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$I Introduction

In this review, we consider a many-body system which is somewhat unusual in that
the Fermi surface survives the turning on of all sufficiently weak short range interactions. The
system lives in d = 2 space dimensions and consists of a gas of fermions with prescribed,
strictly positive, density, together with a crystal lattice of magnetic ions. The fermions
interact with each other through a two-body potential. The lattice provides periodic scalar
and vector background potentials. As well, the ions oscillate, generating phonons and then
the fermions interact with the phonons.

To start, turn off the fermion-fermion and fermion-phonon interactions. Then we

have a gas of independent fermions, each with Hamiltonian

H, = £ (iV +a(x))’ + U(x)

2m

The vector and scalar potentials a, U are periodic with respect to some lattice I in IR?. We
use the convention that bold face characters are two component vectors. Because the Hamil-
tonian commutes with lattice translations it is possible to simultaneously diagonalize the
Hamiltonian and the generators of lattice translations. Call the eigenvalues and eigenvectors

ev(k) and ¢, k(x) respectively. They obey

Hopox(x) = &u(k)bo (%)

| (L1)
oix+7) = TG, 1 (x) forall y € T

The crystal momentum k runs over IR? /T'# where
I'#*={beR?| <by>c2rZforallyeTl }

is the dual lattice to I'. The band index v € IN just labels the eigenvalues for boundary
condition k in increasing order.

In the grand canonical ensemble, the Hamiltonian H is replaced by H — uN where
N is the number operator and the chemical potential x is used to control the density of the
gas. At very low temperature, which is the physically interesting domain, only those pairs
v,k for which ¢,(k) = p are important. To keep things as simple as possible, we assume

that €, (k) ~ p only for one value v, of v and we put on a fixed ultraviolet cutoff so that we
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consider only those crystal momenta for which |e,, (k) — x| is smaller than some fixed small
constant.

Precisely, we denote e(k) = ¢, (k) — 1 and make the following assumptions.

Hypothesis I: The dispersion relation e(k) is a real-valued, real analytic function on a

compact subset B of R¢. For all points p € B,

Ve(p) # 0

Hypothesis II: The Ferm: curve
F={peBlep)=0}

for e is a simple closed curve, whose curvature s bounded away from zero.

Hypothesis III: For all g € R?,

-F+q #F

By definition,

—-F+q = {pEIE{2 —p+q€Bande(—p+q):0}

It is Hypothesis III that makes this class of models somewhat unusual and permits
the system to remain a Fermi liquid when the interaction is turned on. If a = 0 then, taking
the complex conjugate of (I.1), we see that ¢, (—k) = ¢, (k) so that Hypothesis III is violated
for q = 0. Hence the presence of a nonzero vector potential is essential.

In order to have simple sounding hypotheses, we have made them much stronger
than necessary. One model that violates these hypotheses, not only for technical reasons but
because it exhibits different physics, is the Hubbard model at half filling. Its Fermi surface
looks like



This Fermi curve is not smooth, violating Hypothesis I, has zero curvature almost everywhere,
violating Hypothesis II and is reflection invariant so that F = —F, violating Hypothesis II1I
with q = 0.

The interacting models are formally characterized by the Euclidean Green’s func-

tions B
" 7 _ f (H?:l 1’[)1’1‘ J)ql‘) eA(¢,¢) Hk,a dd"k,a d’lﬁk,a'
<i1;[1 ¢pi¢qi> = f SAS,7) Hk,a P dT/_)k,a (I.2a)
The action
A, ¥) = —/dk (iko —e(k))Yrpr — /dkg(Aak)@Zk@bk — V(¢,9) (I.2b)

We now take some time to explain this formula. The fermion fields are vectors

Y = (g:l) Ve = (Ye1 Vi)

whose components ¢ », Pk, k = (ko,k) € B=(—1,1) x B, o0 € {1,|} , are generators of
an infinite dimensional Grassmann algebra over C. That is, the fields anticommute with each

other.
<) =) &) )
VroVpr="Vpr¥ro
We have deliberately chosen 9 to be a row vector and 1 to be a column vector so that

R it it 4
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In the argument k = (ko,k), the last d components k are to be thought of as a
crystal momentum and the first component ky as the dual variable to an imaginary time.
Hence the v/—1 in ikg — e(k). For convenience only, we have put an ultraviolet cutoff on kg
as well as on k. In the full model kg runs over IR and k is replaced by (v,k) with » summed
over IN and k integrated over R? /T#. The relationship between the position space field ¢(¢),
with £ = (¢,x) running over (imaginary)time xspace, and the momentum space field ¢y is

given, in our single band approximation, by

o = / dg et 1 (x)i(€)

‘ (I.3)
W) = [ g
where d+
_dky _d 1
dk = o dk = W

The general spin independent form of the interaction is

V(¥,¢) = 3 1:[ ki (27) 418 (kitho—ha—ka) Yi, Yy (K1, k2|Vks, ka) Yy, (I.4)

Spin independence is imposed purely for notational convenience. It plays no role. The delta
function § is that for IR? /T# and imposes the appropriate conservation of crystal momentum
for the present setting. The function (k;,k2|V|ks, ks) implements the fermion-fermion and

fermion-phonon interaction. Its precise value does not concern us. We just assume
Hypothesis IV The interaction is short range. That is (k1,k2|V|ks, ks) € C.

The net coefficient e(k) — £(\, k) of ¥r9r in A has been deliberately split into two
parts, with £(A,k) chosen to satisfy an explicit renormalization condition. This is called
renormalization of the dispersion relation. It is done to ensure that <H?:1 Pp; @Zqi> is C* in

A at A = 0. Define the proper self energy ¥(p) for the action A by the equation

B b AW T dip o dibe s
(iv0 — e() = B(p)) ~ 2m)**6(p—q) = M},szA(i) ngsz;/?k%’

The counterterm £(\, k) is chosen so that

2(O’p) ‘pEF =0
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To give a rigorous definition of (I.2) one must introduce cutoffs and then take the
limit in which the cutoffs are removed. To impose an infrared cutoff in the spatial directions
one may put the system in a finite periodic box IR? /LT'. To impose an infrared cutoff in the
zero direction one may make the inverse temperature § < co. Then momenta k = (ko, k) are

restricted to lie on the lattice
ko€ 5(2Z+1)

k € i1#
The ultraviolet cutoffs further restrict |kg| < 1, |e(k)| < 1. Then the Grassmann algebra

becomes finite dimensional and (I.2b) with the integral symbol reinterpreted as

/d‘kf(k):% &= D) f(k)

is a well-defined element of that algebra.

Theorem. Let d = 2 and Hypotheses I-1V be satisfied. There is an r > 0 and a dispersion

relation counterterm &(A, k), such that the limits

lim fH:L"LZI ¢Pi1’qu‘ _eA('(b,'(/_)) Hd}bk,ad/‘;k,a
B,L—oc0 J AWV T]dyg o dvr, o

(L5)

exist in the sense of distributions and are independent of the order in which the limits are
taken. The counterterm and the limit are both analytic functions of the coupling constant A\
for |A| < r. Furthermore, there is a jump in the average occupation number ny at the Fermi
curve. Precisely, if

1
me = lim [ dkgeton (z’ko —e(k) — E(ko,k)>

then
-1
. _ s
21{‘% Np—evy, = Mptev, = (1 + Zmz(oap))
> 1-0(})

for all p on the Fermi curve F . Here, vp is the outward pointing unit normal to F at p.

