An Intrinsic 1/N Expansion for Many Fermion Systems
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Abstract The 1/N expansion is a popular tool for investigating non-perturbative long range
phenomena. In many body models, discretization of the Fermi surface naturally introduces a
many component picture. If, for example, number symmetry is broken, N = (ei)(dl) where
A > 0 is the bare coupling constant. We expect that this intrinsic 1/N expansion appears
whenever the “free propagator” of the system is singular along a hypersurface (for instance,
in the Anderson model for localized and extended states).
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¢I Introduction

Most interesting long range physical phenomena, such as quark confinement, or
pairing in the BCS theory of superconductivity, are non-perturbative. To analyze non-
perturbative effects one usually consider models with a variable number, N, of components.
The strategy is to resum the set of graphs that dominate when N — oo, then to develop an
expansion in 1/N .

“vector models”. In such models with a (¢ - ¢)? or

This approach works best for
four fermi interaction, the N = oo set of graphs is a geometric series of “bubbles” that
can be resummed. Applying this remark, mass generation in two-dimensional non-linear o
models can be studied order by order in 1/N and presumably be established rigorously for
N large enough. In the more complicated case of a matrix model (e.g. confinement), the
N = oo set of graphs consists of all planar graphs. It cannot easily be resummed. In these
two examples, the 1/N expansion is only a useful artifice because the number of components
is not a physical variable and is not particularly large.

We argue, in §II, that the Fermi surface induces an intrinsic 1/N expansion for the
BCS model, in which the number N = (1/A)%! of components is the number of elements
in a discretization [2a] of the Fermi surface. Here A ~ e~ '/* is the BCS gap. The number
of components can be increased by decreasing the coupling constant A > 0. We argue that
this is why the usual BCS gap equation, the result of a one-loop computation, is a good
approximation. Similar remarks apply to many other approximations of solid state physics
in which the “free propagator” of the system is singular along a hypersurface, for instance
the Anderson model for a single electron in a random potential or with random spin-orbit
coupling.

In this letter, we restrict ourselves for simplicity to £ = 0 superconductivity in

d > 2. Consider the action A(p,¢) = — [dk (ikoe(k))y(k)y(k) — V(¢,9) in which

dd+1

k= (ko,k) € R dk = (2,r)7df1 and e(k) = ;L-k? — p. In the interaction

V(y,9) =5 / 1j1 dk; (2m)*0 (ky+ ko — ks —ka) (k) (ka) (b1, kol Vks, ka) 9 (k2)1) (ka)
(L1)

we assume that A > 0 and (s',—¢'|V|t', —t') is attractive and dominant in the £ = 0 sector.
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Here, k' = (0, %\/2m,u) is the projection of k onto the Fermi surface. The electron fields

are vectors (k) = (ZIEZg) and (k) = (¥1(k), ¥, (k)) whose components 9, (k) , ¥, (k)

generate an infinite dimensional Grassmann algebra over C.

$IT The N Component Vertex in the Symmetry Breaking Regime

To investigate the long range behavior of correlation functions at low temperature, it
is natural to use a renormalization group analysis ([1a,b]) near the Fermi surface. This entails
slicing the free propagator around its singularity on the Fermi sphere. The renormalization
group generates an effective slice-dependent interaction.

In Euclidean field theory, one defines the momentum k to be of scale j if |k| =~ 27.
As j — 0o (—00), the momentum k approachs the ultraviolet (infrared) end of the model.

In non-relativistic solid state physics the natural scales consist of finer and finer
shells around the Fermi surface. For each negative integer 7 = 0,—1,—2,... the j-th slice
contains all momenta in a shell of thickness 2/ a distance 27 from the singular locus { k €

R | ko =0, k| = 2mypy } The propagator for the j-th slice is

ei(k,€1—€2)_

C7(€1,€2) = b0, 0, / dkmlj (k§ + e(k)?) (IL.1)

where 1;(kZ + e(k)?) is the characteristic function for the set 27 < |iky — e(k)| < 2971 (A
smooth partition of unity is required for a technically correct analysis). Summing over j <0,
we have the infrared propagator C(&1,&2) = Z Ci(&1,&2) .

Each single scale propagator (II.l)JiSsosupported in momentum space on a d + 1
dimensional manifold with boundary. The natural coordinates on this manifold are kg, n =
e(k) and k' = \/m% In these coordinates the shellis { k | 29 < VkZ +n? < const 27 } and
is topologically S%=1 x St x [0, 1]. The first factor, the Fermi sphere S9~1, has a macroscopic
diameter of order 1 while S and [0, 1] have small diameters of order 27.

