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I. Introduction

Let Γ be a lattice in IRd, d ≥ 2 and let r > d . Define

A =
{
A = (A1, · · · , Ad) ∈

(
Lr

IR(IRd/Γ)
)d ∣∣ ∫

IRd/ΓA(x) dx = 0
}

V =
{
V ∈ L

r/2
IR (IRd/Γ)

∣∣ ∫
IRd/Γ

V (x) dx = 0
}

For (A,V ) ∈ A× V set

Hk(A,V ) =
(
i∇ +A(x) − k

)2 + V (x)

When d = 2, 3 , the operator Hk(A,V ) describes an electron in IRd with quasimomentum

k moving under the influence of the magnetic field with periodic vector potential A(x) =

(A1(x), · · ·Ad(x)) and electric field with periodic potential V (x) .

In general let

e1(k,A, V ) ≤ e2(k,A, V ) ≤ · · ·

be the eigenvalues of the operator Hk(A,V ) on L2(IR2/Γ). The restriction of en(k,A, V ) to

the first Brillouin zone B of Γ is called the n-th band function of A . Observe that

e1(k, 0, 0) = |k|2

The Fermi surface of (A,V ) with energy λ is defined as

Fλ(A,V ) =
{
k ∈ B ∣∣ en(k,A) = λ for some n

}
Because Hk(A,V ) = H−k(−A,V )

en(−k,−A,V ) = en(k,A, V )

for all n ≥ 1 . In particular, when A = 0 ,

en(−k, 0, V ) = en(k, 0, V )

for all n ≥ 1 , so that Fλ(0, V ) = −Fλ(0, V ) for all λ and V . For all (A,V ) ∈ A×V, λ ∈ IR

and p ∈ IRd

p − Fλ(A,V ) =
{
p − k

∣∣ k ∈ Fλ(A,V )
}

The main result of this paper is
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Theorem There is a neighbourhood A0 × V0 of the origin in A× V and λ0 > 0 such that

(i) for all (λ, a, V ) ∈ (−∞, λ0)×A0×V0, Fλ(A,V ) is either a strictly convex (d−1)–

dimensional real analytic submanifold of B, or consists of one point, or is empty.

(ii) there is an open dense subset S of (−∞, λ0)×A0×V0 such that for all (λ,A, V ) ∈ S
and all p ∈ IRd

Fλ(A,V ) ∩ (
p− Fλ(A,V )

)
has dimension at most d− 2. Furthermore S ∩ (

(−∞, λ0)×A0 ×{0}) is open and

dense in (−∞, λ0) ×A0 × {0} .

The Theorem shows that, for generic small periodic magnetic fields of mean zero and

generic small Fermi energies, the Fermi surface is strictly convex and does not have inversion

symmetry about any point. In particular, when d = 2, the intersection of the Fermi surface

and its inversion in any point is generically a finite set of points. The same statements hold

if one considers both electric and magnetic fields. This inversion asymmetry suppresses the

Cooper channel in weakly–coupled short–range many Fermion systems. See [FKLT].

There are real materials containing a periodic array of magnetized ions with zero

flux through a fundamental cell. See the review [O, pp 1-48].

In §II we show that the Fermi surface is always a real analytic subvariety of IRd ,

and that it depends holomorphically on (A,V ) ∈ A × V . This is a well–known result [K,

Theorem 4.4.2], but we include the proof for the convenience of the reader. The proof of the

main Theorem, presented in §III, is based on a third order perturbation calculation around

(A,V ) = (0, 0) .
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II. Analyticity of the Fermi surfaces

Let

AC =
{
A = (A1, · · · , Ad) ∈

(
Lr(IRd/Γ)

)d ∣∣ ∫
IRd/ΓA(x) dx = 0

}
VC =

{
V ∈ Lr/2(IRd/Γ)

∣∣ ∫
IRd/Γ

V (x) dx = 0
}

be the complexifications of A resp. V.