In other words, the infinite volume system is a Fermi liquid.
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Our main goal here is to explain why this Theorem is true, though the complete
proof [FKLT1] is too long to include. There are two main aspects to that proof: the control
of four legged Feynman diagrams and the control of high orders of perturbation theory. The

first aspect is discussed in §III while the second is discussed in §II.



$II Amnalyticity of Greens Functions

In this section we give an outline of the main ideas which are necessary for controlling

large orders of perturbation theory. Roughly speaking, what we want to show is the following;:

Theorem. “The sum of all graphs that contribute to (1.5) and do not contain nontrivial four
legged subgraphs is analytic.”

This theorem is true no matter whether you have e(k) = % — o where the Fermi
curve is a circle or a dispersion relation e(k) obeying the hypothesises of the first section,
where the Fermi curve is not perfectly round. In particular, Theorem II.1 below is also
the starting point for a rigorous construction of the theory of BCS-superconductivity. It
means that the physicial behaviour of the model is completely determined by the four legged
subgraphs. In the case of a dispersion relation of §I, four legged graphs are summable making

the whole Greens functions analytic, whereas e(k) = % — i produces logarithmic divergences

which drive the renormalization group flow to a superconducting fixed point.

To prove the above theorem, one has to do two things. First, one has to control
the magnitude of each graph. When four legged subgraphs are removed, this can be done
by power counting and renormalization of two legged subgraphs. Second, one has to control
the number of graphs, since, if one expands the exponential in (I.5), there is a # from
that expansion but one gets (2n)! ~ const "n!? Feynman graphs after the evaluation of the
functional integral with 4n fields. Thus, one is left with > >~ const "n! A™ which has radius
of convergence zero. That is, we are not allowed to expand completely to Feynman graphs.

Instead of this, one has to use the antisymmetry of the fermionic integral to exploit some

cancellations of the (2n)! graphs.

The strategy will be to decompose the propagator into scales and integrate out
one scale at a time, removing four legged kernels by hand after each integration. Then,
after renormalization of the two legged kernels, the result has summable power counting. To
control the number of graphs, one Taylor expands the fields at each scale to sufficiently large

order and uses the fact that the functional integral vanishes if two fields are equal.
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Let us first give a precise mathematical formulation of what we have proven. Since
we want to give an inductive proof which uses only a single scale expansion, instead of
considering (1.5) we start with the generating functional for the connected amputated Greens

functions given by
_ 1 B - _
G(o,¢) = log 7 /e "(”’+¢””+¢)duc(@b,¢),

This is convenient for an inductive proof. Here dyu¢ is the Grassmann Gaussian measure with
covariance

) ' Ck  acx—x')—iko(r—r') 1
C’(m,m):C(m—.'I:): W@ m,

where e(k) is either the dispersion relation of §I or, in this section, % — p. The coordinate

and momentum space variables are
z = (29,%x) = (20,21,72) € R®, k = (ko,k) = (ko, k1,k2) € R®.

For simplicity, we do everything in infinite volume and at zero temperature. A more
careful treatment, which starts at positive temperature and in finite volume will be given in

[FKLT1].

First let us introduce scales 5 = 0,—1,—2,--- which select shells of thickness M’
around the Fermi curve kg = 0, e(k) = 0 which is the singular locus of C(k).

0

1 J k 7 0
C(k) = iko — e(k) = Z zkof—( e)(k) + zko —e(k Z C( +C” (k),

j=—00 j=—o00

where the f; are smooth functions with support on {M’ < |iky — e(k)| < M2M?} and the
ultraviolet part h has support on {1 < |iky — e(k)|}. Here, M > 2 is a constant which
eventually has to be chosen sufficiently large.

We consider only the infrared part of the model and introduce an infrared cuttoff at
scale » > —o0. Furthermore, to renormalize two legged kernels, we introduce a counterterm

-1 oo

Ser(k,\) = Z&eJkA >0 el (k)N

j=r l=1

V,() = [ f5wen e ) BRI



which is an analytic function of A and will be determined below. If the Fermi curve is a circle,

de, is independent of k, but in general, it will depend on k. So we consider

0
1 - 0 j .
G(¢) = log / A | o)

ZT-H' j=r+1

Then G" can be computed inductively (r +1 < j < 0)

; ; 1 i(p<i :
G" =V + 8V, G 4 ) —log 2 [ ST gy (y9)

J

where
Zj = /egj(w)dﬂcj(W)

The 2g-point functions Gg_l at scale j — 1 are defined by
G ) =D G517 (¢)
g=1
=Y [t deay 6 e ) 9160 9l6as)
g=1

where Gg_l(fl,- -+, &y4) is some antisymmetric kernel and ¢ = (z,0,b) € R® x {1,]} x {0,1},

o= {550 ) wa fue- > ¥ [

be{0,1} o€{T,1}

Define an operator (24 which projects out nontrivial four legged subgraphs, that is

four legged subgraphs of order at least O(\?), by

QD Gi7 ) =3 917 (®) + 2 x93 (9],
g=1 )

g=1
qF#2

Theorem II.1 Define the effective potential without four legged subgraphs W? inductively by
WO =V 46V, and forr+1<j<0

. . 1 i (<3 ;
WIS 49) = Qulog - [ O o (),
7

Y; = /ewj(w)dﬂoa'(%bj)-
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Then there is an € > 0 which is independent of the infrared cuttoff r and a function de,(k, )
which is analytic in X for |\| < € such that W™ is analytic for |\| < . Furthermore, for all

test functions f1,---, faq,

2q

2q
[T dssrstelwy ool < WETT (15050 + 151z
=1

=1

Remark. W is not really the sum of all graphs (with propagators C2") without four legged
subgraphs. Rather, W" may be expressed as a sum of labelled graphs, with each line of
each graph labelled by a fixed scale. Then only those four legged subgraphs for which the
maximal scale of the external legs is strictly less than the minimal scale of the internal lines

are forbidden.

In the rest of this section, we sketch the proof of Theorem II.1, stating without proof
the main Lemmata. Details will be given in [FKLT1]. Also see [FMRT1].

Let us first take a look at the power counting of the graphs. In coordinate space,
we use the following norms. Fix test functions fr € L' N L>*, 1 < k < 2q. Let G, =
Gq(&1,- -+ ,&2q) be some kernel. Then

2q
|Gyl = supsup / TT déx1Go(€r, -+ E20)]
4 i k=1

and for S C {1,---,2q}, S #0

2q
IG4lls =/Hd€iH | F1(&) |G a(€r,- -, E2q)] -

=1 kesS

Lemma IL.2 (Power Counting) Let G, be a connected amputated graph with 2q exrternal
legs built up from generalized, 2q, legged vertices or subgraphs I, with ||I,, |lg < oo . Suppose

each line of the graph has a covariance C7 with

|C7 ||z < cM?, 1C7||zr < e M.
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Then there are the following bounds

IGllp < e+ =71 [ (|||qu lo M(qu—m) M—(a-2)i |
veV

1Gqlls < e~ T (I oM ~27) x
UEWnt

TT (1 b5, b3 Caem15D3) pr=3Ca=ishi
veVefm‘.

Here a vertex s called external, if at least one of its legs is integrated against a test function.

