Periodic Schrödinger Operators

Let Γ be a lattice of static ions that generate an electric potential $V(\mathbf{x})$ that is periodic with respect to Γ.

$$
\begin{array}{ccccc}
+ & \oplus & \oplus & \oplus & \oplus \\
+ & + & \oplus & \oplus & + \\
+ & + & + & \oplus & + \\
+ & + & + & \oplus & + \\
+ & + & + & \oplus & +
\end{array}
$$

Then the Hamiltonian for a single electron moving in this lattice is

$$
H=-\frac{1}{2 m} \Delta+V(\mathbf{x})
$$

This Hamiltonian commutes with all of the translation operators

$$
\left(T_{\boldsymbol{\gamma}} \phi\right)(\mathbf{x})=\phi(\mathbf{x}+\boldsymbol{\gamma}) \quad \boldsymbol{\gamma} \in \Gamma
$$

Simultaneous eigenfunctions for these operators obey

$$
\begin{aligned}
H \phi_{\alpha} & =e_{\alpha} \phi_{\alpha} \\
T_{\boldsymbol{\gamma}} \phi_{\alpha} & =\lambda_{\alpha, \boldsymbol{r}} \phi_{\alpha} \quad \forall \boldsymbol{\gamma} \in \Gamma
\end{aligned}
$$

$T_{\boldsymbol{\gamma}}$ is unitary \Rightarrow

$$
\left|\lambda_{\alpha, \boldsymbol{\gamma}}\right|=1 \Rightarrow \lambda_{\alpha, \boldsymbol{\gamma}}=e^{i \beta_{\alpha, \boldsymbol{\gamma}}}
$$

$$
\begin{aligned}
& T_{\boldsymbol{\gamma}} T_{\boldsymbol{\gamma}^{\prime}} \phi_{\alpha}=T_{\boldsymbol{\gamma}+\boldsymbol{\gamma}^{\prime}} \phi_{\alpha} \Rightarrow \\
& \quad \Rightarrow \lambda_{\alpha, \boldsymbol{\gamma}} \lambda_{\alpha, \boldsymbol{\gamma}^{\prime}} \phi_{\alpha}=\lambda_{\alpha, \boldsymbol{\gamma}+\boldsymbol{\gamma}^{\prime}} \phi_{\alpha} \\
& \quad \Rightarrow \beta_{\alpha, \boldsymbol{\gamma}}+\beta_{\alpha, \boldsymbol{\gamma}^{\prime}}=\beta_{\alpha, \boldsymbol{\gamma}+\boldsymbol{\gamma}^{\prime}} \bmod 2 \pi \quad \forall \boldsymbol{\gamma}, \boldsymbol{\gamma}^{\prime} \in \Gamma
\end{aligned}
$$

Write

$$
\Gamma=\left\{n_{1} \boldsymbol{\gamma}_{1}+\cdots n_{d} \boldsymbol{\gamma}_{d} \mid n_{1}, \cdots, n_{d} \in \mathbb{Z}\right\}
$$

For each α, all $\beta_{\alpha, \boldsymbol{\gamma}}, \gamma \in \Gamma$ are determined, $\bmod 2 \pi$, by $\beta_{\alpha, \boldsymbol{\gamma}_{i}}, 1 \leq i \leq d$. Given any d numbers $\beta_{1}, \cdots, \beta_{d}$ the system of linear equations (with unknowns k_{1}, \cdots, k_{d})

$$
\begin{aligned}
\gamma_{i} \cdot \mathbf{k} & =\beta_{i} & & 1 \leq i \leq d \\
\text { that is } \sum_{j=1}^{d} \gamma_{i, j} k_{j} & =\beta_{i} & & 1 \leq i \leq d
\end{aligned}
$$

(where $\gamma_{i, j}$ is the $j^{\text {th }}$ component of γ_{i}) has a unique solution. So, for each α, there exists a $\mathbf{k}_{\alpha} \in \mathbb{R}^{d}$ such that $\mathbf{k}_{\alpha} \cdot \gamma_{i}=\beta_{\alpha, \boldsymbol{\gamma}_{i}}$ for all $1 \leq i \leq d$ and hence

$$
\beta_{\alpha, \boldsymbol{\gamma}}=\mathbf{k}_{\alpha} \cdot \boldsymbol{\gamma} \bmod 2 \pi \quad \forall \boldsymbol{\gamma} \in \Gamma
$$