Theorem. There exists an analytic function F on Cd ×C×AC×VC such that, for k,A, V

real,

λ ∈ Spec
(
Hk(A,V )

) ⇐⇒ F (k, λ,A, V ) = 0

Corollary Fix an open ball D in the first Brillouin zone B that contains 0 such that D̄ ⊂ B◦ .

There is a neighbourhood U of the origin in A× V and there is λ0 > 0 such that

i) For all (A,V ) ∈ U and all k ∈ D

e1(k,A, V ) < e2(k,A, V )

ii) The map

D × U −→ IR, (k,A, V ) 7−→ e1(k,A, V )

is real analytic.

iii) For each fixed (A,V ) ∈ U the Hessian of the map k 7−→ e1(k,A, V ) is positive definite.

Furthermore infk∈D e1(k,A, V ) < λ0 .

iv) For each (A,V ) ∈ U and each λ < λ0 the Fermi surface Fλ(A,V ) is either empty, or

consists of one point only, or is a real analytic smooth strictly convex (d − 1) –dimensional

real analytic manifold that is completely contained in D.

Proof of the Corollary: The spectrum of Hk(0, 0) is
{ |k + b|2 ∣∣ b ∈ Γ]

}
. Hence, for

k ∈ D , e1(k, 0, 0) = |k|2 and e2(k, 0, 0) > e1(k, 0, 0) . The Corollary follows from repeated

application of the Implicit Function Theorem and continuity.
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Proof of the Theorem: Write

(
i∇ +A(x) − k

)2 + V (x) − λ = 1l − ∆ + u(k, λ) + w(k,A, V )

with
u(k, λ) = −2ik · ∇ + k2 − λ− 1l

w(k,A, V ) = i∇ ·A+ iA · ∇ − 2k ·A+A2 + V

At the end of this Section we prove

Lemma. Let ‖B‖r = [tr (B∗B)r/2]1/r where tr denotes the trace defined on trace class

operators on L2(IRd/Γ). There is a constant constΓ,r,d such that

∥∥ 1√
1l−∆

w(k,A, V ) 1√
1l−∆

∥∥
r
≤ constΓ,r,d

(
(1 + |k|)‖A‖Lr + ‖A‖2

Lr + ‖V ‖Lr/2

)
a) ∥∥ 1√

1l−∆
u(k, λ) 1√

1l−∆

∥∥
r
≤ constΓ,r,d

(
1 + |k|2 + |λ|)b)

c) Let 0 ≤ ε ≤ r−d
2r . There is a constant constΓ,r,d,k,λ,A,V such that

∣∣ 〈(u(k, λ) + w(k,A, V )
)
φ,ψ

〉 ∣∣ ≤ constΓ,r,d,k,λ,A,V

(‖(1l − ∆)(1−ε)/2φ‖ ‖(1l − ∆)1/2ψ‖
+ ‖(1l − ∆)1/2φ‖ ‖(1l − ∆)(1−ε)/2ψ‖)

for all ψ,φ ∈ L2(IRd/Γ).

Because Ls(IRd/Γ) ⊃ Ls′
(IRd/Γ) for all 1 ≤ s ≤ s′, we may assume, without loss

of generality, that r ≤ d+ 1 . Then the Lemma implies that

F (k, λ,A, V ) = detd+1

(
1l + 1√

1l−∆
u(k, λ) 1√

1l−∆
+ 1√

1l−∆
w(k,A, V ) 1√

1l−∆

)

is a well–defined analytic function on Cd × C × AC × VC . Here, detd+1 (1l + B) is the

regularized determinant which, for matrices, is defined by

detd+1 (1l +B) = exp
( d∑

i=1

(−1)i

i trBi
)

det(1l + B)

This regularized determinant is defined for B with ‖B‖d+1 finite. See [S], Theorem 9.2. It

is analytic since one can take limits of finite rank approximations of B .
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Let D be the domain of
√