There is an analogous bound in momentum space. Then the L* and L' norms

reverse roles. In momentum space, one easily verifies that C7(k) = di(fi’(“l)c) obeys |C7 (k)| <
cM~7 and [d3k|C?(k)| < ¢ M7, so that one obtains the above bound. In coordinate space,
one has to work harder (see [FT1], lemma V.2,3).

The reason we have formulated the above lemma in coordinate space is, that the
whole expansion for the generating functional is done in coordinate space since the fields
have to be Taylor expanded in coordinate space. Then, to get small factors from the Tay-
lor expansion, the covariance has to be decomposed further into pieces C¥* and the power
counting lemma will be applied to graphs, or more precisely, to kernels which are sums of
graphs where each line has covariance C7*. The estimates are done in coordinate space and
one effectively obtains the above bound.

If one iteratively applies Lemma II.1 for all scales one gets a similar bound with

M(2=2)i preplaced by M(%—2)i—i) where 7, > j is the scale of the generalized vertex wv.

This scale must be summed over, which yields
. M~(@-2) < M~3% <1 ifq, >3
S mteai L a2
1, =7+1 . .
M7l ifg, =1
Vertices with at least six external legs are summable. In fact, they produce a small
factor M ~3% which can be used to control the ¢»-sums coming with each vertex. Four legged

vertices give a |j| = |log M?| = |log e(k)|. In the next section it is shown that this logarithm

is really there if the Fermi curve is a circle, but it is absent if the dispersion relation e(k)
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satisfies hypotheses I-III of section I. Finally, a two legged vertex gives the exploding factor

M7l but this factor can be eliminated by renormalization of the two legged kernels.

As we mentioned earlier, we will give an inductive proof which uses only a single
scale expansion. We will not write down the scale sums explicitly. They are replaced by a
suitable induction hypothesis on qu ~1 see (I1.16,17) below. We hope that this makes the
proof clearer.

When renormalization is performed, the scale j can no longer be used as the induc-
tion index, because the definition of the counterterm at scale j involves the sum of all scales
below j. In that case all scales are treated simultaneously and the induction is on “iteration
step”, corresponding to the depth of the tree in the Gallavotti Nicolo tree expansion. This
was also the method used in [FT1,2]. The corresponding formalism is presented in Lemma

I1.5 below.

We start with an easier case, in which we remove both two and nontrivial four legged

subgraphs. That is, we replace the ()4 in Theorem II.1 with @, 4 defined by
Q24D 037 (#) = A5G (D)oo + D957 (@)
g=1 q=3

Then one does not have to renormalize and the induction is on scales. We want to show that

W31 defined inductively by W° = —AV and
Wj—l(,(pgj—l +¢) — Q2,4 IOgYL/er(d)Sj-i_d’)d//:Cj(d)j), Y'] — /ewj(1/)j)d/1'0j(¢j)
J

is analytic for all sufficiently small A, independent of 7 > —o0.

First write

where
V@S 4 ) = —V(@SI 1 + ¢)
and for j <0
VITU (il 4 §) = Qa4 log Yi / W EZEN WD g, ()

= Qas {1°g 7 [ e () - Wi ¢)}
J
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Since W7 (<771 4+ ¢) is subtracted in the exponential, V~! must contain at least one con-
traction at scale 7 — 1. This is not the case for W7~1. From a technical point of view, the
Vi~1s are the basic objects. In particular, the induction hypothesis is stated in terms of

them.

Let P<, be the operator which projects onto contributions up to nt® order in .

That is P<p Y pep akA® = 3 0_ axA* and let qu_l, j <0, be given by

VIG) = SV @) = X [ deag Vi e fag) 6 e
q=3 q=3
There will be an expansion

P Vi m, - imag) = Y P<nKITH (W )(m,- -+ m2q)
YEPn,q

where the sum is over all paths +y joining the root to some other extremal vertex of a tree P, 4,
called the expansion or partial integration tree. This tree is not the tree of the Gallavotti-
Nicolo Tree Expansion. The expansion tree contains a description of the entire expansion.
Each fork corresponds to a substep of the expansion process and each branch leaving the fork

corresponds to a possible outcome for that substep.

P<n Vi~

To give a bound on PSanj ~1 one has to bound the kernels K. ,{;_1 (ng ) and to control

the sum ) HEPn " The sum is controlled by

Lemma II.3 (Combinatorial Tree Lemma) Let T be a tree, wy > 0 a weight factor
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assigned to the line £ and K., a real number assigned to the end of the path v € T. Then

> 18] < sup { [Lo(r) [ we 5 |

YeT fevy Ley

where b(f) = Zw% 18 a generalized branching number for the fork f.
Lef

In the case of P, ; we can choose the w,’s so that

H b(f) H wg < const ZvGV(-y) v

fevy Ley

where ZvEV( y) Qv is half the number of legs of the vertices of which the kernel K, is made
of. Since power counting gives a factor M ~ 5 coming with each vertex, the above factor
can be controlled by choosing M sufficiently large. This is a general rule for the expansion:
you can allow all kinds of sums as long as the branching numbers or generalized branching
numbers times the weight factors is bounded by const 2, % Factorials like [  g,! are not
allowed. Weight factors are necessary when there are infinite sums. In our model, this will

only be the case for the ¢,-sums. One may take 2?* as a weight factor.

Before we write down what the kernels are, let us first explain how the expansion is

generated. We start with the fundamental theorem of calculus f(1) = f(0) + fol de L f(e):

e=1

j— | — 1 3 (a3 <i—1y_ i <j—1 .
VIT (ST = Q24 IOg?/eW (W=D =WIep =" gy () 0
j e=

s > /Hd&Wf T ¢= (&)

q=3 Jc{1, keJe
J;éo

J (2 <i—1\_ i <j-—1 .
| IHZ€J¢] e W (¢ +e9p )—W?(e¥ )dﬂoi(W)
et { } . (IL1)
0 de

[ W (¥ +eb=I T =WIeh =TT gy o (4h7)

The J-sum comes from multplying out the 2¢g brackets (1,07 (&) + ST )) The
condition J # () ensures that there is at least one contraction. Together with the ¢-sum, they

yield the first branching of the expansion tree.
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Now we do integration by parts. That is, we eliminate all the fields [, ; P7 (&) in
the numerator of (IL.1) by repeatedly applying the formula

[ @ Py dne = [ancien [ ZZ—% duc (112)

where, if { = (2,0,b) and n = (y,7,¢),

C(&vn) - 5b,1—c50,‘r { S'(C?(’yy,)m) ii Z z (1) and /d’l] = Z Z /d3

ce{0,1} re{T,1}

The result is formalized in the following general

Lemma II.4 (Integration by Parts) Let C be some covariance and

-y / A ag Wy, 12g) $mn) -~ (12g)
q=1

Then one has

/ BEDP(E) -+ (&) VPP dpuc () =

>, Z ooy N SIgnJ,l,U/H T dni Wo.(ni, -+ mbg, ) %

{ 2q;
AC{1l,p} B Th Jicl2ad LS UCW(ALY i€A

C(&,mi,) H¢nk)}/ﬂxm ¥) dug(¢',9) /H I »i) ¥ Pduc(y)

keJ: 1€A (i,k)EUC
where . o
W& ifiga
X, =9 1l ¢0i) iieAa,
(i,k) €U
and

p same matrix as for the
functional integral without primes,

! ! . g p
/ H XA,U,i (¢) d,chr(’l,b ’,l’b) = det but with C’(nl ,nk,) replaced by 0
and C(¢; ,'qk) replaced by 0 if :<j5

Furthermore, if the tree P is defined by

oo
;=1 J;c{1,---,2q;} l;€J;
YEP  AC{lp} %iZ JiClleo2ad Ll UCW(ALD
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with weight factors wg, = 2% for the q;-sums and all other weights being one, then

[T 2() [ we < const PE v ®

fery Ley
fOT‘ all 7€ P. anallyﬁ W(A?lal) = Uiea UkEJi\{li} {(Z?k)}? ch = {la : 72%} \ Ji7
Uc=W(A,J,[)\U and sign(J,,U) € {1,—-1}.

