∗rpε (φ, φ)

∣
∣
∣
r=R(p)
ε=β/p

and we would like to have

Tr e−βK = lim
p→∞

∫

dµr(φ
∗, φ) Ĩ∗rpε (φ, φ)

∣
∣
∣
r=R(p)
ε=β/p

instead. By Lemma 1.13, the operatorH−µN is bounded below. SayH−µN ≥ −K01l.
Then, for any q ∈ N,

I∗r qε (α, φ) = e−
1
2 ‖α‖2− 1

2‖φ‖2
〈

α
∣
∣
∣

(
e−εKIr

)q−1
e−εK

∣
∣
∣ φ

〉

implies that

‖I∗r qε ‖r ≤ e−
1
2 ‖α‖2− 1

2‖φ‖2‖α‖
(
eεK0‖Ir‖

)q−1
eεK0‖φ‖ = eqεK0‖Ir‖q−1 ≤ eqεK0

for all r > 0, by part (c) of Theorem 1.15. The difference

‖Iε − Ĩε‖r = sup
|α|X ,|φ|X≤r

∣
∣
∣e
− 1

2‖α‖
2− 1

2‖φ‖
2 〈
α

∣
∣ e−εK

∣
∣ φ

〉 [
1− e−F0(ε,α∗,φ)

]
∣
∣
∣

≤ eεK0 sup
|α|X ,|φ|X≤r

∣
∣
∣

[
1− e−F0(ε,α∗,φ)

]
∣
∣
∣

≤ eεK0 constε2r6|X | econstε2r6|X|

by Proposition 1.19 (assuming that 1 ≤ r ≤ const√
ε

). The following proposition is,

naturally, proven by induction in (Balaban et al., 2008a, Proposition 3.16).
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Proposition 1.20 Let K0, ε, ζ > 0 and 0 < κ < 1 and r, Cβ ≥ 1 obey

Cβ
(
πr2

)3|X|
ζ1−κ ≤ ε

Let I, Ĩ : C2|X| → C obey

‖I − Ĩ‖r ≤ ζ ‖I∗r q‖r ≤ eqεK0 for all q ∈ N

Then, for all q ∈ N with q ≤ Cβ
ε ,

‖Ĩ∗r q‖r ≤ eqε(K0+ζκ)

‖Ĩ∗r q − I∗r q‖r ≤ ζκeqε(K0+ζκ)

∫

dµr(φ
∗, φ)

∣
∣
∣Ĩ∗r q(φ, φ)− I∗r q(φ, φ)

∣
∣
∣ ≤ ζκeqε(K0+ζκ)

It now suffices to apply Proposition 1.20 with ζ = ε3/2, r = R(p), p = β
ε , κ = 1

12 and
Cβ = β. Since

Cβ
(
πr2

)3|X|
ζ1−κ = β

(
πR(βε )

2)3|X|
ε

33
24 ≤ ε if R(p) < p

1
24|X| and ε is small enough

eεK0 constε2R(βε )
6|X | econstε2R( βε )

6|X| ≤ ε 3
2 if R(p) < p

1
24 and ε is small enough

the hypotheses of Proposition 1.20 are satisfied.

1.4.8 Cylinder Set Measures

There are other rigorous functional integral representations used in quantum mechan-
ics, quantum field theory and condensed matter physics. Probably the most elegant
and powerful class of such representations use cylinder set measures. Cylinder set mea-
sures refer to measures on infinite dimensional vector spaces that are built by taking a
limit of a collection of probability measures defined on finite dimensional subspaces of
the vector space. The measures on the different subspaces have to be consistent with
each other in a natural sense that I will now explain. Let I be a countable set and
take as our vectors space

R
I =

{
~x = (xi)i∈I

∣
∣ xi ∈ R for all i ∈ I

}

For each finite subset I ⊂ I define the subspace RI of RI by

R
I =

{
(xi)i∈I ∈ R

I ∣
∣ xi = 0 for all i ∈ I \ I

}

and define the natural projection PI : RI → RI by

(
PI~x

)

j
=

{

xj if j ∈ I
0 if j ∈ I \ I
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Suppose that we are given, for each finite I ⊂ I, a probability measure µI on RI . This
family of measures is said to be consistent if for each pair of finite subsets I, I ′ ⊂ I
obeying I ⊂ I ′ and for each measurable A ⊂ RI , we have

µI′
({

~x ∈ R
I′

∣
∣ PI~x ∈ A

})
= µI(A)

The theorem that “takes the limit” is

Theorem 1.21 (Kolmogorov’s Theorem) Let I be a countable set and let a probability
measure µI on RI be given for each finite set I ⊂ I so that the family of µI ’s are
consistent. Then there are a probability measure space (X,F , µ) and random variables
{
fα

}

α∈I so that µI is the joint probability distribution of
{
fα

}

α∈I . That is

µI(A) = µ
({

x ∈ X
∣
∣ PI

(
fα(x)

)

α∈I ∈ A
})

for all measurable A ⊂ RI . Moreover this space is unique in the sense that if (X ′,F ′, µ′)
and

{
f ′α

}

α∈I also have these properties and if F (and respectively, F ′) is the smallest

σ–field which respect to which the fα (respectively f ′α) are measurable, then there is an
isomorphism of the probability measure spaces under which each fα corresponds to f ′α.

A very convenient tool for constructing cylinder measures is (Minlos, 1959)

Theorem 1.22 (Minlos’ Theorem) A necessary and sufficient condition for a function
Φ : S(Rν)→ C to be the Fourier transform

Φ(ϕ) =

∫

eiT (ϕ) dµ(T )

of a cylinder set probability measure µ on S ′(Rν) is that Φ(0) = 1, Φ be positive definite
and Φ be continuous in the Fréchet topology on S(Rν).

Here

• S(Rν) is Schwartz space, the space of all C∞ functions on Rν all of whose deriva-
tives decay faster than any polynomial at infinity,

• S ′(Rν) is the space of tempered distributions, the space of all continuous linear
functions on S(Rν),

• a cylinder set measure on S ′(Rν) is a measure on the σ–field generated by the
functions

{
T 7→ T (ϕ)

∣
∣ ϕ ∈ S(Rν)

}

• Φ : S(Rν) → C is positive definite if
∑n
i,j=1 zizjΦ(ϕi − ϕj) ≥ 0 for all n ∈ N,

z1, · · · , zn ∈ C and ϕ1, · · · , ϕn ∈ S(Rn)

For an expositions on cylinder set measures, see (Gel’fand and Vilenkin, 1968; Si-
mon, 2005). For applications of cylinder set measures to Brownian motion and Wiener
processes, see (Nelson, 1964, Appendix A) and (Durrett, 2010). For applications of
cylinder set measures to Schrödinger operators, see (Simon, 2005). For applications
of cylinder set measures to field theory and statistical mechanics, see (Ginibre, 1971;
Fröhlich, 1974; Feldman and Osterwalder, 1976; Glimm and Jaffe, 1987).
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1.4.9 A Warning About Complex Measures

It is critical that cylinder measures are (real–valued) probability measures. The point is
that complex measures must have finite total mass. (When you compute the measure of
a complicated set by cutting it up into countable many disjoint sets and adding up the
measures of the pieces, it is important that it not matter what order you do the sum in.
And that is the case only if the sum is absolutely convergent.) That dramatically limits
the class of complex measures on infinite dimensional vector spaces. In particular, in
our case, the exponent A(α∗, α) is complex and as a result, eA(α∗,α) oscillates wildly.

In contrast to Wiener measure, 1
const

∏ dα∗
τ (x)∧dατ (x)

2πi epart ofA(α∗,α) cannot be turned
into an ordinary well–defined complex measure on some space of paths.