Notice that, for each α, \mathbf{k}_{α} is not uniquely determined. Indeed

$$
\begin{aligned}
& \beta_{\alpha, \boldsymbol{\gamma}}=\mathbf{k}_{\alpha} \cdot \boldsymbol{\gamma} \bmod 2 \pi, \beta_{\alpha, \boldsymbol{\gamma}}=\mathbf{k}_{\alpha}^{\prime} \cdot \boldsymbol{\gamma} \bmod 2 \pi \quad \forall \boldsymbol{\gamma} \in \Gamma \\
& \Longleftrightarrow\left(\mathbf{k}_{\alpha}-\mathbf{k}_{\alpha}^{\prime}\right) \cdot \boldsymbol{\gamma} \in 2 \pi \mathbb{Z} \quad \forall \boldsymbol{Z} \in \Gamma \\
& \Longleftrightarrow \mathbf{k}_{\alpha}-\mathbf{k}_{\alpha}^{\prime} \in \Gamma^{\#}
\end{aligned}
$$

where the dual lattice, $\Gamma^{\#}$, of Γ is

$$
\Gamma^{\#}=\left\{\mathbf{b} \in \mathbb{R}^{d} \mid \mathbf{b} \cdot \gamma \in 2 \pi \mathbb{Z} \text { for all } \gamma \in \Gamma\right\}
$$

Relabel, replacing the index α by the corresponding value of $\mathbf{k} \in \mathbb{R}^{d} / \Gamma^{\#}$ and another index n. Under the new labeling the eigenvalue/eigenvector equations are

$$
\begin{aligned}
H \phi_{n, \mathbf{k}} & =e_{n}(\mathbf{k}, V) \phi_{n, \mathbf{k}} & & \\
T_{\boldsymbol{\gamma}} \phi_{n, \mathbf{k}} & =e^{i \mathbf{k} \cdot \boldsymbol{\gamma}} \phi_{n, \mathbf{k}} & & \forall \boldsymbol{\gamma} \in \Gamma \\
\text { i.e. } \phi_{n, \mathbf{k}}(\mathbf{x}+\gamma) & =e^{i \mathbf{k} \cdot \boldsymbol{\gamma}} \phi_{n, \mathbf{k}}(\mathbf{x}) & & \forall \boldsymbol{\gamma} \in \Gamma
\end{aligned}
$$

or equivalently, with $\phi_{n, \mathbf{k}}(\mathbf{x})=e^{i \mathbf{k} \cdot \mathbf{x}} \psi_{n, \mathbf{k}}(\mathbf{x})$,

$$
\begin{aligned}
\frac{1}{2 m}(i \nabla-\mathbf{k})^{2} \psi_{n, \mathbf{k}}+V \psi_{n, \mathbf{k}} & =e_{n}(\mathbf{k}, V) \psi_{n, \mathbf{k}} \\
\psi_{n, \mathbf{k}}(\mathbf{x}+\gamma) & =\psi_{n, \mathbf{k}}(\mathbf{x})
\end{aligned}
$$

Denote by $\mathbb{N}_{\mathbf{k}}$ the set of values of n that appear in pairs $\alpha=(\mathbf{k}, n)$ and define

$$
\begin{aligned}
& \mathcal{H}_{\mathbf{k}}=\operatorname{span}\left\{\phi_{n, \mathbf{k}} \mid n \in \mathbb{N}_{\mathbf{k}}\right\} \\
& \tilde{\mathcal{H}}_{\mathbf{k}}=\operatorname{span}\left\{\psi_{n, \mathbf{k}} \mid n \in \mathbb{N}_{\mathbf{k}}\right\}
\end{aligned}
$$

Then, formally, and in particular ignoring that \mathbf{k} runs over an uncountable set,

$$
\begin{aligned}
L^{2}\left(\mathbb{R}^{d}\right) & =\operatorname{span}\left\{\phi_{n, \mathbf{k}} \mid \mathbf{k} \in \mathbb{R}^{d} / \Gamma^{\#}, n \in \mathbb{N}_{\mathbf{k}}\right\} \\
& =\oplus_{\mathbf{k} \in \mathbb{R}^{d} / \Gamma \#} \mathcal{H}_{\mathbf{k}} \\
& { }^{\text {unitary }} \cong \oplus_{\mathbf{k} \in \mathbb{R}^{d} / \Gamma \#} \tilde{\mathcal{H}}_{\mathbf{k}}
\end{aligned}
$$

The restriction of the Schrödinger operator H to $\tilde{\mathcal{H}}_{\mathbf{k}}$ is $\frac{1}{2 m}(i \nabla-\mathbf{k})^{2}+V$ applied to functions that are periodic with respect to Γ.

