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1
The Temporal Ultraviolet Limit

1.1 Introduction
1.1.1 The Physical Setting

These lectures® concern the first, relatively small, step in a program whose long—term
goal is the, mathematically rigorous, construction of a standard model of a gas of
bosons. Even this first step is too long and complicated to present completely here.
But I will outline it and highlight a couple of the tools employed that tend to crop up
quite commonly in constructions of quantum field theories and many-body models.
The model of our gas of bosons is based on the following assumptions.

e Each particle in the gas has a kinetic energy. The corresponding quantum me-
chanical observable is an operator k. The most commonly used h is —ﬁA, which

corresponds to the classical kinetic energy 2-—. (Balaban et al., 2010¢) allows a
more general class of operators like this.

e The particles in the gas interact with each other through a translationally invari-
ant, exponentially decaying, strictly positive definite two-body potential, 2v(x, y).

e The system is in the thermodynamic equilibrium given by the grand canonical
ensemble with temperature 7' > 0 and chemical potential ;1 € R. We shall not
place any further restrictions on 7" and p. But the most interesting temperatures
are small and the most interesting chemical potentials are small and positive.

1.1.2 The Physics of Interest

I'll formulate the model mathematically, carefully, later. But to get a first hint both
of the expected physical behaviour and of the formalism that we shall use, consider
the following, formal, functional integral representation of the partition function for
this system. This representation is commonly used in the Physics literature. See, for
example, (Negele and Orland, 1988, (2.66)).

1 «
Ty e~ R (H-1N) H dar X) AdaT x) pAQ"@) (1.1)

x€R3
1
0<T< 7

where H is the Hamiltonian, N is the number operator and the “action”

Ale*,a) = /W /d?’x ar(x)* G-ar(x) — /WdT K (o, a;) (1.2)
0 RS 0

IThese notes expand upon lectures given by Joel Feldman.
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with
K(a.0) = [[ dxdy athtxy)aly) s [ dx ax)a)
+ [[ axdy axax) vixy) aly) aty) (1.3)

and h(x,y) being the kernel of the operator h. In the integral on the right hand side
of (1.1), there is a two parameter family of integration variables. The first parameter,
T, runs over the “time” interval (O, %} (the reason for the half open, half closed
time interval is that there is a periodicity condition ag(x) = a1 (x)) and the second
parameter, x, runs over “space”, R?. For each 7 and x, there is an integration variable,
o, (x), that runs over the complex plane, C. For a complex variable z = x + iy, %
is the usual Euclidean measure %d:cdy.

Thus the “measure” for the integral on the right hand side of (1.1) is a Lebesgue
measure in uncountably many variables. It clearly has no mathematical meaning. But
it is still a useful source of intuition. If a-(x) = ® € C is a constant, independent of 7
and x, the action A(a*, o) simplifies to minus the integral over 7 and x of the “naive

effective potential” 9(0)|®|* — u|®|* where 9(0) = [dy v(x,y) (recall that v(x,y) is

w<0 w>0

Re®

Fig. 1.1 Graph of the effective potential

translation invariant) and we have assumed and that h annihilates constants and that
©(0) > 0. This effective potential is graphed above. Its minimum is

e nondegenerate at the point ® = 0 when p < 0 and

e degenerate along the circle || = #(0) when p > 0.

This suggests that, if the temperature is low so that fluctuations about the minimum
are small, each integration variable a-(x) tends to be localized about 0 when p < 0

and tends to be localized about |a,(x)| = , /#(0) when g > 0. To help us glean some
more detailed intuition from the formal functional integral, we introduce “Euclidean
time evolving” annihilation and creation operators

a(t,x) = eH=1rNITg(x)e ™ H=1NT 4 (x) al (7, x) = eH=1N7 1 (x)e=(H=1N)T o (x)

and notation for “expectation values” both in the physical Hilbert space and with
respect to the functional integral
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Tr (efﬁ(Hﬂ‘N)f(aT, a))

fla',a) =
i)y Tr o= R H=4N)
JTL, 29etd A f(a, a)

(fla,a)) =

[T, % eAla*,a)

We will use two more functional integral representations similar to the representation
(1.1) for the partition function. They are for the one and two point correlation functions

(aD(7,%)) = (ar(x)™) (14)
<CLT(T7 x)a(t’,x)) = (o (x)*ar (x)) (1.5)

The first is valid for % > 7 > 0 and the second is valid for % > 7> 7" > 0. Actually,
(1.4) is two formulae at once — one when the bracketed exponents are included and one
when the bracketed exponents are omitted. Let us try to compute these expectation
values, at least approximately.

(1) The one point function for p < 0: First consider p < 0. The one point function
(1.4) is zero by symmetry considerations. This can be seen by using either side of (1.4).
On the right hand side, make the change of variables which rotates each integration
variable by a fixed angle 6. That is

0

* —i6

ar(x) ar(x)" — e Pa,(x)"

a,(x) — ¢l
As both the measure W and the action A(a*, ) are invariant under this
change of variables, we have

(r)) =D ar) = (ar(x)) =0
For the corresponding argument on the left hand side, we unitarily transform the
Hilbert space using the operator e'V?. By cyclicity of the trace

Tr (6_%(H_“N)a(ﬂ(7', x)) =Tr (efiNee_%(H_“N)a(T) (r, x)e“\m)
=Tr (efﬁ(H*“N)e_iN‘ga(T) (r, x)eiNe)

i v (efﬁ(HfﬂN)a(T)(T, x))

The critical step was the second equality, where we used that H — yN commutes with
the number operator N. That is, the Hamiltonian conserves particle number. For the
third equality, we used that

e_“\ma(ﬂ(T7 x)eiN@ = e(_)ig(z(T)(T7 X)
Once again, we have
<G(T)(T, X)) = e(_)i9<a(ﬂ(7, x)) = <a(T) (1,x)) =0

It would appear that this argument also implies <a(T)(T, x)> = 0 when g > 0. But
there is a subtlety when p > 0 that we will discuss shortly.
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(2) The two point function for p < 0: Now let’s move on to the two point function
(1.5) when p < 0. We are expecting the most important contributions to the functional
integral to come from «., (x) &~ 0. So approximate the action A by dropping all terms of
degree strictly bigger than two in the integration variables. That is, drop the quartic,
v(x,y) part of (1.3). This turns the action into a quadratic function of the integration
variables. Using (the natural formal analog of) part (a) of Lemma A.1 with D =
—% + h — u, we have

(a0 an(x)) = (= 5z + h=p) " ((rx), (7',X))

The right hand side is the kernel of the operator inverse of —% + h — p. Because h is
translation invariant we can use the Fourier transform to compute it.

_a )t 1Y) — Bk iko(r—7")—ik-(x—x') 1
(=5 +h—n) ((1.%), (7',x)) = ’fkT@Zm /R3 COEL —iko+h(k)—p
0 ™

(If you were expecting minus this answer, it is probably because you forgot that the
usual two—point function is defined to be —{ - (x)*a(x')).) The sum over kg can be
evaluated exactly using a contour integral trick (see, for example, (Fetter and Walecka,
1971, (25.32)—(25.35))) giving

(ar(x)*am (x')) = / I i () (A0~ (7= (o (09 =) _ 1)~
R3

For large k the integrand is bounded in absolute value by the exponential of minus a
constant times [k|?, since 7 — 7/ < 7. Furthermore the denominator never vanishes,

because p < 0. Both the last two sentences remain true even if, in e(h)=m)(r=7") and
(eﬁ(h(k)_“) — 1)_1, k is given a fixed, not too big, imaginary part. Consequently,
(s (x)*ar (x') ) decays exponentially to zero as [x — x'| — oc.

(3) The one point function for p > 0:  We have already seen that when p > 0 the

naive effective potential takes its minimum value on the circle |®| = #@ in the

complex plane. This suggests that the integration variables a.,(x) would like to stay
near that circle. But nothing in the integral favours any phase of ® over any other
phase. Something very similar happens in magnetic materials. Indeed it can be useful
to pretend that each o (x) represents the needle of a magnetic compass. As p > 0 and

the temperature is very low, the length of each needle is essentially fixed at #(0)'

But its orientation, the argument of o (x), is free. If we now subject the system to an
external magnetic field that favours one particular direction, all of a,(x)’s will take
values near a single ® on the circle. If the temperature is low enough, this will remain
the case even if the strength of the magnetic field is then reduced to zero. The same
thing happens if, instead of applying a weak bulk magnetic field, we impose boundary
conditions near infinity that favour one particular phase of ®. The moral is that the
behaviour of the system, and in particular the one and two—point functions, can be
expected to depend not only on the action, but also on the limiting process used to
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carefully define the system. This is a very common phenomenon in symmetry breaking
scenarios.
So let’s assume that our limiting process favours one particular ®. Make a change
of variables
ar(X) =0+ 5,(x)  ar(x)" = "+ B (x)" (L6)

We are expecting (,(x) to be small. Under this change of variables, the K(a*, a)
of (1.3) becomes, supressing the 7 subscripts and recalling that the kinetic energy
operator h annihilates constants,

K(a*.) = [[ dxdy 560"h(x.5)505)
+/dx[—u|<1>|2+ﬁ(0)\<b|ﬂ
+ [ax o0 [ = o+ 200)0P)e + [[ax 7 [t 2000050
+ [ 560" o+ 20000800 + 240 [ dxdy 560" o(x.3)5()

(@) / / dxdy Bx)v(x,y)A(y) + &> / / dxdy B(x)"v(x, y)B(y)"
+0(18°) + O(18")

In computing the one and two—point functions, the constant (i.e. independent of [3)
term in the second row will appear both in the numerator and in the denominator and
so will cancel out. So we may as well drop it. The two degree one terms in the third
row and the first degree two term in the fourth row are zero because |®?| = #(0)' We
drop all terms of degree three and four in 3, 3*, by way of approximation. So we end
up with the action

A= [ “ir [ 0 500 - | T kEns) 07
where
R(3.0) = [[ dxdy 560" hx.y) + 210u(x, )] 5(3)
+ (@ [[ axdy 50 v)5) + 8 [[ dxdy 560" 380"

This action is, of course, no longer invariant under 8 — €3, p* — e=93*. But it is
still invariant under 8 — —3, * — —3*. Hence

<<QT(X)(*)>> =™ 4 <<57(X)(*)>> — o™
This is nonzero and shows us that conservation of particle number has been broken.

(4) The two point function for p > 0: By making a change of variables «,(x) —
a,(x)e?? we may always arrange that the favoured ® has phase zero, so that it is
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positive. So for simplicity, we now set ® = which we denote /ng. To compute

zﬁlzow
the two point functions, using the approximate action (1.7) we apply (the natural
formal analog) of part (b) of Lemma A.1 with

D———+h—|—2nov V=W =ngv

Note that, because v and h are translationally invariant, D and V = W commute with
each other and we may also compute with these operators using Fourier transforms.
In particular, in momentum space, the operators D, D! = % + h 4+ 2ngv and V are

multiplication by —iko—+ h(k)+2nod (), iko+ h(k)+2n¢d (k) and ngi(k), respectively.
Hence the kernel of (DD* — 4V2)_1 is

(DD' —4v?) N ((r,x), (+, x’))

zk (r—7")—ik-(x—x") 1
_kTZ / (27r) ’ k2 +[h(k)+2nod(k)]2—4n2d (k)2
ko€2mkTZ

zk (1—7")—ik-(x—x") 1
_kTZ / (27r) ’ k2+h(k)[h(k)+4nod(k)]
ko€2nkTZ

Combining (1.6), (three variants of) (A.1) and (A.3),

(ar(x) ar (x)) = no + (B (x)" B (x ’)>>

1k T—7")+ik-(x—x") ik0+ﬁ(k)+2n0ﬁ(k)
=no+ kT Z / %)3 o k2+h(k) [A(k)+4nod(k)]
koe2nkTZ

(o ()arr (<)) = mo -+ (B ()8 ()

_ 1k T—71")+ik- (x—x") 2no0(k)
=no — kT Z / 2w)3 o k§+fz(k)[fzf()k)+4nm}(k)]
ko€2nkTZ

In contrast to the case p < 0, these expectation values converge to ng, rather than
zero, as |x —x’| — oo. This is called “long range order”. Note also that the integrands
have poles at

ko = +iE(k)  where E(k) = \/h(k)[h(k) + dnod(K)

This E(k) is the (approximate) “single-particle excitation energy”. When h(k) = L

2m’
E(k) ~ clk| with c¢= Q"OT@(O) when k0

This “linear dispersion relation” is used, because of the Landau theory of superfluid-
ity, as a signal that the interacting Bose gas is superfluid. The ideal Bose gas has a
quadratic dispersion relation and is not superfluid.

The above discussion suggests that there will be a phase transitiion. For p below
some critical value (which will probably not be exactly zero, because of renormalization
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effects) the expected value of a single annihilation or creation operator will be zero, just
as you would expect from conservation of particle number. But, when the temperature
is low enough, for u above the critical point, it will be ® for some complex number of

modulus || ~ | /#(0) # 0 (despite an action which conserves particle number) and

its precise value (i.e. which allowed ® it is) will depend on the limiting process used
to define the model. So we have to be very careful about how we define the model.

1.1.3 A Rigorous Starting Point

To carefully define the model, for example to carefully define the partition function on
the left hand side of (1.1), you take a limit of obviously well-defined approximations.
One way to get a (pretty) obviously well-defined approximate partition function is to
replace space, R3, by a finite number of points, say X = Z*/LZ3. However, even for
an approximate model with space having only a finite number of points, the functional
integral on the right hand side of the corresponding (1.1) still has uncountably many
integration variables, because time is still (0, %], and so is still not really defined.

At this point, T am just going to quote a theorem (I’ll give the important parts of the
proof in §1.4) which says that, when X is finite, you can get a rigorous representation
of the partition function by taking a limit of a sequence of integrals, with each integral
in the sequence having only finitely many integration variables. To get finitely many
integration variables, you replace “time”, (0, kT] by a finite number of points too.
The theorem, proven in (Balaban et al., 20085, Theorem 2.2) is the following.

Theorem 1.1 Suppose that R(),1(e) — oo ase — 0 at suitable rates®. For each fized
finite X,

1
Te o— R (H-nN) _ 10 I1 [d,uR(E)(ozT,ozT) Io(s; 0., ar )} (1.8)

e—0
TGEZO(O,%

with the convention that oy = a1 . Here,

kT

duR a) ot a da* x)/\da(x) —a’(x)a(x) X(|a(x)| < R(E))

2me
xeX

denotes an unnormalised Gaussian measure, cut off at radius R(e), and
Io(g; 0%, 8) = C(a, B) elo (e (a8, va’p)
with
i(e) = e
and (- (a, B) being the characteristic function of
{ a,f:CX = C ‘ o — Bl <x(e) }

We write the (R-style) scalar product®, (f,g) = > cx f(X)g(x) for any two fields
frg: X —C.

20ne can think of R(g) ~ —= and of r(¢) as a power of ln = or as a small power of 1

Ve

3Thus the usual scalar product over C!X| is (f*, g).
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Now the integrals in this theorem do not look very much like the functional integral
on the right hand side of (1.1). In fact, one has a lot of freedom in choosing the
integrand in (1.8) and I have deliberately chosen the integrand to make the next steps
easy, rather than to make it look like the integrand of (1.1). Here is how to see that
the integral of (1.8) is actually not so different from the integral of (1.1).

e First observe that (1.8) has one complex integration variable for each “space—
time” point (x,7) with x € X and 7 € ¢ZN (0, 75, a finite approximation to the
“time set” (0, 75 ).

e In contrast to the integration variables of (1.1), each complex integration variable
of (1.8) does not run over all C, because of the cutoff functions x (|a(x)| < R()),
which restrict each integration variable to a finite disk in C, and (. (a;—c, @),
which restricts the time—derivative of «,(x). But in the limit € — 0, these cutoffs
disappear.

e Consider the total exponent

- Z ar(x) ar(x) + Z [<ai75,6_8(h_“)a7> —e(af_ar,vai_or)]

x€X 1
T€eZN(0, 73p] T€eZN(0,z7]

of (1.8) (including the part of the exponent hidden inside the measure dpugc))-
Expand the exponential in powers of €, keeping only 1 — £(h — ) and throwing
away all contributions of order at least £2. This gives exactly

€ Z [<O‘:—a’ %> B <O‘:—a’ (h— “)O‘T> o <o¢i_eo¢7 ) vai_aaq.”