Here is a well–known example, due to Cameron (Cameron, 1960; Cameron, 1963),
that illustrates the phenomenon. Let

[
Cij

]

i,j∈N
be a “matrix” with infinitely many

rows and columns. Assume that C has real entries, is symmetric and is strictly positive
definite in the sense that

∑

i,j αiCi,jαj > 0 for all nonzero, real “vectors”
[
αi

]

i∈N

having only finitely many nonzero components. A simple example of such a matrix is
the identity matrix

δi,j =

{

1 if i = j

0 if i 6= j

Another example is −∆i,j +m2δi,j where ∆i,j is the discrete Laplacian on Z3 and i, j
refers to some arbitrary ordering of the points in Z

3. Fix some σ ∈ C with Reσ > 0.
Consider, for each n ∈ N, the measure

dµn(~α) =
e−

1
2σ~α·C~α dn~α

∫

Rn
e−

1
2σ~α·C~α dn~α

on Rn. Here, in computing ~α · C~α, set αj = 0 for all j > n. If σ is real, this is
a legitimate probability measure. If, in addition, C is diagonal it is trivial to apply
Kolmogorov’s Theorem and create a cylinder set measure. (For many other C’s you
can also create a cylinder set measures, with more work.) If Imσ 6= 0, µn is still a
legitimate (complex) measure on R

n and is still normalized so that
∫

Rn
dµn(~α) = 1.

In particular, if we write Cn =
[
Cij

]

1≤i,j≤n, then, by making an orthogonal change of

variables so as to diagonalize Cn, it is easy to see that

∫

Rn

e−
1
2σ~α·C~α dn~α =

[(
π
σ

)n 1
detCn

]1/2 6= 0

(We aren’t going to care which square root is used.) The total mass of µn is

∫

Rn

∣
∣dµn(~α)

∣
∣ =

∫

Rn

∣
∣e−

1
2 (σ~α·C~α∣

∣ dn~α
∣
∣
∫

Rn
e−

1
2σ~α·C~α dn~α

∣
∣

=

∫

Rn
e−

1
2 (Reσ)~α·C~α dn~α

∣
∣
∫

Rn
e−

1
2σ~α·C~α dn~α

∣
∣

=
{ |σ|

Reσ

}n/2

Since Imσ 6= 0, this tends to infinity as n→∞ and we can’t get a legitimate complex
measure in the limit n→∞. Another model computation of this type which is closer
to the integral of Theorem 1.14 is given in (Balaban et al., 2008a, Appendix A).
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1.4.10 Grassmann Integrals

Another class of functional integrals are Grassmann integrals. They are often used
in fermionic models. Grassmann integrals are certain linear functionals defined on
Grassmann algebras, which are a particularly simple class of algebras. The reason
that the linear functionals are called “integrals” is that they have, up to signs, all of
the usual algebraic properties of integrals, including, for example, integration by parts.
For discussions of Grassmann integrals, see (Berezin, 1966; Feldman et al., 2002) and
(Salmhofer, 1999, Appendix B).

1.5 A Simple High Temperature Expansion

High temperature expansions are extremely widely used tools in rigorous treatments
of quantum field theories and statistical mechanical systems (and not just at high
temperatures). This section is concerned with a very simple example of such an ex-
pansion. There are many other high temperature expansions. At the end of this section,
I’ll mention some others and give some references.

1.5.1 Motivation – A Renormalization Group Construction Protocol

Here is a cartoon description of a commonly used procedure for constructing and ana-
lyzing quantum field theories and models in condensed matter physics and statistical
mechanics.

• Express the quantities of interest as functional integrals like

G(Ψ) = ln

∫
eA(Ψ,Φ) dµ(Φ)

∫
eA(0,Φ) dµ(Φ)

• Factor the measure dµ(Φ) =
∏∞
`=1dµ`(ϕ`) to express

G(Ψ) = ln

∫
eA(Ψ,ϕ1,ϕ2,··· ) ∏∞

`=1dµ`(ϕ`)∫
eA(0,ϕ1,ϕ2,··· )

∏∞
`=1dµ`(ϕ`)

• Do the integrals one at a time. Define the “effective action at scale n” by

An(Ψ, ϕn+1, ϕn+2, · · · ) = ln

∫
eA(Ψ,ϕ1,ϕ2,··· ) ∏n

`=1dµ`(ϕ`)∫
eA(0,ϕ1,··· ,ϕn,0,··· )

∏n
`=1dµ`(ϕ`)

Then

An(ψ) = ln

∫
eAn−1(ψ,ϕ) dµn(ϕ)

∫
eAn−1(0,ϕ) dµn(ϕ)

(1.46)

where ϕ = ϕn and ψ = (Ψ, ϕn+1, ϕn+2, · · · ).
The decimation procedure of Sections 1.2 and 1.3 was like this. To be able to implement
such a procedure, you have to be able to prove bounds on integrals like in (1.46). In
this section, we’ll derive such bounds.
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1.5.2 The Main Theorem

Let X(= space) be a finite set. Let dµ0(z) be a normalized measure on C that is
supported in |z| ≤ r for some constant r. We endow CX with the ultralocal product
measure

dµ(ϕ) =
∏

x∈Xdµ0

(
ϕ(x)

)

Theorem Let w and W be weight systems for 1 and 2 fields, respectively, that obey

W (~x, ~y) ≥ (4r)n(~y)w(~x)

Let F : C|X|×C|X| → C be analytic on a neighbourhood of the origin. If F (ψ, ϕ) obeys
‖F‖W < 1

16 , then there is an analytic function f(ψ) such that

∫
eF (ψ,ϕ) dµ(ϕ)

∫
eF (0,ϕ) dµ(ϕ)

= ef(ψ) and ‖f‖w ≤ ‖F‖W
1−16‖F‖W

(I’ll fill in the missing definitions later and then restate the Theorem and call it The-
orem 1.29.)

1.5.3 Outline of the Proof – Algebra

We’ll first do some algebra and end up with an explicit (but messy) formula for f(ψ)
in terms of F (ψ, ϕ). After that we’ll introduce the norms and do the bounds which
show that the formula makes sense and that the Theorem is true. We use the notation

x ∈ X = space, a finite set

~x ∈ X = multispace =
⋃

n≥0

Xn =
{

(x1, · · · ,xn) ∈ Xn
∣
∣ n ≥ 0

}

and, for ~x = (x1, · · · ,xn) ∈ Xn, ~y = (y1, · · · ,ym) ∈ Xm and ϕ : X → C,

n(~x) = n

~x ◦ ~y =
(
x1, · · · ,xn,y1, · · · ,ym) ∈ Xn+m

ϕ(~x) = ϕ(x1)ϕ(x2) · · ·ϕ(xn)

supp(~x) = {x1, · · · ,xn} ⊂ X

By hypothesis, F : C|X| × C|X| → C is analytic on a neighbourhood of the origin.
We shall end up showing that f : C|X| → C is analytic too. So there are unique
expansions

F (ψ, ϕ) =
∑

~x,~y∈X
A(~x, ~y) ψ(~x)ϕ(~y) f(ψ) =

∑

~x∈X
a(~x) ψ(~x) (1.47)

with A(~x, ~y), a(~x) invariant under permutations of the components of ~x and under
permutations of the components of ~y. We are about to do an integral over ϕ. Hide the
ψ dependence of F by setting
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α(~y) =
∑

~x∈X
A(~x, ~y) ψ(~x)

With this notation

F (ψ, ϕ) =
∑

~y∈X
α(~y) ϕ(~y)

By factoring eF (ψ,0) out of the integral in the numerator of (1.32) and eF (0,0) out of
the integral in the denominator of (1.32) and moving F (ψ, 0)− F (0, 0) into f(ψ), we
may assume that F (ψ, 0) = 0. (Check yourself that the bound is preserved by this
operation.) Expand the exponential to give

eF (ψ,ϕ) =

∞∑

`=0

1
`!F (ψ, ϕ)` = 1 +

∞∑

`=1

1
`!

∑

~y1,··· ,~y`∈X
α(~y1) · · ·α(~y`) ϕ(~y1) · · ·ϕ(~y`) (1.48)

The decay properties of the coefficients a(~x) in (1.47) are extremely important.
Those coefficients are going to built out of products like A(~x1, ~y1) · · ·A(~x`, ~y`) with
~x = (~x1, · · · , ~x`). We are told (it is built into the norm ‖ · ‖W ) that A(~x, ~y) decays
as the components of (~x, ~y) are separated. But that does not in general imply that
A(~x1, ~y1) · · ·A(~x`, ~y`) decays as the components of ~x = (~x1, · · · , ~x`) are separated.
But if we know in addition, for example, that, for each 1 ≤ j ≤ ` − 1, ~yj has a
component that is equal to some component of ~yj+1, then A(~x1, ~y1) · · ·A(~x`, ~y`) does
decay as the components of ~x = (~x1, · · · , ~x`) are separated.