So what have we gained? At least formally, we now know that to find the spectrum of

$$
H=\frac{1}{2 m}(i \nabla)^{2}+V(\mathbf{x})
$$

acting on $L^{2}\left(\mathbb{R}^{d}\right)$, it suffices to find, for each $\mathbf{k} \in$ $\mathbb{R}^{d} / \Gamma^{\#}$, the spectrum of

$$
H_{\mathbf{k}}=\frac{1}{2 m}(i \boldsymbol{\nabla}-\mathbf{k})^{2}+V(\mathbf{x})
$$

acting on $L^{2}\left(\mathbb{R}^{d} / \Gamma\right)$. Unlike $H, H_{\mathbf{k}}$ has compact resolvent. So, the spectrum of $H_{\mathbf{k}}$ necessarily consists of a sequence of eigenvalues $e_{n}(\mathbf{k})$ converging to ∞. The functions $e_{n}(\mathbf{k})$ are continuous in \mathbf{k} and periodic with respect to $\Gamma^{\#}$ and the spectrum of H is precisely

$$
\left\{e_{n}(\mathbf{k}) \mid n \in \mathbb{N}, \mathbf{k} \in \mathbb{R}^{d} / \Gamma^{\#}\right\}
$$

Rigorousification

$$
\oplus_{\mathbf{k} \in \mathbb{R}^{d} / \Gamma \#} \tilde{\mathcal{H}}_{\mathbf{k}}=\oplus_{\mathbf{k} \in \mathbb{R}^{d} / \Gamma \#} \operatorname{span}\left\{\psi_{n, \mathbf{k}} \mid n \in \mathbb{N}_{\mathbf{k}}\right\}
$$

is implemented using
$\mathcal{S}\left(\mathbb{R}^{d} / \Gamma^{\#} \times \mathbb{R}^{d} / \Gamma\right)$

$$
\begin{aligned}
=\left\{\psi \in C^{\infty}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right) \mid\right. & \\
\psi(\mathbf{k}, \mathbf{x}+\boldsymbol{\gamma})=\psi(\mathbf{k}, \mathbf{x}) & \forall \boldsymbol{\gamma} \in \Gamma \\
e^{i \mathbf{b} \cdot \mathbf{x}} \psi(\mathbf{k}+\mathbf{b}, \mathbf{x})=\psi(\mathbf{k}, \mathbf{x}) & \left.\forall \mathbf{b} \in \Gamma^{\#}\right\}
\end{aligned}
$$

with inner product

$$
\langle\psi, \phi\rangle_{\Gamma}=\frac{1}{\left|\Gamma^{\#}\right|} \int_{\mathbb{R}^{d} / \Gamma^{\#}} d \mathbf{k} \int_{\mathbb{R}^{d} / \Gamma} d \mathbf{x} \quad \overline{\psi(\mathbf{k}, \mathbf{x})} \phi(\mathbf{k}, \mathbf{x})
$$

and completion

$$
L^{2}\left(\mathbb{R}^{d} / \Gamma^{\#} \times \mathbb{R}^{d} / \Gamma\right)
$$

Also define

$$
\mathcal{S}\left(\mathbb{R}^{d}\right)=\left\{f \in C^{\infty}\left(\mathbb{R}^{d}\right)\right.
$$

$$
\sup _{\mathbf{x}}\left|\left(1+\mathbf{x}^{2 n}\right)\left(\prod_{j=1}^{d} \frac{\partial^{i_{j}}}{\partial x_{j}^{i_{j}}} f(\mathbf{x})\right)\right|<\infty
$$

$$
\left.\forall n, i_{1}, \cdots i_{d} \in \mathbb{N}\right\}
$$

Its completion is $L^{2}\left(\mathbb{R}^{d}\right)$.

Set

$$
\begin{aligned}
(u \psi)(\mathbf{x}) & =\frac{1}{\left|\Gamma^{\# \mid}\right|} \int_{\mathbb{R}^{d} / \Gamma^{\#}} d^{d} \mathbf{k} e^{i \mathbf{k} \cdot \mathbf{x}} \psi(\mathbf{k}, \mathbf{x}) \\
(\tilde{u} f)(\mathbf{k}, \mathbf{x}) & =\sum_{\boldsymbol{\gamma} \in \Gamma} e^{-i \mathbf{k} \cdot(\mathbf{x}+\boldsymbol{\gamma})} f(\mathbf{x}+\boldsymbol{\gamma})
\end{aligned}
$$

Let $V \in C_{\mathbb{R}}^{\infty}\left(\mathbb{R}^{d} / \Gamma\right)$ and set

$$
\begin{array}{ll}
h=(i \nabla)^{2}+V(\mathbf{x}) & \mathcal{D}_{h}=\mathcal{S}\left(\mathbb{R}^{d}\right) \\
\kappa=\left(i \nabla_{\mathbf{x}}-\mathbf{k}\right)^{2}+V(\mathbf{x}) & \mathcal{D}_{\kappa}=\mathcal{S}\left(\mathbb{R}^{d} / \Gamma^{\#} \times \mathbb{R}^{d} / \Gamma\right)
\end{array}
$$