1l − ∆ . By the Lemma,

(
i∇ +A(x) − k

)2 + V (x) − λ = 1l − ∆ + u(k, λ) + w(k,A, V )

gives a well–defined quadratic form on D ×D . Furthermore, for φ ∈ D

〈(
1l − ∆ + u(k, λ) + w(k,A, V )

)
φ , φ

〉 ≥ ‖√1l − ∆φ‖2 − const ‖(1l − ∆)(1−ε)/2φ‖ ‖√1l − ∆φ‖

For any δ > 0 there is a constant cδ such that

‖(1l − ∆)(1−ε)/2φ‖ ≤ δ‖√1l − ∆φ‖+ cδ‖φ‖

Choosing δ appropriately,

〈(
1l − ∆ + u(k, λ) + w(k,A, V )

)
φ , φ

〉 ≥ 1
2‖

√
1l − ∆φ‖2 − const cδ‖φ‖ ‖

√
1l − ∆φ‖

≥ − 1
2

(
const cδ‖φ‖

)2

and the form is semibounded. It is closed since

1
4‖

√
1l − ∆φ‖2 − const ‖φ‖2 ≤ ∣∣ 〈(1l − ∆ + u(k, λ) + w(k,A, V )

)
φ , φ

〉 ∣∣ ≤ const ‖√1l − ∆φ‖2

Hence there is a unique associated self adjoint semibounded operator Hk(A,V ) .

The resolvent (1l−∆)−1 is compact. Hence by the resolvent identity and part a) of

the Lemma the resolvent of Hk(A,V ) is also compact. Hence the spectrum of Hk(A,V ) is

discrete. Then λ ∈ Spec
(
Hk(A,V )

)
if and only if there exists ψ ∈ DHk(A,V ) ⊂ D such that

(
Hk(A,V ) − λ

)
1√

1l−∆

√
1l − ∆ ψ = 0

This is the case if and only if 1√
1l−∆

(
Hk(A,V ) − λ

)
1√

1l−∆
has a nontrivial kernel. By [S],

Theorem 9.2 (e), this is the case if and only if F (k, λ,A, V ) = 0 .

Proof of the Lemma: a) We repeatedly apply the result that, for any r ≥ 2 and any

f ∈ `r(Γ#) and g ∈ Lr(IRd/Γ),

‖f(i∇)g(x)‖ ≤ vol(IRd/Γ)−1/r‖f‖`r(Γ#)‖g‖Lr(IRd/Γ) (∗)
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This is proven just as in [S] Theorem 4.1, the corresponding bound for operators on

L2(IRd). One first proves easily that the Hilbert-Schmidt norm of f(i∇)g(x) is bounded

by vol(IRd/Γ)−1/2‖f‖`2(Γ#)‖g‖L2(IRd/Γ) and that the operator norm of f(i∇)g(x) is bounded

by ‖f‖`∞(Γ#)‖g‖L∞(IRd/Γ). One then interpolates using [S], Theorem 2.9.

As the operator norms
∥∥ 1√

1l−∆
∇∥∥ ≤ 1,

∥∥ 1√
1l−∆

k
∥∥ ≤ |k| and ‖BB′‖r ≤ ‖B‖r‖B′‖,

we have ∥∥ 1√
1l−∆

w 1√
1l−∆

∥∥
r
≤ (

2 + |k|)∥∥ 1√
1l−∆

a
∥∥

r
+

∥∥ 1√
1l−∆

A
∥∥2

r
+

∥∥ 1√
1l−∆

V 1√
1l−∆

∥∥
r

Write
1√

1l−∆
= f(i∇) with f(b) =

{
1 if b=0

1√
1+b2

if b 6= 0

This f ∈ `r(Γ#) for all r > d, so the desired result follows from (∗) with g = A1, · · · , Ad,
√
V .