We now built some machinery to keep track of such component overlaps. Define
the incidence graph G(~y1, · · · , ~y`) to be the labelled graph with

• vertices {1, · · · , `} and

• an edge between i 6= j when supp ~yi ∩ supp ~yj 6= ∅.
For a subset of Z ⊂ X , denote by C(Z) the set of all ordered tuples (~y1, · · · , ~yn) such
that

• Z = supp ~y1 ∪ · · · ∪ supp ~yn.

• G(~y1, · · · , ~yn) is connected.

We call such a tuple a connected cover of Z. Now reorganize the `th term of (1.48)
according to the supports of the connected components of G(~y1, · · · , ~y`).

∑

~y1,··· ,~y`∈X
α(~y1) · · ·α(~y`) ϕ(~y1) · · ·ϕ(~y`)

=
∑̀

n=1

1
n!

∑

Z1,··· ,Zn⊂X
pairwise disjoint

nonempty

∑

I1∪···∪In={1,··· ,`}
I1,··· ,In pairwise disjoint

∑

~y1,··· ,~y`
(~yi)i∈Ij

∈C(Zj )

α(~y1) · · ·α(~y`) ϕ(~y1) · · ·ϕ(~y`)

(1.49)

Fix, for the moment, pairwise disjoint nonempty subsets Z1, · · · , Zn of X and ` ≥ n.
Then
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∑

I1∪···∪In={1,··· ,`}
I1,··· ,In disjoint

∑

~y1,··· ,~y`
(~yi, i∈Ij )∈C(Zj )

α(~y1) · · ·α(~y`) ϕ(~y1) · · ·ϕ(~y`)

=
∑

k1,··· ,kn≥1
k1+···+kn=`

∑

I1,··· ,In⊂{1,··· ,`}
I1,··· ,In disjoint

|Ij |=kj

∑

~y1,··· ,~y`
(~yi, i∈Ij )∈C(Zj )

α(~y1) · · ·α(~y`) ϕ(~y1) · · ·ϕ(~y`)

=
∑

k1,··· ,kn≥1
k1+···+kn=`

`!
k1!···kn!

∑

(~y1,··· ,~yk1
)∈C(Z1)

...
(~y`−kn+1,··· ,~y`)∈C(Zn)

α(~y1) · · ·α(~y`) ϕ(~y1) · · ·ϕ(~y`)

(1.50)

As the measure µ factorizes with each factor normalized, and the different Zj ’s are
disjoint,

∫

ϕ(~y1) · · ·ϕ(~y`) dµ(ϕ) =

n∏

j=1

∫

ϕ(~ypj−1+1) · · ·ϕ(~ypj ) dµ(ϕ) (1.51)

(where p0 = 0 and, for 1 ≤ j ≤ n, pj = k1 + · · ·+ kj).
Substituting (1.50) into (1.49) and then (1.49) into (1.48) and then integrating and

applying (1.51) gives

∫

eF (ψ,ϕ) dµ(ϕ) = 1 +

∞∑

`=1

1
`!

∑̀

n=1

1
n!

∑

Z1,··· ,Zn⊂X
pairwise disjoint

nonempty

∑

k1,··· ,kn≥1
k1+···+kn=`

`!
k1!···kn! · · ·

= 1 +

∞∑

n=1

∞∑

`=n

1
n!

∑

Z1,··· ,Zn⊂X
pairwise disjoint

nonempty

∑

k1,··· ,kn≥1
k1+···+kn=`

1
k1!···kn! · · ·

= 1 +
∞∑

n=1

1
n!

∑

Z1,··· ,Zn⊂X
pairwise disjoint

nonempty

∑

k1,··· ,kn≥1

1
k1!···kn! · · ·

so that
∫

eF (ψ,ϕ) dµ(ϕ) = 1 +

∞∑

n=1

1
n!

∑

Z1,··· ,Zn⊂X
pairwise disjoint

n∏

j=1

Φ(Zj) (1.52)

where, for ∅ 6= Z ⊂ X ,

Φ(Z) =

∞∑

k=1

1
k!

∑

(~y1,··· ,~yk)∈C(Z)

α(~y1) · · ·α(~yk)

∫

ϕ(~y1) · · ·ϕ(~yk) dµ(ϕ) (1.53)

and Φ(∅) = 0.
We next rewrite (1.52) so that it looks like “the sum of the values of all Feynman

diagrams”. We do this so that we can use the standard fact that “the logarithm of the
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sum of the values of all Feynman diagrams is the sum of the values of all connected
Feynman diagrams”. If we define

ζ(Z,Z ′) =

{

0 if Z ∩ Z ′ 6= ∅
1 if Z and Z ′ are disjoint

and Gn =
{
{i, j} ⊂ N2

∣
∣ 1 ≤ i < j ≤ n

}
is the complete graph on {1, · · · , n}, then

∫

eF (ψ,ϕ) dµ(ϕ) = 1 +

∞∑

n=1

1
n!

∑

Z1,··· ,Zn⊂X

∏

{i,j}∈Gn
ζ(Zi, Zj)

n∏

j=1

Φ(Zj)

= 1 +

∞∑

n=1

1
n!

∑

Z1,··· ,Zn

(
∑

g⊂Gn

∏

{i,j}∈g

(
ζ(Zi, Zj)− 1

)
) n∏

j=1

Φ(Zj)

= 1 +

∞∑

n=1

1
n!

∑

Z1,··· ,Zn⊂X
ρ(Z1, · · · , Zn)

n∏

j=1

Φ(Zj)

where

ρ(Z1, · · · , Zn) =







1 if n = 1
∑

g⊂Gn

∏

{i,j}∈g

(
ζ(Zi, Zj)−1

)
if n ≥ 2

Define

ρT (Z1, · · · , Zn) =







1 if n = 1
∑

g∈Cn

∏

{i,j}∈g

(
ζ(Zi, Zj)− 1

)
if n ≥ 2

where Cn is the set of connected subgraphs of Gn. By a standard argument, outlined
in the motivation below,

ln

∫

eF (ψ,ϕ)dµ =
∞∑

n=1

1
n!

∑

Z1,··· ,Zn⊂X
ρT (Z1, · · · , Zn)

∏n
j=1Φ(Zj) (1.54)

(By “ln” we just mean that the exponential of the right hand side is
∫
eF (ψ, ϕ) dµ.)

Motivation Define the value of the graph g ⊂ Gn to be

Val(g) =







∑

Z⊂X
Φ(Z) if n = 1

∑

Z1,··· ,Zn

∏

{i,j}∈g
C(Zi, Zj)

n∏

j=1

Φ(Zj) if n > 1

where C(Zi, Zj) = ζ(Zi, Zj) − 1. If the connected components of g ∈ Gn are g1, · · · ,
gm, then

Val(g) =
m∏

j=1

Val(gm)
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Directly from the definitions,

∫

eF (ψ,ϕ)dµ = 1 +

∞∑

n=1

1
n!

∑

g⊂Gn
Val(g) (1.55)

On the other hand, the exponential of the right hand side of (1.54) is

exp
{ ∞∑

n=1

1
n!

∑

g∈Cn
Val(g)

}

=
∞∏

n=1

∏

g∈Cn
e

1
n!Val(g) (1.56)

If you expand out the exponential and the two products, you will get the sum of the
values of all graphs, with the value of each graph given as the product of the values of
its connected components. To complete the proof that the right hand sides of (1.55)
and (1.56) are equal, you just have to check carefully that the combinatorial coefficients
match up. See, for example, (Salmhofer, 1999, §2.4). 2

Equation (1.54) provides a formula for f(ψ) = ln
∫
eF (ψ,ϕ) dµ(ϕ). We now just

unravel all of the definitions to extract the coefficient system
{
a(~x)

}

~x∈X , of (1.47),

for f(ψ) . Recall from (1.53) that

Φ(Z) =

∞∑

k=1

1
k!

∑

(~y1,··· ,~yk)∈C(Z)

α(~y1) · · ·α(~yk)

∫

ϕ(~y1) · · ·ϕ(~yk) dµ(ϕ)

and substitute in
α(~y) =

∑

~x∈X
A(~x, ~y) ψ(~x)

to give

Φ(Z) =

∞∑

k=1

1
k!