T€eZN(0,25]

In the limit ¢ — 0, )
and we get A(a*, a).

1
ET Qr —Qr—¢ 9
reeZ(0, ] becomes [FT dr and “=—2== becomes S-or,

To get from the integral

[T [dme(enan) bear.ar)] (1.9)

T€eZN(0,27]

of the rigorous starting point, (1.8), to the full construction and analysis of the model
of interest, we still need to execute several steps.

e Step 1: Take the temporal ultraviolet limit, ¢ — 0. Of course Theorem 1.1 tells
us that the limit exists and tells us that it is the approximate partition function.
But that information by itself is virtually useless. We need to develop a picture
of the limiting value we can work with in later steps.

e Step 2: Take the spatial infrared limit (i.e. the thermodynamic limit) X — Z3
and possibly the temporal infrared limit % — oo (i.e. T —0).

e Step 3: Get properties of the limit, like symmetry breaking.

In these notes, we shall just discuss Step 1, the temporal ultraviolet limit. That
is only an extremely small part of full construction. In fact, steps 2 and 3 can be
expected to be exceptionally long and arduous and research on them has barely begun.
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Nonetheless, Step 1 is not only a necessary step, but its treatment provides a useful
glimpse, in a relatively simple setting, at techniques that are suitable for the later
steps, and other models, as well. For a different, earlier, treatment of the ultraviolet
limit in some related models see (Ginibre, 1965; Ginibre, 1971; Brydges and Federbush,
1976; Brydges and Federbush, 1977).

’
A
1
kT

I > X
Fig. 1.2 The Integration Variables

In the initial integral, (1.9), there is one complex integration variable, a.,(x), for
each “space-time” point (x,7) with x € X and 7 € €Z N (0, 7] Recall that X is
the finite discrete torus Z3/(LZ)3, for some large L € N. Figure 1.2 contains one dot
for each of the integration variable labels, (x,7). (Ignore the the difference between
light and dark dots for a minute.) You will notice an asymmetry in that figure — the
distance, €, between dots in the 7 direction is miniscule compared to the distance, 1,
between dots in the X direction. In Step 1, we eliminate that asymmetry. We shall
“integrate out” all integration variables a,(x) for which (x, ) is located at one of the
lighter dots in Figure 1.2, leaving the integration variables «,(x) for which (x,7) is
located at one of the darker dots. That is, the final result for Step 1 is a representation
of the partition function as an integral having o, as an integration variable only if
T € 0Z where 6 is some fixed constant, independent of €. Thus the set of integration
variables for the final result of Step 1 looks like the set of integration variables for
a classical spin system (in four dimensions). In fact, the final result of Step 1 looks
somewhat like the classical N—vector spin system for which Balaban proved the exis-
tence of the infrared limit and of symmetry breaking in (Balaban 1995a, 19955, 1996a,
19960, 1996¢, 19984, 19985, 1998¢). However there are substantial technical differences
between the output of Step 1 and the class of models that Balaban considered. So one
cannot execute Steps 2 and 3 simply by saying “Balaban already did it”.

To execute Step 1, we repeatedly apply a simple version of a renormalization group
procedure, called “decimation”. In each decimation step we integrate out all a.’s
having every second remaining value of 7. In the first decimation step, we integrate
out a» with 7 = ¢, 3¢, 5¢, ---. The integral with respect to these variables factorizes
into the product, over 7 = 2¢, 4e, 6¢, -- -, of the independent integrals

[ (@t i) 0t oevar) o(eiar o)
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That is, assuming that % € 2eN,

11 {duﬁ(s)(aﬂ%) Io(s;07 ., r )]

T€eZN (0,77 (1 10)

= H |:d:uR(8) (ara aT) Il (E ar 2e» Oé‘r)i|
TE€2eZN(0, 257 ]

where
Il(g;a:—%vaT) :/d/LR(E)(O‘:—EvaT 8) IO(E O"r 2e) Or— 6) IO( j— e Or ) (1'11)

In the second decimation step, we integrate out «, with 7/ = 2¢, 6¢, 10¢,
in the integral on the right hand side of (1.10). The integral with respect to these
variables factorizes into the product, over 7 = 4e, 8¢, 12¢, ---, of the independent
integrals

d,U'R(a) (o‘r——%v O‘T*QE) 5 (5; O‘j——4ev O‘T*QE) I (5; O‘j——2ev 047-)
That is, assuming that % € 4eN,

[I [dmeeran) sar o)

T€eZN(0, 7]

= [ II  |dme(erar) hiEai s, o)
TE2ZN(0, 157 ]

= H |:d,UR(5)(OéT;05‘r) L(e;ar_y., 7)}

TE4eZN(0, 757 ]

where

IQ(E aT 45,(17—) = /d:uR(E)( T 25,0(-,— 28) Il(g aT 45,04-,— 28) Il(g aT 25,(17—)
/ H dpg () (0, arr) H Io(g;ar_,00)
T'€eZN(T—4e,T) TEEZN(T—4e,T]
In general, for n > 1, e > 0, set
Gap)= [ I dmolera) [ ket aa)  (L12)
T€ZN(0,27¢) TEZN(0,27¢]

with ag = @ and agn. = (. If, as in Figure 1.3, below, % = pf and £ =270, then

H {dﬂR(s)(araaT) Io(g;0r ., /H d,uR () (00, be) Im (g5 P0_1, be)
T€eZN(0,25]

(1.13)
with the convention ¢¢ = ¢, . I have renamed oyg = ¢y.
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1
0 el ) —> A = pf

Fig. 1.3 The Integration Variables, Again
Combining (1.8) and (1.13) we get

L

P
Tr e~ *7 7 = lim / [T [@tno-ro) (65 60) (2" 0:07_.0)
=1

m—00

So far we have just made a trivial rearrangement of the order of integration. But ...
(Balaban et al., 2010¢) have shown that

o Iy(a*, B) = limpy,— oo [ (27™0; a*, §) exists

e and that the partition function can be written as

L — u X)) pe(x) — * *
Ty e~ 7o (H-#N) :/H{erxdW(z)ﬂff( ) =000 165 )
=1

e and that, if § was chosen sufficiently small, Iy may be written as the sum of a
dominant part (which is shown to have a logarithm, which I will describe in more
detail below) plus (ugly) terms indexed by proper subsets of X and which are
nonperturbatively small, exponentially in the size of the subsets.

We call the dominant term the “stationary phase approximation” (SP), because it is
obtained by restricting all domains of integration in our functional integrals, simply
by fiat, to appropriate neighbourhoods of stationary points. I'll describe this process
in more detail in §1.2. The dominant contribution looks just like a perturbation of the
original ef@»i(£)8)—e{a”F.va™B) in our starting point (1.8). Here is the precise form of
the dominant contribution to I,,(g; a*, ).

ISP (e o, B) = Zone ()X ef0 (27BN FVanc (507 8)+Eone(&07,5) (1.14)
where, for every § that is an integer multiple of ¢,

Vis(e; o, ) = —e Y ([i(Na”][i(6 =7 = )], v [(n)a"] [i(6 = 7 —€)p]) (1.15)

T€eZN[0,8)

The normalization constant Zs(e) is chosen so that £s(e; 0,0) = 0. It is extremely
close to 1. (See (Balaban et al., 2010b, Appendix C).) The function &s(e; a*, 3) is
defined for real numbers 0 < ¢ < § < O such that § = 2"¢ for some integer n > 0. It
is determined by the recursion relation

55(6; Oé*,ﬂ) =0
Eas(e; o, B) = Es(e; a*,§(0)B) + Es(e; 7 (0)a™, B)
f d#r(a)(z*, 2) 9As(e5a% 852" ,2)

1
o fdﬂr(é)(Z*uz)

(1.16)

where
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0As(e; o, By 2, 2) = [Vs(e; J( )8+ 2) = Vs(e; o, 5(0) )]

+ [Vs(e; §(0)a* + 24, B) = Vs(e; j(6)a*, B)]
+ [Es(e; o ,j 8)B + z) — Es(e; a*, 5(8)5)]
+ [E5(e G (0)a" + 24, B) — Es(e5 j(0)a*, B)] (1.17)

The motivation for this recursion relation comes from the stationary phase construc-
tion and is given in §1.2. In §1.3, I will outline the argument that the functions
Es(e; o, B) are

e analytic function of the fields,

e of degree at least two in each of a® and

e perturbatively small corrections

1.2 Motivation for the Stationary Phase Approximation
The functions I, (g; a*,3) of (1.12) can also be defined recursively by

In-l—l(g;a*uﬁ) :/d/'LR(E)((b ¢) (5 o 7¢) ( ;¢*76) (118)

One of the morals of (Balaban et al., 2010¢) is that the integrand is highly oscil-
latory and that the dominant contributions may be extracted using stationary phase
by discarding contributions far away from the critical point of the (“free part”) of the
exponent.

By way of motivation for the stationary phase approximation, and in particular
for the recursive definition (1.16) of Es(e; a*, 3), replace I, by

IP)(e; 0, B) = 2. (e)X] elo" d(E)8) +Ver (5507 B)+E0, (<50 5)

in the recursion relation (1.18). Here, &, = 2"¢. (Start with n = 0, Z.(¢) = 1 and
E(g; a*,8) = 0. Then, aside from the cutoff function (.(«, ), which is going to

incorporated by our choice of domain of integration, Iésp)(s; a*,8) is the same as
Iy(e; a*, 8).) The resulting integral

/ diee) (8, 9) ID(e; a*,6) ISP (5; 67, )
= 2 (X [ duneey (67, 9) €@ HEDHEHEB) Ven(Eia” 6)4Ve, (50°.0)

oEen (€507 B)HEe,, (< 67.0)

I / d¢*<x2>Ad¢<x)] A" 856 9)
e x Jlo01<R(e) "

_z 2|X\ A« (X)NdD(x) | LA(a*,B5 Px,)
€n H 16(x) | <R(e) 2m ¢

XEX Y ¢u(x)=d(x)*

= Z.,(e)*™ {

(1.19)

with
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A(a*aﬁ; ¢*a ¢) = - <¢* ) ¢> + <a*,j(€n)¢> + <¢*,](En)ﬂ>
+ Vsn(g; a*v(b) +Vsn(5§ ¢*76)
+ &, (5 0", 0) + &, (55 ¢+, 8)

Here we have written 4 as a function of four independent complex fields a*, 3, ¢«
and ¢. The activity in the penultimate line of (1.19) is obtained simply by evaluat-
ing A(a*, 8; s, ¢) with ¢. = ¢*, the complex conjugate of ¢. But in the last line,
we introduce, for each x € X, a new, complex integration variable ¢, (x). That is,
(¢(x),¢* (x)) € C2. To get equality between the second last line and the last line
of (1.19), we build the condition ¢.(x) = ¢(x)* into the domain of integration. The
reason for introducing independent complex fields ¢, and ¢ lies in the fact that the
critical point (where the first order derivatives with respect to ¢, and ¢ vanish) of the
quadratic part

— (@, &) + (j(en)a™, @) + (D, i (en)B)
=— (¢« —j(en)a”, ¢ —j(en)B) + (i(en)a”, j(€n)B) (1.20)
<Oé*,j(€n+1)ﬁ>
of A is “not real”. Precisely, the critical point is
(Jim =j(en)a”, o™ = J(en) B

and in general (¢§m)* £ ¢t | To do stationary phase, we introduce the “fluctuation
variables” z,(x), z(x) and make the change of variables

¢u(x) = 02 (%) +2(x) . B(x) = ¢ (x) + 2(x) (1.21)
Under this change of variables the domain of integration
{ (0:(x),9(x)) | 6:(x) = 6(x)", |¢(x)| <R(e) }
is transformed into
M(x) = { (2:(x), 2(x)) | (657(x) + 2(x))" = 67 (x) + 2(x)
and ‘gbcrit(x) +z(x)| <R(e) }

After the change of variables, the integral (1.19) is over a real 2| X | dimensional subset
in the complex 2| X| dimensional space of fields z,, z.

The first step in the stationary phase approximation is to replace, for each x € X,
the domain of integration M (x) by the neighbourhood

D(x) = { (2 (x),2(0) € €|

2e(x)| < 1(en),

z(x)’ <r(en),
(200 + 657 (X)) = 2(x) + 6 (x) | (1.22)

of the critical point. In (Balaban et al., 2010¢) we justify this approximation by the
observation that, whenever (z.(x),z(x)) ¢ D(x) for some x € X, the integrand is
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extremely small. I will sketch the reasons for this in §1.2.2, below. Observe that,
in general, first, the critical point z(x) = z.(x) = 0 is not in D(x), and, second,
24(x) # z(x)* on D(x).

The quadratic part (1.20) of the effective action A(a*,ﬁ; A 4 2, G 4 z) in
the new variables is

— (j(en)a” + 24, j(en)B + 2) + (@, j(en) ((en)B + 2))
+ <J(5n) (J(En)a* + Z*)7 ﬁ>
= - <Z*a Z> + <Oé*, j(5n+1)6>

(This is why we introduced the j(¢) in Theorem 1.1.) Inserting the change of variables
(1.21), we see that the part of (1.19) near the critical point is,

Zs 2|X\ H/ dz.(x 2/\dz (x) e A(a*,B; 24, 2) (123)
xeX
where
A(O‘*vﬁ; Z*,Z) = <Z*7 > <O‘* j(gn-i-l)ﬁ)
n(s « ,¢cr1t+z) (E; d)irit—FZ*, 6)
_|_(c/'s (E a ,(bcrlt—FZ) ( . ¢crit+z*7 6)
<Z*7 > <Oé ](En+1)ﬁ>+v‘fn+1(€ «Q 75)
&, (85 " 6) + &, (5 ¢, B) + OA, (55 o, B; 24, 2)

with the part of A(a*, 3; 2, z) that is of degree at least one in (z,,z) being (except
for the explicit — (2, 2))

6“45(5; O‘*aﬁ; 2*72) = [V5(€ «Q 7.7( )5"‘2) VKS(g; a*h?(&)ﬂﬂ

+ [Vsle; 5(0)a* + 2., B) — Vs(e; j(6)a*, B)]
+ [Es(e5 o ,J 8)B + z) = Es(e; a*, 5(9)B)]
+ [Es(e; §(0)a” + 24, B) — Es(e; j(6)a™, B)]

We have used that
Vsn (67 Oé*, ¢Crit) + VETL (57 (biritv 6) = VETL (57 Oé*,j(fn)ﬁ) + Vﬁn (57 j(fn)a*, ﬁ)
= V€n+1 (5; o, ﬁ)

(The definition (1.15) of Vs(e; a*, ) has been rigged to give this.) Apply Stokes’
Theorem, once for each x € X, to replace the domain D(x) with the union of

{ (20, 2(0)) | 2:(x) = 2(0)", |2(x)| < r(en) }

(which contains the critical point) and a “side boundary”. This is done in Lemma 1.2
below. (Choose 1 = r(ey) and p(x) = ¢ (x)* — ¢ (x) = (j(en)(a — B))(x).) This
gives that (1.23) is the sum of
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Zan(E)Q‘XI [H/ dz*(x)Adz(x)} eA(a*,B;z*,z) (124)

2m
xex 7 |z(x)[<r(en)
and Z., ()X times

|: H / dz*(x)/\dz(x):| |:
27
C

/ dz(x)*Adz(x):| eA(a*,ﬁ;z*,z)‘

27 zx (X)=2(x)*
RCX xER (%) [2(x)|<r(en) for x€X\R
where, for each x € X, C(x) is a two real dimensional submanifold of C? whose
boundary is the union of “circles” dD(x) and

{(),2(0) € €| 21(x) = 2(x), |2(0)] = 1(en) }

The second step in the stationary phase approximation is to ignore all but the first
term. That is, to replace (1.23) with (1.24). In (Balaban et al., 2010¢) we argue that
—z4(x)z(x) has an extremely large negative real part whenever (z.(x), z(x)) € C(x)
(see part (b) of Lemma 1.2, below) and that this replacement introduces a nonpertur-
batively small error.