Proposition S.3, S. 5 There is a unitary map U such that U extends $u, U^{*}=U^{-1}$ extends \tilde{u} and

$$
\begin{aligned}
& \mathcal{S}\left(\mathbb{R}^{d} / \Gamma^{\#} \times \mathbb{R}^{d} / \Gamma\right) \frac{u}{\rightleftharpoons} \mathcal{U}\left(\mathbb{R}^{d}\right) \\
& \quad \text { dense } \bigcap_{\text {dense }} \\
& L^{2}\left(\mathbb{R}^{d} / \Gamma^{\#} \times \mathbb{R}^{d} / \Gamma\right) \frac{U}{U^{*}} L^{2}\left(\mathbb{R}^{d}\right)
\end{aligned}
$$

Furthermore, h and κ have unique self-adjoint extensions, H and K, and

$$
\tilde{u} h u=\kappa \quad U^{*} H U=K
$$

Now fix any $\mathbf{k} \in \mathbb{R}^{d}$ and $V \in C_{\mathbb{R}}^{\infty}\left(\mathbb{R}^{d} / \Gamma\right)$ and set

$$
h_{\mathbf{k}}=\left(i \nabla_{\mathbf{x}}-\mathbf{k}\right)^{2}+V(\mathbf{x}) \quad \mathcal{D}_{h_{\mathbf{k}}}=C^{\infty}\left(\mathbb{R}^{d} / \Gamma\right)
$$

Lemma S.7,S. 8

a) The operator $h_{\mathbf{k}}$ has a unique self-adjoint extension, $H_{\mathbf{k}}$, in $L^{2}\left(\mathbb{R}^{d} / \Gamma\right)$.
b) If $\Im \lambda \neq 0$ or $\lambda<-\sup _{\mathbf{x}}|V(\mathbf{x})|$, then λ is not in the spectrum of $H_{\mathbf{k}}$. If λ is not in the spectrum of $H_{\mathbf{k}}$, the resolvent $\left[H_{\mathbf{k}}-\lambda \mathbb{1}\right]^{-1}$ is compact.
c) Let $R>0$ and $\lambda<-\sup _{\mathbf{x}}|V(\mathbf{x})|$. There is a constant C^{\prime} such that

$$
\left\|\left[H_{\mathbf{k}}-\lambda \mathbb{1}\right]^{-1}-\left[H_{\mathbf{k}^{\prime}}-\lambda \mathbb{1}\right]^{-1}\right\| \leq C^{\prime}\left|\mathbf{k}-\mathbf{k}^{\prime}\right|
$$

for all $\mathbf{k}, \mathbf{k}^{\prime} \in \mathbb{R}^{d}$ with $|\mathbf{k}|,\left|\mathbf{k}^{\prime}\right| \leq R$.
d) Let $\mathbf{c} \in \Gamma^{\#}$ and define $\mathfrak{U}_{\mathbf{c}}$ to be the multiplication operator $e^{i \mathbf{c} \cdot \mathbf{x}}$ on $L^{2}\left(\mathbb{R}^{d} / \Gamma\right)$. Then $\mathfrak{U}_{\mathbf{b}}$ is unitary and

$$
\mathfrak{U}_{\mathbf{c}}^{*} H_{\mathbf{k}} \mathfrak{U}_{\mathbf{c}}=H_{\mathbf{k}+\mathbf{c}}
$$

Idea of Proof: $\quad H_{\mathbf{k}}$ is a bounded perturbation of $\left(i \nabla_{\mathbf{x}}-\mathbf{k}\right)^{2}$, acting on $L^{2}\left(\mathbb{R}^{d} / \Gamma\right)$. The latter is diagonalized by the Fourier transform. It's spectrum is

$$
\left\{(\mathbf{b}-\mathbf{k})^{2} \mid \mathbf{b} \in \Gamma^{\#}\right\}
$$

Proposition S. 9 The spectrum of $H_{\mathbf{k}}$ consists of a sequence of eigenvalues

$$
e_{1}(\mathbf{k}) \leq e_{2}(\mathbf{k}) \leq e_{3}(\mathbf{k}) \leq \cdots
$$

with, for each $n, e_{n}(\mathbf{k})$ continuous in \mathbf{k} and periodic with respect to $\Gamma^{\#}$ and $\lim _{n \rightarrow \infty} e_{n}(\mathbf{k})=\infty$. The limit is uniform in \mathbf{k}.

Theorem S. 10 The spectrum of H is

$$
\left\{e_{n}(\mathbf{k}) \mid \mathbf{k} \in \mathbb{R}^{d} / \Gamma^{\#}, n \in \mathbb{N}\right\}
$$