∑

(~y1,··· ,~yk)∈C(Z)

~x1,··· ,~xk∈X

A(~x1, ~y1) · · ·A(~xk , ~yk)ψ(~x1) · · ·ψ(~xk)

∫

ϕ(~y1) · · ·ϕ(~yk) dµ(ϕ)

So, if we set, for each (~x, ~y) ∈ X 2,

Ã(~x, ~y) =

∞∑

k=1

1
k!

∑

(~y1,··· ,~yk)∈C(supp ~y)

~y1◦···◦~yk=~y

∑

~x1,··· ,~xk
~x1◦···◦~xk=~x

A(~x1, ~y1) · · ·A(~xk , ~yk)

∫

ϕ(~y) dµ(ϕ)

(1.57)
we have

Φ(Z)(ψ) =
∑

(~x,~y)∈X2

supp ~y=Z

Ã(~x, ~y) ψ(~x)

Recall, from (1.54), that

ln

∫

eF (ψ,ϕ)dµ =

∞∑

n=1

1
n!

∑

Z1,··· ,Zn⊂X
ρT (Z1, · · · , Zn)

∏n
j=1Φ(Zj)
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Therefore,

ln

∫

eF (ψ,ϕ) dµ(ϕ) =
∑

~x∈X
a(~x) ψ(~x)

where, for ~x ∈ X ,

a(~x) =

∞∑

n=1

1
n!

∑

~x1,··· ,~xn∈X
~x1◦···◦~xn=~x

∑

~y1,··· ,~yn∈X
ρT (supp ~y1, · · · , supp ~yn)

n∏

j=1

Ã(~xj , ~yj) (1.58)

Also

f(ψ) = ln

∫
eF (ψ,ϕ) dµ(ϕ)

∫
eF (0,ϕ) dµ(ϕ)

=
∑

~x∈X
n(~x)>0

a(~x) ψ(~x)

Now the a(~x) of (1.58) might not be invariant under permutations of the components of
~x. We can of course symmetrize, but that will not be necessary for doing the estimates.

This brings us to the end of the algebraic part of the proof. We next specify the
class of norms that are used in Theorem 1.29. This class generalizes the norms of
(1.26) and (1.27).

1.5.4 Norms

Definition 1.23 (Weight System for One Field) A weight system for one field is a
function w : X → (0,∞) that satisfies:

(a) w(~x) is invariant under permutations of the components of ~x.

(b) w(~x ◦ ~x′) ≤ w(~x)w(~x′)
for all ~x, ~x′ ∈ X with supp(~x) ∩ supp(~x′) 6= ∅.

Example 1.24 (Weight Systems)

(a) If κ : X → (0,∞) (called a weight factor) then

w(~x) = κ(~x) =

n(~x)
∏

`=1

κ(x`)

is a weight system for one field.

(b) Let d : X × X → R≥0 be a metric. The length of a tree T with vertices in X
is the sum of the lengths of all edges of T (where the length of an edge is the
distance between its vertices). For a subset S ⊂ X , denote by τ(S) the length of
the shortest tree in X whose set of vertices contains S. Then

w(~x) = eτ(supp(~x))

is a weight system for one field.

(c) If w1(~x) and w2(~x) are weight systems for one field, then so is

w3(~x) = w1(~x)w2(~x)
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Definition 1.25 (Norms for functions of one field) Let f(ψ) be a function which is
defined and analytic on a neighbourhood of the origin in C|X|. Then f has a unique
expansion of the form f(ψ) =

∑

~x∈X a(~x) ψ(~x) with a(~x) invariant under permutations

of the components of ~x. (We call a =
{
a(~x)

∣
∣ ~x ∈ X

}
the symmetric coefficient system

for f .) If w(~x) is a weight system for one field, we define

‖f‖w = ‖a‖w ≡
∑

n≥0

max
1≤i≤n
z∈X

∑

~x∈Xn

xi=z

w(~x)
∣
∣a(~x)

∣
∣

Here xi is the ith component of the n–tuple ~x. The term in the above sum with n = 0
is simply w(−)

∣
∣a(−)

∣
∣ where − denotes the 0–tuple.

Remark 1.26 If

f(ψ) =
∑

~x∈X
a(~x) ψ(~x)

with a(~x) not necessarily invariant under permutations of the components of ~x, then

‖f‖w ≤ ‖a‖w ≡
∑

n≥0

max
1≤i≤n
z∈X

∑

~x∈Xn

xi=z

w(~x)
∣
∣a(~x)

∣
∣

Definition 1.27 (Weight System for Two Fields) A weight system for two fields is a
function W :X 2→(0,∞) that satisfies:

(a) W (~x, ~y) is invariant under permutations of the components of ~x and is invariant
under permutations of the components of ~y.

(b) W (~x ◦ ~x′, ~y ◦ ~y′) ≤W (~x, ~y)W (~x′, ~y′)
whenever supp(~x, ~y) ∩ supp(~x′, ~y′) 6= ∅.

Definition 1.28 (Norms for functions of two fields)
Let

F (ψ, ϕ) =
∑

(~x,~y)∈X 2

A(~x, ~y) ψ(~x)ϕ(~y)

with A(~x, ~y) invariant under permutations of the components of ~x and under per-
mutations of the components of ~y. If W (~x, ~y) is a weight system for two fields, we
define

‖F‖W = ‖A‖W ≡
∑

n,m≥0

max
1≤i≤n+m

z∈X

∑

(~x,~y)∈Xn×Xm

(~x,~y)i=z

W (~x, ~y)
∣
∣A(~x, ~y)

∣
∣

Here (~x, ~y)i is the ith component of the (n + m)–tuple (~x, ~y). The term in the above
sum with n = m = 0 is simply W (−,−)

∣
∣A(−,−)

∣
∣.
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1.5.5 Review of the Main Theorem

Recall that

• X(= space) is a finite set and

• dµ0(z) is a normalized measure on C that is supported in |z| ≤ r for some constant
r and

• we endow CX with the ultralocal product measure

dµ(ϕ) =
∏

x∈Xdµ0

(
ϕ(x)

)

We now have all of the definitions required to state

Theorem 1.29 Let w and W be weight systems for 1 and 2 fields, respectively, that
obey

W (~x, ~y) ≥ (4r)n(~y)w(~x)

Let F : C|X|×C|X| → C be analytic on a neighbourhood of the origin. If F (ψ, ϕ) obeys
‖F‖W < 1

16 , then there is an analytic function f(ψ) such that

∫
eF (ψ,ϕ) dµ(ϕ)

∫
eF (0,ϕ) dµ(ϕ)

= ef(ψ)

and
‖f‖w ≤ ‖F‖W

1−16‖F‖W

1.5.6 Outline of the Proof of Theorem 1.29 – Bounds

Step 1 - organizing the sums. Recall, from (1.58), that

a(~x) =

∞∑

n=1

1
n!

∑

~x1,··· ,~xn∈X
~x1◦···◦~xn=~x

∑

~y1,··· ,~yn∈X
ρT (supp ~y1, · · · , supp ~yn)

n∏

j=1

Ã(~xj , ~yj) (1.59)

The bound

∣
∣ρT (supp ~y1, · · · , supp ~yn)

∣
∣ ≤ #

{
spanning trees in G(~y1, · · · , ~yn)

}

is due to Rota (Rota, 1964). For a simple proof see (Simon, 1993, Theorem V.7.A.6).
A spanning tree for a graph is just a tree with the same set of vertices as the graph.
Hence

|a(~x)| ≤
∞∑

n=1

1
n!

∑

~x1,··· ,~xn∈X
~x1◦···◦~xn=~x

∑

~y1,··· ,~yn∈X

∑

T spanning tree
for G(~y1,··· ,~yn)

n∏

j=1

∣
∣Ã(~xj , ~yj)

∣
∣

≤
∞∑

n=1

1
n!