Thus, the stationary phase approximation for

/ dinge) (67, 8) ISV (e; o, 8) ISP (e; 6°, )

s (1.24), which can also be written as

x€X\R

Z. (E)Q‘Xle<a*7j(5n+1)ﬁ>+vsn+1(5?a*)ﬁ)
eEen(E:0",5(en)B) +Ec, (g5 5(en)a”.B) /d:ur(s )(Z*,Z) e04e, (5507, Bi2.,2)
This is indeed of the desired form, namely (1.14) with n replaced by n + 1, if

Zer () = 22, (o) / dnds

|z|<r(en)

—z|?

and &, ., (e; o*, 3) is given by the recursion relation (1.16).

1.2.1 Stokes’ Theorem

We next give a short discussion and proof of the version of Stokes” Theorem that we
used above. The setting is that we are given a radius » > 0 and a complex vector
p € CX that obeys |p(x)| < 2r for all x € X and we wish to “move the domain of

integration” from the initial domain D¢ = ><XDC (x), where
x€E

z(x)| <,

De(x) = { (2.(x), 2(x)) € €| 2X)] <7 2(%) = 20" = p(x) }
(see (1.22) above) to the final domain Dg = >€<XD]R(X), where

Dg(x) = { (2:(x), 2(x)) € C? ’ 21(x) = 2(x), |2(x)] < r}

We start by taking a closer look at D¢(x). At each point of D¢ (x), the value of the
variable z.(x) is completely determined by the value of the variable z(x) through
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z4(x) = z(x)* — p(x)*. The set of allowed values of the variable z(x) is precisely the
intersection of the two discs |2(x)| < r and |z(x) — p(x)| < r. The two discs overlap
because of the hypothesis | p(x)‘ < 2r. At each point of the corresponding final domain
Dg(x), the value of the variable z,(x) is again completely determined by the value of
the variable z(x), through z.(x) = z(x)*, and the set of allowed values of the variable
z(x) can be though of as being precisely the intersection of the two discs ‘z(x)’ <r
and |z(x) — 0| < r, which happen to coincide.

It is a simple matter to interpolate between D¢(x) and Dg(x). Define, for each
0<t<1,

Dy(x) = { (20, 2(x)) € C2[ |22 ()] <7, [2(3)] < 7, 2(%) = 2(%)" = tp(x) }

Once again, at each point of D;(x), the value of the variable z.(x) is completely
determined by the value of the variable z(x), this time through z,(x) = z(x)* —tp(x)*,
and the set of allowed values of the variable z(x) is precisely the intersection of the
two discs |2(x)| < 7 and |2(x) — tp(x)| < 7. When ¢ = 1, Dy(x) = D¢ (x) and when
t =0, Di(x) = Dr(x). Hence B(x) = |J D:(x) is a the three (real) dimensional set

0<t<1

DC (X)

Dg(x)
Fig. 1.4 The domain of integration for Stokes’ Theorem

whose boundary is the union of D¢ (x) (that’s the part of the boundary with ¢t = 1)
and Dg(x) (that’s the part of the boundary with ¢ = 0) and the two (real) dimensional
surface C'(x) = (Jyoyoq OD¢(x) (that’s the part of the boundary with 0 < ¢ < 1) where

OD:(x) = { (2:(x), 2(x)) € C2 | max {|z.(x)], [2(¥)|} = 7, 2(x) = 2.(x)" = tp(x) |
The surface C'(x) the joins the curves bounding Dg(x) and Dc(x).

Lemma 1.2 (a) Let f(ou, B; 24, 2) be a function that is analytic in the variables ., 3
in a neighbourhood of the origin in C*X and in the variables (z«, z) € ><X7>(x), with,
x€E

for each x € X, P(x) an open neighbourhood of B(x). Then

/ H [dz*(?qu(x) e—z*(x)z(x):| of (e i70,2)
De yex ™

([, e o)
C(x)

RCX x€R
200" Ad2(x) 2 (x)2(x) | f(aeFize,2)
2 € € (=200
zx (X)=2z(x
‘Z(X)‘ST for xeX\R

x€X\R
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(b) We have
Re (2.(x)z(x)) > L(r? = |p(x)[?)

Jor all (z.(x),2(x)) € C(x). Furthermore the area of C(x) is bounded by 4r|p|. That

18,

/ e CIMER) f(4 (x), 2(x))| < 2r[p] sup | f (2:(x), 2(x))
000 o)

Proof (a) We apply Stokes” Theorem once for each point x € X to the differential
form

w = /\ dz*(xz);\zdz(x) exp{ — <Z*,Z> + f(a*aﬁ; 2*72)}

xeX

Since w is a holomorphic 2| X| form in C?¥!, dw = 0 and

/Dw_szRw where Mg = [[ D=(x) x ] C)

RCX x¢R XER

(b) Let (2,2) € C(x). We suppress the dependence on x. There is a 0 < ¢ < 1 such
that max {|z.|, ||} = and z, = z* —tp*. So

2oz = |2|? —tp*z

2oz = |zl + tpz* — [tpl?
Adding and taking the real part,
2Re (2.2) = |2? + |2uf® = 2]p]* 2 1 — |pf?
By construction, C(x) is contained in the union of the two cylinders

U={ (re ™ —tp*,re'?) | 6 €0,27], t €[0,1] }
L={ (re" re7™ +tp) | 6 €0,27], t €[0,1] }
The upper cylinder contains the part of C'(x) with |z(x)| = r and the lower cylinder
contains the part with z.(x) = r. We’ll bound the integral over the upper cylinder.
On U, we have dz = ire’df and dz, = —ire="df — p*dt, which gives
dzs Ndz = —ip*reiedt A db

since df A df = 0. Hence

2 1
‘/ dzggdz (24,2)| < %/ d@/ dt ‘f(refw — tp*,reie)‘ < r|p|sup ’f(z*,z)’
0 0 U

O
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1.2.2 The Error

We finish off this section by hinting at why the error introduced by the stationary phase
approximation is extremely small. We consider the case n = 0. The initial functional
integral representation (1.8) may be written

1 e 7 0 g [T ([ T] 25009 (far ()] < R(2))|

e—0
T€eZN(0,25] XEX

1/ « 1
2 (et o5 0t ap)em2 (0700 )
where ‘
Io(e; o, B) = el 1€ g=elaBova™B) e (o ) (1.25)

(a) We first discuss why inserting the “time derivative small field characteristic func-
tions” (. (o, B), with o = ;. and 8 = ., for the various different values of 7, (which
are not present in the formal functional integral (1.1)) introduced only a very small
error, which tends to zero quickly in the limit € — 0. The critical observation is that
the quadratic part of the exponent of 67%<°‘*’°‘>Io(5; at, ﬁ)e’%w’ﬁ> obeys

Re{ -3 (a" o)+ (a",j(e)B) — 5 (8" 8) } ®Re{ — 3 (", a) + (", 8) — 5 (6", 5) }
—3lla = BlZ

which generates a factor of order e~ 27(®” when (a, B) is not in the support of (. («, B).
This factor will be miniscule, because we shall choose r(g) = W where v is a small

positive constant (and 55 is a randomly chosen small positive number).

(b) A similar mechanism generates small factors whenever the difference 5 — a (now
think of this as a; — a;—2.) between the two arguments of

L a*,B) = / Ao (67, 8) Io(e; a*, 6)Io(e: 67, B)

is larger than roughly r(2¢). Consequently, we use the stationary phase approximation
for this integral only when the “time derivative small field condition” |ja— e < r(2¢)
is satisfied. The change of variables (1.21) expresses I; as

(5 a 75) — ela” J(2€)ﬁ H / dz. (x 27/r\zdz (x) 7z*(x)z(x)} A(a*,Bi2s,2)
M(x)

Ce (a,j(e)ﬂ + Z) Cs((](s)o‘* + 2)", 6)

The characteristic function (. (a,j(a)ﬂ + z) limits the domain of integration to z’s
obeying

2 +3(€)8 — allec <r(e)
Since [la — Bllos < 1(26) = F7mr(e) and [|ji(e)B — Bllee < consteR(e) < r(e) (by
our choice of R(g) — see part (d), below), this condition is more or less equivalent to
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Iz]lce < r(e). Indeed, on the difference between the domain ||z + j(€)5 — all < r(€)
and the domain ||z]|. < r(€), the integrand is extremely small, for reasons like those
given in part (a), above. Similarly, the condition imposed by the second (. is roughly
equivalent to ||z«]|cc < r(€). The two conditions ||z||cc < r(e) and ||z4]c < r(e) are
built into the domains of integration D(x) in (1.22).

(c) The “time derivative small field condition” |a — f[loc < 1(26) = smrr(e) is also
used to ensure that —z,(x)z(x) has an extremely large negative real part whenever
(z4(x), 2(x)) lies on C(x), the side of the Stokes’ “cylinder”. This may be seen from

part (b) of Lemma 1.2, with 7 =1(¢) and p = (¢<1)* — ¢t = j(e)[a — 3]

(d) Another mechanism, which is similar in spirit to, but different from, the supression
of large time derivatives, arises from the e=5(>"#:va"8) in (1.25). When o ~ 3 (i.e.
when the time derivative is small), the exponent is roughly

—e{a"a,vata) < —evy ("o, afa) = —eoy Z lov(x)[*
xeX
where v; is the smallest eigenvalue of the integral operator with kernel v(x,y). Recall

that we have assumed that the integral operator with kernel v(x,y) is strictly positive.
So if for some x € X, we have |a(x)| > R(e), then

* * 4
e—e(a a,va’a) < 6—018R(€)

The large field cutoff R(e) is chosen so that this is, again, minuscule when ¢ is small.
For example, R(e) = (%, (with 2 a randomly chosen number that is strictly
ev)3/ 10

bigger than, but close to i) does the job.

1.3 Bounds on the Stationary Phase Approximation

In this section, we outline the proof of some bounds on the Es(e; a*, 3)’s of (1.16).
The bounds are expressed in terms of a family of norms on analytic functions of

{ a*(x), B(x) ‘ xe X }

An analytic function f(a*, ) of a* and 8 may be expanded in a power series

fas,8)=Y" Y alxi Xk ya,ce,ye) alxa) e alxe)” Byr) - Blye)

k>0 x1, % €X

Y1, yp€X
(with the coefficients a(x1,--+ ,Xg; ¥1, -+ ,¥¢) invariant under permutations of xi,
-+, X and of y1, -+, y¢). For the functions of interest, the “symmetric coefficient
system” a(x1, -+ ,Xg; ¥1, - ,¥e¢) will be translation invariant (recall that X is the

finite discrete torus Z3/(LZ)3, for some large L € N) but otherwise exponentially
decaying (uniformly in L). We tailor our norms to these two characteristics by defining
the norm

1@ B)ls = D max max > ws(X;¥)|a(X;¥) (1.26)
k,£>0 - Ry exkxxt
(X,9);=x
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with the “weight system”
ws(X; ¥) = (§)FH emIEY) for (R,§) € XF x X* (1.27)

where 7(X,¥) is the minimal length of a tree whose set of vertices contains the set
{X1, " Xk, ¥1, "+ ,ye}. We refer to (1.27) as the weight system with mass m that
associates the constant weight factor £(6) to the fields a* and . During the course of
the proof, we will use other similar norms, with different weights. Roughly speaking,
for || f(a*, B)||s to be finite, each coefficient a(x1, - ,Xk; y1,- - ,¥¢)

e must decay a bit better than exponentially with rate m when one argument is

held fixed and at least one other argument is moved far away and

e must be of size smaller than W. (The weight x(J) will be chosen shortly.)

If || f(a*, B)||s is finite, then f(a*, ) is analytic, and bounded by |X || f(a*, 8)|ls, on
the domain { (a*,8) € C*¥1 | |a(x)],[B8(x)| < £(5) for all x € X }.

The decay properties of £,’s arise from the decay properties of the operators j(7) =
e~ "= and v in the initial Iy of Theorem 1.1. In general, we capture the decay
properties of any operator A on L?(X) = CX, with kernel A(x,y) (i.e. that maps
p(x) € L*(X) to (Ap)(x) = Y cx AX ¥)p(y) € L*(X)), by using the weighted
L'-L> operator norm

Al = max{ sup 3 M| A(x, )|, sup 3 €m0 Ax, y>y} (1.28)

xX€X yex YEX vex

where d(x,y) is the metric on X = Z3/LZ3. Some useful properties of this norm are
given in

Lemma 1.3 (a) For any two operators A, B : L?(X) — L*(X)

IABII < (LAl TiB]

(b) For any operator A : L*(X) — L*(X) and any complex number o

H’eaAW < elal Al ‘HeaA _ ]lm < |a |||A|||€\a| Al

Proof (a) By the triangle inequality, for each x € X,

> MBI AR 2) || Bz, )

yeXx y.z€X

< 3 emitea)| A(x, )| 1B
zeX

< [l 1Bl

The other bound, in which one sums over x rather than y, is similar.



Bounds on the Stationary Phase Approximation 21

(b) By part (a),

oo oo

fles M < 32 Ao Al < 32 Slal™ LAl = et
n=0 n=0
and
oo o0
flesA =l < 37 Allam A < 37 dlal™ AN < faf [A]je!! 141
n=1 n=1

Corollary 1.4 Let 7 > 0.

N < emUEmj1i(r) = T < 7(Iff] + |ge])em MRIHED

Proof Write j(7) = e™ e~ and j(7) — 11 = e™#(e~™" — 1) +-e™# — 1. By the previous
Lemma
i) = e [lle™||| < emeT M

and
ll3(r) = Al < e™flle”™ = 0| + le™ — A < 7ljhffleT#e™ M 4 e — 1
O

The quantities relevant for the estimates of Es(e; o*, ), in addition to the radii
r(0), of the domain of integration, and (), of the domain of analyticity, are the norm
[lv]l| of the interaction, the decay rate m, a constant K; such

il < e and  llj(r) = A < Kjre™T  form >0 (1.29)

(see Corollary 1.4) and a constant 0 < © < 1 that bounds the range of §’s (see (1.13))
for which the constructions work. In (Balaban et al., 20105, Hypothesis 1.1) we give a
set of hypotheses on these constants. (For the full temporal ultraviolet limit, not just
the stationary phase approximation, see (Balaban et al., 2010¢, Appendix F).) For
the purposes of these lectures, I'll just make one reasonably specific choice. I'll allow
any K;, m > 0 and view them just as fixed constants. Then I’ll pick sufficiently small
(depending on K, and m) 0 < v,© < 1 and allow any interaction v with ||v]| < v.
Then T'll set

__1 _ 1
r(d) = God k() = o (1.30)
Think of the exponents % and % as being just a tiny bit bigger than 0 and i,
respectively.
I will outline the proof of
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Theorem 1.5 Under the above hypotheses, there is a constant Kg such that
[E5(e; o, B)||; < Kpd?|[vll*r(5)*k(6)°

for all 0 < e <6 < O for which g is a power of 2. The function Es(g; o, B) has degree
at least two both* in o* and (3.

n (Balaban et al., 20105, Theorem 1.4), we also prove

Theorem 1.6 The limit

Eo(a,B8) = lim &(27™6; o*, B)

m—00

exists uniformly in 0 < 0 < O. It fulfills the estimate
[€o(a”, )|, < K& 0% |[0]l*x(6)r(6)°
and has degree at least two in both o™ and 3.

The proof of Theorem 1.6 uses the same techniques as the proof of Theorem 1.5. So I
won’t discuss the former at all.
Remark 1.7 Theorem 1.5 implies that H85 g; a*, 3) H(S < KE( ) for all 0 < e <

0<0O.1In partzcular Es(e; a*, p) is analytzc and bounded pointwise by KE|X|(”|UH‘)

on { (a*,B) € C2XI ’ la(x)], |B(x)| < (60)"10 for allx € X }. The coefficients in its
power series expansion decay exponentially at rate at least m.