b) The spectrum of 1√
1l−∆

u(k, λ) 1√
1l−∆

is{
2k·b+k2−λ−1

1+b2

∣∣ b ∈ Γ#
}

For any r > d, the `r(Γ#)–norm of 2k·b+k2−λ−1
1+b2 , which is also the ‖ · ‖r norm of

1√
1l−∆

u(k, λ) 1√
1l−∆

, is bounded by constΓ,r

(
1 + |k|2 + |λ|).

c) Denote D =
√

(1l − ∆). The condition on ε implies that r(1 − ε) ≥ d + r−d
2 > d so that

1
(1+b2)r(1−ε)/2 is still summable. So, as in part a),

‖ 1
D1−εA‖ ≤ const Γ,r‖a‖Lr

‖ 1
D1−εV

1
D‖ ≤ const Γ,r‖V ‖Lr/2

‖u 1
D‖ ≤ const Γ,r(1 + |k|2 + |λ|)

Consequently, ∣∣ 〈(i∇A)φ,ψ〉 ∣∣ ≤ const Γ,r‖A‖Lr‖D1−εφ‖ ‖Dψ‖∣∣ 〈(Ai∇)φ,ψ〉 ∣∣ ≤ const Γ,r‖a‖Lr‖Dφ‖ ‖D1−εψ‖∣∣ 〈(2k ·A)φ,ψ〉 ∣∣ ≤ const Γ,r|k|‖A‖Lr‖D1−εφ‖ ‖ψ‖∣∣ 〈(A ·A)φ,ψ〉 ∣∣ ≤ const Γ,r‖A‖2
Lr‖D1−εφ‖ ‖D1−εψ‖∣∣ 〈V φ,ψ〉 ∣∣ ≤ const Γ,r‖V ‖Lr/2‖D1−εφ‖ ‖Dψ‖∣∣ 〈uφ,ψ〉 ∣∣ ≤ const Γ,r(1 + |k|2 + |λ|)‖φ‖ ‖Dψ‖

6



III. Proof of the Main Theorem

For simplicity we write e(k,A, V ) = e1(k,A, V ). By part (iii) of the Corollary in §II,
for each (A,V ) ∈ U the band function e(−, A, V ) has a unique extremum kmin(A,V ) . This

extremum is a nondegenerate minimum. It follows from the implicit function theorem that

kmin(A,V ) depends analytically on (A,V ) . The same is true for the corresponding critical

value λmin(A,V ) = e
(
kmin(A,V ), A, V

)
. Observe that λmin(A,V ) < λ0 by part (iii) of the

Corollary in §II. We set

P =
{

(λ,A, V ) ∈ IR × U
∣∣ λmin(A,V ) < λ < λ0

}
Then for each (λ,A, V ) ∈ P the Fermi surface Fλ(A,V ) is a smooth, real analytic, strictly

convex (d − 1)–dimensional manifold which is not empty. For k ∈ Fλ(A,V ) denote by n(k)

the outward unit normal vector to Fλ(A,V ) at k. If (λ,A, V ) ∈ P then for each ξ on the unit

sphere Sd−1 there is a unique point kλ(ξ,A, V ) ∈ Fλ(A,V ) such that n(kλ(ξ,A, V )) = ξ .

Again it follows from the implicit function theorem that

Sd−1 × P −→ D, (ξ, λ,A, V ) 7−→ kλ(ξ,A, V )

is a real analytic map.