Let us briefly explain how the five sums in the lemma arise. The first sum tells you
which fields of the p ‘downstairs’ fields (&), --,¢({,) differentiate the exponential when

you apply (IL.2). Each time one hits the exponential, say with the field ¥(¢;), the sum

> / dg - iy, Wi (0153 Mg,) (@ + 9)(01) -+ (6 + $) (mig,) (IL.3)
q;=1

is brought down from the exponential. This explains the second sums in the lemma. The
third sums come from multiplying out the (¢+)(7n} ) brackets and the fourth sums are there
%ew = % e . Finally, the last sum tells you which of the new

downstairs fields in (IL.3) are differentiated by some later 1(¢) fields which do not hit the

because of the derivative in =
exponential. That is, U C W(A4,J,1), is the set of n-fields (the new downstairs fields) which
are contracted to some £-fields. The sum of all possible contractions between them is given

by the “primed integral”

p _same matrix as for the
/ 15,0, (W) duo( ) = det | o s raect o | - (IL4)
=1 and C(&; 7)) replaced by 0 if i<j

We used a prime on duy, to indicate that this is not the sum of all contractions given

by the usual functional integral. It is restricted to contractions initiated by ¢-fields so that

(n,m)-contractions are forbidden. Furthermore, an 7-field which is generated by, say, (&)

hitting the exponential, cannot contract to ¥({1), ---, ¥(£p—1), since, again by construction,

we begin the integration by parts procedure with ¢({;) and at that time the 7-field has not

yet been produced. Therefore the primed ¢-fields in (II.4) can only contract to n-fields sitting

on the left of the £-field, or to an arbitrary other primed ¢-field. A rigorous proof of the
Integration by Parts Lemma will be given in [FKLT1].
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Let us return to (IL1). Eliminate the fields [];.; ¥7(&) in the numerator of (IL.1),
/ [T v (&) e ¥ +ed= - W= R gy (yi), (IL5)
ieJ
by doing one round of partial integration. That is, apply the above lemma one time. This
produces a big sum of terms. There are terms where U€¢, which labels the fields in the new

functional integral, is empty. Then the remaining functional integral is just
J (a7 <i—1\_ i <j—1 .
/eW (¥ ey =) =WHeV™") d i (47)

and cancels against the denominator in (II.1). On the other hand, when U*° is not the empty
set, apply the integration by parts lemma again. Repeat as necessary.

Consider a term where, after n steps of partial integration, the functional integral
has not cancelled. Then, in each step there must have been a field which hit the exponential.
Since each WY comes at least with one A and (IL.1) already has one Wg downstairs, the term
must be of order at least A»*1. Thus, to isolate all contributions up to nt® order, it suffices
to do n rounds of partial integration discarding all terms for which the functional integral

has not cancelled. So we may write

PSanj_l(nla T a772q) = Z PSnK'{;_l(ng )(7717 T an2q) (116)
YEPn,q

where the expansion tree P, , is obtained by iterating the partial integration tree P of Lemma
I1.2 n times and removing all paths which lead to contributions in which functional integral

has not cancelled or the number of external fields is not equal to 2q. The kernels are given

by

K37 WE,) (s m2q) = K5 WG ) (0°)

v

n

- / an™ TT Wi ") T o) T Z20) (IL7)

vEV, leT, r=1

where V, is the set of all vertices of K?Y'_l and T is a spanning tree for K,’Y'_l. The primed

integral produced at the r’th step of partial integration is abbreviated by I;.(n) in (IL7).

As mentioned above, the sum over the expansion tree is estimated with the combi-

natorial tree lemma and causes no problem. The only place where factorials may arise are the
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primed integrals. In fact, full expansion of the determinant in (I1.4) for all primed integrals in
(I1.7) generates all Feynman graphs. Our expansion is designed to produce all contributions

up to n*® order in such a way that potential factorials are isolated and can be controlled.

To eliminate the factorials produced by the primed integrals, one has to do two
things. First, one introduces sectors, that is, one decomposes the shells around the Fermi
curve into smaller pieces as shown in the following figure. The decomposition for a nonspher-

ical Fermi curve is analogous.

Mi

M2

Second, one Taylor expands the fields (in coordinate space) at the beginning of each
step of partial integration.

We now explain why. One starts with a functional integral like (IL.5). Suppose that
two fields in (IL.5) are equal. Then the functional integral vanishes. If you were to integrate
by parts with these fields, you would produce terms whose sum is zero but which are assigned
to different paths in the expansion tree. If one applies the combinatorial tree lemma, one
does not see the cancelations between these terms.

The reason for sectors is the following: Each covariance C’ comes with a decay
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factor (1 + M7|z|)~" where N can be chosen arbitrary large. That is, one has summable
decay between boxes of length M~7. Using this decay, one can bound, as in the classical
cluster expansion, the primed integral by a power counting factor times a product of “local”

factorials,

H (&, A,b,0)!

AG'DJ'
be{o,1}
oe{T,l}

where { is the set of coordinates of the downstairs fields in (IL5) and m({,A,b,0) is the
number of those fields which have z; € A, b; =b and 0; = 0. Here D; is a set of space time
boxes of length M7 which cover R3.

For a given set of coordinates £ and a given field v(&;), divide A > z; into

m(€, A, b;,0;) subboxes d of length

M7
7I'(§, A’ bi7 01)% .

Let ¢; be the center of the subbox d C A to which &; belongs, that is, for which z; € d. The
Taylor expansion produces powers of ((z; — ¢;) - V). Now, by construction,
M7

|z; — ci] < V3 T
ﬂ-(éaAabiaa'i)E

(IL.8)

Thus, the Taylor expansion will generate a net small factor if each derivative in
coordinate space gives an M7. This would be the case if the covariance had a singularity
”"m';’% However,

2

in our model the singularity is on the Fermi curve ky = 0, e(k) = 0 and, in C7, k is only

at a single point in momentum space, for example if C7(z) = f ditke

localized in a shell of thickness M7 around the Fermi curve. Each coordinate space derivative

k2 which is of order one rather than M7. Alternatively, one

brings down a factor of k from e’
may say that the phase space volume M 37 x M2/ = M7 is too big. Therefore the spatial
momentum has to be localized further. This is done by introducing sectors £. Then, if the
order t of the the Taylor expansion is choosen sufficiently large, the operators (z; — ¢;) - V

give small factors (up to constants)

7‘-(§§Aab707£)

H 1 < const
iea (& A,b,0,0) s (TELLOOTI) T g (g A b, g, )PrEARY

19



which kill the local factorials produced by the primed integrals. The number 7({;d,b,0,£)— 3t

arises as follows. Expand each field

V() = 97 (Q) + (2 — ) - VPPH() 4 4 (25— ) 9) T 97(e)

(t—1)!
1

+ m/ dw (1 — w)t= ((z4 — c) - V)t¢j,e(c+ w(z — ¢))

= S T, (11.9)
s=0

Since the functional integral (IL.5) vanishes if two fields are equal, at most 1 +3 +3% +--- +
3t=1 < 3t fields can fail to be Taylor remainders. So at least n(&;d,b,0,L) — 3t fields must be

Taylor remainders.

