Evaluation of Fermion Loops by Higher Residues
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$I Introduction

Let
e(k) = L |k|? —p , kelR?

be the dispersion relation for a two dimensional electron gas with chemical potential x> 0.
By definition, the amplitude of the (n+1) Fermion loop with external momenta ¢; = (¢;0,4q;) €

RxR?, i=1,2,---,n+1,is

Foo dko

I(Qla"'aqn+1) = #\/ dkldkz/ 1
R? —oo nH (:(k—gi)o—e(k—a))

=1

Recall that the amplitude of an arbitrary diagram contributing to the formal power series
expansion of the corresponding many fermion Green’s functions in powers of the coupling
constant is obtained by integrating products of Fermion loops and interactions.

It is not hard to evaluate the 2-loop (the “polarization bubble”) I(q;,q2) when
(g1 — q2)0 #0 and q; — q2 # 0. One finds ( see, for example, [FKST|, Proposition II.1)

-~ 1
I(q1,02) = —3% + srimZa §R(a— ;)

where « is the root outside the unit circle of

2 1 . (g1—g2)o _
z g (|q1—q2| 2mae [a1—qz| ) z+1=0

and kp = 4/2mp . The zero frequency limit has a particularly interesting behaviour. Namely,

I((O,ql),(O,(n)) = {_

) 0<|a1—qz| <2kF

1
(1_|Q1—Q2| |q1_q2|2_4k?~“) ,  |lai—aqz|>2kFr

S{ERNE

In particular, the value of the 2-loop is — 7> whenever the disks of radius kr centered at

q: and qz overlap.
In this paper, we evaluate the (n+1) Fermion loop explicitly for all n > 2. Our

result (see, Theorem III.1 and the Remarks after it) is

n n+1
Hasa) = 355 [ gl ds
2=t Jwi;
iF£]

—



where ¢;; is an explicitly computable rational function of one complex variable and w;;
is an explicitly given curve in €. For n = 2, that is the 3-loop, we have written out the
function ¢;; and the path w;; in all detail.

Again, the zero frequency limit

J(pl""apn+1) = lim )I(QIa"'7Qn+1)

2; —(0,p;
207250

is interesting. The third author (see, [Si]) evaluated J(pi1,p2,P3) numerically and observed
that

J(pP1,p2,P3) = 0

whenever the disks of radius kg centered at p1, p2 and ps3 have a point in common. We
have evaluated (Theorem IIL.2) J(pi1,--+,Pn+1). In particular (Corollary II1.3 (ii)), for all
n>2,

J(pla".apn+1) =0

when all n+1 disks with radius kr around the points p;,---.pn+1 have at least one point

in common. * Also (Corollary III.3 (iii)),

m2

J [} L) - . . .
(P1,P2,Ps3) 2 x area of the triangle with vertices p1,p2, P3

when the three disks with radius kr around the points pi,p2,p3 have no point in common
but any two of the disks intersect.
To evaluate I(qi,-:-,qn+1), We perform (see, the beginning of §III) the integral

over kg to obtain

n+1
- dkydk,
Hg1,w++ranp1) = (2#)22/ a1l
=1 Thesl<ke T g (k)

it
where

fii(k) = (a5 — i) -k+3 (@} — ) +2m(gio — gj0)

* The Appendix contains an elementary proof of this fact for the special case that

n = 2 and the triangle with vertices p;,p2,ps is acute.

2



Next, it is observed that each summand

/ dk1dk,
[ke—ai|<kr nﬁl fii(k)

J#i

/ d:cl VAN dwz
D,(a) H

n
1((1]'1331 + ajaxa — bj)
]:

is of the generic form

where the coefficients a;1,a;2,j =1,---,n, are real and b; is complex. Here, D,(q) is the
disk of radius p > 0 centered at q. In §II, we replace the disk by a homologous cycle in the
complex projective plane IP? where higher residues can be applied.

It is a great pleasure to thank Andrea Cavalli and Peter Wagner for many helpful
suggestions. Peter Wagner also found a different proof of Theorem III.2, using methods similar
to those of [OW]. He has generously allowed us to incorporate some of his improvements in

the statement of Theorem III.2 itself.



$II The Integral of a Particular Rational Function over a Disk

Let n > 2 and fix a real matrix

ailz a2

a1 Aa22
A =

anl An2

such that no two by two subdeterminant vanishes. Fix b € C" such that Ib; # 0, for all
j=1,---,n. For each q € IR? and p > 0 let

Dy(a) = {(z1,22) € R | (a1 — a1)* + (22 — )" < 4}

be the closed disk of radius p with the standard orientation, centered at q. We shall compute

/ dl’l A dl’z
D,(q) H

n
1(%‘1331 + ajazy — bj)
‘7:

To formulate the result, let L;, j =1---,n, be the line in the complex projective
plane IP? given by
Lj = { [20,21,22] S P? ’ aj121 + G222 = ijg }
and let
Lo = { [20,21,22] € P2 ’ Zp = 0}

We assume that the intersections
LoNLg = {d~*}

for o, = 1,---,n,00 with a # (8 are pairwise different and do not lie on the projective

quadric
Qs = { (0,21, 22] € IP* ’ (z1 — q120) + (22 — Q220)” = 52} }
for either s =0 or s =p.

If n>3,let n;,j=1,---,n, be the unique rational one form on the projective

line L; that has a simple pole at the point d”* for all £ =1,---,n, k # j, with residue

ek

1 1 . . . -1
11 (da-—,k (endi™ + apdy* - bed(’)’k)>
] 0
det ( )



no other poles , and a zero of order n — 3 at d’>=. We will see below that the sum of these
residues is zero and for this reason the form 7; does in fact exist. If n =2, let n;, j = 1,2,
be the unique rational one form on the projective line L; that has a simple pole at the point
d>* for k # j, with residue

1

a; a;
det { 771 72
ar1 Qag2

a simple pole at d?*, and no other poles.

For all s € C, set

Qf = {[20,z1,22]6Q3| § 2=z >0}

—d1
Qs_ = {['20321722] € Qs | ;j_gj < 0}
We will show, see Lemma II.2, that for all s > 0 and all j = 1,---,n, the intersection

Q. N L, consists of exactly one point, say, cj(s) and the intersection ), N L; consists of

exactly one point, say, c; (s).

Theorem 11.1 Suppose that for each j =1,---,n, the paths c;.t(s), 0 <s< p, do not pass
through any of the double points L; N\ Ly, j,k=1,---,n,j # k. Then,

/ _ dZ‘]/\dZ’z _ _27”2\/+
Do(a) ] ( ) { ()\0<s<p}

aj1%1 + aj2T2 — b]
= +2m Z/
{c (s)\0<s<p}

j=1

Remark. Observe that for any path s(¢),0 < o < 1, in C joining 0 to p and lying
sufficiently close to the interval [0,p], the intersection Q;l(za) N L; consists of exactly one
point C;-l:(S(a)) . Our hypotheses imply that c;.':(O) and c;-t(p) are not double points L; N Ly .
It is therefore possible to choose a path s(o), 0 < ¢ <1, arbitrarily close to [0, p] such that
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c;-t(s(a)) is not a double point for all j =1,---,n and 0 < ¢ < 1. With this choice

de‘l A diBz

— = 2m zn:/ 14
/Dp(q) TI( =1 H{ct ooy [ogo<1 }

G121 + 2%y — b])
i=1

= —2m i/ n;
J=1 {cj_(s(a))|OSa'S1} !