The fact that this manifold has two length scales, 1 and 27, of radically different
size reflects the basic anisotropy between frequency kg and momentum k. Consequently the

behavior of C7(0, ¢) at large £ = (x,t) cannot be simply characterized as ‘decay at length scale
279", Rather, smoothly cutoff, C? obeys |C7(0,&)| < const27[1 + |x\](1_d)/2 [1+270¢]] 7" .

3



Shells induce an infrared renormalization group flow. The important part (see [la])
of (I.1) comes from the reduced interaction —\ (s’, —s'|V|t’, —t’). Expanding in spherical
harmonics —A (s', —s'|V|t/,—t") = > M(0) me(s’,t') our assumption becomes Ay(0) > 0
and Aog(0) > [A(0)], £ > 1. The rerfozr(inalization group flows the set of coupling constants
{A|£>0} Let { Ag(j) | £> 0 } be their values at scale j. In the second order ladder

approximation, the flow equation is (see [1a,l.85])

Ae(G—1) = M(d) + B(5) Ae(4)?

where ((j) > 0 and .Er_noo B(j) = B > 0. In this approximation, Ag(j) grows slowly as
j goes down to the syrilmetry breaking scale § = —[1/X¢(0)] and then quickly takes off to
infinity. The other coupling constants remain much smaller than Ay. This approximation
breaks down at about scale . The divergence of a flow generated by a “Fermi surface” away
from a Gaussian fixed point towards a nontrivial fixed point is typical of many symmetry
breaking or mass generation phenomena in condensed matter physics.

This renormalization group analysis reveals three distinct energy regimes. Fix a >
1 and let A be the BCS gap. In the first regime at scales j for which 27 > aA the effective
coupling constant Ag(j) can be used as a small parameter. Symmetry breaking takes place
in the second regime where %A < 29 < aA. In the third regime 27 < %A the physics of the
Goldstone boson dominates. As explained above the effective coupling constant is not small
in the latter two regimes. We will show that there is another small parameter there.

Consider now the middle, symmetry breaking, regime. The scale at the top is
0 = log, aA . We make the Ansatz, based on the above picture, that the effective vertex at
scale ¢ is given by the BCS interaction for Cooper pairs

Ver = <Xo@) | dgdeds e+ D=t + Dui-s+ Do+ 11
g|<const

Here, 0 < A\p(d) =~ O(1). All the fields are at scale § so that the integrals are implicitly

constrained by |e(£t+1)|, |e(£s+2)|, |to|, [so| < const A. This Ansatz can be nonpertur-

batively justified [la, 2a] in two space dimensions and perturbatively justified [la] in three.
Now momenta lie in the shell § = { k ‘ %A < \/W < aA } To obtain regions

in momentum space all of whose dimensions are of order A it is natural to further divide
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this shell, through a partition of unity, into N = A~(@=1 pjeces, each having longest and
shortest diameters of order A. We call each piece a sector. They are related to the patches
in Haldane’s innovative, phenomenological theory of the Fermi surface. Sectors function as
colors in a many component model. The free propagator in the middle regime in sector x is

given by
il g1€2)

T e S 20

Cx(&1,&2) = 004,04 / dk

where (k) is supported on the sector = and by abuse of notation S(k) is the characteristic
function of S. Of course, )y Cx is the full propagator in the symmetry breaking regime.
There is a corresponding decomposition of the fields.

By the Pauli exclusion principle, at most two spin one half fields can be localized in
a position space box of side (aA)~! when their momenta are in S NY. Thus, there can be
O(A=(@) fields with momenta in S. That is, sectors enforce the Pauli principle, while the
whole shell allows an accumulation of fields, as in Bosonic models. We emphasize that sectors
are not required for a rigorous analysis of any finite order of perturbation theory. They are
essential [2a] for the non-perturbative control of the first regime in d = 2. When d = 2 the
full interaction has a vector structure, even in the first regime [2b]. Here, we will demonstrate
the 1/N character of the effective vertex in the symmetry breaking regime, irrespective of
dimension.

Expanding in sectors, the effective vertex (I1.2) becomes

> —o(d) / dq sy dsz P, 11+ Vs L (-5 5105, L (o2 DY, 1 (52+9)
1,54 lg|<const A

Here, a priori, all four sums run over (const A)~(#) sectors. However, |q| < const A and the

momenta 31-1—%, —31+% must be in the sectors ¥; and X3 respectively. Therefore, ¥; and

>3 must be antipodal, up to nearest neighbors, and similarly for ¥s and 4. Consequently,

it is no more difficult to treat (II.2) than the vertex

D =20(0) / dq dsy dsy Pz, 11+ V-5, Lt DY, Lot Dbm, 42+ D) (I13)
31,32

where —x is the sector antipodal to = and nearest neighbors are ignored. Observe that the

constraint |g| < const A is now automatically fulfilled.
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21 2 The last vertex clearly has the structure typical of an /N-component
F B ? vector model with N = const A~(@), Pictorially, sectors (“colors”)

- —X2

»; and —x; enter at the left of an interaction line and sectors =, and
—¥, emerge at the right. Thus, sector is conserved up to flips as it flows along particle lines

in a graph.