∑

T labelled tree with
vertices 1,··· ,n

∑

~y∈X
|Ã|T (~x, ~y)

(1.60)
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where

|Ã|T (~x, ~y) =
∑

~y1,··· ,~yn∈X
~y=~y1◦···◦~yn

T⊂G(~y1,··· ,~yn)

∑

~x1,··· ,~xn∈X
~x=~x1◦···◦~xn

n∏

`=1

|Ã(~x`, ~y`)|

Recall, from (1.57), that

Ã(~x, ~y) =
∞∑

k=1

1
k!

∑

(~y1,··· ,~yk)∈C(supp ~y)

~y1◦···◦~yk=~y

∑

~x1,··· ,~xk
~x1◦···◦~xk=~x

A(~x1, ~y1) · · ·A(~xk , ~yk)

∫

ϕ(~y) dµ(ϕ)

For each (~y1, · · · , ~yk), G(~y1, · · · , ~yk) is connected and hence contains at least one tree.
So

|Ã(~x, ~y)| ≤
∞∑

k=1

1
k!

∑

T labelled tree
with vertices

1,··· ,k

∑

~y1,··· ,~yk∈X
~y=~y1◦···◦~yk

T⊂G(~y1,··· ,~yk)

∑

~x1,··· ,~xk∈X
~x=~x1◦···◦~xk

rn(~y)
n∏

`=1

|A(~x`, ~y`)|

=

∞∑

k=1

1
k!

∑

T labelled tree
with vertices

1,··· ,k

rn(~y)|A|T (~x, ~y) (1.60’)

where

|A|T (~x, ~y) =
∑

~y1,··· ,~yk∈X
~y=~y1◦···◦~yk

T⊂G(~y1,··· ,~yk)

∑

~x1,··· ,~xn∈X
~x=~x1◦···◦~xk

k∏

`=1

|A(~x`, ~y`)|

Step 2 - bound on BT .

Lemma 1.30 Let ω be an arbitrary weight system for two fields and define the weight
system ω′ by

ω′(~x, ~y) = 2n(~y)ω(~x, ~y)

Let T be a labelled tree with vertices 1, · · · , n and coordination numbers d1, · · · , dn
(meaning that vertex j has dj lines attached to it). Let B be any (not necessarily sym-
metric) coefficient system for two fields with B(−,−) = 0. We define a new coefficient
system BT by

BT (~x, ~y) =
∑

~y1,··· ,~yn∈X
~y=~y1◦···◦~yn

T⊂G(~y1,··· ,~yn)

∑

~x1,··· ,~xn∈X
~x=~x1◦···◦~xn

n∏

`=1

B(~x`, ~y`)

Then
∥
∥BT

∥
∥
ω
≤ d1! · · · dn! ‖B‖nω′
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Outline of proof (The details are in (Balaban et al., 2009, §III).)
Ingredient 1:

• For each 1 ≤ ` ≤ n, think of (~x`, ~y`) as the locations of (two species of) stars in
a galaxy.

• In computing
∥
∥BT

∥
∥
ω

=
∑

N,M≥0

max
1≤i≤N+M

z∈X

∑

(~x,~y)∈XN×XM

(~x,~y)i=z

ω(~x, ~y)
∣
∣BT (~x, ~y)

∣
∣, we must

hold fixed the location of one star (the ith) and sum over the locations of all other
stars. Suppose, for example, that we have chosen i = 1 so that the fixed star is in
galaxy ` = 1.

• View 1 as the root of the tree T .

• Then the set of vertices of T is endowed with a natural partial ordering under
which 1 is the smallest vertex.

• For each vertex 2 ≤ ` ≤ n, denote by π(`) the predecessor vertex of ` under this
partial ordering, as illustrated in Figure 1.6.

π(7) = π(3) = π(4) = 2

π(2) = π(5) = 6

π(6) = 1
6

7

1

3 4 5

2

Fig. 1.6 A Sample Tree Partial Ordering

• The condition that T ⊂ G(~y1, · · · , ~yn) ensures that, for each 2 ≤ ` ≤ n, the
support of ~y` intersects the support of ~yπ(`), so that at least one of the n(~y`)
components of ~y` takes the same value (in X) as some component of ~yπ(`).

• Write n(~y`) = n`.

• The product over 2 ≤ ` ≤ n of the number of choices of which ~y–star in galaxy `
is at the same location of which ~y–star in galaxy π(`) is

n∏

`=2

[
n`nπ(`))

]
=

n∏

`=1

nd`` =

n∏

`=1

n
d`
`

d`!
d`! ≤ d1! · · · dn!

n∏

`=1

2n`

by using first year calculus and Stirling. (Alternatively, just use nd

d! ≤ en. This
gives a slightly weaker theorem, but the change is insignificant.)

Ingredient 2:

• Since T is connected,

ω(~x, ~y) ≤
n∏

`=1

ω
(
~x`, ~y`

)

for all ~x1, · · · , ~xn ∈ X and ~y1, · · · , ~yn ∈ X under consideration, by the second
condition of Definition 1.27. So we may absorb each factor ω

(
~x`, ~y`

)
into B

(
~x`, ~y`

)

and it suffices to consider ω = 1.
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Ingredient 3:

• Iteratively apply
∑

~x`,~y`∈X
~y`,m`

=~yπ(`),p`

∑

~x`∈X
2n(~y`)|B(~x`, ~y`)| ≤

∥
∥B

∥
∥
ω′

starting with the largest `’s, in the partial ordering of T , and ending with ` = 1.
(For ` = 1, substitute ~x1,1 = x for ~y`,m` = ~yπ(`),p` .)

2

Step 3 - sum over n (or k) and T .

Lemma 1.31 Let 0 < ε < 1
8 . Then

∞∑

n=1

1
n!

∑

d1,··· ,dn
d1+···+dn=2(n−1)

∑

T labelled tree
with coordination
numbers d1,··· ,dn

d1! · · · dn! εn ≤ ε
1−8ε

Proof Each line of a tree is connected to exactly two vertices. So the sum, d1+· · ·+dn,
of all coordination numbers is exactly twice the number of lines in the tree. The number
of lines in a tree of n vertices is exactly n = −1. So we must have d1+· · ·+dn = 2(n−1).
That accounts for the condition on the second sum.

By the Cayley formula, the number of labelled trees on n ≥ 2 vertices with specified
coordination numbers (d1, d2, · · · , dn) is

(n−2)!
Qn
j=1(dj−1)!

Therefore
∞∑

n=2

1
n!

∑

d1,··· ,dn
d1+···+dn=2(n−1)

∑

T labelled tree
with coordination
numbers d1,··· ,dn

d1! · · · dn! εn ≤
∞∑

n=2

∑

d1,··· ,dn
d1+···+dn=2(n−1)

d1 · · · dn εn

The number of possible choices of coordination numbers (d1, d2, · · · , dn) subject to the
constraint d1 + d2 + · · ·+ dn = 2(n− 1) is

(
2(n−1)−1
n−1

)
=

(
2n−3
n−1

)
≤ 22n−3

and d1 · · · dn ≤ 2n. (Any maximizer must have dj ≤ 2 for every 1 ≤ j ≤ n.) Therefore

∞∑

n=2

1
n!

∑

d1,··· ,dn
d1+···+dn=2(n−1)

∑

T labelled tree
with coordination
numbers d1,··· ,dn

d1! · · · dn! εn ≤
∞∑

n=2

22n−3 2nεn = 8ε2

1−8ε

For n = 1, d1 = 0 and the number of trees is 1, so the n = 1 term is ε. So the full sum

is bounded by ε+ 8ε2

1−8ε = ε
1−8ε .

2
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Step 4 - bound on ‖a‖ in terms of ‖Ã‖. We introduce, for each σ > 0, the auxiliary
weight system

Wσ(~x, ~y) = W (~x, ~y)
(
σ
4r

)n(~y)

Clearly
W4r(~x, ~y) = W (~x, ~y) and w(~x) ≤W1(~x, ~y) (1.61)

for all (~x, ~y) ∈ X 2.
We now prove

‖a‖w ≤
‖Ã‖W2

1− 8‖Ã‖W2

(1.62)

Recall from (1.60) that

|a(~x)| ≤
∞∑

n=1

1
n!

∑

T labelled tree with
vertices 1,··· ,n

∑

~y∈X
|Ã|T (~x, ~y)

Therefore, by (1.61) and Lemma 1.30, with ω = W1 and ω′ = W2,

∥
∥a

∥
∥
w
≤
∞∑

n=1

1
n!