Two lemmas are required for the proof of Theorem II.1. Observe that by translation

invariance, we may assume that q = 0.

Lemma I1.2 For all s >0 and all a =1,---,n,00, the intersection Q; N L, consists of
exactly one point, say, ct(s) and the intersection Q, N L, consists of ezactly one point,

say, c(s). Furthermore, cI_ (s) and cZ (s) do not depend on s.

Proof: First, fix 1 < j < n. We can rotate (z1,22) around zero to make aj, = 0. The

intersection @), N L; is determined by the equation

bR = ()
Thus,
(2) = & (32 -1

It follows that there is exactly one root with positive imaginary part and one with negative

imaginary part since aj; is real and 3b; # 0. By inspection,

Q.NLy = {[0,1,1], [0,1,—1]}

Embed C€? in IP? by the standard map

(21,22) € €* — [20,21,22] € IP?
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Let w be the meromorphic two form on IP? given by

le A de
w = —
11 (aj121 + aj222 — bj)
=1
If n > 3, then w has simple poles on the lines L; ---, L, and is holomorphic on the

difference IP? \ (L1 ULy U---U Ln) . If n =2, then w has simple poles on L; L, L., , and
is holomorphic on IP? \ (L1 ULy U Loo) .

Regard the union of lines
C = LiULyU---UL, ULy

as a singular algebraic curve of degree n+1 in IP?. Then, the Poincare’ residue of w along

the curve C (see, for example [GH]|, p.147),
7 = resgw

is a Rosenlicht differential on C' (see [S], Ch. IV.9).
Fix, j=1,---,n. For each k # j,

w = 1 d(aji1z1+a;222—b;) d(ar1z1+ag222—bg)
a1 o n aj1z1tajzz2—b; ar1z1+ar2z2—bg
det| " ’ II (aerz1 + agz2 — by)
Okl Ok2 J g£5k

It follows from this representation that the restriction of 7 to the projective line L; has a

simple pole at the point d”* for all k=1,---,n, k # 7, with residue

1 1 ' . . .
II (57 (eardi™ + aadi* — bedi™)
det (aﬁ 52 ) g %0

ar1  Qag2

Furthermore, it is holomorphic and does not vanish on L; \ { d= ‘ a=1,---n,00, ] #a } .

Consequently, 77| ;. has a zero of order n —3 at d”>, when n > 3, and a simple pole when

n = 2. It follows from the preceding remarks that the restriction 77| . » has all the properties
7

of the rational one form 7; introduced above. In particular, n; exists and

n = Mg,

7



Set
Mo = Mg,

oo

For n > 3, the restriction 7, = 0, since w is regular along L., . If n = 2, then 7, has

simple poles at the points d>= and d*>>, and no other poles.

We need the following residue formula.

Lemma I1.3 Fizx a=1,---,n,00. Let p; and ps be any two points on

La\{daﬁ ’/B: 17"'7”700’ ﬂ;éa}
Suppose S1 and S5 are algebraic curves in IP? such that L, meets S; transversally at p;

and Sy transversally at ps . Let
m:T, — La\{d“"’|,3:1,---,n,oo,,8;£a}
be a tubular neighborhood of L, \ { d="* |,8 =1,---,n,00, 8 # a} such that
S;,NT, = 7r_1(pi)
for i =1,2. Finally, let v be a path on La\{d““’ |,B =1,---,n,00, 3 # a} joining p1 to

p2 and set

I = n(y)naT
The “cylinder” T' is oriented so that
Or = 9(S2NTa) — 9(S1NTa)

Here, S;NT,,t=1,2, is given the standard orientation of an open subset of the Riemann

/w:—27rz/77a
r Y

surface S;. Then,

Proof: The proof is similar to that of [Seb]. n
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Remark. By convention, the boundary of an oriented surface is oriented such that the ordered
pair of the outward pointing normal and an oriented tangent vector gives the orientation of

the surface.

Proof of Theorem II.1 : By construction, for all « = 1,---,n,00, the projective

line L, intersects the quadric Q, transversally at the points ci(s). For 0 < s<p let

a

U TR Ta,s B La\{da’ﬁ|,@:1,"-,?1,00,5#&}
be tubular neighborhoods of L, \ {d"'ﬁ ‘,B =1,---,n,00, B # a} such that

Qi NT,, = 75 (cE(t))

a,s

for t =10,s, and

Af,o = Q(j)EﬂTa,s

is independent of s. Set
Az, = Qi NTa,

a,

+

ot » t = 0,5, are oriented as subsets of the Riemann surface Qit .

By convention, the disks A
Also, set
rE, = .t ({ ()| 0<t <5 }) NOTa,

a,s

The “cylinder” I‘ff,s is oriented so that

oTE, = 0AZ, — aAj;O

By Lemma II.3,

/ w = —2m/ Na
T, { x| o<t<s }

Now, for each 0 < s < p, set

L]

ZE¥ = +D,(0) - (P;'E —PpE 4 > ¥ 4 roio,s)
]:
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where, for t =0, s

We have for t =0,s
OPE = 00F - Y AT, — aA%,
j=1

and

8Q* = +0D,(0) , 9QF =0
Therefore,
8Z% = +0D,(0) - (ag;t - Y aA%, - BAfos) + (aggk ~ Y 0A% - oAk 0)
3=1 ’ ’ 3=1 ’ ’
~ 3 (aa*. —aa* ) — (aaZ . —an*
];1 ( 7,8 ],0) ( 00,8 00,0)
=0

In other words, ZF is a 2-cycle in IP?\ C'.

Observe that the homology class [ZE] € Hy(IP? \ C,Z) represented by Z* is 0
since, by construction, Z* depends continuously on s and [th] = 0. The integral of the
holomorphic two form w over the one dimensional complex manifolds ’Pf:, t = 0, s vanishes.

It follows that

<Ly e L
z* D,(0) =1 rji rL .,

:i/ w—|—2m§n:/ 77-+27r2/ Noo
D.(0) =1t (o) |ogep} {ct(s)|0gs<p }

Since, ¢l (s) and ¢ (s) do not depend on s,

/{c;‘z(s)

w = F 2m zn:/
/Dp<q) i=1 {3 (9)

o = 0
05ssp}n

Therefore

0<s<p } "

10



Remark. For all 0 < s < p, the divisor of the rational function

z% + z% - 3223
2 2
21 + 25

on the curve C is

It therefore also follows from Abel’s theorem for the singular curve C' and the Rosenlicht

differential 1 that

> / no= = X / M
7=1 J{cf(s)|0<s<p} 7=1 J{cj (s)|0<s<p}

11



$III The Evaluation of Fermion Loops

Let ¢; = (¢i0,q:),% = 1,2,---,n + 1, be vectors in IR x IR*. We assume that no

three of the points q;,---,qn+1 lie on aline. The amplitude of the (n+1)-loop with momenta

91,92, " sqn+1 is

too dko

I(Qla"'a‘]'n.+1) - #\/ dkldkz/ 1
R2 — oo nﬁ (1(’9—111')0—6(1{—1'.11'))