We formulate the recursion relation (1.16) that defines &, (e; o*,8) more ab-
stractly.

Definition 1.8 Let 0 < e < §. For an action E(a*, 3) we set
fd,ur(é) (Z*, Z) e@As,a(E;a*,B;z*,z)
[ dpesy (z*, 2)

Rse[E] (", B) = E(a”,5(0)B) + £(j(0)a”,B) +log
whenever the logarithm is defined. Here

OAs (€5 o, By 20, 2) = [Vs(es J( )B+2) = Vs(e: a”,5(0)B)]

)
+ [Vs(e; §(6)a” +z*,5) VJ(E i(@8)a*, B)]
+ [E(a” ,6’+Z) 0)B)]
+ [E((8)a* + 2., ) — ( ( ) 8)]

4By this we mean that every monomial appearing in its power series expansion contains a factor
of the form a*(x1)a*(x2) B(x3) B(x4) .
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The recursion relation (1.16) is equivalent to
E(e;a",8)=0
gsn+1 (5§ a®, 5) =Re, e [gsn (5; a”, 6)}

To prove Theorem 1.5, we perform induction on n to successively bound &, (¢; - )
forn = 0,---,log, % The heart of the induction step is given in Proposition 1.11.
Proposition 1.11, in turn, is an application of a corollary to (Balaban et al., 20104,
Theorem 3.4), which, specialized to the current setting, says

(1.31)

Theorem 1.9 Let k > 0 and denote by || - ||a the norm® with weight system of mass
m that assigns the weight k > 0 to the fields o™ and 8 and the weight 4r(8) to the fields
2z and z. If f(a*, B; 24, 2) s an analytic function on a neighbourhood of the origin in

C*X1 that obeys | flla < &, then there is an analytic function g(a*,3) such that

f ef(a*,ﬁ;z*,z) d:ur(é) (Z*u Z)
f ef(0,0:27,2) d:UJr(ts) (Z*a Z)

= e9l@"h) (1.32)

and

[[A1I
lglla < =51575

I’ll give an outline of the proof of this theorem in §1.5. See Theorem 1.29. The corollary
that we shall use is (Balaban et al., 20104a, Corollary 3.5), which, again specialized to
the current setting, says

Corollary 1.10 Let f(a*,8;24,2) be an analytic function on a neighbourhood of
the origin in CHX| that obeys | flla < % Define, for each complex number ¢ with
I flla < 15, the function G(¢) = G((;a*, B) by the condition

f e(f(a*,ﬁ;z*,z) dlu'r((;) (Z*a Z)
f ¢ F(0,0327,2) d:UJr(ts) (Z*a Z)

= CGGa™H) (1.33)

as in Theorem 1.9. Then G({) is a (Banach space valued) analytic function of ¢ and,
for each n € N, the g(a*,8) = G(1;a*,8) of Theorem 1.9 obeys

e e Iflle \™
Jo- s - a0 < (L

35— I flla

We have G(0) =0 and

$80) = [ [£(a7 55" 2) = £(0.0:2",2)) dhgo (", 2

If the symmetric coefficient system a(X«,X;¥«,¥) of [ obeys a(Xy,X; ¥+, ¥) = 0 when-
ever y = ¥, then %(O) =0.

5The “A” in || - ||g stands for fluctutation. This norm is defined just as in (1.26), except that
there are four fields, a*, 3, z« and z, instead of two, and the k(8)**¢ of (1.27) is replaced by

KR+t (41“(6))”* +n, where k is the number of a* fields, £ is the number of § fields, n, is the number of
zx flelds and n is the number of z fields.



24 The Temporal Ultraviolet Limit

Proof The proof of the bound in this corollary is a short, straight—forward appli-
cation of the Cauchy integral formula. For the details, see (Balaban et al., 20104,
Corollary 3.5).

The left hand side is 1 when o* = 8 = 0, so G(0) = 0. To show that %(O) =
0, under the specified conditions on the coefficient system, expand f(a*,3;2*,2) in
powers of the fields o, 8, z* and z. This expresses [ f(a*, 3; 2%, z) dpy(s) (2", 2) as a
sum of terms, with each term being some coeflicient (depending on «* and () times

[ TLAE0T ™20} dgy .2

xeX

Switching to polar coordinates, z(x) = p(x)e? ™),

[ TL AT ™20™ } dio(=*,2)

xeX

r(0) 27 )
STL 2 [ o) [ dot) e playremesiitns e
xeX 0 0

(1.34)

Unless mx = nx for every x € X, the right hand side is zero because of the 6(x)
integrals. When my = ny for every x € X, the coefficient multiplying this integral is
zero because of the hypothesis on the symmetric coefficient system. Hence

/f(a*uﬁ;Z*uz) dur(é)(2*7z) = /f(0a072*72) dlj/r(zs)(Z*wz) =0

For the induction step, we use

Proposition 1.11 For all 0 < e < § < ©/2, with § an integer multiple of €, the
following holds:

Let E(a*, ) be an analytic function which has degree at least two both in «* and
in B and which obeys HE(OL*,ﬁ)Hé < 4eKi§||lv]||v(6) k(26)® . Then Rs[E](a*, B) is
well defined, has degree at least two both in o and in B, and satisfies the estimate

4
195, [€]]]5 < 220 €075 82 o] 1(6)? (26)° + 2255 (£28) e

Iz
Proof Observe that the functions

Vs(e; o, 5(0)8 +2) = Vi(e; 2%, 5(6)8) and  E(a”,j(0)8 + 2) — £(a”,j(0)0)
both have degree at least two in a*, degree at least one in z and do not depend on z,.

Similarly, Vs(e; j(0)a” + 2., 8)=Vs(e; j(6)a*, 3) and E(j(0)a”+2z., 8)—E(j(0)a", 5)
have degree at least two in [, degree at least one in z, and do not depend on z. Since
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the integral of any monomial against d.5)(2*,2) is zero unless there are the same
number of 2’s and z*’s (see (1.34)),

/d,qu(ts)(Z*vZ) 0As.(E; ", 3;27,2) =0 (1.35)

[ duns) (% ,2) e2A0.e Eram B2T)
J sy (2*,2)
implies that R ¢ [5} (a*, B) has degree at least two both in o* and in .

We apply Corollary 1.10, with x = k(26). Clearly, || f(a*,0)|2s = ||f(a*, B)|la for
functions that are independent of the fluctuation fields z,, z. To apply the Corollary,
we need to bound [|0A;.(E; a*, B; 2, 2)||a.

We'll first bound

V5(€; Oé*,]((S)ﬂ + Z) - V(;(E; O‘*uj((s)ﬂ)

=€ Z [<'Y*TQT+87 U’Y*Tgr+€> - <'Y*‘rgr+€7 U’Y*Tgr+€>]
r€eZn[0,8)

has degree at least two both in o™ and in 3. This

and log

with
Yir = (1) g =§(20 = T)B §r = j(0—7)(J(0)B+2) =j(20 —T)B+j(0 —7)z

Expand out g, as a sum of two terms, as in the last equation, expressing the summand
(YerGrtes VYsrGrte) — {Yarlrie, U Yardrie) itself as a sum of three terms, each of
which is (except for a minus sign) of the form

(T171)(T272), v (T3v3) (Fava))

= > { 11 Fz(yl,Xé)W(Xé)]U(yl,m)[ T Telya, xe)ve(xe)

x1,%2,X3,x4€X (=12 0=3,4

y1,y2€X

with
' =TI, :j(T—S) Y1 =73 = o (F3773)v (F4;74) € {(](25_7—)7ﬂ) ) (](6_7—)72)}

and with at least one of (I's,~3), (T'4,74) being (j(§ — 7), z). In general

§ emT(x1,X2,X3,X4)

{ H Fe(}’1,xe)fi4v(y1,y2)[ H I‘Z(yQ,xl)W]

x2,%3,%X4E€X =1,2 0=3,4

y1,y2€X
< Z { Hemd(xe’yl)re(}’1,xl)ﬁ4 v(yl,yg)emd(yl’m){ Hemd(x[’m)rl(}’%)ce)ﬁe]
x2,x3,%4l L g—1 2 =34

Y1,¥2

4

<[[we > [ Hemd(w>|n<yl,xm} [o(y1, y2)|em Y2 g | [Ty |

(=1 xpeXx Lyg=12

y1,y2€X

4
<Iw [Hemd<"f’”>|re<yl,xm]|||v||| (AT
=1

x2,y1€X “4=1,2
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4
< il TT welirell
{=1

To get from the first line to the second line, we used that the set of vertices of the tree
in the figure below contains x;, x2, x3 and x4 so that

T(x1,%2,X3,%4) < d(x1,y1) + d(X2,y1) + d(y1,y2) + d(y2,x3) + d(y2,X4)
The bounds when x5 or x3 or x4 is fixed instead of x; are the same.

X1 X3

y2

X9 Y1 X4

Fig. 1.5 A longer tree

As
I < 55 257 -l < ¥ I -7 — o)l < K
and o*, 8 and z have weights x(24), x(2) and 4r(d), respectively, we have, for each
T €€eZN(0,0],

| (Vargrier VYsrgrae) = (Yarbrtes 0 Yurbrie) [[g < 12679 [[lo]|| x(6) £(26)°
Here, we have assumed that ©v < 17 so that 4r(§) < x(26). Summing over 7 and
multiplying by e gives

Vses o, 5(0)8 +2) = Vile; a, j(0)8)||y < 12¢™5° o] 1(8) 5(26)?

Similarly

[Vs(es (8)a™ + 2o, B) = Vs(e: j(0)a” + zs, B)|g < 12¢°75° 6][o]]| v(6) 5(26)°

Next, we bound &(a*, j(§)3+2)—E(a*, j(0)5). For any analytic function f(a*, §),
1F(a”, 5(9)8+2) = f(a", j(®)B)l|q < [ f(a", j(6)8 +2)]4

since the symmetric coefficient system for f(a*, j(6)3 + z) — f(a*, j(0)5) is precisely
the symmetric coefficient system for f(a*, j(§)8 + z), but with the coefficients for
terms having no z’s replaced by 0. So, by Proposition 1.325,

£, 5(8)B + 2) = f(a, §(8)B)|4 < If(e", §(6)B8 +2)||4 < || £, B)|

N7 ()IIx(28) + 4r(5) < eéij(%) +4r(6) = [66Kj 21 + 4(60)%],%(5) < k(9)

if © and v are small enough. In particular Hé'(a*, J(0)B+2z)—=&(a*, j(6)5)
Similarly ||€(j(0)a* + 2., 8) — £(j()a*, ﬁ)Hﬂ <|€lls -

gl

I < l€lls-

6 Actually, by an obvious generalization of Proposition 1.32, since the g of Proposition 1.32 is a
function of a single field. See (Balaban et al., 2010a, Corollary A.2) for such a generalization.
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Combining the bounds of the previous two paragraphs and then using the hypoth-
esis that ||E||s < 4e>Ki6|||v]|| r(0) x(20)3, we get

1045485 )|y < 24Xl 1(8) w(20)" + 20iElls < 2° €555 6]Ju]| 2(0) (26)°
< 25 655&#(%)% <L (1.36)
10
if © <1 and Ov is small enough. Finally, by (1.35) and Corollary 1.10

1945, (€5 )IF ;
25 (55-1045(&)la)
< 220 elOéKj52|”,U|”2 I‘(5)2 5(25)6

H [ dpes) (2%, 2) e OAs. (850", Bs24,2)
[ dns) (2%, 2)

Combining this estimate and the estimate of Lemma 1.12, below, with f = &, we get

the desired bound on Hm(;ﬁ [8] ||26 . O

Lemma 1.12 Let f(a*, ) be an analytic function that has degree at least two both in
a* and 3. Then

4
17 (0*,50)8) g0 117 (500", 8) 55 < €25 (5281) £l

Proof Introduce the auxiliary norm || - |laux that uses the weight system of mass m
that associates the constant weight factor x(d) to the field a, and the constant weight
factor e =i x(8) to the field 3. Since, by (1.29), |7 ()| e~ *%ik(d) < K(J), part (i) of
Proposition 1.32 gives

£ (", 50)B) ... <Ifls

As f(a*,j(6)B) has degree at least two both in a* and 8 and e~°Kik(8) > £(26), i
O is small enough,

15 (0 568) s < (2220) " (=5225) 7 (0", 50))|

The estimate on || f(j(6)a*, 5) H% is similar. O

Waux

< 20K, (

) 111l

Waux

Proof of Theorem 1.5 Choose Kg = 22'¢'9%i. We write § = ¢,, = 2" and prove
the statement by induction on n. In the case n = 0 there is nothing to prove. For the
induction step from n to n + 1, set 6 = €,. The hypothesis of Proposition 1.11, with
E = &, is satisfied since, by the inductive hypothesis,

< Kg 6°[|v]|” x(6)*k(5)° = K (d0) 270 5Jo]| x(8)r(26)* < d[[v]| x(8)r(26)°
(1.37)
if ©v has been chosen small enough. Using (1.31) and Proposition 1.11, we see that

€3]l
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4
le. < 220 107552 o] 2 1(6)? w(20)° + 22755 (420 ) K 621 1(6)? w(0)°

wiille s < ~()

2
= 22015 2.0 () K| 8% o] £(0)? m(26)°

@

19 106K e 2 N 2

L2 e (A3 ] (355) Ke20)lll? 1(26)? (20)°
= L[4+ 225 | 2% Kpp(20)20])? (26)? (20)°

< Kg(26)%||v)|? r(26)% K(26)° (if © has been chosen small enough)

= Kpg 5721+1|||U|||2 r(5n+1)2 “(Enﬂ)ﬁ

1.4 Functional Integrals

In this section, I will outline the proof of a functional integral representation of the
partition function like that of Theorem 1.1. It is an example of the class of rigorous
functional integral representations in which the object of interest is expressed as a limit
of finite dimensional integrals. At the end of this section, I will mention, and provide
references to, a couple of other classes of rigorous functional integral representations
that are used in mathematical physics.

I remind you that we have decided to approximate the left hand side of (1.1)
by replacing space R?® by a finite number of points, say X = Z3/LZ3 and that the
Hamiltonian is

i = / dxdy ¥1(x) h(x, ) ¥(y) + / dacydxy (3 )op () w361, X2) (30 )9 (32)

(1.38)
with [ dx just meaning > xex- We are still assuming that the kinetic energy operator
h > 0 and that the two—dody potential 2v(x,y) is strictly positive when viewed as
the kernel of an integral operator. I have claimed that then the partition function is
(pretty obviously) well-defined. Let’s check that this is indeed the case. The Hilbert
space of all states of this system is

F =P F. with 7, = L2(x") = CXI"/s,
n=0
Here

e a vector in the n—particle subspace F, is a function f(x1,---,X,), with each
argument x; running over X, that is invariant under permutation of its arguments
e the inner product between two n—particle vectors f,g € F,, is

<f7g>_7-‘n :/ndxl"'dxn f(xla"' 7xn)g(x17"' 7xn)

where [y dx f(x) just means Y .y f(x)
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[ ] .7:0 =C
e the inner product between two vectors f = (f”)n>0 and g = (gn)n>0 in F is

(£.8)r =D {fur9n) 5,

n>0

Now both H and N map the n—particle space f (which is finite dimensional) into

(H—pN) -

itself. We’ll show that the, positive, operator e kT is trace class by bounding,

1
for each nonnegative integer n, the trace of the restriction of e RTH=1N) 4 . and
then observe that the bound is easily summable over n. Now the restriction of N to
Fr, is just nll and the following lemma provides a lower bound on H [ F,,.

Lemma 1.13 There are constants C, D > O such that the restriction of H to JF, is
bounded below by (Cn — D)nll.