∑

T labelled tree with
vertices 1,··· ,n

∥
∥ |Ã|T

∥
∥
W1

≤
∞∑

n=1

1
n!

∑

d1,··· ,dn
d1+···+dn=2(n−1)

∑

T labelled tree
with coordination
numbers d1,··· ,dn

∥
∥ |Ã|T

∥
∥
W1

≤
∞∑

n=1

1
n!

∑

d1,··· ,dn
d1+···+dn=2(n−1)

∑

T labelled tree
with coordination
numbers d1,··· ,dn

d1! · · · dn!
∥
∥|Ã|

∥
∥
n

W2

Now apply Lemma 1.31 with ε =
∥
∥|Ã|

∥
∥
W2

= ‖Ã‖W2 to get

‖a‖w ≤ ‖Ã‖W2

1−8‖Ã‖W2

Step 5 - bound on ‖Ã‖ in terms of ‖A‖. We now prove

‖Ã‖W2 ≤ ‖A‖W
1−8‖A‖W = ‖F‖W

1−8‖F‖W (1.63)

Note that combining (1.62) and (1.63) yields the final bound

‖f‖w ≤ ‖a‖w ≤
‖Ã‖W2

1− 8‖Ã‖W2

≤
‖F‖W

1−8‖F‖W
1− 8 ‖F‖W

1−8‖F‖W
=

‖F‖W
1−16‖F‖W

Recall from (1.60’) that
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|Ã(~x, ~y)| ≤
∞∑

k=1

1
k!

∑

T labelled tree with
vertices 1,··· ,k

rn(~y)|A|T (~x, ~y)

By construction,
∥
∥ rn(~y)|A|T (~x, ~y)

∥
∥
W2

=
∥
∥ |A|T

∥
∥
W2r

. Hence, by Lemma 1.30, with
ω = W2r followed by Lemma 1.31,

‖Ã‖W2 ≤
∞∑

k=1

1
k!

∑

T labelled tree with
vertices 1,··· ,k

∥
∥ |A|T

∥
∥
W2r

≤
∞∑

k=1

1
k!

∑

d1,··· ,dk
d1+···+dk=2(k−1)

∑

T labelled tree
with coordination
numbers d1,··· ,dk

d1! · · · dk ! ‖A‖kW4r

≤ ‖A‖W
1−8‖A‖W

since W4r = W . This gives (1.63). 2

1.5.7 Changes of Variables

In this subsection we provide a couple of tools that may used to prove bounds on
“complicated” functions that are constructed from “simple” functions using changes
of variables.

For κ > 0, we denote by wκ the weight system, for functions of one field, ψ, with
mass m that associates the constant weight factor κ to the field ψ. That is

wκ(x1, · · · ,xn) = em τ({x1,··· ,xn})κn

Similarly, for κ, λ > 0, we denote by wκ,λ the weight system, for functions of two fields,
ψ and φ, with mass m that associates the constant weight factor κ to the field ψ and
the constant weight factor λ to the field φ. To simplify notation, we write ‖g(ψ)‖κ and
‖f(ψ, φ)‖κ,λ for ‖g(ψ)‖wκ and ‖f(ψ, φ)‖wκ,λ , respectively.

Proposition 1.32 Let g be an analytic function on a neighbourhood of the origin in
CX .

(i) Let J be an operator on CX with kernel J(x,y). Define g̃ by

g̃(ψ) = g(Jψ)

Let κ > 0 and set κ′ = κ|||J |||. (|||J ||| was defined in (1.28).) Then ‖g̃‖κ ≤ ‖g‖κ′.

(ii) Define f by

f(ψ;φ) = g(ψ + φ)

Then ‖f‖κ,λ = ‖g‖κ+λ.
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Proof (i) Let a(~x) be a symmetric coefficient system for g. Define, for each n ≥ 0,

ã(x1, · · · ,xn) =
∑

y1,··· ,yn∈X
a(y1, . . . ,yn)

n∏

`=1

J(y`,x`)

Then ã(~x) is a symmetric coefficient system for g̃. Since

τ({x1, · · · ,xn}) ≤ τ({y1, · · · ,yn}) +

n∑

`=1

d(y`,x`)

we have

em τ({x1,··· ,xn}) ≤ em τ({y1,··· ,yn})
n∏

`=1

emd(y`,x`)

and hence

wκ(x1, · · · ,xn)
∣
∣ã(x1, · · · ,xn)

∣
∣

≤
∑

y1,··· ,yn∈X
wκ′(y1, · · · ,yn)

∣
∣a(y1, · · · ,yn)

∣
∣

n∏

`=1

[
κ
κ′ e

md(y`,x`)
∣
∣J(y`,x`)

∣
∣

]

We are to bound

‖g̃‖κ =
∑

n≥0

max
x∈X

max
1≤j≤n

∑

x1,··· ,xn∈Xn

xj=x

wκ(x1, · · · ,xn)
∣
∣ã(x1, · · · ,xn)

∣
∣

≤
∑

n≥0

max
x∈X

max
1≤j≤n

∑

x1,··· ,xn∈X
xj=x

∑

y1,··· ,yn∈X
(1.64)

wκ′(y1, · · · ,yn)
∣
∣a(y1, · · · ,yn)

∣
∣

n∏

`=1

[
κ
κ′ e

md(y`,x`)
∣
∣J(y`,x`)

∣
∣

]

Fix any n ≥ 0, x ∈ X and 1 ≤ j ≤ n. By the definitions of κ′ and |||J |||, for each ` 6= j
and y` ∈ X ,

∑

x`∈X

κ
κ′ e

md(y`,x`)J(y`,x`) =
∑

x`∈X

1
|||J|||e

md(y`,x`)J(y`,x`) ≤ 1

Therefore

∑

x1,··· ,xn∈X
xj=x

∑

y1,··· ,yn∈X
wκ′(y1, · · · ,yn)

∣
∣a(y1, · · · ,yn)

∣
∣

n∏

`=1

[
κ
κ′ e

md(y`,x`)
∣
∣J(y`,x`)

∣
∣

]

≤
∑

y∈X

κ
κ′ e

md(y,x)J(y,x)
∑

y1,··· ,yn∈X
yj=y

wκ′(y1, · · · ,yn)
∣
∣a(y1, · · · ,yn)

∣
∣

≤
∑

y∈X

κ
κ′ e

md(y,x)J(y,x) max
y∈X

∑

y1,··· ,yn∈X
yj=y

wκ′(y1, · · · ,yn)
∣
∣a(y1, · · · ,yn)

∣
∣

≤ max
y∈X

∑

y1,··· ,yn∈X
yj=y

wκ′(y1, · · · ,yn)
∣
∣a(y1, · · · ,yn)

∣
∣
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since, once again,
∑

y∈X
κ
κ′ e

m d(y,x)J(y,x) =
∑

y∈X
1
|||J|||e

md(y,x)J(y,x) ≤ 1. Conse-

quently, (1.64) is bounded by
∑

n≥0

max
1≤j≤n

max
y∈X

∑

y1,··· ,yn∈X
yj=y

wκ′(y1, · · · ,yn)
∣
∣a(y1, · · · ,yn)

∣
∣ = ‖g‖κ′

This proves part (i) of the Proposition.