=1

where the dispersion relation e(k) is given by

If ek —q;) #0 for i =1,---,n+ 1, and n > 1 then, by the residue theorem

(closing the contour in the upper half plane),

/+oo dko _ or mm ni_:l X(e(k—q,')<0)

o n+1 ¢ n+1
[T (iko—gio)—e(x—as)) =1 ] fi;(k)

=1 ji=1

J#i

where

fij(k) = m (e(k —q;) —e(k — q;) + 2(gio — Qjﬂ))
= (q; —q;) -k + % (qf - q?) +1m (g0 — gj0)

12



Observe that f;;(k),4,j = 1,---n+ 1, is an affine linear function of k. Substituting, we

obtain
e, dkydks
I(q1, " qnt1) = @2 .
i=1 ki< -1:[1 fii (k)
iz
It follows from this representation that I(q;,---,¢n+1) is a continuous function on the set

{ ((QI07q1)7"'7(qn+103qn+1)> € (IR X IRZ)TH_1 ‘ gio # gqjo for ¢ ;é]}

Observe that Theorem II.1 can be used to compute each of the summands

/ dkidk;,
eosi<tr 7 1)

i
For each pair 1<i# j<n+1,
K,']' = {ZE@Z ’ f,,-(z)zO}
is a line in €% . We have
Lij = 4y

since f;; = —f;i. If gio = q;o theline £;; NIR? is the perpendicular bisector of the points q;
and q; . Observe that for any three different indices 1 <7,j,k < n+1 the lines ¢;; and £;;
intersect in exactly one point d”* because q;, q; and q do not lie on a line. Furthermore,

d/* is the common intersection point of the three lines Li; = Ljiy Uik = Lyj, Ly = Lig , since
fij + fir + fri =0

Observe that Rd** is the center of the circle circumscribing the triangle with vertices

qi, 95, 9% - If g;0 = gio = gio, then the point d/* is real.

13



d;

12(Q;+0)) 9

For any three different indices 1 < 1,5,k <n+1, put

1 1
Tijk =
det (q; — qi,qr — q;) " .
v d”k
Vi ik

where det (qj —q;, 9 — qi) is the determinant of the matrix with rows q; —q; and qr —q;.
Observe that ’ det (qj — Qi di — qi) | is twice the area of the triangle with vertices q;, q;, qx .

By construction,

0 = £5(d) = —£;,(d7%) = £,u(dTF) = — £, (d%) + £, (@)
so that
Tijk = —Tjik
Let £;;,4,5 =1,---,n+1, be the projective closure of £;; in the complex projective

plane IP? and, as in the last section, let Lo, be the line at infinity. For each pair of indices
1 <i#j<n+1,let n; be the unique meromorphic differential form on Zij that is
holomorphic outside the points d“* , k =1,---,n 4+ 1, k # i,5, and Zij N L, , that has a
simple pole with residue r;;; at the point di/*, and that has a zero of order n—3 (respectively,

a simple pole for n = 2) at Z,-j N L. By construction,
Nig = —MNjs

14



If1<i#j<n+1, gio#4gjo and 0< s < kp, let cf;-(s) be the point where the

line Z;; meets the quadric
:l: _ 2 _ . 2 _ . 2 _ 2 Zo—q;2
QF(s) = {z€C | (21— @i1)” + (22 — qiz)” = s" and £I2=22 >0 }

In general cf:j(s) # c;tz(s)

Theorem III.1 Let n > 2. Suppose that no three of the points qi, - ,Qn+1 N IR? lie on
a line, that q;o # qjo for i # j, and that diik £ d % for k # k'. Further, suppose that
Ak £ c(s),0 < s <kp, forall i #j and all k #1i,j. Then,

n Ptl
(g1, - qnt1) = +55 X / . i
1;_7#:]-1 { cl,j(s) | 0<3<kF }

n
n

1
m

o i
2me 2%1 /{ c;;(s) | 0<s<hr } N

J
i

Proof: By Theorem II.1,

[ Ny, )
k—ai|<kr "fT i#i J{ cfi(s) | o<a<k }m]
‘ I fii(k) ! id i
S2i

= 4+2m ),

Nij
FE) /{ ci_j(.s) | 0<s<kp } !

for i =1,---n+1. [ |

Remark. For each pair 1 <i4,5 <n+ 1,17 # j, choose k # i,j. We parameterize the line
71'1;]'(2) = =z ((qj_qi)27_(QJ'_qi)1) + d”k y 2 S (D 9
The pull back 77; 7;; of 7;; is a rational form on C with simple poles. Consequently, there

is a rational function ¢;;(2) such that

— * ..
Pij dz = ;N

15



‘We can therefore reformulate the statement of Theorem III.1 as

%[ o

Wi = 7ri_jl<{ CZ;-(S) ‘ 0<s< kF })

m_
2

I(Qla"'aQn-{-l) -

M M+

where

Remark. For n = 2, that is the 3-loop, we parameterize the line £;;,4,7 =1,2,3,7 # 7,
by
mij(2) = z((@j-ai)z —(aj—a):) +d , z€C,
where d = d'? is the solution to the pair of equations
(Clz—ch)'k-l-%(Qf—qg)+’tm(Q1o—Q2o)=0
(Q3—Q1)'k+%(Qf—Q§)+1m(lZlo—qso):0

Observe that =, 7;; is a rational form on C that has simple poles at 0 and oo and no

others. By construction,

dz
7T;~kj Ni; = + L — = =% 1
det (Q2—Q1,CI3—(I1) z

dlog z
)

det (fh —q1,93—q1

with + for (ij)=(1.2),(2,3),(3,1) and — for (ij)=(2,1),(3,2),(1,3). Let w;;(s) be the unique

root of
2 2 9
(Z(Qj_Qi)2+d1_Qi1) + (_Z(Qj_Qi)1+d2_Qi2) = S
with
o —wi;(8)(q;—q)1+d2—qiz
N w;;(8)(q;—q:i)2+d1—qi > 0
‘We have
I(q1,q2,93) = 7 m” / + dlogz
» 42, 27T get (Q2—Q1,q:s 1/7&]1 {w”(s) 0<s<kF }

Clearly, each of the six integrals on the right hand side can be performed explicitly.

16



Remark. For each pair 1 < 4,7 < n+4 1,7 # j, and k # ¢,j let n;;% be the unique
meromorphic differential form on Zij that is holomorphic outside the points d**, and Zij N
L , that has a simple pole with residue 7;;; at the point d*, and that has a simple pole

at Zij N Ls. Then

Consequently

n n+1
I(Qla"'aQn+1) :% E

iyg, k=1 /{ () ‘ 0<s<kp }

pairwisedifferent

Nijk

So I(q1, - ,qn+1) is decomposed into a sum of terms each of which only depends on a triple
{4i,49j,qr} of momenta. The fact that such a decomposition is possible follows directly from

the identity

1

1

1 («(k—gs)o—e(k—a:))

n

+

(2

1 1
T cicithnt T fu(@in) (E=go—ct=an) (s(k=a)o—clic=a;) (s(k—gu)o—c(c—ar))
vk

This identity was pointed out to us by A.Cavalli and P.Wagner.