The most natural thing would be to break up the Fermi curve into sectors of length
M?. However, there is a further subtlety which forces one to use sectors of length M 3 instead
of M. Of course, one has to control the sector sums associated with the decomposition of the
covariance and fields. Since the primed integrals are to be estimated without full evaluation,
one no longer has Feynman graphs. There no longer are momentum loops and one can use
conservation of momentum only at each generalized vertex to control the sector sums. To
be more precise on this point: if one computes the primed integral, one obtains for each
contraction of, say, ¥ and 7% a Kronecker delta ¢, ¢,, that mimics conservation of
momentum in a line. However, to have access to all these delta’s one must fully expand the
primed integrals and then the crucial bound (II.14) below fails.
If {,(k) has support on a sector £ € ¥; of length M3% and
: (k
Cl(k) = Zkof’_ e) Z Zko > k) =) Y (1L.10)

LEL;

is the corresponding decomposition of the covariance, then one can prove that

eiae(x—x )D”"DWID’“( _’Qf(x_x')Cj’l(:c,w'))‘ < const M(GFrotmi+R)igil(y g1)=N
(IL11)

where the decay factor is given by
PP (z, ") =14 M |zg — xf| +Mj|x|| —in| +Mix, —x|,
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and
0
Dy=-——, D= Qe
Oz |qe|

where q, denotes center of the sector £, 7, is some unit vector perpendicular to q, and

Vxla -D_L - 7?( 'Vxl

X = (X,q¢)qe + (X, M) = X)) + X1 A derivative in the 7, direction only gives an M?# but
the decay rate in that direction is also M ~% instead of M—9. Thus the phase space volume

is still one. M %-sectors are the largest ones for which this can be achieved.

So we introduce the decomposition (II.10) and write the fields ¢ = 3 =y Pt as a
sum of independent variables. At the beginning of each step of partial integration, we Taylor
expand the downstairs fields as in (II.9), where the expansion point ¢ = c(§, {) is determined
by the number of fields which are localized in the box A 5> z;. Observe that, because of the
anisotropic decay of the covariance (IL.11), one has to use boxes of size M~ x M~/ x M -3
in the xy-, q¢- and m-direction.

The sums coming with the Taylor expansion add new branchs to the expansion tree,
which is still denoted by P, 4, while the sector sums are left explicit rather than bounded
by Lemma II.3. The result of the integration by parts expansion with sectors and Taylor
expansion is

P Vil (057 = Y P KIS (IL.12)
YEPn,q

where

e -(E Y X [Hamveesm) s

vEV “ju=37 €€, 41 mLER; (L)
n
S1 ]a i1 (1 <:] 1 111k
H‘Smil(z)’ lz(l)T"l C 1()(7711(1) 7712(1)) H H (4 k)
ZET r=1 external

legs

2q
= > / T dne K271 (g m) 975 () -+ p ST 120 ()
=1

77l1,"',77l2(16553j
Here the first sector sums ),, are over the set X, ;1 of sectors of scale j, + 1
k
where the vertex Vq’:’ was created. The second sector sum decomposed each sector /7 into

M_j—(j;+1)

sectors mj of length M 5. Furthermore, the sector delta function
1, if []1, (dd+1ki Fi(ki)Com, (ki))5(k1 + ot kag) >0
0, if J T3, (d%+ ks £5(ke)Cm (i) ) 8Ky + -+ + Kag) = 0

6q(m1’ Tt aqu) =
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ensures conservation of momentum at each vertex.

The effect of the Taylor expansion is that

n 5. l( xlllumb.er o;‘ f’ields irll )
Sup { H |I1,,(77; m)| } S (Const o MEJ) 2 \ the primed integrals . (II.14)
UAXLON, S B %’_/
=|IC7™ ||

One gets the same bound if one estimates a single diagram.

Because there are sector sums on the external legs, we introduce new norms which

are suitable for an inductive treatment.

; = sup sup Z /Hdm|K mm m)|,

M, M, mE €

ki ki
15 lss, = Y /HdnkHIfzmHK ()]
mEET; €S

keSc

In particular
q
1Ky ll1, 201,85 = 1By 1, 20y = / LT doe [ £ (n)| | K (m)] -
k=1
Furthermore, if K., = Y 72, A\*K,, 1, we define

n
1K lo,25,<n = Y INFIE kllo,s, -

Then one obtains the following bound

-1
|||K$_1|||0,zj,§n < H (M%(qv—Z) Z M%(zqv—s)an{v’ ]
vEV Jo=7]

9440 +1 75”) X

clz" ©qy - i(a-2) g —4(2a-3) (IL.15)

Let us briefly explain how the different powers of M7 arise. The primed integrals

give the factors

number of fields in ) number of fields

<M%]) %(the primed integrals _ (M%‘7> %( not on the tree ) _ M%](Zv qv—q—zv 1-|-1) .
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On the tree T in (I1.13), the L'-norm of C’™ has to be taken which give the factors
5. s . 1-1 .
(artiag=13)2" 7 (S,

The sector sums El;ezjv+1 are contained in the norms |||Vq’;"’kv llo,s;, .- The sector sums

Doy ex,(ev) are estimated by Lemma I1.3’ of [FMRT1|. This lemma covers only the spherical
k k

case, but there is an analogous version for the e(k)’s specified in section I. It says that, if

one fixes the sector of one leg of the vertex v, the number of independent sector sums for

the remaining legs is at most 2¢, — 3. By conservation of momentum, one can get rid of two

sector sums at each generalized vertex. This gives the factor
H M_ j—(j; +1) (2‘11; _3)
v

since for all but one vertex one sector is fixed by the Kroenecker delta’s 5mi1 @y»miyy O1 the

tree T' and for the last vertex one sector is fixed by the definition of the norm || - [|g 5, -

Altogether, one obtains

(X, w—a=Y, 141) (X, 1-1) - 0, (2003 D

H (M%(qv -2) pr 2 (20 —3)) M—3@=2) pr—3(2¢-3)

v

which coincides with the power counting of (II.15).

Now we apply the combinatorial tree lemma to obtain

Vi oz, <n < X2 1K o, <
‘YE'Pn,q

JIREAIEA s

fery Ley

0,%; ,Sn}

—1
2o v —q i(g,— Jptl - j
S sup {czzv clzv H (M;(qv 2) Z MJ > (2411; 3)|||Vq.7vv |||0,2j,u+17§7l) X

YEPn,q eV

< sup
YEPn,q

Jv=J
A-4(a-2) - 4(24-3) } , (IL.16)
The constant ¢; comes from covariance estimates and depends on M but ¢, is a pure combina-

torial constant. If some external legs in S C {1,---,2q} are integrated against test functions,
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one gets the following bound
IV{ ™ s.2,5n < (I1.17)

Do a8 D - ] — o 1 :
sup {Cz e ] (M%W—Z) Y MUYy

YEPn,q ’

0’2,7'1, “+1 7Sn) X
VEVint Jv=1

-1
[T (ME@=218D 5y ColSDpyiofs o <n)M—%@—%wnM—%(zq—wn}.