(ii) Let a(~u) be a symmetric coefficient system for g. Since a is invariant under per-
mutation of its ~u components,

g(ψ + φ) =
∑

~u∈X
a(~u) (ψ + φ)(~u) =

∑

~x,~y∈X
a(~x ◦ ~y)

(n(~x)+n(~y)
n(~y)

)
ψ(~x)φ(~y)

so that
a+(~x; ~y) = a(~x ◦ ~y)

(n(~x)+n(~y)
n(~y)

)

is a symmetric coefficient system for f . We have

‖f‖κ,λ =
∑

k,`≥0

max
p∈X

max
1≤i≤k+`

∑

~x∈Xk, ~y∈X`

(~x,~y)i=p

wκ,λ(~x; ~y)
∣
∣a+(~x; ~y)

∣
∣

=
∑

k,`≥0

max
p∈X

max
1≤i≤k+`

∑

~x∈Xk, ~y∈X`

(~x,~y)i=p

emτ(supp(~x,~y))κkλ`
(
k+`
`

)∣
∣a(~x ◦ ~y)

∣
∣

=
∑

k,`≥0

(
k+`
`

)
κkλ` max

p∈X
max

1≤i≤k+`

∑

~x∈Xk, ~y∈X`

(~x,~y)i=p

em τ(supp(~x,~y))
∣
∣a(~x ◦ ~y)

∣
∣

=
∑

k,`≥0

(
k+`
`

)
κkλ` max

p∈X
max

1≤i≤k+`

∑

~u∈Xk+`

~ui=p

em τ(supp(~u))
∣
∣a(~u)

∣
∣

=
∑

n≥0

(κ+ λ)n max
p∈X

max
1≤i≤n

∑

~u∈Xn

~ui=p

em τ(supp(~u))
∣
∣a(~u)

∣
∣

= ‖g‖κ+λ

2

1.5.8 Other Related High Temperature Expansions

The expansion treated in the main body of this section is just one of many similar
expansions that are widely used in the construction and analysis of quantum field
theories and many–body theories. Here are a few classes of such expansions. Don’t
take too seriously the names that I have assigned them — they do not have universally
accepted meanings.

• Cluster expansions are expansions for unnormalized Schwinger functions, like for
example

∫
ϕ(z1) · · ·ϕ(zn)e−V dµ(ϕ), that are used for proving the convergence

of the infinite volume limit and of decay properties of the normalized Schwinger
functions. See (Abdesselam and Rivasseau, 1995; Brydges, 1986; Glimm et al.,
1973; Glimm and Jaffe, 1987; Rivasseau, 1991).
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• Mayer expansions are used to implement cancellations between the numerator
and denominator in expressions like

∫
ϕ(z1) · · ·ϕ(zn)e−V dµ(ϕ)

∫
e−V dµ(ϕ)

(in the limit as the volume tends to infinity, such numerators and denominators
tend to behave like the exponential of a constant times the volume) and are used
for proving the convergence of the infinite volume limit and of decay properties
of the normalized Schwinger functions. See (Abdesselam and Rivasseau, 1995;
Brydges, 1986; Glimm et al., 1973; Glimm and Jaffe, 1987; Rivasseau, 1991).

• Polymer expansions. In its simplest form, a polymer expansion looks like

1 +

∞∑

n=1

1
n!

∑

X1,···Xn⊂X
Xj 6=∅ for all 1≤j≤n

Xi∩Xj=∅ for all i6=j

n∏

`=1

A(X`)

Here each nonempty subset Xi of the world X is called a polymer and the func-
tion A(Xi) is called a polymer activity. Two polymers Xi and Xj are said to be
compatible if they are disjoint. Our expansion (1.52) was of this form. See (Bry-
dges, 1986; Cammarota, 1982; Pordt, 1998; Kotecký and Preiss, 1986; Salmhofer,
1999; Simon, 1993) for lots of others.



Appendix A

Complex Gaussian Integrals

Integrals of polynomials times exponentials of quadratic functions are called Gaussian
integrals and can be evaluated exactly. Lemma A.1, below, does so in our setting,
where the integration variables are complex. To have integrals that actually exist,
we consider an arbitrary, but finite, number, L, of complex integation variables. To
compactify notation, we write

~α =
(
α1, α2, · · · , αL

) 〈
~β, ~α

〉
=

L∑

`=1

β`α`

Note that
〈
~β, ~α

〉
is not the usual complex inner product. We deliberately do not

include a complex conjugate on the right hand side, so that all complex conjugates in
our formulae appear explicitly.

To further compactify notation, we evaluate a generating functional. By repeatedly
differentating the conclusion of the lemma with respect to components of ~∗ and ~ and
then setting ~∗ = ~ = 0, you can create any polynomial you like downstairs on the left
hand side. To be precise, suppose that A(α∗, α) is some action and set

S(~∗, ~, ~α
∗, ~α) =

〈
~∗, α

〉
+

〈
~α∗, ~

〉

Define the expectation of f(~α∗, ~α) to be

〈f(~α∗, ~α)〉 =

∫ ∏L
`=1

dα∗
`∧dα`
2πi eA(α∗,α)f(~α∗, ~α)

∫ ∏L
`=1

dα`∗∧dα`
2πi eA(α∗,α)

Then, for each 1 ≤ m ≤ L,

〈αm〉 = ∂
∂j∗m

〈

eS(~∗,~,α
∗,α)

〉 ∣
∣
∣
~∗=~=0

〈α∗m〉 = ∂
∂jm

〈

eS(~∗,~,α
∗,α)

〉 ∣
∣
∣
~∗=~=0

and, for each 1 ≤ m,n ≤ L,

〈α∗mαn〉 = ∂2

∂jm∂j∗n

〈

eS(~∗,~,α
∗,α)

〉 ∣
∣
∣
~∗=~=0

(A.1)
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Lemma A.1 Let L ∈ N.

(a) Let D be an L×L matrix whose real part, D+D∗, is strictly positive. That is, all

of the eigenvalues of
[

D`,`′ +D`′,`

]

1≤`,`′≤L
are strictly positive. Let ~∗, ~ ∈ CL and set

A(α∗, α) = −
〈
~α∗, D~α

〉
and J (~∗, ~) =

〈

eS(~∗,~,α
∗,α)

〉

Then
J (~∗, ~) = eC(~∗,~) where C(~∗, ~) =

〈
~∗, D

−1~
〉

(b) Let D, V and W be L×L matrices with V and W self–transpose. That is, V`,`′ =
V`′.` and W`,`′ = W`′.`. Assume that the matrix

[
1
2 (D +D∗) V +W

W + V 1
2 (D +D∗)t

]

is strictly positive. Let ~∗, ~ ∈ CL and set

A(α∗, α) = −
〈
~α∗, D~α

〉
−

〈
~α∗, V ~α∗

〉
−

〈
~α,W~α

〉
and J (~∗, ~) =

〈

eS(~∗,~,α
∗,α)

〉

Then
J (~∗, ~) = eD(~∗,~)

where

D(~∗, ~) =
〈
~∗,

(
D − 4V (Dt)

−1
W

)−1
~
〉
−

〈
WD−1~,

(
D − 4V (Dt)

−1
W

)−1
~
〉

−
〈
~∗,

(
D − 4V (Dt)

−1
W

)−1
V (Dt)

−1
~∗

〉
(A.2)

In the special case that V = W and V commutes with D, D simplifies to

D(~∗, ~) =
〈
D~∗,

(
DDt − 4V 2

)−1
~
〉
−

〈
V ~,

(
DDt − 4V 2

)−1
~
〉

−
〈
V ~∗,

(
DtD − 4V 2

)−1
~∗

〉
(A.3)

Proof (a) The positivity condition onD+D∗ ensures thatD is invertible. (Otherwise,
there would be a nonzero vector ~v with D~v = 0 and hence

〈
~v∗, (D+D∗)~v

〉
= 0, which

would contradict the strict positivity of D +D∗.) We start by completing the square
of the exponent in the numerator.