Fix p1, -+ ,Pn+1 In IR?. We assume that no three of these points lie on a line and

no four of them lie on a circle. The main purpose of this section is to show that the limit

J(P1, "+ yPnt1) = lim )I(QIa"'aqn+1)

2; —(0,p;
2;07#250

exists and to evaluate it. To do this, first set
Fij(k) = m (e(k =)~ e(k = p;)) = (p; — i) -k+} (7 ~ pY)
for all ¢,7 =1,---,n+ 1, and observe that

lim  fi;(k) = Fij(k)

q; —(0,p;)

17



Furthermore, for each 1 <7 # j < n+1 the line /;; converges to the perpendicular bisector
Lij = {ZE(DZ | F”(Z):O}

of p; and p;. Also, let D%* be the center of the circle circumscribing the triangle with

vertices p;, p; and pg. Then,

lim d“* = D%
a; = (0,p;)
We have D% £ D“* for all k # k', since no four of the points p1,--+,pPp4+1 lie on a circle.

For any three different indices 1 <¢,7,k <n+1, let
1 1

Rijr =
det (p; — pi,Px — Pi) " ’
Fiu Dz]k
Vi gk
Then,
lim 72 = Ry
q; —(0,p;) gk Ik
Observe that
Rijx = Rjri = Riij = —Rji

Let
A(pi,pj.pr) = {Pia Pj; Pk}

be the triangle with vertices p;,p;,px . We can, using the antisymmetry of R;;; , define
R { R;;i, if p;,pj,Px are oriented counter clockwise
A =

R;;i, if p;,pj,Px are oriented clockwise

for every triangle A = A(pi,p;,px). Let

pa = DU _p;| = D _pj| = [Di* —py|

be the radius of the circle circumscribing A . Since
Fi(D7*) = m (e(D¥* — p;) - e(D¥* —p,))
B p—

we have the geometric description of R;jz

1 2n—2
Rijr =
det (p; — Ps,Pr —Ps) " y
( 7 ’ ) ,,1;[1 (PZA _ |D ik _ p,,|2>
vi gk

18



Theorem III.2 Let n > 2 and let p1,- - .Pnt1 be points in IR? such that no three lie on a
line and no four lie on a circle. Furthermore, assume that for every triple 1 <i,5,k <n-+1
of patrwise distinct indices the triangle N = A(pi,p;,px) 18 not a right triangle and pa # kr .
Let T be the set of all triangles A\ with vertices in the set {p1,---,Pnt+1}, and let T,. be
the set of those triangles in T that have no angle bigger than 90°, i.e. acute triangles. Then,

4p% —[s|?
J(P1, - yPnt1) = m™ >, Ra — 2m" Z en s Ra arccot p@Tk}

AETye AT
N s edge of A
[s|>2kp

Here, for an edge s of a triangle A\ we denote by |s| the length of s and set

] | 41 if the angle of A at the vertex opposite to s is acute
S R | if the angle of /A at the vertex opposite to s is obtuse

Corollary III1.3
i) If |pi —pPj| <2kp forall i,j=1,---,n+1, then
J(pla"'apn+1) = m" E RA

A€Tac
PA>kRE

If, in particular, kp < k'z such that kg > %k 1min . |pi — P;| and such that there
= 9"'3n+

is no triangle A € T,. with kp < pa < k%, then

J(plv"'ap'rﬂ-l;kF) = J(pla"'vpn+1;k%’)

it) If all n+1 disks with radius krp around the points py,---.Pnt1 have at least one
point in common, then

J(pla"'apn+1) =0

(717) Suppose n = 2 and |p; — p;| < 2kp for all i,5 =1,2,3. Let A = A(pi,p2,ps) -
Then,

0 if the disks of radius kr around pi,p2,Ps
? have at least one point in common
J(P1,P2,P3) =

m2

3xarea of A otherwise
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Proof of the Corollary: Part (i) follows immediately from Theorem II1.2. If A =
A(p1,p2,ps) 18 a triangle with only acute angles and the disks around the points pi,p2,P3
with radius kr have at least one point in common, then pa < kg . So, part (ii) follows from

part (i). Finally, part (iii) is a special case of (i) and (ii). [

The rest of this section is devoted to the proof of Theorem III.2. For each pair
of indices 1 < i # j < n 41, let w;; be the unique meromorphic differential form on
fij (= projective closure of L;;) that is holomorphic outside the points D¥* k=1,---,n+
1, k #4,j,and L;; N L, that has a simple pole with residue R;;; at the point D** and
that has a zero of order n — 3 (respectively, a simple pole for n = 2) at fij N L. By
construction,

Wij = —Wj;
If 0<kp< %|pz - pjl, let C’i:'; be the intersection of the line L;; with

Q7 (kr) = {z€ c? ‘ (21 — Pi1)® + (22 — Pi2)? = k% and + §2=Piz 5 ¢ }

Z1—Pi1
Observe that Cj]'. = C; . It is useful to introduce the notation

7

p = ((O,pl)’...,((),pn_l_l)) c (mxmz)n+1

and

M = {q = ((Q10,Q1)7"',(Qn+10,Qn+1)) € (IRlez)nH

gio 7 450 for’i?éj}

Now, by Theorem III.1,

n

J(P1, s Pny1) = lim 32 3 / Nij
aemt ot J{ () | o<achs }
It is easy to see that
lim 7;; = wy
geEM

pointwise. However, it takes some work to determine the limiting behavior

lim { cfi(s) | 0<s<kp}
geEM
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of the path { c;';-(s) | 0 < s < kp }. There are two cases, 0 < s < 3|p; — p;| and
kr > s> 3|pi — pjl.
Suppose 0 < s < %|pi—p]~| for some 1 <i,j <n+1. Then, the line L;; intersects

Q?(S) = { z€C? | (21 — Pi1)? + (22 — Piz)? = s* and + 2=z > }

Z1—Pi1

in exactly one point which is denoted by Ci:';(s) . Again, C;;(s) = C7;(s) and

72
+ P -
Cij(s) = lim c5(s)
geEM

Also,
RC;(s) = 3(pi+p))

Suppose that s > 2|p; — p;|. Then,
Lijﬂ{XE]Rz ’ |x—p,~|:s} = Ll’jﬂ{XEle ’ |x—p]~|:s}

consists of two points which we again denote by C’;;:(s) By convention, CZ-—;(S) is the
point that makes the triangle with vertices p;, p; and C;';.(s) counter clockwise oriented,
and Cj;(s) is the point that makes the triangle with vertices p;, p; and Cj;(s) clockwise

oriented.
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Lemma II1.4 Let 1 <i,5 <n+1.
(i) Suppose that 0 < s < %|pz —pj;|. Let x # %(pZ +p;) in Lj NIR? be a real point
on the perpendicular bisector of p; and p; . Then, the triangle in the complex line
L;; with the vertices C’;;(s) , C;;(8) and x has the same orientation as the triangle

in IR? with the vertices p;, p; and x.