To prove the Theorem stated in the Introduction we have to show that for (λ,A, V )

in an open dense subset of P and all p ∈ IRd the intersection Fλ(A,V )∩ (
p−Fλ(A,V )

)
has

dimension at most d− 2. Since for all (λ,A, V ) ∈ P the manifold Fλ(A,V ) is real analytic,

smooth and strictly convex, one has for all (λ,A, V ) ∈ P and all p ∈ IRd

dim
(
Fλ(A,V ) ∩ (

p− Fλ(A,V )
)) ≤ d− 2 or Fλ(A,V ) =

(
p− Fλ(A,V )

)
If Fλ(A,V ) =

(
p − Fλ(A,V )

)
then inversion in the point p/2 maps the point of Fλ(A,V )

with normal vector ξ to the point of Fλ(A,V ) with normal vector −ξ . In other words,

Fλ(A,V ) =
(
p− Fλ(A,V )

)
=⇒ kλ(ξ,A, V ) + kλ(−ξ,A, V ) = p for all ξ ∈ Sd−1

Therefore the set of all (λ,A, V ) ∈ P for which there is a point p ∈ IRd such that

dim
(
Fλ(A,V ) ∩ (

p− Fλ(A,V )
))

> d− 2 is contained in

S ′ =
{

(λ,A, V ) ∈ P
∣∣ ∇ξ

(
kλ(ξ,A, V ) + kλ(−ξ,A, V )

)
= 0 for all ξ ∈ Sd−1

}
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Observe that S ′ is the intersection of the analytic hypersurfaces

{
(λ,A, V ) ∈ P

∣∣ ∇ξ

(
kλ(ξ,A, V ) + kλ(−ξ,A, V )

)
= 0

}
, ξ ∈ Sd−1

Thus to show that the complement of S ′ is open and dense it suffices to exhibit one triple

(λ,A, V ) ∈ P that does not lie in S ′. We will do this by choosing V = 0 , choosing a

particular two dimensional vector potential A and showing that for small t and appropriate

λ the triple (λ, t · A, 0) does not lie in S ′. This then also shows that the complement of

S ′ ∩ {
(λ,A, V ) ∈ P ∣∣ V = 0

}
is open and dense in

{
(λ,A, V ) ∈ P

∣∣ V = 0
}

.

In the following calculation we will only consider the points (λ, t ·A, 0) of P with

a particular two dimensional vector potential A . Therefore we restrict ourselves to the

case d = 2 and delete the V –variable in the notation. First we compute the first three t-

derivatives of e(k, t ·A) at the origin for arbitrary (two-dimensional) A . We use the notation

ḟ(k) = d
dtf(k, t)

∣∣
t=0

.

Lemma. Fix A ∈ A. Put

ε(k, t) = e(k, t · A)

Then there is a constant C such that for all k ∈ D

ε̇(k) = 0

ε̈(k) = C − 2
∑

b∈Γ#
r{0}

1
b2 + 2k · b

∣∣∣(2k + b) · Â(b)
∣∣∣2

...
ε (k) = 12Re

∑
b,c∈Γ#

r{0}

1
b2 + 2k · b [Â(−c) · Â(c− b)] [(2k + b) · Â(b)]

− 6
∑

b,c∈Γ#
r{0}

[(2k + c) · Â(−c)]
c2 + 2k · c [(2k + b+ c) · Â(c− b)]

[(2k + b) · Â(b)]
b2 + 2k · b

Here Â(b) = (Â1(b), Â2(b)) are the Fourier coefficients of A, i.e

A(x) =
∑

b∈Γ#

Â(b)eib·x

and

Γ# =
{
b ∈ IR2

∣∣ < b, γ >∈ 2πZZ for all γ ∈ Γ
}
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is the dual lattice to Γ . Furthermore for each λ ∈ (0, λ0) and every ξ ∈ S1

d

dt
kλ(ξ, t ·A)

∣∣
t=0

= 0

2
√
λ ξ · d

2

dt2
kλ(ξ, t ·A)

∣∣
t=0

= −ε̈(
√
λ ξ)

2
√
λ ξ · d

3

dt3
kλ(ξ, t ·A)

∣∣
t=0

= −...
ε (
√
λ ξ)

Proof: Let ψk(t) be the eigenfunction of eigenvalue ε(k, t) for the operator Hk(t · A)

normalized by the conditions that

ψk(0) =
1√
vol

where vol is the volume of IR2/Γ , and

< ψk(0) , ψk(t) > = 1

for all t . Then, for small t and k ∈ D, ψk(t) is an analytic function of t and k. For convenience

we suppress the argument k in the following computation.