Proof Use ¢(x), ¥(x) to denote the annihilation and creation operators at x € X.
By the commutation relations [¢(x), 9T(x")] = 0x,x, the interaction

V= [ dxadxe w16 ) vl ) ) (1.39)
= /dxldX2 T (x1) (1) v(x1, %2) T (x2) 1 (x2) —/dx W (%) v(x, %) 1 (x)
= /dxlde n(xy) v(xy,x2) n(xz2) —/dx v(x, x) n(x)

where n(x) = f(x)1(x) is the local number operator at x. Now, restricted to F,,
{ n(x) | xe X } is a family of commuting, bounded self-adjoint operators on the
finite dimensional Hilbert space F,, (that is, they are self-adjoint matrices). So there
is an orthonormal basis {5y} for F,, consisting of simultaneous eigenvectors for all
of the n(x)’s. We denote the eigenvalues py (x). (All this is easy to find and is given
n (Balaban et al., 2008a), but we don’t need the explicit formulae.) So, for any ¢ =

ZY SOY(SY,
<<p , / dx1dxs n(x1)v(x1,x2)n(xs2) (p>
X2
= g Dy, ©v, <5y1 , / dx1dxs n(x1)v(x1,x2)n(xX2) 5y2>
X2

Y1,Ys2
:/ dxydxs v(X1,X2) Z Pv; ovs (n(x1)dy, , n(x2) dy,)
Xz Y1,Ys
/ dx1dxs v(x1,X2) Z PY; v Hy: (X1) iy, (%2) (O, 5 Oy, )
Y1,Ys

Z|<PY|/ dxydxy pry (x1)v(x1, X2) py (x2)
Y
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By hypothesis, v is a strictly positive operator on L?(X). Denote by Ag > 0 its smallest
eigenvalue. Then

/X2 dx1dxs py (x1)v(x1,X2)py (X2) > )\O/X dx p3-(x) > % (/X dx UY(X))2

)\0 2
=55n
[X]

by Cauchy-Schwartz and the fact that, on F,, [ dx n(x) = n. Hence
<<P 5 /X2 dxydxs n(x1)v(x1,x2)n(x2) > \i\’gl n? Z loy|? = /\7 n2|p|?

Since, on F,, the n(x)’s are positive operators adding up to n, every 0 < py(x) < n
and

[oENF, — 7, = [P )£, = [In(x)]F, <n
1) 7 imrn = [0 Fum s < VR
Consequently
st = | [ sty v ey vt < fasay s a0
We can easily do better than this, but we don’t need to. The lemma follows with
C = Ag. m
1X]

Now back to the trace. Since the dimension of F,, is less than | X |" and every eigenvalue
of (H— uN) | F, is at least Cn? — Dn — un, we have

Trr, e — 7 (H=uN) <e %<Cn2—D"—H">|X|"
This is obviously summable over n.
1.4.1 A Rigorous Version of the Functional Integral

1
So we now know that, when X is finite, the partition function Trz e TT (H=HN) g
well-defined. T'll now outline the proof of a functional integral representation for

1
Tre e~ R H=1N) that is similar to that of Theorem 1.1, but whose integrand looks a
lot more like the (@) w1th the A(a*, a) of (1.2).

We use the notation § = —T and, for any p € N,

T={r=q2|a=1,-,p)}
e =12
iy (0, a) = T T] [“090209 (o, (x)] < 1)
T€T, x€EX

K(a,0) = [[ dxdy alx) hixy)aty) - n [ dx a(x)’al

+// dxdy a(x)*a(x)v(x,y)a(y)* a(y)
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Theorem 1.14 Suppose that the sequence R(p) — oo as p — oo at a suitable rate.

Precisely
1

lim p(f%R(p)2 =0 and R(p)<p2Xl

p—00

Then

Tr e=8U=N) = i [ dpy nip (0, @) [ I 1050) 000y @) mzp Klat )

p—00
T€ET,

with the convention that ag = ag.

Almost all of the rest of this section is used to outline the proof of Theorem 1.14.

1.4.2 The Main Ingredients — Coherent States

The first main ingredient in the proof is the use of coherent states. I'll give the formulae
only for the case | X| = 1, because then they are short and clean. The general case is
very similar. If | X| = 1, then

F =@ Fn with 7, =C
n=0

Let e,, =1 € C = F,,. We can think of each vector in F as a sequence (’Uo, V1, Vg, - - )
of complex numbers. Then e, is the sequence all of whose components are zero, except
for that with index n, which is 1. For each a € C the coherent state

= Z \/%og"en c F (141)
n=0 .
is an eigenvector for the field (or annihilation) operator
e, = \/ﬁenfl

To check this, we compute

Y]a) :Z (nlaenl—a|o¢> (1.42)

The action of the creation operator
wTen =vn+ 1en+1

on the o™ coherent state vector is

Ui a) = Z Vn;;la"emrl = g—a Z —L_a"Me, = g—a |a) (1.43)
n=0 v n=0 (n+1)t
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Because the e,’s form an orthonormal basis, the inner product between two coherent
states is

<o¢|”y>: %\}—5771”—2%(&7)”:657
m,n=0 n=0

For general X, there is a similar coherent state | o) for each | X|-component complex
vector o € CIXI. The inner product between two such coherent states is

<a|7>:efdy@v(y)

1.4.3 The Main Ingredients — Approximate Resolution of the Identity

One of our main tools is going to be the analog for coherent states of the identity that
for any orthonormal basis
v = Z(en,v) €én

n

Formally, the corresponding statement for coherent states is
1= [ I] [#tpen] s 0 ) (o

where |« ) («a| is the linear operator that maps v € F to the inner product of v and
| ) times the vector | a). The integral “sums” over all possible coherent states and

the exponential e~/ le®* = W turns the coherent states into unit vectors.
Here is a rigorous version of the resolution of the identity for coherent states.

Theorem 1.15 For each r > 0, let

a*(x a(x — a 2

L=11 / A2 LgMaCI] o= by o0 | a) (al (1.44)
xEX la(x)|<r

Then

(a) 0 <1, <1

(b) 1, commutes with N.

(¢) The operator norm of 1, is bounded by one for all v and, for each vector v € F,
I,v converges to v as r — oo. That is, I, convergences strongly to 1.
(d) For all m and r, the operator norms

[M=T) [ Ful| < [X[2" e 2 L1 A < L(IX)"

Remark 1.16 Observe, from part (d), that if &= < 1 then I, | F, = 1 while if
I > 1, then I, | F,, = 0 (use that n! = n"). So we can think of 1, as being, very

2
roughly, projection onto @, _, Fn.
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Proof We first observe that when you apply the operator e~/ 9 201" | o) (o] to
some vector v, the resulting vector is of norm at most W ) e vl < vl
So integrand of the right hand side of (1.44) is of operator norm at most one. As it is
also continuous in « and the domain of integration is of finite volume, the right hand
side of (1.44) is obviously well-defined.

The proof is easy once one has an orthonormal basis of eigenvectors for I, — and
it is easy to just guess such a basis. Again, to simplify the notation, I'll just give the
proof for |X| = 1. Then

F =@ Fn with F,, =C
n=0
and {em =1e€C=F, ’ m=0,1,2,3,--- } is an orthonormal basis for F. If part
(b) of the Theorem is true, then each of the F,,’s, which has basis {e,,}, will be left
invariant by I.. So each e,, will be an eigenvector. To verify that this is indeed the

case, and to find the corresponding eigenvalues, we compute I,.e,.
Recall that

oo
la) = Z ﬁa"en
n=0

So
_ 2 — 2
o= [ 2 o o) (afen) = [ e o)
[e3% T [e3% T
o0

_ 1 dande —|al? =m _n
= T en/l G e lol” gma
o

Now switch to polar coordinates. That is, make the change of variables a = pe®.

: : _ ; dzAdz __ dxAdy
Recalling that if z = 2 + iy, then %509 = 224,

oo 27 T
2 .
Ie, = Z ﬁ en/o dg/o dp %e—p pm+n+1619(n—m)
n=0

2

T r
= % em/ dp 267P2p2m+1 = # em/ dt e 4™ where t = p?
0 0

_{1—%/ e tHm dt} em
-

This tells us that each e,, is an eigenvector of I, with eigenvalue 1 — % f:zo e~ H™ dt,
which is always between 0 and 1 and which tends to zero as r — oo. Parts (a), (b)
and (c) follow. For part (d) , just bound

l/ e~ dt = 2”/ efti(%)n dt < 2"/ e~tet/? gt = ontle?/2

n!
2 2

and
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1.4.4 The Main Ingredients — Trace

Formally, the analog of
TrB = Z(en,Ben)

for coherent states is

5= [ [] [#e] o o e (0B a)

xeX

Our next main tool for the proof is the following rigorous version of that formula.

Proposition 1.17 Let B be a bounded operator on F. For all r > 0, Bl, is trace
class and

a(x — a 2
TrBIr—H / 2775() Jay e (o | B| a)

xEX Ja(x)|<r

Proof As usual, I'll just give the proof for | X| = 1.

Recall that, by definition, BI, is trace class when the eigenvalues of the operator
square root of I, B* BI,. (all of which are nonnegative) are summable. There is a theorem
which says that a product of a trace class operator (in our case I,) and a bounded
operator (in our case B) is trace class. In our case, we can also easily check directly that
BI, is trace class. Here is the argument. By the min—max principle (Reed and Simon,
1978, Theorem XIII.1, with H = —I,.B*BI,.) the (n + 1)** eigenvalue of I,.B*BI,,
counting from largest to smallest, is

inf sup (¥ |1,B*BIL. | ¢) < sup (¢ |1,B*BlL,. | ¢)
PP €F yer, llwll=1 VEB > Fm
YLleg, - eon lpll=1

< IBII* sup (i. 2m)?

by part (d) of Theorem 1.15. Hence the (n + 1)5* eigenvalue of the operator square
root, again counting from largest to smallest, is at most || B[ sup,,>,, %72” and this
is clearly summable over n.

So BI, is trace class and the trace itself is

TrBIT:Z<em|BIT|em>
SX [ 1) o en)
Jal<
:/ d%%a —Ia\z \em (em |B| o)
laj<r
/| dards 1o’ (o |B|a)

ol<r
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Moving the sum over m inside the integral is justified by the Lebesgue dominated
convergence theorem, since

ST {alem) (em | Bla)| < [[la)] 1B]a)|| < |Be"

O
1.4.5 Consolidation — Where We Are Now
Combining Theorem 1.15 and Proposition 1.17, we now have
Lemma 1.18 Assume that lim p e 3R®’ = 0. Then
p—00
Tr e—BHE=-1N) _ {ipp H [ % ef\af(x)q H<O‘77@ ‘675 (H—uN) ‘ CYT>
p— 00 P
X5 lar(x)|<R(p) €T,

Proof By Theorem 1.15,

2

Ty e BH-uN) _ Ty e ™ H=pN) ] = lim Tr HTeTPG_%(H_MN)IR(p)
p—00

To justify the last step
e Let £ > 0.

e Denote by P, the orthogonal projector onto @7, _qFy,. Use Lemma 1.13 to select
an n € N, independent of p, such that

2

Tr (1 - P)[T,eq e 2

H_HN)]I} < i ’Tr (]l — Pn)HTETpe_; H_MN)IR(])) < %

e Express
PnHreTpe_%(H_HN)]l - PnHreTpe_%(H_MN)IR(P)

as the telescoping sum over 1 < ¢ < p of

1 if 7 < (2

_B(H— . .
Pulleqe » NI with If = (1 —1Ip,) if7=¢2
IR(p) if 7> E%

e By Lemma 1.13 and part (d) of Theorem 1.15, the trace of each of the p terms
in the telescoping sum is bounded by a constant C, which depends on | X| and n,
times e~ R(®)°/2,

e Finally, by hypothesis, if p is sufficiently large then C’peiR(i”)Q/ 2 < 5-

It now suffices to substitute in the definition (1.44) of I,. and apply Proposition 1.17.

O
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1.4.6 The Main Ingredients — Perturbation Theory

Lemma 1.18 has given us a functional integral representation for the partition function,
but has not told us very much about what the integrand looks like. The next step is

to exploit the fact that 8 g very small when p is large to help us understand what

B8
aTig
P

e~ b H=pN) ’ o > looks like.
Proposition 1.19 There are constants C, ¢ such that the following holds. For each
e > 0, there is an analytic function F(e,a*, ) such that

<a ‘efs(nyN) ‘ ﬁ> _ Flea,5)

on the domain ||alsos [|8]loo < C\%, where, as usual ||a]| o = maxxex |a(x)|. Write

F(e,a ) = / dx a(x)*"f(x) — eK(a*B) + Fole,a™ B)

b's
where K (a*, 3) was defined in (1.3). Then

[Fole, o, B)] < e e2(* + [[v]]7 5o 2°%)

for all0 <e <1 and ||aflco;, [|Blloc <P < %C’%

Idea of Proof <a ’e’E(H*“N) ’ 6> is an entire function of a* and # and a C'*
function of € for € > 0. (Just plug in the definitions (1.41) of |a) and | 3) in terms
of the standard basis and use that the operator norm of e *H=#N)(H — N)™ re-
stricted to F,, is bounded by a constant times (n + 1)™ for all integers m,n > 0 and
e > 0.) But <a ’e_E(H_”N) ‘ ﬁ> can take the value zero (see (Balaban et al., 20084,
Example 3.12)), so its logarithm need not be everywhere defined. Since <a ’ 16} > =
e @ (0)B(x) dx # 0, continuity implies that the matrix element has the representation

(a
in some neighbourhood of 0, with F(e,a*,3) is analytic in o*, 3. But is the neigh-

bourhood big enough and what can we say about F'? To go further, differentiate (1.45)
with respect to € to give

e—c(H—pN) ‘ 5> = F'(e.07.8) (1.45)

eF(a,a*ﬁ)%_f(&a*,ﬁ) _ <a ‘ (H i MN)e—a(H—uN) ‘ ﬁ>

Now, downstairs on the right hand side, substitute in the definitions of H and N in
terms of the annihilation and creation operators 1(x) and 1 (x) (see (1.38)) and use

v(x)a)=aX)|a) V(x)|a)=Grla)

This gives us the differential equation

F=—K(a* 3)F = [[ axdy a0 a(y)" vix.) §efige e

o
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Kl 5e) = ] dxdy o) hoxy) Gy = [ dx a0 Gy
+ [ axdy a0 a(y)” v6x.) feer e

The details are in (Balaban et al., 2008a, Lemma 3.8)). As F' also satisfies the initial
condition

F(0,0*,3) =In{a|B) = /X dx a(x)*[(x)

we now have a first order initial value problem for F', viewed as a function of . It
is tedious but straight forward to convert this into a system of integral equations for
coefficients in the Taylor expansion of F'(e, o*, 3) in powers of a* and 3. (See (Balaban
et al., 2008a, Lemma 3.9).) The system can be solved and bounded by iteration. The
details are in (Balaban et al., 2008a, Lemmas 3.8 and 3.9 and Proposition 3.6). |

1.4.7 Finishing off the Proof of Theorem 1.14

So we now have

Tr e PH=1N) — lim [ dp, R(p) (@*,a) H e~ Jy ) —al_. (Nar(y) ,—epK(af_. ar)

p—00

T€T,

Heff0(5pyai75pvar)
T€T,

and we just have to show that discarding the Fy’s does not affect the value of the
p — oo limit. Before I outline the argument that this is the case, I’ll make two remarks;

o If the functional integral representation is going to be used as a starting point
for a renormalization group construction, it may not be necessary to show that
discarding the Fy’s does not affect the value of the p — oo limit. The bound on
Fo provided by Proposition 1.19 may be adequate in itself.

e Observe that the sum

Z -7:0(5;0’ o‘ifspv 047-)

T€T,

has p terms and that each term is of order e = 2. So the sum is of order .

This is a first hint that these terms disappear in the limit p — oco. But it does
not prove anything, since the volume of the domain of integration is growing like
R(p)Q‘X“). (The order €2 in the bound of Proposition 1.19 is also multiplied by a
®% < R(p)b, but it grows relatively slowly with p.)