| Cij+(s)
X |
|
|
L ~IR? |
I
| Y2(pi+p)) X
P 1/2(pi+pj) pJ I
|
| ~-
Ci(s
i(9) L,
|
\LijanZ R?
(1) Suppose that s > 3|p; — p;|. Then, CZ(s) = C;.';(s) and
+ : + : +
Cij(s) = llll,} cij(s) = llll,} cji(s)
geEM geEM
9;0—950>0 2;0—9250>0
_ ; F(g) — ; ¥
— m ) = g G
geEM geEM
2;0—2;0<0 2;0—4250<0
Proof: For convenience, we set m = 1. We may assume, by applying an orientation

preserving isometry, that
p; = (-a,0) and p; = (a,0)

with a > 0. Now,
Li]' = {(0,22)|22€C}

and

Qf(s) = {z€C | (21+a)*+2] =5 and i%zfﬁ>0}
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If s < a, then the first statement of Lemma III.4 follows from
=+ - .
C;;(s) = (0, £iva? — s?)
If, on the other hand, s > a,
+ — _ — COF
Cij(s) = (0, £vs? —a?) = C’ji(s)

Suppose g € M is close to p. Then, by a ¢g-dependent orientation preserving isometry close

to the identity, we may assume that

q; = (—d,0) and q; = (d',0)
with a’ > 0 close to a. Now,

Lij = {z€C?|z =—i %L}

and the second statement of Lemma III.4 follows directly from

+ + gio—4g; 1 .
ci;(s) = (—z LOHL | & sgn (gi0—g50) \/32 — a2 4+ m(gio—g;0)? + Z(qio—qjo))

+ - 4io—4gjo0 1 .
c.(s) = <—Z =g s T 88N (dio—gjo) \/32 —a'? + m(Qio_Qjo)z - Z(qio—qjo))

where we make a branch cut for the square root along the negative real axis. [ |

If 0<kr< %|p(j) —p®|, then, by construction,

lim {c%(s)’ﬂgsgkp} = {Cfl;(s)|0§s§kp}

is the straight line segment [C;';(O), Cj]:] joining the point C’i:';(O) to the point C’iﬂ; = C;';(kp)

in Ll’j .
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c/0)
| Cyke)
|
2
V2(pi+p;)|
|
i Cike)
' C;(0)

If kp > 2[p¥Y — p®|, then by Lemma IIL.4 (i),

}115% {cj}(s)|O§s§kp}u{c;'i(s)|kF2320}
geEM
+(g:0—950)>0

is the path obtained by composing the three paths:
(1) the straight segment in L;; joining C;']'.(O) to 2(pi + p;)
(2) the segment on L;; NIR? joining i(p; + p;) to Cf;(kp) , followed by the inverse
of this segment
and

(3) the straight segment in L;; joining 1(p;+p;) to C;(0).
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Cy (0)

2
Lj~R
V2(pi+p;) Ci (kp)

C;;(0)

We encounter two problems in calculating

lim / Nij -I-/ Nji
aem ( { cj'j(s) ’ 0<s<kr } ’ { c;.t.(s) ‘ 0<s<kr } ! )

+(g:0—950)>0
acm { cj'j(s) ’ 0<s<kF }U{ c;.t.(s) | kr>s>0 }

+(2:0—950)>0

First, the path (2) depends on the sign of ¢;o — ¢j0. Second, the path (2) may contain one
or more of the points D¥*  that are the poles of the limiting meromorphic form w;j -

Let ¢ € M be close to p. For all indices 1 < j #k <n+1 with kr > %|p,~—p]-|,
let [c;';(kp), c;';(kp)] be the straight line segment in ¢;; joining cj;(lcp) to c;(kp) The

composition of the paths
() [0<a<hn)

[ (kr), cfi(krp)]
and

{ehlo) [ ke 2520
is a path joining cj}(()) to c;!'i(()) .
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Cij+(0)

Cij+(k F)
Cji+(k F)

Cji+(0) I

For any three different indices 1 < 4,j,k < n+1, recall that £ d¥* is the center of the circle

circumscribing the triangle with the vertices q;,q;,qx . Let
_ 1 ijk ik
Qi = §det(qi—9?d ,q]'—ERd )
be the oriented area of the triangle with vertices q;,q;,®d"”*, and

Aijr = Ldet(q; — qr,q; — qx)

the oriented area of the full triangle q;,q;,qx .
Forall 1 <i#j<mn+1,set
T, = {1§k§n+1’|Dijk—pi| <kr}
= {1 Sksn—l_l’pA(pi,pj,pk) < kF}

+ —

4i0—¢qj0>0 and the triangle with vertices
pi,pj,D”k is counterclockwise oriented
— i0—4q; 0 and the triangle with vertices
iy = kel | Bo U0y
1] (q) € i pi,pj,D”k is clockwise oriented

Finally, recall that for any three different indices 1 < 4,5,k < n + 1, 7;; is the residue of

ni; at d”*  and if A = A(ai,q;,ax) is the triangle with vertices q;,q;,qx , set

{ Tijk, if Q;,Q;,qx are oriented counter clockwise
rn =

-7k, if q;,9;5,q are oriented clockwise
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Lemma IILI.5 Let ¢ € M be close to p and suppose that for all pairwise distinct indices
1<4,j,k<n+1,

Qijk dro—9qi0 QXkij
Aijr gio—gjo Apij

(i) Fiz 1<i#j<n+1 with kr > L|p; —p;|. Then,
/ Nij -I-/ "7ij+/ Nji
{cf;(s)|0<s<kr} [efi (kr), cfi(kp)] {c}i(s)[0<s<kr}

¢l.(0) n+1

Jt .

= /+ Mij — 2mi E Xijk Tijk
C,J(O) k=1
ki,

+
cjl.(O)
Here, /C+(0)77i]- is the integral along the straight line segment [cj']-(O), c;';(())] in Lij,

and

(0 unless k € I;']'-(q) UZ;(q) and
Qijk gro—9io Qkij Qijk 9j0—qko ki
and —_— -
Aijr gio—qjo Apij Aijr gio—gqjo < Ajri

Xijk = 3
+1 if k€ I;5(q) and

Qijk qro—4io Qkij Qijk gjo—qko Qi
\ Aijr gio—qjo Apij and Aijr gio—4qjo < Ajri

(i) Let 1 <1,j,k <n+1 be any three different indices and let A = A(ai,a;.ax). Then,

2ra  if pa < kg and all angles in the
Z Xitj'k! Titjikr = triangle A are smaller than 90°

{i' 5"k }y={i,5,k} 0 otherwise

Lemma IIL.5 is now used to obtain an intermediate expression for the function
J(P1, " *,Pn+1) appearing in Theorem III.2. Recall that py,--:,pp4+1 are pointsin IR? such
that no three of them lie on a line and no four of them lie on a circle, and furthermore, that for
every triple 1 < 1i,j,k < n+1 of pairwise distinct indices the triangle A = A(p;,p;,px) is not
a right triangle and pa # kr. Here, as above, pa is the radius of the circle circumscribing

the triangle A.