From the identity

Hψ = ε ψ

one gets by differentiation

Ḣ ψ + H ψ̇ = ε̇ ψ + ε ψ̇ (1)

Ḧψ + 2Ḣψ̇ +Hψ̈ = ε̈ψ + 2ε̇ψ̇ + εψ̈ (2)
...
Hψ + 3Ḧψ̇ + 3Ḣψ̈ +H

...
ψ = ...

εψ + 3ε̈ψ̇ + 3ε̇ψ̈ + ε
...
ψ (3)

Forming the inner product of these equations with ψ(0) gives

ε̇ = < Ḣ ψ , ψ > (4)

ε̈ = < Ḧψ , ψ > + 2 < Ḣψ̇ , ψ > (5)
...
ε = <

...
Hψ , ψ > + 3 < Ḧψ̇ , ψ > + 3 < Ḣψ̈ , ψ > (6)
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since < ψ̇,ψ >=< ψ̈,ψ >=<
...
ψ,ψ >= 0 and < H ψ̇,ψ >=< H ψ̈,ψ >=< H

...
ψ,ψ >= 0 .

However
d

dt
Hk(t ·A) = A ◦ (

i∇ + t ·A− k
)

+
(
i∇ + t ·A− k

) ◦A
= 2A ◦ (

i∇ + t ·A− k
)

+ i
(

∂A1
∂x1

+ ∂A2
∂x2

) (7)

Therefore for t = 0

Ḣkψ = 1√
vol
Ḣk1 = 1√

vol

( − 2k ·A+ i
(

∂A1
∂x1

+ ∂A2
∂x2

))
(8)

Taking inner product with ψ(0) = 1√
vol

· 1 we get

< Ḣψ,ψ > = 1
vol

〈( − 2k · A+ i
(

∂A1
∂x1

+ ∂A2
∂x2

))
, 1

〉
= 0

and hence

ε̇ = 0

From (1) we now deduce

ψ̇ = −(H − ε)−1 Ḣ ψ (9)

where, by definition, (H−ε)−1 vanishes on ψ(0) and is the inverse of (H−ε) when restricted

to the orthogonal complement of ψ(0) . Substituting into (5)

ε̈ = < Ḧψ , ψ > − 2 < Ḣ (H − ε)−1 Ḣ ψ , ψ >

Now by (7)

Ḧ = 2(A2
1 +A2

2)

so that < Ḧψ,ψ > is a constant C = 2
vol < (A2

1 + A2
2), 1 > independent of k. Using (8) we

therefore get

ε̈ = C − 2
vol

〈(
Hk − ε

)−1( − 2k · A+ i
(

∂A1
∂x1

+ ∂A2
∂x2

))
,
( − 2k ·A+ i

(
∂A1
∂x1

+ ∂A2
∂x2

))〉

Since ( − 2k ·A+ i
(

∂A1
∂x1

+ ∂A2
∂x2

))
= −

∑
b∈Γ#

(2k + b) · Â(b)eib·x

and

(Hk(0, 0) − ε(0)) eib·x =
(
b2 + 2k · b) eib·x
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we get

ε̈ = C − 2
vol

〈 ∑
b∈Γ#

r{0}

1
b2+2k·b

(
(2k + b) · Â(b)

)
eib·x ,

∑
b∈Γ#

(
(2k + b) · Â(b)

)
eib·x

〉

= C − 2
∑

b∈Γ#
r{0}

1
b2 + 2k · b

∣∣∣(2k + b) · Â(b)
∣∣∣2

From (2) we deduce that

ψ̈ = −(H − ε)−1
(
Ḧψ − ε̈ψ + 2Ḣ ψ̇

)
= −(H − ε)−1Ḧψ + 2 (H − ε)−1 Ḣ (H − ε)−1 Ḣ ψ (10)