'Ueve:c‘t .711:.7

By (IL16,17), |[V/7"[le 5 ., is estimated in terms of ||V~ of higher
S»=ir= v

0
| S ’Ej'u +1 ,STL

scale j, > j — 1. Therefore we can proceed by induction on the scale with the following

inductive hypothesis

Vi~ los;,<m < INZ M50, (IL18)

. -1 4 _di(39_3|5|_1
Vi lss,cn < () pG)SAE M-3Ca-318 “Hg(llfkllLlJrllfklle) (IL.19)
ke

IA

A

where p(j) = [;—; 1 (1 + M) < [[i—_ (1 + M%) = ¢3 < oo. Using (IL16,17), (IL18,19)

is verified for A sufficiently small{. In particular, we obtain

2q 0
/Hd&lfi(&)l Wi(ér, s bag)l = Wl zar < D IVE 20y
=1

i=r
0 2q
. pe 4
=Y Vil 2qp.m 0 <2672 [ <||f1c||L1 + ||fk||L°°) . (IL.20)
j=r k=1

This completes our outline of the proof of Theorem II.1 in the case without two and nontrivial

four legged subgraphs. Now let us turn to the case where two legged subgraphs are allowed.

Renormalization of Two Legged Subgraphs

So now, for r +1 < j < 0, let W71 be the effective potential without four legged
subgraphs defined in Theorem II.1. Then

0
WIS = 37 V@S + V(9= )

i=j—1

1 First choose M big enough such that czZ SV 22,4 < 1 and then make A small
enough such that ¢;~" e |/\|Zv i<,
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where
V(S = V()
and, for 7 < 0,

V(=) = W"(wf") - W (=)
— Q4 log / Wit (gSitly_ W’+1(¢<1)d z—|—1(¢1,+1) (11.21)

Yit1
and
Yij1 = /€Wi+l(¢i+1)dﬂgl(¢i+l) :
The counterterm is given by

V(9) = [ gz en(l, ) FED(E)

where we write
-1 o

Ser(k,\) = Zée’ (k,A) =) 8el (k)

j=r l=1

Define a localization operator L which annihilates all but quadratic monomials by
L[ G pi = [ o 160 w0 (122
(2m)° ) (@) ’ '
LG, =0 Vg#1,

LG(ko,k) = G(0,75K).

Here we assume that on a tubular neighbourhood N(F) of the Fermi curve

F ={k € R? |e(k) = 0} we can define a projection 7 : N(F) — F such that
le(k)] < M? = |npk —k| < cM?

where c is independent of j and k. In the event that F is a circle of radius kr, we simply let
mrk = kpﬁ and then LG(k) = G(0, kpﬁ) = G(0,kFr) is independent of k by the rotation

invariance of G.
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The interaction for V7! is W7 which may be decomposed into a renormalized and

a local part. Let R =1 — LL, then
WJ'(¢SJ') — RWJ'(¢SJ') + LWJ'(¢SJ')

0 —1
= YRV + 3 LV (YS) + 6V, (4%)

=7 1=y

RV/(=0) 4 [ (50 V00 + el ) ) w5155

=i i=j

0
provided we define ée,.(k, ) to be invariant under L.

If the quadratic part appears as a two legged vertex in the computation of VI~1,

the Power Counting Lemma II.2 gives a factor (neglecting sectors)

~1
‘HZ LV + be,

1=y

x M7
0

which is big. On the other hand, the | - ||g norm of a two legged graph without two and four
legged subgraphs is bounded by M7 which is a small number. Therefore one should choose
de, such that E;lj LV} +6e, can be treated as a kernel of a two legged graph of scale < j —1.
That is, choose de, = — 3. LV} or, if LV;i(k,\) = 3352, LV (k)N

Sy (k) = —LVi (k) Vr<i<-1,1>1 (11.23)

Note that V} is defined through a functional integral whose integrand contains W*t!

and hence
-1

Y LVt e, ==Y LV"=> ) bery(k)

m=1+1 m=r [=0

Thus (I1.23) is of the form
fet = f:ﬁ,((ae;",,)rsms_l) (I1.23a)
) ) ) <

1</ <1—-1

In particular, for [ = 1, (11.23) is

[ Gapotatmv= 9= =k f () - v s

where V is the initial quartic interaction. The counterterm 6V, does not appear on the right
hand side since there is at least one contraction. Thus ef,J:l is determined for all ¢. Iterating

(IL.23a) determines ef,J for I > 1, without the need for any estimates.
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With this choice of §e,., W’ becomes

0 j—1 3
Wi (ST) = 3 RV () — Z / % LV;i(k,\) %<1 (k)§SI (k) . (IL.24)

1=y

Now, scales below j also appear on the right hand side of (II.24). That means that
the estimates (I1.16,17) for qu ~! contain scales below j, too. So we can no longer proceed
by induction on scale. Nevertheless, there is another way to construct e, which allows one
to prove the bounds on qu ~1 by induction (on iteration steps, which play a rdle similar to

the order of perturbation theory).

Lemma I1.5 Let r > —oco be the infrared cutoff and let U be a vector of effective potentials
U= (U UL, UT"). Define a sequence of vectors ut = U0, uR=1 . Uk by

U (P=") = (-2V(4=°), 0, -+, 0)

U0 — Ay VE>0

and forallr+1<353<0, k>0

. X 1 o ki) <j. <j—1y_\V—1 kg <j. <ji—1
uk+1,]—1(,¢37—1) — Q4 IOg I_k /ezi:j RU™ (=754=777) Zi:r LU™* (p="59=7 )d/'l/Cj , (1125)
3

O RUMI(p) ST Lk (g
I = / D (»)-Y7"] ) s

where we have used the abbreviation U (<7 ;pSI—1) = YR (<) — URH(p<I71). Here L is
the localization operator (I1.22) and R =1 — L.

Let n be an arbitrary natural number and P, be the operator which projects out the

ntt order coefficient with respect to . Then one has
Vs Z 0 Pn Q2n+s — Pn QZn—l
and, if VI are the potentials defined in (II.21) such that W™ = Z::l,, Vit 6V,

Vr<j<-—1 P, U*™i = p, V7
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where we used U™ instead of U™ since it makes the formulas shorter. In particular, the

coefficients up to nth order of the the solution &e, of the equations (II.23) are given by
-1 -1 '

Vi<i<n Seqi=Y bet,=—Y LUT

if

wrri(g) =3 3 X / AEULT (Es s €aq) W&r) -+ Ul&aq)

q=1 =1
q#2

Altogether, if W are the kernels of the effective potential without four legged subgraphs defined

i Theorem II.1, we have

n n 0 n -1
SONWE =D N NUIY - 6,0) Y NLUTT. (11.26)
=1 =1 i=r =1 i=r

Remark. There is an analogous version of this lemma for the construction of the full effective
potential, including four legged subgraphs. The only modifications to be made are to omit

the operator Q4 in the definition of Z/*+1:7=! and to define U*+1:0 = —\V for all k& > 0.