Proposition II1.6

: 0 n o
. m m n
J(P1, Pat1) = 15, E /+ wij + 45 E /_ Wi —m E Ra
1<i#j<nt17 Ci;(0) 1<izi<nt1 YO AETae
- - IPi—Pj|>2kF PA<kR
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Proof: By Theorem III.1 and Lemma IIL5 (i),
#I(QIv"'aqni—l) = ﬁ Z (/ Nij + / 77]1)
1<i#j<n+1 {efi(s)|0<s<kr} {cfi(s)|0<s<kr}

. cfi(kr) cfi(kr)
= 3m Ni; + / Nji
’ 2 /c?;(O) TS

1<iti<ntl
Ipi—p;|>2kp

. cf(0)
+ 30 / Mg — / Nij
? 2 O JiehEe) i)

1<i#j<n+t1 i
|p; —Pj|<2kp

n+1

- Z Z Xijk Tijk

1<iZj<n+tl k=t
SRy

on an open, dense subset of M. By Lemma IIL5 (ii),

) . i (kr) cfi(kr)
m[(Qla""Qn+1) = 25 Z / Nij + / Nji

1<i#j<ni1 ?}(0) 5:(0)
Ip; —P;I1>2kp

c}:(0)
+ 5 / Mij — / Mij
’ Z c;5(0) ’ [e;f; (kp), ¢ (kF)] ’

1<izj<n+1
Ip;—pP;|<2kp

— 22 A

A€Tac
PA<kp

on an open, dense subset of M . In fact the last identity holds for all ¢ in M near p, since
both sides are continuous functions on M near p. Finally, by Lemma III.4,

#J(plf"apn-}—l) = 2 t}ielj{}tI(Q1>"‘aQn+1)

q—Pp

O (k) (k)
1
= D /+ Wij — /+ Wig
1<itj<nt1 C;(0) C;:(0)

Ip;i—PjI>2kp

cf.(0)

1 o
DY /+ Wij 2 ). Ra
1<i#j<n+1 Cij(o) AETqe
Ipi—P;|<2kp PA<kR

C(0) Cl(kr)
1
= m Z /+ wij_/+ Wij
1<i#j<n+1 Cij(O) C”(kF)

Ip; —Pj|I>2kp

Cc(0)
+ﬁ Z / wij — 2 Z Ra

+
1<izji<nt1 Y CF(0) AETne
IPp;—Pj|<2kp pa<kr
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The Proof of Lemma IIL5 : For convenience, we again set m = 1. To prove part (i), let
7i;(q) be the closed path obtained by composing { c;;(s) ‘ 0<s<kp }, [cj;(k'p), C;';(k?p)],
{ cji(s) | krp>s>0} and [c;'i(O), c;';(O)] . We have

/ Nij + / Nij + / Nji
{c(s)[0<s<kr} [ef(kr), cf, (k)] {cf(8)[0<s<kr}

cf,(0)
:/ Nij -I-/ Nij
¢t (0) vii(q)

since, 7);; = —17;;. By the residue theorem

n+1

/ ni; = 2m Z (winding number of 7;; around d*) x res,, (d*¥)

7i5(9) k=1
k#i,j

n+1
= 2m Z (winding number of +;; around dv k) Tijk

k=1
k#i,j

We shall show that the winding number of v;;(q) around dvk is —Xijk -
Fix 1 <k<n+1, k# i,7. A necessary condition that the winding number of
7:;(q) around d¥F is not zero is that D** be a point on the limiting path (see, Figure 6)
lim 7ii(4')
q —p

dem
1! — g
sen(g; ,—a; o) =segn(di0-950)

By Lemma III.4 (ii), our criterion becomes

. [3(Pi +P;), C{'}(’“F)] sy qio — g0 >0
DYk ¢

[3(pi +p;), Ci;(kr)] » dio — qjo <0

since, D¥* is real. Observe that, by construction, the distance between D%** and the

midpoint 7 (p;+p;) is smaller than the distance between C;l;(kp) and 1(p;+p;) if and only

if |D¥* —p;| < kr. Also, observe that the point D* lies on the same side of %(p, +p,) as

C’;';(k r) if and only if the triangle with vertices p;, p;, D%* is counter clockwise oriented,

and on the same side of 3(p; + p;) as Cj;(kr) if and only if the triangle with vertices

Pis Pj D%* is clockwise oriented. Thus, the winding number of 7i;(q) around d7* is zero

when k ¢ I;';(q) UZ;(q)-
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Now, suppose that k € I;']'-(q) UZ;(q). As in the proof of Lemma III.4 we may
assume that

pi = (—a,0) and p; = (a,0)

with ¢ > 0 and
q; = (—d',0) and q; = (a',0)

with a' close to a. We have

ik __ gio—4qjo0 1 2 2 1 ar1—a’ arita’
d = (—Z 20! ' Zars |ax|®—a' +’La Grot = 55 Qio—" g5 o

The function

g(t) = (— o ol 2qﬁ(lqklta’z) + zt)

defined for ¢t € IR parameterizes the real line in /;; passing through d“* parallel to the

imaginary 2, -axis. By construction g(to) = d“*, where

_ 1 —a' +a'
to = Qr2 ('Ik 0+qk21a/ Qio—qkzla: gjo
It is easy to see that
. — dk . .
t, — |Qk|2—2¢l'2 (QzO - qJO)

is the only real number for which there exists an s > 0 such that g(¢) € Qj’(s) . Similarly,

ti = —rqireae (g0 — o)

is the only real number for which there exists an s > 0 such that g(¢) € Qf(s). Our
hypothesis (see, the statement of Theorem III.2) implies that q;, q; and q are not the
vertices of a right triangle. By Thales’ theorem (see, Euclid, Book III, §31), the denominator

2 .
|qx|? — a’® does not vanish and

Ak 2 = > 0

lak[*—a

_I_
when k € I77(g) and
Ak 2 < 0

lak[*—a’2
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when k € Z;;(q) . Consequently,
tj <0<t
since k € Ii"]'. (@) UI;(q).
The line g(t), —0o < t < oo, meets the loop 7;; in exactly the two points g(t;)

and g(t;). Furthermore, the winding number of 7;; around d** = g(ty) is

0 when t; <ty or ty <t;
F1 if t; <ty <t; and k € T3 (q)

The first case is immediate from the figure

c;j (0)
20 o ke
i d"=g(ty) .
Vi o) % (¢)
it (0) |

]

If, on the other hand, t; < ¢y < ¢;, then the winding number is —1 when the triangle with

vertices cj}(O), c;!'i(O), d"”* is counter clockwise oriented. This occurs, if and only if the

limiting triangle with vertices C’i";- (0), C;;(0) = C;;(O), D%* is counter clockwise oriented.