Using (6), (9), (10) and the fact that
...
H = 0 , this gives

...
ε = −3 < Ḧ (H − ε)−1 Ḣ ψ , ψ > −3 < Ḣ(H − ε)−1 Ḧ ψ , ψ >

+ 6 < Ḣ(H − ε)−1 Ḣ (H − ε)−1 Ḣ ψ , ψ >

= −6 Re < (H − ε)−1 Ḣ ψ , Ḧ ψ > + 6 < Ḣ (H − ε)−1 Ḣ ψ , (H − ε)−1 Ḣ ψ >

Since
(H − ε)−1 Ḣ ψ = − 1√

vol

∑
b∈Γ#

r{0}

1
b2+2k·b

(
(2k + b) · Â(b)

)
eib·x

Ḧψ = 2√
vol

∑
b,c∈Γ#

Â(b − c) · Â(c)eib·x

1
vol

〈
Ḣ eib·x , eic·x

〉
= −(2k + b+ c) · Â(c− b)

we get

...
ε = 12Re

∑
b,c∈Γ#

r{0}

1
b2 + 2k · b [(2k + b) · Â(b)] [Â(−c) · Â(c− b)]

− 6
∑

b,c∈Γ#
r{0}

[(2k + b) · Â(−b)]
b2 + 2k · b [(2k + b+ c) · Â(c− b)]

[(2k + c) · Â(c)]
c2 + 2k · c

This proves the statement about the derivatives of ε.

We now prove the statement about the derivatives of t 7→ kλ(ξ, t · A) for fixed

λ ∈ (0, λ0) and ξ ∈ S1 . To simplify notation put

κ(ξ, t) = kλ(ξ, t ·A)

11



Differentiating the identity

ε
(
κ(ξ, t), t

)
= λ

we get

∇kε
(
κ(ξ, t), t

) · ∂
∂t
κ(ξ, t) +

∂

∂t
ε
(
κ(ξ, t), t

)
= 0 (11)

Since ε̇ = 0 and ∇kε
(
κ(ξ, 0), 0

)
= 2

√
λ ξ, setting t = 0 gives

ξ · κ̇(ξ) = 0 (12a)

If ξ⊥ denotes the vector (−ξ2, ξ1) perpendicular to ξ = (ξ1, ξ2), then by the definition of kλ

we have ξ⊥ · ∇kε(κ(ξ, t), t) = 0 . Differentiating this identity we get

ξ⊥ · (Hessian(ε) · κ̇(ξ) + ∇k ε̇
)

= 0

Since for t = 0 we have Hessian(ε) = 2 × 1l and ε̇ = 0, we get

ξ⊥ · κ̇(ξ) = 0 (12b)

Putting (12a) and (12b) together gives

κ̇ = 0 (12)

Differentiating (11) again and setting t = 0 gives

κ̇(ξ) · Hessiank(ε) · κ̇(ξ) + 2∇k ε̇(κ(ξ, 0)) · κ̇(ξ) + 2
√
λ ξ · κ̈(ξ) + ε̈(κ(ξ, 0)) = 0

Using (12) we get

2
√
λ ξ · κ̈(ξ) = −ε̈(κ(ξ, 0)) = −ε̈(

√
λ ξ)

Differentiating (11) twice, setting t = 0 and using κ̇ = 0

3∇k ε̇(κ(ξ, 0)) · κ̈(ξ) + 2
√
λ ξ · ...κ(ξ) + ...

ε(κ(ξ, 0)) = 0

Since ε̇ = 0

2
√
λ ξ · ...κ(ξ) = −...