We now check, by power counting, that the effective coupling constant of the vertex

is 1/N. Let G, , be a connected graph with n vertices (II.3) and 2p external lines. First

S(k) ¥(k)

assume that each internal line has a single sector propagator o —e(K)

. Each such propagator
is bounded in magnitude by % and supported on a set of volume A%t!, Since the number of
lines in this graph is [ = 2n—p and the number of independent loopsis L =l—n+1 = n—p+1,
the perturbative power counting for G, , is (%)l AL@F) — An(d=1) A—pd+dtl — O(N—) |

In other words each vertex has weight 1/N .

As usual, in a vector model, we must perform the sum over sector assignments to
the lines of Gy, ,. The vector structure of the vertex implies that there is one such sum,

containing N terms, for each particle loop. Each m-loop, containing m half vertices and one

2-loop 4-loop ’ 6-loop '

sector sum, is O(N*~™/2). Thus, the bubble is O(1), while other loops are higher order in
1/N. Our conclusion is that in the symmetry breaking regime the weights in powers of the

small parameter 1/N are those of a vector model.

$III The Goldstone Boson Regime

Consider now the third, Goldstone boson, regime. We reexpress the model (II.2),

using a Hubbard-Stratonovich transformation, which introduces two bosonic fields 1, y2 that
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are real valued in position space. The transformed action is

A mom) = = [ @k Gk — ) - 3 3 /| da %0} (@)

|iko—e(k)|<al 5=1 |<ad

+g/ dt dq (D(q)r(t + £ (=t + ) + T(@vy(—t + Dp(t + 1))

where \o(6) = 292 and I'(q) = vy1(q) + #72(q). The effective potential is gotten by integrating
out the fermions while holding I fixed at some constant value. The result is a Mexican hat
with minimum at g|I'(§)| = A, where A is the BCS gap. The phase of I must be determined
by boundary conditions. Suppose that it is zero. Change variables to the components of I"

that are tangential and normal to ¢g|T'(§)| = A at gI' = A. Namely,

(&) =1 (&) +ivr(§) = 11(§) — A/g +iv2()
The action becomes

A, 1, @) = - / dk [ (k) (iko — e(k))p (k) — Ay (k)y(—k) — Avpy (—k) (k)]

liko—e(k)|<aA

1 /| 8 Du@(@) + 20 (@ (@) = A7,(0)/g + cons (IIT.1)

9 / dt g (B()Pr (¢ + )y(—t + §) + D(@)iy(—t + §r(t + )

When the fermions are integrated out, the resulting model has generalized vertices
of the same form as in the previous figure (but with loops of odd orders also since number
symmetry has been broken). The solid lines in these generalized vertices no longer have

arrows and are evaluated using the propagators

(1 (991(0)) = P BTL0)) = ~ et ()0~ DO et <o)

(k)Y (=) = (Yy (k)P (p)) = TR e(l?)Z A2 (2m) 15 (k — p)O (k2 +e(k)?<aA?)

All other combinations are zero. In momentum space these lines are bounded by % and

have support of volume const AZ2.
Now form propagators for 7,, v, by combining the constant and O(g?) terms from

the Taylor expansion of the 2-loop with the second line of (III.1). The propagator for -, is

const A?

=2 Thus, a many Fermion system in the Goldstone
gy tconst q

a constant. For ~, it is given by
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boson regime power counts like a local field theory with one massive and one massless boson
and an overall ultraviolet cutoff. There are vertices ,*y? for all m and n. All of these
vertices are superrenormalizable with the exception of m =0, n <6 and m=1,n <3 in
two dimensions and m =0, n <4 and m =1, n < 2 in three dimensions. For the other
vertices approximate Ward identities [2c] must be used.

A similar analysis can be made for the Anderson model. Its four point function is

<G+(m,y,E+w+ie)G_(w,y,E—w—i6)> = /d,u(V) —A—(E—i—(j—i—is)—{— v (@) —A—(E—i—z’e)—i— v (ZY)

where V (z), z € Z%, is a family of Gaussian random variables. Again one has to split the

. . —ilk,ay)
hypersurface singularity of the free propagator Go(z,y,€) = [1a 1?2—71’;—?;5 into sectors.
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