By Lemma III.4 (i), this happens if and only if the triangle with vertices p;, p;, Du* is

counter clockwise oriented. That is, k € I;';(q) . The case of winding number +1 is similar.
The last step in the proof of part (i) is to express the conditions on ¢;, t; and t;

that determine the winding number of +;; around d¥* in terms of the quantities ok and

A;jr . To start with,

_ 1 qr1—a’ qrita’ ak . . — +.
to = E(q’“ﬁ 5o Gio— aar o) < W(Q’LO_QJO) =t
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is equivalent to

QAijk 1 _I_le—a' . Qritad < 1
Aijk dio—djo dr o 2a’ qdio 2a’ gjo 2

since,

!

ik = ﬁﬁ(lqklz—a’z)
1
Aijr = a qg2

and t; > 0. This inequality is in turn equivalent to

Qijk qro—gio 1 Qjk 1 4 +qk1—a' _Qrita’
Aijx gio—gjo 2 Aijk gio—gjo \T°T 247 T0T7 347 0
— 1 (7 _ ik ari1ta’
-2 Aijk a'

‘We will show that
1(1 _ @ik ar 1+a ) _ ok
2 Aijr a T Agij

In other words,

Qijk gro—4gio Qkij
t t; & !
0 < T Aijr gio—gjo < Agij

Let 2e, > 0, £ =1,j,k, be the length of the edge opposite to the vertex q, in the

triangle with vertices q;, q;, qx, and let h, be the (signed) height of the triangle over the
edge opposite to the vertex q,. Clearly,

Aijr = eg-hy

for £ =14,j,k. We also let s, be the (signed) height of ®d"* over the edge opposite to the

vertex qg. Clearly,

_ _ !
aijk = €S = a - S
ajki = €;° 84
aki]- = ej . S]'

Finally, let b be the point where the perpendicular bisector of q;,q; meets the line through

q; and qr -

The two triangles in the figure below with vertex b and solid edges are similar.
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L2h
Qi
Therefore,
sj  ba—sp 1_s_k
1h; b, b,
Also, the triangle with vertices q; = (—a’,0),0,b is similar to the triangle with vertices

q; = (—a',0),(dr1,0),qr . Therefore,

Az _ ¢+
b2 a'

It follows that
ki %3 1 (1 _ S_k) _ 1 (1 sk a'+qk1> _ 1 (1 gk a'+qk1)
A]”'j h] 2 bo 2 dk 2 a’ 2 A,‘jk a'

as claimed above.

By the same sort of argument,

Qijk djo—dko Qjki
t, t k¥ J J
i<t < Aijr gio—djo0 < Ajki

The proof of the first part of Lemma III.5 is now complete.

(ii) If kF < pa , then, by definition, x; ;& = 0 for all permutations ¢',j', k" of 4,j,k. We

may therefore assume that pao < kp. We may further assume that the triangle with vertices
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qi,9;,9x is counter clockwise oriented since, by direct inspection, X;jx = —Xjix and, as

observed before, r;jx = —7;; . It thus suffices to show that

1 if A is an acute triangle
Xijk + Xjki + Xkij = { ’ &

0, if A is an obtuse triangle

Clearly, one or two of the differences
90 — 950 5 950 — 9k0 » 9k0 — Gio

is positive, since (q,-o — qjo) + (qjo — Qko) + (Qko — (]io) = 0. We first verify the
statement of the last paragraph in the case that A(q:,q;,qx) is an acute triangle whose vertices
qi,9q;,qx are counter clockwise oriented and exactly one of the differences is positive. Observe
that 0 < A;jx = Ajr; = Ag;; since q;,q;,qr are counter clockwise oriented and that
Qijks Qjkis Okij > 0 since A(ai,q;,ax) is acute.

We may assume, without loss of generality, that

gio —q50 > 0, gjo—gqro < 0, gro —gqi0 <0

By construction, 7 ¢ I;;c(q) UZ;;(g) and j ¢ T (q) UZ;,(q) and therefore, by definition,
Xjki = Xkiz = 0

On the other hand, k € Ij]'- (¢) and

Qijk Gro—4dio 0 ki
Aijr 9i0—gjo0 < < Agij

s g < < g
so that, by definition,
Xijk = 1
We next treat the case in which A(aqi,q;,ax) is an acute triangle whose vertices
qi,9q;,qr are counter clockwise oriented and exactly two of the differences are positive. We

assume, without loss of generality, that

gio —q50 > 0, gjo—qro > 0, qro —qio < 0
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As above, the third inequality implies xz;; = 0. On the other hand, the first two inequalities
imply k € Ii‘;(q), i€ I;;c(q) and consequently,
s Qijk 950—9ko0 Qjki
Xijk = { 1 if Aijk gio—9gjo < Ajki
0 otherwise
1 if ki gio—4djo0 < Qijk

Xiki — { Ajri gGjo—gko Aijr
0 otherwise

This shows that
Xijk + Xjks = 1
The proof that
Xijk + Xjki + Xwi; = 1
when A is an accute, counter clockwise oriented triangle is now complete.

The case of an obtuse triangle is similar. [ |

The proof of Theorem III.2 requires two ingredients in addition to Proposition III.6.

Proposition III.7 For each pair 1 < 4,7 < n+1,i # j, and k # i,j let w;jr be the
unique meromorphic differential form on fij that is holomorphic outside the points D7¥
and fij N L , that has a simple pole with residue 1 at the point D¥*, and that has a simple
pole at L;; N L. If |Pi — ;| > 2kp then

4p% —|pi—p;|?
[p: —p; |2 —4k%

ch
ij
/ wijk = —4TLEA (p;.p;) R arccot
C.

ij

where A = A(pi,pj,Pr) and

. | +1 if the angle of A at px ts acute
&(PisPi) T ) —1  if the angle of /A at px is obtuse

Proposition II1.8

C;(0)
/ Wi; = 47 Z RA

+
1<i#j<n+1YCi5(0) A€T..

Before proving Proposition II1.7 and Proposition II1.8, we give the
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Proof of Theorem III.2 : By Proposition III.6 and Proposition IIL.8,

#J(pla"'apn-l—l) — 4 /; () Wiy +47” Z / 7 Z RA
0 _

1<z;£_7<n+1 1<izj<n+1 A€Tqac
|p,—p,|>sz pPA<kR
— 1 _
= 2 Ba+tam X / ) > Ba
AE'J;C 1<i#j<n+1 AETac
Ip;—Pj|>2kp paA<kR
1 E: ¢ E:
= Im Wij + RA
1<i#j<n+1 AETqe
Ip;i—Pj|>2kp PA>kR

By construction for 1 <i,5 <n+4+1,i#j
Z Rijk wijk
k#,3

Therefore by Proposition II1.7

1 Cis
47 Z -~ Wij
1<i#j<n+1 j
Ipi—PjI>2kp

2 2
= — € R arccot 405 (pip;pp) 1P P |
= A(Pi,P;Pr),(PiP;) 1YA(Pi P :Pk) [pi—p; |24k

1<i#j<n+1 1<k<n+1
Ip;—P;|>2kR k#i,j

Z 4pp sl
= =2 EA,S RA arccot m
AeT
s edge of A
|s|>2kp

Proof of Proposition II1.7: By possibly interchanging ¢ and j we may assume that the
triangle with vertices p;,p;,px is counterclockwise oriented. As in the proof of Lemma III.4
we may assume that p; = (—a,0) and p; = (a,0) with a > 0. Then there is b # 0 such
that D“* = (0,b). Then

a2 _|_b2 — pZA b = EA,(Pi,pj) |b|
Lj = { (z1,22) €€ | 21 =0} CE = (0,£1/a? — k%)
wijk = 2%
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Consequently

4

/ij /+z1/a2—k§, P /—b+1,1/a,2—k§,
z

Wijk = —b z
i —24/a2—k% —b—24/a?—k2
b h—d’
= —4miarccot pe—s = —4mien (p;,p;) arccot Py

The proof of Proposition III.8 requires a lemma. To prepare for Lemma II1.9 pick

a generic vector (vy,vz) € IR? and, for each i =1,---,n +1, let
gi = {2€C® | viz1 +v222 = v1Pi1 + v2Pi2 }

be the line through p; whose slope is determined by (v1,v2). For all pairs ¢ # j, let E;; be
the point where the lines g; and L;; meet. Furthermore, let w;,, be the rational differential
form on the line L., at infinity that is holomorphic outside the points of L, N fij and has
a pole of order one at L., N fij with residue — >, R;ji . Finally, let v, be the union of

k#i,5
the paths
{ [0, —(—ti—tvs,1-t4tv)] | 0<t<1 }
{ [0, +(1—t)yitva, 1—t+tv,] | 1>¢>0 }
lyingin L.