ε(κ(ξ, 0)) = −...
ε(
√
λ ξ)

12



We now continue the proof of the main Theorem, and consider again a fixed vector

potential A and a fixed λ ∈ (0, λ0). If

Fλ(t ·A) =
(
p(λ, t) − Fλ(t ·A)

)
for all small t

then

kλ(ξ, t · A) + kλ(−ξ, t ·A) = p(λ, t)

for all ξ ∈ S1 and all small t. Multiplying this equality with 2
√
λξ, differentiating three times

with respect to t and setting t = 0 gives

2
√
λξ ·

( d3

dt3
kλ(ξ, t ·A)

∣∣
t=0

+
d3

dt3
kλ(−ξ, t ·A)

∣∣
t=0

)
= 2

√
λξ · ...p(λ)

for all ξ ∈ S1. By the previous Lemma, this is equivalent to

...
ε (−k)− ...

ε (k) = 2k · ...p(λ) for all k with |k|2 = λ

or, since ...
ε (−k) = −...

ε(k) , to

...
ε (k) = −k · ...p(λ) for all k with |k|2 = λ (13)

As said above, it suffices to specify one vector potential A and one λ ∈ (0, λ0) such

that (13) fails. We now give a concrete example of a vector potential A for which (13) does

not hold anyλ > 0 . Fix a nonzero vector d ∈ Γ#. Without loss of generality we may assume

that d = (1, 0) . Let

Â(d) = Â(−d) = Â(2d) = Â(−2d) = d⊥ and Â(b) = 0 for b 6= ±d, ±2d

where d⊥ = (0, 1). Then, by the previous Lemma,

...
ε(k) = 12Re

∑
b,c∈Γ#

r{0}

1
b2 + 2k · b [Â(−c) · Â(c− b)] [(2k + b) · Â(b)]

− 6
∑

b,c∈Γ#
r{0}

[(2k + c) · Â(−c)]
c2 + 2k · c [(2k + b + c) · Â(c− b)]

[(2k + b) · Â(b)]
b2 + 2k · b

= 24|d|2 k · d⊥
∑

b,c∈{±d, ±2d}
c−b∈{±d, ±2d}

1
b2 + 2k · b

− 48(k · d⊥)3
∑

b,c∈{±d, ±2d}
c−b∈{±d, ±2d}

1
c2 + 2k · c

1
b2 + 2k · b

13



Inserting the allowed values for b and c

...
ε(k) = 24k2

(
2

1+2k1
+ 2

1−2k1
+ 1

4(1+k1)
+ 1

4(1−k1)

)
− 48k3

2

(
1

2(1+2k1)(1+k1)
+ 2

(1+2k1)(1−2k1)
+ 1

2(1−2k1)(1−k1)

)

If (13) were to hold, that is if the above quantity were of the form −k · ...p(λ) for all k with

|k|2 = λ then one would have ...
p(λ) = µ(λ) d⊥ , because the right hand side vanishes for

k2 = 0 . Therefore

µ(λ) = −24
(

2
1−2k1

− 4k2
2

(1+2k1)(1−2k1)
− k2

2
(1−2k1)(1−k1)

+ 2
1+2k1

+ 1
4(1+k1) + 1

4(1−k1) − k2
2

(1+2k1)(1+k1)

)
(14)

If (13) were to hold, the right hand side of (14) would have to be constant on the circle{
(k1, k2) ∈ IR2

∣∣ k2
1 + k2

2 = λ
}

. Since the right hand side of (14) is a meromorphic function

of f(k1, k2) , it would then be constant on the complex quadric

Qλ =
{

(k1, k2) ∈ C2
∣∣ k2

1 + k2
2 = λ

}

On the other hand, f(k1, k2) has a pole with residue 24(1 − 2k2
2) along the complex line

L =
{

(k1, k2) ∈ C2
∣∣ k1 = 1

2

}
. Consequently f

∣∣
Qλ

is infinite on the points of Qλ∩L different

from ( 1
2 ,± i√

2
) . This shows that f

∣∣
Qλ

cannot be constant unless Qλ∩L ⊂ {( 1
2 ,± i√

2
)} . For

λ > 0 , this is not the case.
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