Now here is an outline of the argument that we may discard the Fy’s. The details are
in (Balaban et al., 2008a). Let r > 0. Define, for Z : C2X| — C, the seminorm

IZll- = sup  |Z(«a,9)]

a,peCX
lalx, ¢l x <r
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and, for 7, 7 : C?Xl — C, with ||Z||,, || J||» < oo, the “r—product” of Z, J

(T % T)(o) = / T, )7 (6:7) dpin (67, 0)

where

dinn(6",6) = T] [“095%00 \(|(x)| < r)]

xeX
The ¢** power with respect to this product is denoted
q factors
————
I =T %, Ty 5. 1
For each € > 0, set
T.(a, ) = e~ 21l =316 (Fe.0.6) _ o=3llal® 311617 <a ’ o—c(H—pN) ‘ ¢>

F.(0, ) = e~ BIP= 3191 (e a”,6)- Fofe.a )
= eXP{ - %HOZH2 _ %H(b”Q + /dx Oé*(X)d)(x) _ sK(a*7¢)}

Lemma 1.18 and Proposition 1.19 state that, for R(p) obeying hm pe 2R(p) =0,

Tre? = lim [ dun(0",6) 727(6,0)

r=R(p)
e=B/p

and we would like to have

TI' efﬁK = pll{go d,U‘T((b*a ¢) i:rp(gba d))

T=R(p)
e=B/p

instead. By Lemma 1.13, the operator H — N is bounded below. Say H—uN > — K1
Then, for any g € N,

T, ¢) = e~ 3llal*~3161° <a

( 75KI 75K’ ¢>
implies that
IZ2 9], < e NI =191 | (50 1, [[) " e ||| = €95 |[L,[|77F < e9Ko

for all » > 0, by part (c) of Theorem 1.15. The difference

||Ia _jaHr = sup

la|x,|olx <r

o3 llel=3 el (a|e=K| §) [1 _e—fo<e,a*,¢>]‘

<o qup
lalx,|olx <r

< esKO COnSt62T6|X| econst52r6|X\

[1— e~ Folea™4)] ‘

by Proposition 1.19 (assuming that 1 < r < ngt) The following proposition is,
naturally, proven by induction in (Balaban et al., 20084, Proposition 3.16).
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Proposition 1.20 Let Ko,e,{ >0 and 0 <k <1 and r,Cg > 1 obey
Cp (FT2)3IX\C1—N <e
Let 7,7 : C2XI — C obey
IZ-Z,<¢ [T, < e® ° forallge N

Then, for all g € N with ¢ < %,
H_’Z_*rq”T < eE(Ko+c¢")

|70~ 7], < ¢rens(Kt)

/ dpr (67, 9) ]i*%, ¢) —T7(¢, ¢)| < (FeseFote?)

L and

» K= 13

LR

It now suffices to apply Proposition 1.20 with ¢ = £3/2, » = R(p), p =
Cs = 3. Since

1—k 8 2, 31X 33 . 1 .
(R =p(rR(5)7) e <e if R(p) < p?YX] and ¢ is small enough

€

Cp (mr?)*!

6 . 6 1
eKo consts2R(§) | X econste” R(Z)"|X| <er if R(p) < p24 and ¢ is small enough
the hypotheses of Proposition 1.20 are satisfied.

1.4.8 Cylinder Set Measures

There are other rigorous functional integral representations used in quantum mechan-
ics, quantum field theory and condensed matter physics. Probably the most elegant
and powerful class of such representations use cylinder set measures. Cylinder set mea-
sures refer to measures on infinite dimensional vector spaces that are built by taking a
limit of a collection of probability measures defined on finite dimensional subspaces of
the vector space. The measures on the different subspaces have to be consistent with
each other in a natural sense that I will now explain. Let Z be a countable set and
take as our vectors space

R ={ &= (vi)ier | s €RforallieT }
For each finite subset I C T define the subspace R! of R? by
Rf ={ (#i)iezr €RT | z; =0forallic I\ I}

and define the natural projection P; : RZ — R’ by

iifjel
(PrE), = " 1]6
i=\0 itjerT\I
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Suppose that we are given, for each finite I C Z, a probability measure ;7 on RY. This
family of measures is said to be consistent if for each pair of finite subsets I,I’ C Z
obeying I C I’ and for each measurable A C R!, we have

pr({ ZeR | Pz e A}) = pui(A)

The theorem that “takes the limit” is

Theorem 1.21 (Kolmogorov’s Theorem) Let Z be a countable set and let a probability
measure pu; on RY be given for each finite set I C I so that the family of us’s are
consistent. Then there are a probability measure space (X, F, ) and random variables

{fo‘}ael' so that py is the joint probability distribution of {fa}ael. That is

ur(A) = u({ reX | Pl(fa(x))aez cA })

for all measurable A C RY. Moreover this space is unique in the sense that if (X', F', i)
and {f&}aez also have these properties and if F (and respectively, F') is the smallest

o—field which respect to which the f, (respectively f. ) are measurable, then there is an
isomorphism of the probability measure spaces under which each fo corresponds to f,.

A very convenient tool for constructing cylinder measures is (Minlos, 1959)

Theorem 1.22 (Minlos’ Theorem) A necessary and sufficient condition for a function
® : S(R”) — C to be the Fourier transform

o(p) = / T dp(T)

of a cylinder set probability measure p on S8'(R”) is that ®(0) = 1, ® be positive definite
and ® be continuous in the Fréchet topology on S(RY).

Here
e S(R¥) is Schwartz space, the space of all C* functions on R all of whose deriva-
tives decay faster than any polynomial at infinity,

o S'(R¥) is the space of tempered distributions, the space of all continuous linear
functions on S(R¥),

e a cylinder set measure on S’(R”) is a measure on the o—field generated by the
functions { T'— T(p) | ¢ € S(R") }

e & : S(R”) — C is positive definite if
21, - ,2n € Cand p1, -+, pp € S(R™)

i =1 Zi7j®(pi — @;) > 0 for all n € N,

For an expositions on cylinder set measures, see (Gel’fand and Vilenkin, 1968; Si-
mon, 2005). For applications of cylinder set measures to Brownian motion and Wiener
processes, see (Nelson, 1964, Appendix A) and (Durrett, 2010). For applications of
cylinder set measures to Schrodinger operators, see (Simon, 2005). For applications
of cylinder set measures to field theory and statistical mechanics, see (Ginibre, 1971;
Frohlich, 1974; Feldman and Osterwalder, 1976; Glimm and Jaffe, 1987).
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1.4.9 A Warning About Complex Measures

It is critical that cylinder measures are (real-valued) probability measures. The point is
that complex measures must have finite total mass. (When you compute the measure of
a complicated set by cutting it up into countable many disjoint sets and adding up the
measures of the pieces, it is important that it not matter what order you do the sum in.
And that is the case only if the sum is absolutely convergent.) That dramatically limits
the class of complex measures on infinite dimensional vector spaces. In particular, in
our case, the exponent A(a*, ) is complex and as a result, eAe"0) ogcillates wildly.
In contrast to Wiener measure, —— [ da:(x%fjaf(x) epart of A(e™,0) cannot be turned
into an ordinary well-defined complex measure on some space of paths.

Here is a well-known example, due to Cameron (Cameron, 1960; Cameron, 1963),
that illustrates the phenomenon. Let [C’i-}ij N be a “matrix” with infinitely many
rows and columns. Assume that C has real en)tries7 is symmetric and is strictly positive
definite in the sense that Zi)j a;C; ja; > 0 for all nonzero, real “vectors” [ai} N
having only finitely many nonzero components. A simple example of such a matrix is

the identity matrix
by=qL i
0 ifi#£j

Another example is —A; ; +m?§; ; where A, ; is the discrete Laplacian on Z3 and i, j
refers to some arbitrary ordering of the points in Z3. Fix some ¢ € C with Reo > 0.
Consider, for each n € N, the measure

1= —
. efia'oc-Coz drea
d:un(a) = f e—%a’&-CO’Z dara
RTL
on R". Here, in computing & - Cd@, set o; = 0 for all § > n. If o is real, this is

a legitimate probability measure. If, in addition, C is diagonal it is trivial to apply
Kolmogorov’s Theorem and create a cylinder set measure. (For many other C’s you
can also create a cylinder set measures, with more work.) If Imo # 0, u, is still a
legitimate (complex) measure on R" and is still normalized so that [p, dun(@) = 1.
In particular, if we write C), = [Cij] 1<ij<n’ then, by making an orthogonal change of
variables so as to diagonalize C,,, it is easy to see that

_ls8.C& N n 1 1/2
[ etenet g = [(2)" 2] £ 0
(We aren’t going to care which square root is used.) The total mass of u,, is

[ ] = & RO G fp e MR8 ol g
o | [ €700 CF gng| | [ €700 CF gng| Reo

Since Im o # 0, this tends to infinity as n — co and we can’t get a legitimate complex
measure in the limit n — oco. Another model computation of this type which is closer
to the integral of Theorem 1.14 is given in (Balaban et al., 2008a, Appendix A).
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1.4.10 Grassmann Integrals

Another class of functional integrals are Grassmann integrals. They are often used
in fermionic models. Grassmann integrals are certain linear functionals defined on
Grassmann algebras, which are a particularly simple class of algebras. The reason
that the linear functionals are called “integrals” is that they have, up to signs, all of
the usual algebraic properties of integrals, including, for example, integration by parts.
For discussions of Grassmann integrals, see (Berezin, 1966; Feldman et al., 2002) and
(Salmhofer, 1999, Appendix B).

1.5 A Simple High Temperature Expansion

High temperature expansions are extremely widely used tools in rigorous treatments
of quantum field theories and statistical mechanical systems (and not just at high
temperatures). This section is concerned with a very simple example of such an ex-
pansion. There are many other high temperature expansions. At the end of this section,
I’ll mention some others and give some references.

1.5.1 Motivation — A Renormalization Group Construction Protocol

Here is a cartoon description of a commonly used procedure for constructing and ana-
lyzing quantum field theories and models in condensed matter physics and statistical
mechanics.

e Express the quantities of interest as functional integrals like

B feA(\Il,Q) d,u(@)

G(¥) =In [ eA0®) d4,(d)

e Factor the measure du(®) = [],2,due(pe) to express

I AW, 01,02, ) [12 dpe(e)
[ eAOere2 T2, dpue(or)

e Do the integrals one at a time. Define the “effective action at scale n” by

AW etz ) T dpg (o)
An \Ijv n I n [ = ln f é:’r]i
(¥, Ont1, P2 ) [ eAOeren0 ) TTP dpse(ipe)

G(v)=1In

Then
[ 429 dy ()
[ A0 dpa(p)

where ¢ = ¢, and ¥ = (U, 0p11, Prt2, -+ )-
The decimation procedure of Sections 1.2 and 1.3 was like this. To be able to implement
such a procedure, you have to be able to prove bounds on integrals like in (1.46). In
this section, we’ll derive such bounds.

An(¥) = In

(1.46)
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1.5.2 The Main Theorem

Let X (= space) be a finite set. Let duo(z) be a normalized measure on C that is
supported in |z| < r for some constant 7. We endow C* with the ultralocal product
measure

dp(p) = [lxexdio(p(x))
Theorem Let w and W be weight systems for 1 and 2 fields, respectively, that obey
W(%,¥) > (4r)"Pw(x)

Let F : CIXI x CIXI — C be analytic on a neighbourhood of the origin. If F (1, p) obeys
|Fllw < {5, then there is an analytic function f(v¢) such that

[ eF @) du(p) _ W)
[ 09 du(p)

('Ll fill in the missing definitions later and then restate the Theorem and call it The-
orem 1.29.)

2l
and  |[fllw < T=rg1RTw

1.5.3 Outline of the Proof — Algebra

We'll first do some algebra and end up with an explicit (but messy) formula for f (1))
in terms of F(1,¢). After that we’ll introduce the norms and do the bounds which
show that the formula makes sense and that the Theorem is true. We use the notation
x € X = space, a finite set
X € X = multispace = U Xt={(x1,-,xp) €X"|n>0}

n>0

and, for X = (X1, ,Xp) €E X", ¥=(y1, " ,ym) € X™ and ¢ : X — C,

n(X)=n
oy = (X1, X, Y1, » Ym) c xntm
P(X) = p(x1)p(x2) -+ p(xn)

supp(X) = {x1, -+ ,Xn} C X

By hypothesis, F : CIXI x CIXI — C is analytic on a neighbourhood of the origin.
We shall end up showing that f : CX! — C is analytic too. So there are unique
expansions

F(hp) = Y ARY) v®e)  f@) =) aX) () (1.47)
X, yeX XeX

with A(X,¥), a(X) invariant under permutations of the components of X and under
permutations of the components of y. We are about to do an integral over ¢. Hide the
1) dependence of F' by setting
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off) = Y ARY) v(X)

XeX

With this notation

F(h9) = > ay) ¢¥)

yex

By factoring e (¥:%) out of the integral in the numerator of (1.32) and (%9 out of
the integral in the denominator of (1.32) and moving F(¢,0) — F(0,0) into f(¢), we
may assume that F(¢,0) = 0. (Check yourself that the bound is preserved by this
operation.) Expand the exponential to give

WD =N"LFW, ) =14 & > alFi)-aF) eF) - ¢(Fe) (1.48)
(=1

£=0 Vi, Ye€X

The decay properties of the coefficients a(X) in (1.47) are extremely important.
Those coefficients are going to built out of products like A(X1,¥1) - A(X¢, ¥¢) with

X = (X1, -+ ,%X¢). We are told (it is built into the norm || - ||w) that A(X,¥) decays
as the components of (X,¥) are separated. But that does not in general imply that
A(R1,¥1) - A(Xp, ¥¢) decays as the components of X = (X1, ,Xy) are separated.

But if we know in addition, for example, that, for each 1 < j < £ — 1, ¥; has a
component that is equal to some component of ¥;41, then A(X1,¥1) -+ A(Xe, ¥e) does
decay as the components of X = (X1, - ,Xy) are separated.
We now built some machinery to keep track of such component overlaps. Define

the incidence graph G(¥1,- - ,¥¢) to be the labelled graph with

e vertices {1,---,¢} and

e an edge between i # j when supp ¥; Nsuppy,; # 0.
For a subset of Z C X, denote by C(Z) the set of all ordered tuples (¥1,- - ,¥,) such
that

e Z =suppy1 U - Usuppyn.

e G(¥1, - ,¥n) is connected.
We call such a tuple a connected cover of Z. Now reorganize the £ term of (1.48)
according to the supports of the connected components of G(¥1,- - ,¥¢)-

Y1, ¥e€X
[

. 1 — — — —

= E nl E E E (Y1) - a¥e) o(¥1) - (Fe)
n=1 Z1,,ZnCX T30 Ulp={1,---,£} F1..¥
pairwise disjoint Iy,---,In pairwise disjoint (5;);c1, €C(Z;)
nonempty J

(1.49)
Fix, for the moment, pairwise disjoint nonempty subsets Z;,---,Z, of X and ¢ > n.

Then
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> S aGh) - aF) o) e(F)

[U-UTp={1, 8} F1,,9¢
Iy, In disjoint (5, i€1;)€C(Z;)

= > > Y a) - alFe) eF1) el

P GRS MY o) T ¢S P (1.50)
[1j1=k;
= ) moEn > aF1) - alFe) ¢(F1) - o (Fe)

ki, kn>1 (571w'w57k1)€C(Z1)
ki+-t+kn=2t .