Lemma III.9 Forall 1<:<mn+1,

C;;(0)
Z / wij = / Wico + 21 Z Bijx Rij
7“

= JC(0) d, ki
J#e i fos

where B
(+1 if DY* lies between %(pZ +p,;) and E;;,
and p;,pj, E;; are counterclockwise oriented

Bije = —1 if DY* lies between %(pz +p;) and E;j,
and p;,Pj, E;; are clockwise oriented

\ 0 otherwise

Proof: Put

Ft:t('zlaZZ) = (1- t)((zl —pi) £i(z — Piz)) +t(v121 + v222 — V1Pi1 — ’Uzpiz)
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and let E;';(t) be the root of F¥ on L;;. Clearly, El:']:(l) = E;; and

9i = { (21,22) € C? ‘ Fli(zl,zz) =0 }
Q¥ (0 { (21,22) € € | Fi(21,22) =0 }

—
Il

and consequently,
bij = leh,o;0U{ B0 |o<e<t JU{ BE@®) | 12620 }

is a loop that meets L;; N IR? only in the points %(p, +p;) and E;;.

Ci (0)

L ~IR®
w J

C;;(0)

Observe that the projective closure of { (21,23) € c? | F(z21,2) =0 } meets the line Ly,
at the point

Eixo(t) = [0, F(1—t)e—tvs,1—t+tvy]

‘We have

Yoo ={ B (»|o<t<1}U{EB_(®)|12¢>1}

forall e=1,---,n+1.

The union of lines



is a singular curve in IP?. The forms w;ij,j = 1,---,n+1,00,5 # 1, define a Rosenlicht
differential on X, . For each ¢ € [0,1] the divisor of the meromorphic function
Fy - F (il_
Fy - F t+
on the curve X; is
> (BG®) - EB50) + (B50) - BL®))

) J#i
j=1,---,n+1, c0

By Abel’s Theorem ([S], Ch. V.10, Proposition 5),

ij T ij
2 (/{Eu(t)IOStSS}w] /{Eij(t)\sztzo}w])

§=1,,n+1, 00

is independent of s. For s = 0 this quantity is zero. Therefore,

/ Wi; = 0
iz Ese esesi Ju{ B [ 12620 )

j=1,---,n+1, co

By the definition of the loop 6;; and the conclusion of the last paragraph,

n+1 lej(g) n+1
S [ =3 [ et [ e
; ij(o) j=1 7 8ij Yoo

j=1
J#i J#

poy {E;j(t)logtgl }u{ Ef(¢) ’12t20}

j=1,-",n+1, co

= 2m Zﬁiijijk + / Wico

J k#i Yoo
ik
since, by Lemma III.4 (i), the winding number of §;; around D% is equal to Bijk - [ |

Finally, we give the

Proof of Proposition III.8 : Observe that

n+1
Z Wino — 0
=1
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since, by construction, the residues at each pole add up to zero. Now, by Lemma III.9,

C’i_j(O) n+1
/+ wij = > Wico + 2w E Bijx Rijx
1 SJ#zSn+1 C‘LJ (0) Yoo =1 pairwise different

1<i,j,k<n+1

= 2m E Bijx Rijr
pairwise different
1<i,5,k<n+1

Fix three pairwise different indices 7, j,k and let A = A(pi,p;,px). Let
h = { (il?l,.'l?z) € ]R,Z ‘ V1Z1 + vy = le;'jk -I—'UzD;jk }
be the real line through the center D¥* of the circle circumscribing A whose slope is
determined by (v1,v2). Then,
0  unless h meets the segment between p; and %(p, +p;)
Bije =< £1 if h meets the segment between p; and 1(p;+ p;)

and the triangle pi,pj,Dij * is counterclockwise (clockwise) oriented

In particular, if A is acute, there are exactly two permutations 7',k’, ;' of i, 7,k for which

ﬁilkl]'l # 0 .

Pi V2(pi+p;) P
Furthermore, if B3,/ # 0, then

Biwj =%l & pi,pj,Pr counterclockwise (clockwise) oriented
~ Rilkljl = +RA
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Consequently,

Z IB,I:IjIkI R,iljlkl = 2RA
{¢.3" k' y={1.7.k}

Similarly, if A is obtuse,

E ﬂ,iljlkl Ri'j'k' = 0

{i',5" k' }={1.3,k}
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Appendix

In this appendix we assume that J(p;,p2,p3) exists and give a direct proof of

J(p1,P2,P3) = 0

when the circle circumscribing the triangle with vertices p;,p2,ps has radius less than kg .
If the triangle is acute, the previous condition is equivalent to the statement that the three
open disks K7, K,, K3 with radius kr around the points p;1,p2,p3 have a point in common.
By translation invariance, the center of the circle circumscribing the triangle can be placed
at the origin.

By definition,

. too dky

J(P1,P2,P3) = DK - dky dko 3
- rtko—e(k—p;)
1 (da-cpo)

(2

The integral

/+°° dkg

(zko—e(k—pi))

—

=1

is evaluated by closing the contour in the upper half plane when the point k € IR? belongs
to at most one of the disks K;j, K,, K3 and closing in the lower half plane when it belongs
to at least two of the disks. In particular, the integral vanishes when k ¢ K; U K, U K3 or

k € K; N Ky N K;. We obtain

G J(p1,p2:ps) = / _ dkdky / _ dkidky
" K \(K2UK,) F12(k) Fi(k) (K,UKs)\K, F12(k) Fi3(k)
+/ dkq dks _/ dkq dks
Ks\(K,UK;) F31(K) Faz(k) (K UK)\K; £31(k) F3a(k)
-|-/ dkq dks _/ dkq dks
Ka\(KsUK,) F23(k) Faa(k) (KUK )\K; F23(K) Fa1(k)

where, for all 7,5 =1,2,3,

: 2 __ 2 2
sice, p; — Pa = P3 -
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Let 2r be the length of the secant to the circle 8K; through 0 that is perpendicular
to the line through 0 and p;. Then the map
¢: R*\ {0} — R*\{0}
k — —ll’;ﬁ k
maps each of the circles 0K;, 0K,, 8K; to itself ([Be], 10.8). By hypothesis, 0 € K, , i =

1,2,3, and therefore, ¢ maps K; to the exterior of K, and conversely. In particular,
¢ (K1 \ (K2UK3)) = (K2NK3)\ K,

Substituting,

Fi3(¢(k)) Fi3(¢(k)) = |;T4 Fi3(k) Fi3(k)

Also,

¢ (dky A dky) = iz dky A dky

The last three equations imply that

/ dkq dk, / dkq dk, _ 0
Ki\(KsUKs) T12(k) Fi3(k) (KanKs)\K; F12(k) Fi3(k)

The other pairs also cancel.
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