A(α∗, α) + S(~∗, ~, α
∗, α) = −

〈
~α∗, D~α

〉
+

〈
~∗, α

〉
+

〈
~α∗, ~

〉

= −
〈(
~α∗ − (Dt)

−1
~∗

)
, D

(
~α−D−1~

)〉
+

〈
~∗ , D

−1~
〉

At this stage, we have that

J (~∗, ~) = eC(~∗,~)
∫ ∏L

`=1
dα∗

`∧dα`
2πi e−<(~α∗−(Dt)

−1
~∗) ,D (~α−D−1~)>

∫ ∏L
`=1

dα`∗∧dα`
2πi e−<~α∗,D~α>

(A.4)

So it remains only to prove that the ratio of two integrals is exactly one. If ~α and
~α∗ were independent integration variables, the change of variables ~α → ~α + D−1~,
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~α∗ → ~α∗ + (Dt)
−1
~∗ would convert the numerator into exactly the integral that is in

the denominator and we would be done. Unfortunately, ~α and ~α∗ are not independent
and, usually, (Dt)

−1
~∗ is not the complex conjugate of D−1~. Fortunately, with a little

trickery, we can legitimately make the desired change of variables. First introduce a
new, independent, vector of complex variables ~α∗. There is, in general, no requirement
that ~α∗ be the complex conjugate of ~α. Replace all ~α∗’s in the integral of the numerator
by ~α∗ and choose as the domain of integration

Dα =
{

(~α∗, ~α) ∈ C
2L

∣
∣ ~α = ~α∗∗

}

This recovers the original integral. That is,

∫

CL

L∏

`=1

dα∗
`∧dα`
2πi e−<(~α∗−(Dt)

−1
~∗) ,D (~α−D−1~)>

=

∫

Dα

L∏

`=1

dα∗`∧dα`
2πi e−<(~α∗−(Dt)

−1
~∗) ,D (~α−D−1~)>

Now make the change of variables

~α∗ = ~z∗ + (Dt)
−1
~∗ ~α = ~z +D−1~

This gives

∫ L∏

`=1

dα∗
`∧dα`
2πi e−<(~α∗−(Dt)

−1
~∗) ,D (~α−D−1~)> =

∫

D1

L∏

`=1

dz∗`∧dz`
2πi e−<~z∗ ,D ~z>

with the domain

D1 =
{

(~z∗, ~z) ∈ C
2L

∣
∣ ~z = ~z∗∗ + ~ρ

}
with ~ρ = (D∗)−1

~ ∗∗ −D−1~

In the next paragraph, we will use Stokes’ theorem to show that we may replace the
domain D1 with the domain

D0 =
{

(~z∗, ~z) ∈ C
2L

∣
∣ ~z = ~z∗∗

}

Once that is done, we will have shown, this time legitimately, that the integral of the
numerator in (A.4) is the same as the integral of the denominator, completing the
proof.

Here are the details of the application of Stokes’ theorem. Let R be a large cutoff
radius and define, for each 0 ≤ t ≤ 1,

Dt,R =
{

(~z∗, ~z) ∈ C
2L

∣
∣ ~z = ~z∗∗ + t~ρ, max

1≤`≤L
|z`| ≤ R

}

Think of B =
⋃1
t=0Dt as a solid “cylinder”. The boundary of B is the union of the top

D1,R (which approachs D1 as R→∞) and the bottom D0,R (which approachs D0 as
R→∞) and the side
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CR =

L⋃

`=1

CR,` with CR,` =
⋃

0≤t≤1

{
(~z∗, ~z) ∈ C

2L
∣
∣ ~z = ~z∗∗+t~ρ, max

1≤`′≤L
|z`′ | ≤ R, |z`| = R

}

By Stokes’ theorem, for any 2L–form ω,
∫

B
dω =

∫

D1,R

ω −
∫

D0,R

ω +

∫

CR

ω

if D1,R and D0,R are oriented in the usual way and CR is oriented suitably. In our

case, the form ω =
∧L
`=1

dz∗`∧dz`
2πi e−<~z∗ ,D ~z> obeys dω = 0 (i.e. is closed) because

e−<~z∗ ,D ~z> is an analytic function of ~z∗ and ~z. Hence
∫

D1,R

ω =

∫

D0,R

ω −
∫

CR

ω

So we just have to show that
∫

CR
ω converges to zero as R → ∞. We start by

bounding the integrand, or rather the real part of the exponent of the integrand. At
any point on the side, CR, R ≤ |~z| ≤

√
LR and there is a 0 ≤ t ≤ 1 such that

~z∗ = ~z∗ − t~ρ∗ so that

Re
〈
~z∗ , D~z

〉
= Re

〈
~z∗ , D~z

〉
− tRe

〈
~ρ∗ , D~z

〉
(A.5)

= 1
2

〈
~z∗ , (D +D∗)~z

〉
− tRe

〈
~ρ∗ , D~z

〉

≥ 1
2λ0R

2 −
√
L |~ρ| ‖D‖R

where λ0 is the smallest eigenvalue of D +D∗, assumed strictly positive, and ‖D‖ is
the operator norm of the matrix D.

We next bound the volume of the domain of integration. It suffices to do so for
CR,1. The other CR,`’s can be treated in the same way. On CR,1, we have |z1| = R.
We may parametrize z1 = Reiθ, with θ running over [0, 2π]. Then z∗,1 = Re−iθ − tρ∗1
and

dz1 = iReiθ dθ dz∗,1 = −iRe−iθ dθ − ρ∗1 dt dz∗,1∧dz1
2πi = −ρ

∗
1R
2π e

iθdt ∧ dθ
For all the other `’s, we may parametrize z` = x` + iy` with (x`, y`) running over
x2
` + y2

` ≤ R2. Then z∗,` = x` − iy` − tρ∗` and

dz` = dx` + idy` dz∗,` = dx` − idy` − ρ∗` dt

Since there is already a dt in
dz∗,1∧dz1

2πi and dt ∧ dt = 0,

L∧

`=1

dz∗`∧dz`
2πi = −ρ

∗
1R
2π e

iθdt ∧ dθ
L∧

`=2

dx`∧dy`
π

and
∣
∣
∣
∣

∫

CR.1

ω

∣
∣
∣
∣
≤ |ρ1|R

∫ 1

0

dt

∫ 2π

0

dθ
2π

∫∫

x2
2+y2

2≤R2

dx2 dy2
2π · · ·

∫∫

x2
L+y2

L≤R2

dxL dyL
2π sup e−Re<~z∗ ,D~z>

≤ |ρ1|R
(

1
2R

2
)L−1

e−
1
2λ0R

2+
√
L |~ρ| ‖D‖R

This easily converges to zero as R→∞.
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(b) Once again, the main step is completing the square for the exponent of the nu-
merator. We start my multiplying out

−
〈
(~α∗ − ~J∗), D(~α − ~J)

〉
−

〈
(~α∗ − ~J∗), V (~α∗ − ~J∗)

〉
−

〈
(~α − ~J),W (~α− ~J)

〉

= −
〈
~α∗, D~α

〉
−

〈
~α∗, V ~α∗

〉
−

〈
~α,W~α

〉
+

〈
~α∗, (D~J + 2V ~J∗)

〉

+
〈
(Dt ~J∗ + 2W ~J), ~α

〉
−

〈
~J∗, D ~J

〉
−

〈
~J∗, V ~J∗

〉
−

〈
~J,W ~J

〉

The first three terms are exactly A(~α∗, ~α). The next two terms will form S(~∗, ~, ~α∗, ~α)
exactly provided

D~J + 2V ~J∗ = ~

Dt ~J∗ + 2W ~J = ~∗

Solving this pair of linear equations gives

~J∗ =
(
Dt − 4WD−1V

)−1(
~∗ − 2WD−1~

)

~J =
(
D − 4V (Dt)

−1
W

)−1(
~− 2V (Dt)

−1
~∗

)

Substituting this in,

〈
~J∗, D ~J

〉
+

〈
~J∗, V ~J∗

〉
+

〈
~J,W ~J

〉
= 1

2

〈
~J∗, ~

〉
+ 1

2

〈
~∗, ~J

〉

= 1
2

〈(
~∗ − 2WD−1~

)
,
(
D − 4V (Dt)

−1
W

)−1
~
〉

+ 1
2

〈
~∗,

(
D − 4V (Dt)

−1
W

)−1(
~− 2V (Dt)

−1
~∗

)〉

=
〈
~∗,

(
D − 4V (Dt)

−1
W

)−1
~
〉
−

〈
WD−1~,

(
D − 4V (Dt)

−1
W

)−1
~
〉

−
〈
~∗,

(
D − 4V (Dt)

−1
W

)−1
V (Dt)

−1
~∗

〉

= D(~∗, ~)

Thus
A(~α∗, ~α) + S(~∗, ~, ~α

∗, ~α) = A(~α∗ − ~J∗, ~α− ~J) +D(~∗, ~)

The rest of the proof is very much like that of part (a), using in place of Re
〈
~z∗ , D~z

〉
=

1
2

〈
~z∗ , (D +D∗)~z

〉
in the bound (A.5),

Re
{〈
~z∗ , D~z

〉
+

〈
~z∗ , V ~z∗

〉
+

〈
~z , W~z

〉}

= 1
2

[(
~zt

)∗
~zt

]
[

1
2 (D +D∗) V +W

W + V 1
2 (D +D∗)t

][
~z
~z∗

]

2
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