By (II.26) we have to bound U:jll’i and LUlzj’i. But (I1.25) expresses U" ! in terms
of U*. That is, we do a single scale expansion in (II.25) and then proceed by induction on k.
The single scale expansion is done as above. It is generated by the integration by
parts formula Lemma II.4. We Taylor expand the fields at the beginning of each step of
partial integration and use sectors of length M i We apply the Combinatorial Tree Lemma

I1.3 to control the various sums produced in the expansion. Sector sums are estimated by

the Sector Counting Lemma IL.3’ of [FMRT1]. The result is

JUHY g5, <o < Y IEE T g o0 < (I1.27)
YEPn,q
sup {ed el T (e S S )
7€Pna vEV\V2 Jv=j B
H (Z &4 Uljv”(b,Sn) H (Z U |0,SRM_7)M—%((I—Z)M—%(Zq—fi)}_
'U€V2,R Jo=73 'UEV2,L Jo=T
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We now briefly explain the power counting of the renormalized and counterterm two
legged vertices. If a renormalized vertex of scale j, contributes to K,’;“’j —1. one obtains a

factor! SUPk csupp Ci (k) |RU (k)| which is estimated as follows

|RUY (k)| = |UL (k) — LUY ()| = [UF7* (ko, k) — UF"* (0, mrk)|
< |0k, UF* ()] - ko] + | ViU (B)] - [k — mrk]
k’ .’U k’ .’U
< 2o lUr " llo - [ko| + NIx[UT" lo - [k — wrk|

< 2|||z|Uf?"[lg - M7 on the support of C? (k).

A counterterm vertex LUlk Jv ig simply estimated by

k’ .'U k’ .’U k’ .’U
sup |LU (k)| < sup |UF5 (0, mek)| < [Ty
kesuppCi (k) k

Assigning an M~ to each counterterm vertex as in (IL.27), one can say that there is an
additional M7 for each two legged vertex. Furthermore, by conservation of momentum, there
are no sector sums coming with a two legged vertex. Therefore we obtain (compare the

discussion following (II.15))

i, w—a=30, 141) (3, 1-1) I1 M-St (20, -9) 1 M =

’UGV\Vz ’UEVZ

11 (M%(qv—z) Mj”;l(z%—s)) M~3(a-2) p-5(20-3)
’vGV\Vz

which is the power counting of (IL.27).

If some legs of U, ,;"+1’j ~1 are integrated against test functions, one obtains

10 smyen < Y 1K s, ,2n <
YEPn,q
-1
2. —|S| v —4q I(q. — Jut1 - i
sup {sz 612” I (st S o ee-sgri |||@,zjv+1,gn>><
VEPn.q vEVini\Va Jo=]

-1
(g _1 vl g :
H M3(e—315:0) Z M2 (Cao—1S:D) U(Z,yv |||Sv,2j,,+1,§n> %
vEVezt\VZ ]v:]

t One has to be a little careful in going to momentum space, since the Taylor operators

(z — ¢) - V, break translation invariance, it still comes down to the above estimate.
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—! . i-1 . .
11 (ZHH«%‘IW’“III@,@) I1 (ZIH Uf’“le,gnM")x

'UEVZ,R ]v:] 'UEVZ,C jv:T
M-a=bishp-deaish ] ||f||L1} _ (I1.28)
f at V2,ezt

which may be compared to (II.17).

We are now in a position to state the induction hypothesises on U k. They are

UET " g,z;,<n < [N M 203479 (IL.29)
N[ UF 7 lo,cn < NEMT™M37, w e {0,1} (IL30)
i -1 g _i(3g—2|5|—1
1057 smszn < () 20 AIE M 2003 T (1l + 1 falle ) (1L31)
keS

Using (I1.27,28), they are verified for ***. In particular, (I1.29-30) hold for k = 2n. Then
we can apply (I1.26) of Lemma IL.5 to conclude

2q
J Tl Wi es, -+ el = 1W; s,
=1

-1 -1
<Y NUZ g, 20y + 81 Y IEUZ™

(1,23
__1 - -1
= Z |||U3n’z ||{1,"',2<I},Ei+1 + 6‘171 Z |||LU3n’l "{1,2},21-1-1
<473 TT (Iells + D fallz)
k=1

This completes our discussion of Theorem II.1.
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$III Four Legged Diagrams

Spin plays no role in this section. So we supress it. Feynman diagrams in this model

have lines

- Z]\,”O — e(k)
and vertices
k1 ks
= (27’(’)d+16(k1 + kz - k3 - k4)>\ <k1, ]\”,2|V|k3, I\?4>
ks ks

For example

is one graph contributing to the proper self energy. This is a three loop graph. Choosing the

®@@

q -

loops as in

we see that the value of this graph is

1 1

i(k1)o — e(k1) (k1 + ka2)o — e(k1 +k2)
1 1 1

i(k2 +k3)o — e(kz +k3) i(k3)o — e(ks) i(kz2 +q)o — e(ks +q)
(k1 + ko, k3| V]k1, k2 + k3) (k1, k2 + g Vg, k1 + k2) (k2 + k3, q[V]k2 + g, k3)

/ dky dko dks

It is not clear that this integral converges. The domain of integration is compact, because of

the ultraviolet cutoff, but the integrand is singular.
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To check for convergence one does “naive power counting” bounds. In field theory
propagator singularities occur at points. Then power counting just comes down to some
simple dimensional analysis. Here there are singularities on curves, like (k1) = 0, k; € F.
We have to have a simple yet precise way of measuring whether the integrand is large a lot.

To do so we decompose the propagator

1
(k) = iko — e(k)
0
— Z c9)
j=—o0
where
1 . .
(4) I < |ilen — Jj+1
CcY(k) = T — e(k)x(2 < liky — e(k)| < 2771)

Note, the perhaps bizarre, convention that j is negative. As j tends to minus infinity, 27
approaches zero and, on the support of C(9), |iky — e(k)| approaches zero. Naive power

counting just uses

Lemma III.1 Let d be arbitrary and Hypothesis I be satisfied. Then

@)
1P| = sup |1 (k)| < 277
k

b)
||C’(j)||1 = / dk |C(j)(k)| < const 27

Proof: Part a) is obvious because, by construction, |iky — e(k)| > 27 on the support of
CU) (k).
For part b) observe that

vol { k = (ko,k) | CO(k) #0 } <vol{ ko | |ko| < 27%! }vol{ k € B | |e(k)| < 27*! }
<27+2v01{k€B‘| (k)| < 27t1 }
The set { k € B | |e(k)| <27 } consists of a shell of thickness O(27) around F and hence

has volume bounded by const 2’ so that
vol { k = (ko, k) | CU (k) # 0 } < const 2% (III.1)
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and
1)y = / dk [CY (k)| < sup |CU)(k)[vol { k = (ko,k) | CV) (k) #0 }
k

< const 27

We remark that the smoothness condition Ve(k) # 0 of Hypothesis I was used to
get the volume bound (III.1). The corresponding volume for the Hubbard model at half filling
is |j|2%7 which leads to ||C/)||; < const|j|27 .

The analog of Lemma III.1 for the infrared &} model is ||C)||,, < 27%, ||CY)||; <
const 227, The replacement j — 2j can be viewed simply as a change of units. So it is not too
surprising that Lemma III.1 implies [FT2, FMRT1| that models satisfying Hypotheses I and
IV obey bounds typical of strictly renormalizable models in the infrared regime. Two legged
are linearly divergent and must be renormalized. Four legged subdiagrams are marginal
and all other subdiagrams are convergent. As is normal for infrared models, the two legged
counterterm is finite and the marginality of four legged subdiagrams does not require a
counterterm. The four legged subdiagrams are divergent only for certain exceptional momenta
and then only logarithmically divergent. These logarithmic singularities are integrable and
hence do not prevent diagrams from being well defined. But they can cause the values of

diagrams containing many four legged subdiagrams to be anomalously large through

/ dk1n"™ |k| ~ n!
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Normally, under these circumstances one of two possibilities occur. The renormal-
ization group flow of the four point function is either asymptotically free or is to a nontrivial
fixed point and is acompanied by some interesting physics, like mass generation or symmetry
breaking. We shall now see that under Hypotheses I-IV, the bounds which give marginality of
four legged subdiagrams are not saturated. Four legged subdiagrams are in fact convergent.
The models behave more like superrenormalizable models than strictly renormalizable ones.