(ig,kn+1v'.' Y p)EC(Zn)

As the measure p factorizes with each factor normalized, and the different Z,’s are
disjoint,

[0 00 dut) = [T [ oG i0)+-0(@) dute) (151

(where po =0 and, for 1 <j <mn,p; =ki +---+kj).
Substituting (1.50) into (1.49) and then (1.49) into (1.48) and then integrating and
applying (1.51) gives

oo £
/eF(“”“")du(w)zlﬂLZ%Z% > > mrEr

(=1 n=1 Z1,:,ZnCX k1, kn 21
pairwise disjoint kj+4---+kp=~£
nonempty
oo oo
=14+ 1 1 ...
n! kileky!
n=1/{¢=n Z1,,ZnCX ki, kn2>1
pairwise disjoint kqj+4---+knp=~£
nonempty
oo
=1+ 1 1 ...
nl Bl
n=1 Z1, 0 ZnCX Ky ek >1
pairwise disjoint -
nonempty

so that

/eWW du(p) =1+ i Ly ﬁ ®(Z;) (1.52)
n=1 z 1

1. ,ZnCX =
pairwise disjoint

where, for ) # Z C X,
32)=% 3 aF)a / o) oFi) dulp)  (L53)

and ®(0) = 0.
We next rewrite (1.52) so that it looks like “the sum of the values of all Feynman
diagrams”. We do this so that we can use the standard fact that “the logarithm of the
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sum of the values of all Feynman diagrams is the sum of the values of all connected
Feynman diagrams”. If we define

0 ifZznz
(z.2)={" BINZA0
1 if Z and Z’ are disjoint
and Gy, = { {i,j} C N? ‘ 1 <i<j<n } is the complete graph on {1,---,n}, then
[ due) =1+ Y 4 1 c«z.z)[]ez)
n=1  Zy,,ZnCX {i,j}eG, Jj=1

=1+> 4 ) (Z I1 (C(Ziazj)_1)>H(I)(Zj)
n=1  Zi,.Z j=1

y4n gCGn {i,j}e€g

YA Y oz zo [0z
n=1

Zyer , ZnCX J=1
where
1 ifn=1
p(Zy,--- Zyp) = ST (C(Zi,Zj)—l) ifn>2
9CGn {i,j}€g
Define

1 ifn=1
> Il (C(Zi,Zj)—l) ifn>2

9€Cn {i,j}€g

P (Zr,  Zn) =

where C, is the set of connected subgraphs of G,,. By a standard argument, outlined
in the motivation below,

In / PRy =3 1 (21 Za) T @(2)) (1.54)
n=1 Z1, 2y CX

(By “In” we just mean that the exponential of the right hand side is [ e (¢, ¢) dp.)
Motivation Define the value of the graph g C G,, to be

S ®(2) ifn=1
Val(g) ZCX
a. == n
> Il ¢z zy) [l (%) ifn>1
Zy o Zn {irj}eg j=1

where C(Z;, Z;) = ((Z;, Z;) — 1. If the connected components of g € G, are g1, -
Jm, then

3

Val(g) = [ [ Val(gm)
j=1
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Directly from the definitions,

/ A =1+3"4 3 Val(g) (1.55)
n=1 gCG,
On the other hand, the exponential of the right hand side of (1.54) is
{555 vt < I I 4 s
n=1  geC, n=1g€eCy,

If you expand out the exponential and the two products, you will get the sum of the
values of all graphs, with the value of each graph given as the product of the values of
its connected components. To complete the proof that the right hand sides of (1.55)
and (1.56) are equal, you just have to check carefully that the combinatorial coefficients
match up. See, for example, (Salmhofer, 1999, §2.4). O

Equation (1.54) provides a formula for f(¢) = lnfeF(w"P) du(p). We now just
unravel all of the definitions to extract the coefficient system {a(X)} of (1.47),
for f(1) . Recall from (1.53) that

XeX’

22)=S"% 3 aF)-aF) / o(F1) - o(Fx) dule)

k=1 (¥1,-,¥x)€C(Z)

and substitute in

to give

B2 =Y h X AT AR b5 [6l5) ol dit)

k=1 (F1,Fp)€EC(Z)
Ry, X €X

So, if we set, for each (%,¥) € X2,

Ay =S 4 3 S AR5 AR ) / () du(e)

k=1 1o FR)ECEuUPP ) Ry Rpy
y10---0¥, =¥ X10---0Xp =X
(1.57)
we have R
(Z)(y) = AX,Y) ¥(X)
(%,9)€x2
supp y

Recall, from (1.54), that

1n/eF(w’“’)d,u = Z # Z PT(Zh T aZn)H;‘lzlq)(Zj)
n=1

Zy, Zn CX
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Therefore,

In [ P09 dul) = 3 afx) (%)

XeX

where, for X € X,

=>4 > > p"(supp F1,---,supp ¥u) [[ AR, ¥5)  (1.58)

Ry Xn€X yy e Yr€X J=1
%10-- ==

3
_

Also
L e dule)

NP0 dulp) T &=

n(%)>0

f) =

Now the a(X) of (1.58) might not be invariant under permutations of the components of
X. We can of course symmetrize, but that will not be necessary for doing the estimates.

This brings us to the end of the algebraic part of the proof. We next specify the
class of norms that are used in Theorem 1.29. This class generalizes the norms of
(1.26) and (1.27).

1.5.4 Norms
Definition 1.23 (Weight System for One Field) A weight system for one field is a
function w: X — (0,00) that satisfies:
(a) w(X) is invariant under permutations of the components of X.
(b) w(XoX') < wXw(x')
for all X, X' € X with supp(X) Nsupp(X’) # 0.

Example 1.24 (Weight Systems)
(a) If K : X — (0,00) (called a weight factor) then

is a weight system for one field.

(b) Let d : X x X — R>g be a metric. The length of a tree T" with vertices in X
is the sum of the lengths of all edges of T' (where the length of an edge is the
distance between its vertices). For a subset S C X, denote by 7(S) the length of
the shortest tree in X whose set of vertices contains S. Then

w(X) = emwPP(X)

is a weight system for one field.
(¢) If wy(X) and ws(X) are weight systems for one field, then so is

—

w3(X) = w1 (X)w2(X)
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Definition 1.25 (Norms for functions of one field) Let f(¢) be a function which is
defined and analytic on a neighbourhood of the origin in C!X!. Then f has a unique
expansion of the form f(¢) = > .. » a(X) ¥(X) with a(X) invariant under permutations
of the components of X. (We call a = { a(X) ‘ X € X } the symmetric coefficient system
for f.) If w(X) is a weight system for one field, we define

fllw = llallw = E max E w(X) ’a(i)’
<i<n
n>0 zeX ReXn
x; =2

Here x; is the i*™ component of the n—tuple X. The term in the above sum with n =0
is simply w(—) ’a(—)’ where — denotes the 0—tuple.

Remark 1.26 If
F@W) =) a®) v(F)

XeEX

with a(X) not necessarily invariant under permutations of the components of X, then

1w < llalle =) max > w(&) [a)]

1<i<n
n>0 zeEX ReXn"
- xi:z

Definition 1.27 (Weight System for Two Fields) A weight system for two fields is a
function W :X? — (0, 00) that satisfies:
(a) W(X,¥) is invariant under permutations of the components of X and is invariant
under permutations of the components of y.
(b) W(Xox,yoy) < WEY)WE,¥)
whenever supp(X,y) Nsupp(X',y’) # 0.

Definition 1.28 (Norms for functions of two fields)
Let
F(p,p)= Y ARY) v®e)

(Xy)ex?

with A(X,¥) invariant under permutations of the components of X and under per-
mutations of the components of y. If W(X,¥) is a weight system for two fields, we
define
1Flw =lAlw= > max > WEY) ARY)
nm>0 zeX  (RFEXTxX™
F.3)i=2

Here (X,¥), is the i'™ component of the (n + m)-tuple (X,¥). The term in the above
sum with n =m = 0 is simply W(—,—) |A(—,-)|.
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1.5.5 Review of the Main Theorem
Recall that

e X (= space) is a finite set and
e dyg(z) is a normalized measure on C that is supported in |z| < r for some constant
r and

o we endow C¥X with the ultralocal product measure

dp(p) = [Txexdro(p(x))
We now have all of the definitions required to state

Theorem 1.29 Let w and W be weight systems for 1 and 2 fields, respectively, that
obey
W(%,9) = (4r)"Dw ()

Let F : CIXI x CIXI — C be analytic on a neighbourhood of the origin. If F (1, p) obeys
|F|lw < £, then there is an analytic function f(1) such that

[ eF @9 du(p) _ S
[ X0 dpu(p)

and

17|
Ifllw < =151FTw

1.5.6 Outline of the Proof of Theorem 1.29 — Bounds
Step 1 - organizing the sums. Recall, from (1.58), that

n

i) = Z % Z Z pT(supp Y1, ,Supp ¥ H X]aY] (1.59)
n=1 %1,

R €X gy Y €X j=1

X10-0Xp =X

The bound

|p" (supp ¥1,- -+ ,supp ¥n)| < #{ spanning trees in G(¥1,--- . ¥n) }

is due to Rota (Rota, 1964). For a simple proof see (Simon, 1993, Theorem V.7.A.6).
A spanning tree for a graph is just a tree with the same set of vertices as the graph.
Hence

a@I<d a3 X Z _Hfixj,yj

n=1 S, XpEeX y1 y €X T spanning tree
xlo R n for G(F1, 9n)

<Y 4 Z > Alr(.9)

n=1 T labelled tree wlth yeX
vertices 1,

(1.60)
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where

Al (%, ¥) = > > 1A 50

V1, I¥n€X Xy, Xn€X =1
¥=¥10---0¥n X=
TCG(F1:+:¥n)

Recall, from (1.57), that

iy =4+ 3 S AL AT [ el) dule)

k=1  (F1. Fp)eClsupp §) %1, %y,
Y10 0¥ =¥ Rjo-0Rp =X
For each (¥1,- -+ ,¥k), G(¥1, -+, ¥k) is connected and hence contains at least one tree.
So
oo n
T o 1 n(v - =
AR <D & D > > I AR v
k=1 T labelled tree V1, JREX X1, R €X /=1
w1th1 ‘./ﬁrtlccs §:§1°"'°§k i:iw---oik
TCGF1. 1)
oo
_ 1 n(y o o 5
=D w >, ARy (1.60")
k=1 T labelled tree
with vertices
1,k
where

Vi1, I E€X %9, Rn€X =1
F=F10---0F), RK=Rjo---0%
TCG(F1, - Fk)

Step 2 - bound on Br.
Lemma 1.30 Let w be an arbitrary weight system for two fields and define the weight
system w’ by

W (%¥) = 2"Vw(X,¥)

Let T be a labelled tree with vertices 1,--- ,n and coordination numbers dy,--- ,dy,
(meaning that vertex j has d; lines attached to it). Let B be any (not necessarily sym-
metric) coefficient system for two fields with B(—, —) = 0. We define a new coefficient
system Bt by

Br(xy) = Y, >[I B&e¥0)

Fio . Fn€X Xy, R €X f=1
y=y10--0Fn  R=%jo0---0%n
TCG(F1, - 9n)

Then
Bz, < dil--dnl |
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Outline of proof (The details are in (Balaban et al., 2009, §III).)
Ingredient 1:

e For each 1 < ¢ < n, think of (X,,¥¢) as the locations of (two species of) stars in
a galaxy.
e In computing HBTHw = > max > w(X,¥) ‘BT(X’, y)\, we must

N,M>0 "S5 m5)exN xxM
(R.5);==

hold fixed the location of one star (the i) and sum over the locations of all other
stars. Suppose, for example, that we have chosen ¢ = 1 so that the fixed star is in
galaxy £ = 1.

e View 1 as the root of the tree T.

e Then the set of vertices of T is endowed with a natural partial ordering under
which 1 is the smallest vertex.

e For each vertex 2 < ¢ < n, denote by 7(¢) the predecessor vertex of £ under this
partial ordering, as illustrated in Figure 1.6.

7 3 45
7(7) =n(3) =n(4) =2
m(2)=7(5) =6 2
7(6) = 1 f

Fig. 1.6 A Sample Tree Partial Ordering

e The condition that ' C G(¥1, - ,¥n) ensures that, for each 2 < ¢ < n, the
support of y, intersects the support of ¥.(s), so that at least one of the n(ye)
components of ¥, takes the same value (in X') as some component of ¥ ().

o Write n(y,) = ng.

e The product over 2 < £ < n of the number of choices of which ¥-star in galaxy ¢
is at the same location of which y-star in galaxy m(¢) is

n

L1 [nenze)] = ﬁnge = ﬁz—’;dﬂ < dl!"'dn!ﬁw
/=1 =1

=2 =1

by using first year calculus and Stirling. (Alternatively, just use ’;—? < e™. This

gives a slightly weaker theorem, but the change is insignificant.)
Ingredient 2:

e Since T is connected,
n
w®,9) < [ 50)
=1

for all X;,---,%X, € X and ¥1,---,¥, € & under consideration, by the second
condition of Definition 1.27. So we may absorb each factor w ()'c’g, 374) into B()?fg, 374)
and it suffices to consider w = 1.
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Ingredient 3:
o [teratively apply

Z Z 20| B(%, ¥0)| < | B

Xp,Jp€X XeeX
Ye,my=Yr(L),py

w’

starting with the largest £’s, in the partial ordering of 7', and ending with ¢ = 1.
(For £ = 1, substitute X;,1 = X for ¥¢,m, = ¥r(¢).p.-)

Step 3 - sum over n (or k) and T.
Lemma 1.31 Let 0 <e < %. Then

Z : Z Z il dy! €™ < 5

n=1 dy,,dn T labelled tree
d viiddp=2(n—1 with coordination
1 dn=2(n—1) W bers dy,- .- sdn

|)—A

3

Proof Each line of a tree is connected to exactly two vertices. So the sum, dy+- - -+d,,
of all coordination numbers is exactly twice the number of lines in the tree. The number
of lines in a tree of n vertices is exactly n = —1. So we must have dy+- - -+d,, = 2(n—1).
That accounts for the condition on the second sum.

By the Cayley formula, the number of labelled trees on n > 2 vertices with specified
coordination numbers (dy,ds, -+ ,d,) is

(n—2)!
[T;—1(d;—1)!

Therefore

o0 o0

1 n n
E - E E dy!---dple™ < E E dy--+dpe
n=2 dy,oe,dp T labelled tree n=2 di,eydn
ditbdn=2(n—1) L diteddn=2(n—1)

The number of possible choices of coordination numbers (d1, da, - - - , dy,) subject to the

constraint dy + do +---+d, =2(n—1) is

(2(n71)71) _ (2n73) < 22n—3

n—1 n—1

and dy - - - d,, <2". (Any maximizer must have d; < 2 for every 1 < j < n.) Therefore

im Z Z di!---dy! 5n§i22n—32nan _ 18:525

n=2 dy,---,dn Thlabcll((:ic} tree n=2
d viiddy=2(n—1 with coordination
1t dn=2(n=1) N bers dj,-.sdn

For n =1, d; = 0 and the number of trees is 1, so the n = 1 term is €. So the full sum

is bounded by € + 18_5; = %=
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Step 4 - bound on ||a|| in terms of |A]. We introduce, for each ¢ > 0, the auxiliary

weight system

Clearly
Wi (X, ¥) =W(X,¥) and w(X)<Wi(X )
for all (X,y) € X2.

We now prove

Al
1= 8]l

lallw <

Recall from (1.60) that

a®)| <D Z > A%, ¥)

n=1 T labelled tree w)th yeX
vertices 1,

Therefore, by (1.61) and Lemma 1.30, with w = W1 and w’ = W,

lall, <327 >0 [Hirll,

n=1 T labelled tree with
vertices 1,---,n

5 Z Yoo ALy,

T labelled tree

dy+-- +dn72(n 1) r‘:\;ll:nhbccrzozdlmanc&:;

DY > Al A,
sdn

8

3
Il
s

T labelled tree

dy+-- +dn72(n 1) r‘:\;ll:nhbccrzozdlmanc&:;

1

3
Il

Now apply Lemma 1.31 with ¢ = H|/~1|HW2 = || Allw, to get

LAl w,
lellw < =5par

Step 5 - bound on ||A|| in terms of ||A]|. 'We now prove

1A _ _lFI
||A||W2 = 71— 8\|Avﬁw - 178\|Fvﬁw

Note that combining (1.62) and (1.63) yields the final bound

A _Flw
1l < lall < Alwe T Fllw
e T o B L T S 15 )2
L =8 Allw. 1 8178HF|\W 6/ Flw

Recall from (1.60%) that

(1.61)

(1.62)

(1.63)



A Simple High Temperature Expansion 55

AR P <D & > @Al r (X, 5)

k=1 T labelled tree with
vertices 1,--- .,k
By construction, ||r"¥)|A|7(X,¥) HW2 = || |Alr HW2 . Hence, by Lemma 1.30, with

w = Wy, followed by Lemma 1.31,

A < L H | Al H
|| ||W2 = k! T Wo,.
T labelled tree with
vertices 1,--- .,k

M T

- DY S diledi [ Al
< Tt
since Wy, = W. This gives (1.63). O

1.5.7 Changes of Variables

In this subsection we provide a couple of tools that may used to prove bounds on
“complicated” functions that are constructed from “simple” functions using changes
of variables.