To be concrete, we’ll first do the naive power counting bound explicitly on one
simple, but very important, graph — the particle-particle bubble

t+q s+q

If the total momentum entering from the left is ¢, the value of this graph is
B(37t7Q) = / dk C(_k + Q)C(k) <_k + q, k|V|t + q, _t> <S + q, _'S|V| —k + q, k>

Decomposing the two propagators into scales and then bounding the integral by the supremum

of the integrand times the volume of the support of the integrand, we have

[B(s,t.a)l =] > / dk Cj,Cj, (—k+ ¢, k[V[t + ¢, —t) (s + ¢,—s[V| = k + ¢, k)
J1,72<0
< Do IVIE2 " vol{ k € B | |iko — (k)| < 2T, [i( =k + g)o — e(~k + q)| < 27+ }
71,5250
< Z [V ||2, 277 7= gmintindadyol { k € B | le(k)| < 2271 Je(~k + q)] < 29+t }
71,5250
(I11.2)
Even without using Hypotheses II and III we can bound the volume
vol { k € B | |e(k)| <27+ |e(—k +q)| <2771 }
<min{vol{ k € B | [e(k)| <2"" },vol { k € B[ |e(-k+q)| <2""" }}  (IIL3)
< const min {2]’,2J=} — const 2™intsa,7a}
This gives
sup [B(s,t,q)] < Y const |[V||%, 277 ~Fag2min{i..ia}
s,t,q .=
71,32 <0
= Z const ||V||(2)02_|]1_]2|
71,3250
= Z const ||V ||%,
7. <0
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which diverges logarithmically. Recall that 2/ has the units of energy.
In the event that e(k) = e(—k), violating Hypothesis III, and q = 0 we have

vol{ keB ‘ le(k)| < 972 +1 le(~k + q)| < 97a2+1 }
= vol{ keB | |e(k)| < gmin{js,ja }+1 }
::()<2nﬁn{juj,}+1)

and (IIL.3) is saturated. In this case ¢ = 0 really is an exceptional momentum for B(q) which
really does have a logarithmic singularity at ¢ = 0.

We now turn on Hypotheses ILIII and show that then the above bound is not
saturated and that four legged subgraphs are really convergent so that the model really acts
superrenormalizable. By Hypotheses III and analyticity (or even with just Hypothesis II
if @ # 0) the Fermi curve F can only meet the reflected translated Fermi curve —F + q

transversely or with a tangency of some finite order. Hence there is an € > 0 such that
vol{ k € B ‘ le(k)| <27t |e(~k + q)| < 272*1 } < const gmin{si.ja}gemax{isia} (I1].3a)

Here const 2™i{/::72} is the thickness of each component of the intersection of the two shells

and const 2¢™2*{7:.7=} is a bound on the length of each component.

—-F +q

Substituting (III.3a) into (IIL.2) gives

sup [B(s,t,q)| < 3 const||V||2, 27+ a2 mintis da}gemex{i )

s,t .
e J1,32<0

35



= Y const ||V ||, 271 —Falgemex{s i}

71,7250

= Zconst V]2, 2¢
<0
< o0
When Hypothesis I1II is turned on the particle-particle bubble becomes uniformly bounded.
Of course the particle-particle bubble is just one graph. As a second example we
consider the second most important graph in our class of models — the particle hole bubble
t—q s+gq
G
t s
The value of this bubble is
Ba(s,t,0) = [ @b Ok + )C(k) (¢ = 0 kI t) (s, KV + 0,5 +0)

When Hypothesis II is satisfied and when ¢ is bounded away from zero, we can apply the
same argument as in the particle-particle bubble, now using the fact that shells around F

and F + g have small intersections.

F+q

As an illustration of what happens when ¢ is small, consider ¢ = 0. Then, changing

variables to
r = ko

y = e(k)
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and some angular variable and performing the integral over the angular variable, we have

By(s,1,0) :/d‘k m@,kwm,t) (s, k[V]k, s)

1
= /dl‘dy Wf(ﬂfay)

with I(z,y) being some C* function. Making the further change of variables to polar coor-

dinates

Bs(s,t,0) = /drd9 LI(rcos 6,rsin@)

i[re*?)?

:/ww—l—ﬂ&®+0m1

i[re*]?

The potentially logarithmically divergent term

/ drdd —=_1(0,0)

ire2i®

27 )
/ do ™ =0
0

for all nonzero integers n. Hence Bz(s,t,0) is bounded.

vanishes because

Higher order graphs fall into two categories. There are strings of bubbles, like

P o 2 X
R O X,

that can be treated as above. And there are graphs like

and

which have overlapping loops. Because the k-loop and the p-loop share a line, all three
propagators CU+)(k)CU=)(p)CUs)(p — k) appear in the integrand. The supports properties

of these propagators constrains the domain of integration to

{ (k;p) € BxB | e(k)| < 2*, [e(p)| < 227, |e(p — k)| < 2+ }
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The third condition gives some “volume improvement” over naive power counting. See
[FKLT1, FKST1]. So all four legged subdiagrams have convergent, rather than marginal,

power counting.

38



References

[FKLT1]
[FKSTI]

[FMRT1]

[FMRT2]

[FMRT3]

[FMRT4

[FT1]

[FT2|

J. Feldman, H. Knorrer, D. Lehmann and E. Trubowitz, in preparation.

J. Feldman, H. Knorrer, M. Salmhofer and E. Trubowitz, Renormalization Theory
for Many-Fermion Systems: One-Band Models with Non-Nested Fermi Surfaces, in
preparation.

J. Feldman, J. Magnen, V. Rivassseau and E. Trubowitz, An Infinite Volume Ex-
pansion for Many Fermion Green’s Functions, Helvetica Physica Acta, 65 (1992)
679-721.

J. Feldman, J. Magnen, V. Rivassseau and E. Trubowitz, Fermionic Many-Body
Models, in Mathematical Quantum Theory I: Field Theory and Many-Body Theory,
J. Feldman, R. Froese and L. Rosen eds, CRM Proceedings & Lecture Notes.

J. Feldman, J. Magnen, V. Rivassseau and E. Trubowitz, Two Dimensional Many
Fermion Systems as Vector Models, Europhysics Letters, 24 (1993) 521-526.

J. Feldman, J. Magnen, V. Rivassseau and E. Trubowitz, An Intrinsic 1/N Expan-
sion for Many Fermion Systems, Europhysics Letters, 24 (1993) 437-442.

J. Feldman and E. Trubowitz, Perturbation Theory for Many Fermion Systems,
Helvetica Physica Acta 63 (1990) 156-260.

J. Feldman and E. Trubowitz, The Flow of an Electron-Phonon System to the
Superconducting State, Helvetica Physica Acta, 64 (1991) 214-357.

39