For k > 0, we denote by w, the weight system, for functions of one field, ¥, with
mass m that associates the constant weight factor k to the field . That is

wﬁ(xlj . 7X’ﬂ) o emT({xlx"' )xn})h—/n

Similarly, for x, A > 0, we denote by w,,  the weight system, for functions of two fields,
1 and ¢, with mass m that associates the constant weight factor « to the field ¢ and
the constant weight factor A to the field ¢. To simplify notation, we write ||g(¢)||x and

1 (@, &)llw.x for [|g(¥)[|w, and [[f (¢, @)[|w, », respectively.

Proposition 1.32 Let g be an analytic function on a neighbourhood of the origin in
cX.

(i) Let J be an operator on CX with kernel J(x,y). Define § by
9(W) = g(Jv)
Let k > 0 and set &' = &||J|||. (I|J]| was defined in (1.28).) Then ||gllx < ||gll« -

(i1) Define f by
fW;0) =g+ ¢)

Then [| flln.x = llglls+x-
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Proof (i) Let a(X) be a symmetric coefficient system for g. Define, for each n > 0,

a’(xla"'vxn): Z a(y17---,}’n) HJ(YAXE)
=1

Vi, Yyn€X

Then a(X) is a symmetric coefficient system for g. Since

T({x1, %)) S T{yn, L ya) + D dlyexe)
/=1

we have .
m7({x1,,Xn}) < e T{y1 e ynld) H emd(yexe)
=1
and hence
wN(X]J e ,Xn)‘d(X1, e 7X’ﬂ)‘

S Z wﬁ’(yla"'7yn)}a(yl7"'7yn
Y1, yn€X 2

We are to bound

HgH"”b = Z max 1max Z U),{(Xl,"' 7Xn) ‘a‘(xlv 7X'n,)|

[N md(yexe) | j( ye,xm}
1

n

xeX 1<j<n
nZO X1, ,Xp €XT
xj=x
< E max max E E (1.64)
xeX 1<5j<n
HZO X1, Xn €X y1-,---,yn€X
xj=x

Wyt (yl, N 7yn)’a(yl7 N 7},n)‘ H [%emd(ybxe)"](ylaxl)u
=1

Fix any n > 0, x € X and 1 < j < n. By the definitions of £’ and ||| J]|||, for each ¢ # j
and yy € X,

D, H Iy xe) = 3 e 0 Iy x) <1

xp€X xpeX
Therefore
n
Z Z wﬁ/(ylu"'7yn)’a(y17"'7yn |:Fb mdy@x[)’J yg,Xg)”
XL Xn€X yg,e yn€X £=1
xj=x
<Z md(y:x) j(y, x) Z Wer (Y1, s ¥n)|alyr, - yn)]
yeX yl"b',',’X;EX
gd
d(y,
S Z %em (y X)J(yix) I;lea))(( Z wﬁl(ylu'” 7Yn)|a(}’17"' 7}’n)|
yeX Y1, Yyn€X
Yi=y
Sryneag Z e (Y1, yn)|alyr, -, yn)|

Y1, ¥yn€X
Y=y
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since, once again, >° y 7e™ Ayx) J(y,x) = D oex m&nd(y’x)‘](y,x) < 1. Conse-

quently, (1.64) is bounded by

max max Y ww(yieyola(a e ya)| = gl
n>0 Y1, yn€X
Y=y

This proves part (i) of the Proposition.

(ii) Let a(d) be a symmetric coefficient system for g. Since a is invariant under per-
mutation of its U components,
gW+¢) = a() W+o)(d) = Y. a®oy) ("X R
dex X, yex
so that o
i (%¥) = a(Roy) ("R 5

is a symmetric coefficient system for f. We have

[ fllex = mea)){(1<1?<alz<+£ Z Wi A (X Y) |a+(§;}—;)|
k,ezop T zexk, gext
(%.3);=p
- peX 12 Z emT(upp(X YD) ok AL (kjé) la(Xo¥)|
k.£20 - gexk, yex?
(%3 :=p
= Z (k}»f)ﬁ;kAl max max Z emr(supp(gﬁy))’a(i . }_;)’
pPEX 1<i<k+L
k>0 cext et
(X,¥)i=p

= Z (ky)mk/\lmax max Z emT(Supp(ﬁ))’a(ﬁ)‘
peX 1<i<kte

k>0 e xk+e
d;=p
= E (k + A)" max max emT(S“pp(ﬁ))‘a(ﬁ)’
peEX 1<i<n
n>0 dexn
& —p
= llgless

1.5.8 Other Related High Temperature Expansions

The expansion treated in the main body of this section is just one of many similar
expansions that are widely used in the construction and analysis of quantum field
theories and many—body theories. Here are a few classes of such expansions. Don’t
take too seriously the names that I have assigned them — they do not have universally
accepted meanings.

o (luster expansions are expansions for unnormalized Schwinger functions, like for
example [ ¢(z1) - @(zn)e”Y du(p), that are used for proving the convergence
of the infinite volume limit and of decay properties of the normalized Schwinger
functions. See (Abdesselam and Rivasseau, 1995; Brydges, 1986; Glimm et al.,
1973; Glimm and Jaffe, 1987; Rivasseau, 1991).
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o Mayer expansions are used to implement cancellations between the numerator
and denominator in expressions like

Jo(z1) - p(zn)e™ du(e)
JeV du(e)

(in the limit as the volume tends to infinity, such numerators and denominators
tend to behave like the exponential of a constant times the volume) and are used
for proving the convergence of the infinite volume limit and of decay properties
of the normalized Schwinger functions. See (Abdesselam and Rivasseau, 1995;
Brydges, 1986; Glimm et al., 1973; Glimm and Jaffe, 1987; Rivasseau, 1991).

e Polymer expansions. In its simplest form, a polymer expansion looks like

1+ Zl 1 > [TAx)
n= (=1

X1, XnCX

X ;#0 for all 1<j<n
XiNnX; =0 for all i#j

Here each nonempty subset X; of the world X is called a polymer and the func-
tion A(X;) is called a polymer activity. Two polymers X; and X; are said to be
compatible if they are disjoint. Our expansion (1.52) was of this form. See (Bry-
dges, 1986; Cammarota, 1982; Pordt, 1998; Kotecky and Preiss, 1986; Salmhofer,
1999; Simon, 1993) for lots of others.



Appendix A
Complex Gaussian Integrals

Integrals of polynomials times exponentials of quadratic functions are called Gaussian
integrals and can be evaluated exactly. Lemma A.1, below, does so in our setting,
where the integration variables are complex. To have integrals that actually exist,
we consider an arbitrary, but finite, number, L, of complex integation variables. To
compactify notation, we write

L

&:(al,QQ,"',aL) <B’7&>:Zﬁéaf

=1

Note that <E, 0'2> is not the usual complex inner product. We deliberately do not
include a complex conjugate on the right hand side, so that all complex conjugates in
our formulae appear explicitly.

To further compactify notation, we evaluate a generating functional. By repeatedly
differentating the conclusion of the lemma with respect to components of 7. and 7 and
then setting 7, = 7= 0, you can create any polynomial you like downstairs on the left
hand side. To be precise, suppose that A(a*, a) is some action and set

S, 1,07, @) = (Ju, ) + (", ])

Define the expectation of f(&*,d) to be

271
L daexAdoe  ,A(a* .«
JILZ =5 eA@n0)

T

R e { Ge)

Then, for each 1 <m < L,

(am) = gﬁnl<88(ﬂtﬁaﬂa)>

T.=7=0

and, for each 1 < m,n < L,

* _ o S(Fx,Tra" )
(mom) = Grg7mm <e (
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Lemma A.1 Let L € N.

(a) Let D be an L x L matriz whose real part, D+ D*, is strictly positive. That is, all

of the eigenvalues of [DM’ + Dg/)g} » are strictly positive. Let 7.,7€ CF and set
1<t,'<L

*

Ae*,0) = (@, D)  and  J(G,]) = (STT)
Then )
j(j*,ﬁ:eC(J*J) where C(j*,j):<j*7D71f)

(b) Let D, V and W be L x L matrices with V and W self-transpose. That is, Vi ¢ =
Voo and Wy g = Wy 4. Assume that the matriz

s(D+D*) V+W
W+V 3(D+D*)

is strictly positive. Let 7., 7€ CF and set

Aa*,0) = —(@,D&) — (@, Va") - (@Wa)  and  J(G,]J) = (ST77)

Then .
I (7r ) = €7D

where
S S “1 1 14 —lo—1
D(7,7) = (Ju, (D —4V(DY)" W) 7)) = (WD~ '7,(D —4V(D") W) ')
o —1 1 -1

(7 (D - av(DY W) V(D ) (A2

In the special case that V =W and V commutes with D, D simplifies to

D(J.,]) = (Dj., (DD' — 4V?)~'7) — (V],(DD' — 4v?)™'7)
— (V7. (D'D —4v?)7'7) (A.3)
Proof (a) The positivity condition on D+D* ensures that D is invertible. (Otherwise,
there would be a nonzero vector ¥ with D7 = 0 and hence (7, (D 4+ D*)%) = 0, which

would contradict the strict positivity of D + D*.) We start by completing the square
of the exponent in the numerator.

A(a”, 0) +8(Ji, J,a", a) = —(@", Da) + (Ji, o) + (@, )
= (@~ ()5). (@ - D) + (.. D)
At this stage, we have that

L dajAday  —<(@—(DY)"'7.),D(E@-D"'9>
e Tliey =5 e (A.4)
IHL dapshday  ,—<a* Da> '
=1 271

T(er]) =

So it remains only to prove that the ratio of two integrals is exactly one. If & and
a* were independent integration variables, the change of variables @ — & + D17,
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ar — a* + (Dt)_1 7« would convert the numerator into exactly the integral that is in
the denominator and we would be done. Unfortunately, & and &@* are not independent
and, usually, (Dt)_1 7. is not the complex conjugate of D17, Fortunately, with a little
trickery, we can legitimately make the desired change of variables. First introduce a
new, independent, vector of complex variables @,. There is, in general, no requirement
that &, be the complex conjugate of &. Replace all @*’s in the integral of the numerator

by @, and choose as the domain of integration
Do ={(d.,a)eC* |a=a;}
This recovers the original integral. That is,

L

dojnday  —<(@*—(D")7'5.), D (a-D"'7)>
L 2me
Cr =1

L
_ H daynday  ,—<(&—(D")7'7.), D (@D 'j)>
- 271

Do y—1

Now make the change of variables

This gives

L L

dajndag ,—<(&"—(D")7'7.), D(@-D7')> _ dziNdzy  ,—<Z.,DZ>
271 - I 271

(=1 1e=1

with the domain
Dy={(%.,2)eC® |z=2+7} withg=(D*) 'y -D'}

In the next paragraph, we will use Stokes’ theorem to show that we may replace the
domain D; with the domain

Dy={(Z,5)eC” |z=2}

Once that is done, we will have shown, this time legitimately, that the integral of the
numerator in (A.4) is the same as the integral of the denominator, completing the
proof.

Here are the details of the application of Stokes’ theorem. Let R be a large cutoff
radius and define, for each 0 <t <1,

Diyr={(2,2) €C* | 2= Z +tp. <R
¢ R { (Z.,2) € ’ Z7=Zr+tp, 1r£€anL|Zg| < }
Think of B = U;ZO Dy as a solid “cylinder”. The boundary of B is the union of the top

D1 g (which approachs D; as R — oo) and the bottom Dy g (which approachs Dy as
R — o0) and the side
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_ _ 2L = ~ | < _
Cr= HORE with Cr ¢ O<LtJ<1{ € C**| 2=zl +tp, lg}f}%{Lm | <R, |z =R}

By Stokes’ theorem, for any 2L—form w,

/dw:/ w—/ w—i—/ w
B Dy r Do, r Cr

if D1,r and Dy r are oriented in the usual way and Cg is oriented suitably. In our
case, the form w = /\ZL:1 dzaendzy o =<Z.,DZ> gheys dw = 0 (i.e. is closed) because

27
—<Z.,DZ> g an analytic function of z, and Z. Hence

D1 r Do, r Cr

So we just have to show that fCRw converges to zero as R — oo. We start by
bounding the integrand, or rather the real part of the exponent of the integrand. At
any point on the side, Cr, R < |Z] < VLR and there is a 0 < ¢t < 1 such that
Ze = 2 —tp* so that

Re(Z,, DZ) = Re (2", DZ) — tRe (5, DZ) (A.5)
=1(#, (D + D*)%Z) —tRe (", DZ)
> 3}R? — VLIp| DI R
where )\ is the smallest eigenvalue of D 4+ D*, assumed strictly positive, and | D|| is
the operator norm of the matrix D.

We next bound the volume of the domain of integration. It suffices to do so for

Cr,1. The other Cr/’s can be treated in the same way. On Cg 1, we have |z1] = R

We may parametrize z; = Re, with 6 running over [0, 27]. Then 2, = Re™ % —tp}
and

dz1 = iRe”df  dz., = —iRe 0 do —pidt =it 2 B0 gp

27

e

For all the other £’s, we may parametrize z; = x4 + iy, with (x¢,y,) running over
x? + yf < R?. Then Zyp = Tg — 1Ye — tpp and

dzy = dxy + idy, dz. ¢ = dxy — idye — pp dt

Since there is already a dt in % and dt A dt = 0,

L L
“R

dz*eAdze _ _P21 ewdt A d6 /\ dxyANdye
us ™

27
=1 (=2

and

1
/ w'§|p1|R/dt/ // dwz;—iuzu_// dmlé;riyL sup67R0<z*,Dz>
Cr.1 0 0 z2+y§<R2 zL+y2 <RZ?

< |p|R(3R?) T e 3M R HVIIAIDI R

This easily converges to zero as R — o0.
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(b) Once again, the main step is completing the square for the exponent of the nu-
merator. We start my multiplying out

—<<&*—J:> D(a - f>> <<cv - L), V(@ = 1)) = (@ - J),w(a-J))
—(@", Da) = (@", V") — (@, Wa) + < (DT +2VJ.))
+ (DT, + 2W D), &) = (Jo, DT)y = (Jo, VI = (J,WJ)

The first three terms are exactly A(&*, &). The next two terms will form S(J, 7; @*, &)

exactly provided
DI 42V =7
D'J, +2WJ =7,
Solving this pair of linear equations gives

J. = (D' —4WD V) (7. —2W D))
,lw)fl(j_ 2V(Dt>7lj‘*)

=

J=(D-4v(D")
Substituting this in,

(Jo, DI + (T, VLY + (T WT) = 3T 3) + 3 (e T)
— L7, —2wD™1)), (D—4V( )1W)’1j>
+ 37, (D 4V(D t)‘lw)*l(j—szt)‘lj*»
= (Ju (D= 4v(DY)"'W) "5 — (WD (D - av(DY) W) )
— (7., (D — 4v(DY) 1W) V(DY)
=D(J:.J)
Thus

= =

The rest of the proof is very much like that of part (a), using in place of Re <z7* , D2’> =
1(z*, (D + D*)Z) in the bound (A.5),

Re (=", D2)+ (=, V=) + (7, Wa) = 4[(2)" 7] F(Vﬁig) %(Eiz)t] Li}

O
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